
NDOT: Neuronal Dynamics-based Online Training for Spiking Neural Networks

Haiyan Jiang 1 Giulia De Masi 2 3 Huan Xiong 1 4 Bin Gu 1 5

Abstract
Spiking Neural Networks (SNNs) are attract-
ing great attention for their energy-efficient and
fast-inference properties in neuromorphic com-
puting. However, the efficient training of deep
SNNs poses challenges in gradient calculation
due to the non-differentiability of their binary
spike-generating activation functions. To address
this issue, the surrogate gradient (SG) method is
widely used, typically in combination with back-
propagation through time (BPTT). Yet, BPTT’s
process of unfolding and back-propagating along
the computational graph requires storing inter-
mediate information at all time-steps, resulting in
huge memory consumption and unable to meet on-
line requirements. In this work, we propose Neu-
ronal Dynamics-based Online Training (NDOT)
for SNNs, which uses the neuronal dynamics-
based continuous temporal dependency in gra-
dient computation. NDOT enables forward-in-
time learning by decomposing the full gradi-
ent into temporal and spatial gradients. To il-
lustrate the intuition behind NDOT, we employ
the Follow-the-Regularized-Leader (FTRL) algo-
rithm. FTRL explicitly utilizes historical informa-
tion and addresses limitations in instantaneous
loss. Our proposed NDOT method uses neu-
ronal dynamics to accurately capture temporal
dependencies, functioning similarly to FTRL’s
explicit use of historical information. Experi-
ments on CIFAR-10, CIFAR-100, and CIFAR10-
DVS demonstrate the superior performance of our
NDOT method on large-scale static and neuromor-
phic datasets within a small number of time steps.
The codes are available at https://github.
com/HaiyanJiang/SNN-NDOT.

1Department of Machine Learning, MBZUAI, Abu Dhabi, UAE
2Technology Innovation Institute, Abu Dhabi, UAE 3Sant’Anna
School of Advanced Studies, Italy 4Harbin Institute of Technology,
China 5School of Artificial Intelligence, Jilin University, China.
Correspondence to: Huan Xiong <Huan.Xiong@mbzuai.ac.ae>,
Bin Gu <Bin.Gu@mbzuai.ac.ae>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

𝑊𝑙 𝑊𝑙𝑊𝑙𝑊𝑙

𝑠𝑡
𝑙−1

𝑠𝑡
𝑁

S
p

a
ti

a
l

g
ra

d
ie

n
t

𝑢𝑡−2
𝑙 𝑢𝑡−1

𝑙 𝑢𝑡
𝑙 𝑢𝑡+1

𝑙

𝑠𝑡−2
𝑙 𝑠𝑡−1

𝑙 𝑠𝑡
𝑙 𝑠𝑡+1

𝑙

𝑠𝑡−2
𝑙−1 𝑠𝑡−1

𝑙−1 𝑠𝑡
𝑙−1 𝑠𝑡+1

𝑙−1

ො𝑎𝑡+1
𝑙−1ො𝑎𝑡

𝑙−1ො𝑎𝑡−1
𝑙−1ො𝑎𝑡−2

𝑙−1

Time
L

a
y

er

Temporal gradient

𝑔𝑢𝑙[𝑡]

Figure 1. Illustration of the computational graph of multi-layer
SNNs and the full gradient calculation process of NDOT. The full
gradient calculation includes the temporal gradient calculation and
spatial gradient calculation.

1. Introduction
Spiking Neural Networks (SNNs), as the third generation
of neural networks (Maass, 1997; Roy et al., 2019), offer a
more biologically plausible model when compared to their
second-generation counterparts, Artificial Neural Networks
(ANNs). SNNs emulate the dynamics of biological neu-
rons, communicating between layers through spike trains
(i.e., time series of spikes). Recently, SNNs have gained
increasing research attention (Lee et al., 2016; Shrestha &
Orchard, 2018; Xiao et al., 2021; Fang et al., 2021a; Jiang
et al., 2023; Deng et al., 2023), due to their energy-efficient
and fast-inference capabilities on neuromorphic hardware
like TrueNorth (Akopyan et al., 2015), Loihi (Davies et al.,
2018) and Tianjic (Pei et al., 2019). These advantages arise
from the binary, event-driven nature of spikes, which allows
SNNs to bypass multiplication during inference. However,
while the binary spiking signals offer SNNs high speed and
low energy consumption, the discontinuity caused by the
binary spike-generation process poses challenges for the
supervised training of SNNs from scratch (Wu et al., 2018;
Deng et al., 2021; Meng et al., 2022; Deng et al., 2023).

The training algorithms for deep SNNs are generally di-
vided into two categories: ANN-to-SNN conversion and
gradient-based direct training. In the ANN-to-SNN con-
version approach, an SNN is obtained from a pre-trained
ANN, by transferring/converting network weights from an
equivalent ANN counterpart which is easier to train. Sev-

1

https://github.com/HaiyanJiang/SNN-NDOT
https://github.com/HaiyanJiang/SNN-NDOT

NDOT: Neuronal Dynamics-based Online Training for SNNs

eral studies have adopted this strategy by first training an
ANN and then converting it to an SNN (Diehl et al., 2015;
Deng & Gu, 2020; Li et al., 2021a; Bu et al., 2021; Jiang
et al., 2023). However, these methods often require longer
simulation time-steps to achieve comparable performance
to ANNs, leading to increased latency and energy consump-
tion. Additionally, the conversion method may not be well
suited for neuromorphic data.

A commonly used direct training method for SNNs is
to utilize surrogate gradients (SG) to address the non-
differentiability problem caused by the binary spike genera-
tion activation functions (Neftci et al., 2019; Zheng et al.,
2021). In the forward pass, the Heaviside function is used
to generate spikes, while in the backward pass, the non-
differentiable Heaviside function is replaced by a differen-
tiable surrogate function. The surrogate gradient (SG) ap-
proach involves treating the SNN as a binary Recurrent Neu-
ral Network (RNN) and applying backpropagation through
time (BPTT) (Neftci et al., 2019; Bellec et al., 2018; Zenke
& Ganguli, 2018; Wu et al., 2018). These methods treat
SNNs as RNNs, requiring them to store intermediate infor-
mation of the unrolled computation graph for all time-steps
during backpropagation. This need to retain the state of each
time-step results in a large memory consumption, which
grows linearly with the number of simulated time-steps.
This significant training cost is particularly pronounced for
large-scale datasets like ImageNet.

Another direct training approach for SNNs is to use spike
representations, usually in the form of (weighted) firing
rates (Xiao et al., 2021; Meng et al., 2022). Spike representa-
tions consolidate information across the temporal dimension
of neurons, obviating the need for explicitly considering the
temporal dimension during SNN training. By associating
SNN spike representations with equivalent ANN-like map-
pings (Thiele et al., 2019; Wu et al., 2021; Zhou et al.,
2021; Xiao et al., 2021; Meng et al., 2022), these methods
effectively sidestep the requirement for unrolling and back-
propagating through the time dimension in SNNs training.
As a result, SNNs can be trained similarly to conventional
ANNs. In this process, the spike representations function
like activation values, enabling gradients to be calculated
based on the corresponding mappings between different
layers of these spike representations. However, these meth-
ods typically need more time-steps to achieve competitive
performance, resulting in increased latency and increased
energy consumption when using rate-based representation.

Recent advances in online training techniques strive to re-
duce memory costs throughout the training process while
preserving the biologically plausible online learning proper-
ties (Xiao et al., 2022; 2021; Meng et al., 2023). However,
the approximation of temporal dependencies brings great
challenges for accurate gradient calculation. In this work,

we introduce a forward-in-time learning method called Neu-
ronal Dynamics-based Online Training (NDOT) to directly
train SNNs to achieve high performance with low latency
while maintaining the online learning properties. NDOT is
derived from the widely used BPTT method, with a detailed
analysis of the temporal dependencies. The key idea of
NDOT is to effectively represent the temporal dependencies
through Neuronal Dynamics. By tracking the temporal gra-
dients forward and incorporating instantaneous loss, NDOT
enables forward-in-time online learning, ensuring that gradi-
ent calculation is performed online in real-time without the
need for backward computation through the time dimension.

Our main contributions can be summarized as follows:
(a) We propose Neuronal Dynamics-based Online Training
to directly train SNNs, which enables forward-in-time learn-
ing without requiring large amounts of training memory.
NDOT ensures constant training memory, independent of
the time-steps.
(b) Accurate Temporal Gradient Capture: Our NDOT ac-
curately captures the temporal gradients along the temporal
dimension using Neuronal Dynamics in spiking neurons.
This, combined with spatial gradients across layers, allows
for straightforward derivation of full gradients, facilitating
efficient forward-in-time learning.
(c) Intuitive Insights Gained through the Follow-the-
Regularized-Leader (FTRL) Algorithm: We explain the intu-
ition behind NDOT with the help of FTRL and demonstrate
how NDOT implicitly captures historical information, simi-
lar to FTRL’s explicit use of historical information.
(d) Superior Performance on Different Datasets: Experi-
mental results on CIFAR-10, CIFAR-100, and CIFAR10-
DVS demonstrate the outstanding performance of NDOT on
large-scale static and neuromorphic datasets within a small
number of time-steps.

2. Related Work
BPTT Framework for SNNs. A commonly used method-
ology for supervised direct training SNNs is to follow the
BPTT framework and deal with the non-differentiable prob-
lem of spiking generation functions by applying surrogate
gradients (SG) to facilitate meaningful gradient calcula-
tion (Wu et al., 2018; Huh & Sejnowski, 2018; Shrestha &
Orchard, 2018; Neftci et al., 2019; Wu et al., 2019; Zenke
& Vogels, 2021). A tremendous amount of novel tech-
niques have been proposed to enhance performance. These
include threshold-dependent batch normalization (Zheng
et al., 2021), temporal effective batch normalization (Duan
et al., 2022), carefully designed differentiable surrogate
functions (Li et al., 2021b), different loss functions (Deng
et al., 2021; Guo et al., 2022), trainable neuronal param-
eters (Fang et al., 2021b), and specialized network struc-
tures for SNNs (Fang et al., 2021a). Several studies use

2

NDOT: Neuronal Dynamics-based Online Training for SNNs

multi-stage training, typically involving an initial ANN pre-
training phase, to address the energy efficiency concern by
reducing the latency (i.e., the number of time-steps) while
maintaining high performance (Chowdhury et al., 2022;
Rathi & Roy, 2021; Rathi et al., 2019). The BPTT with SG
method has demonstrated competitive performance with
extremely low latency on both static and neuromorphic
datasets (Deng et al., 2021; Fang et al., 2021a; Li et al.,
2022). However, the BPTT training requires significant
memory and computing resources to backpropagate signals
(through both temporal and spatial domains), because SNNs
are treated as RNNs and the computational graph needs to
be unfolded along the time dimension (Deng et al., 2020;
Meng et al., 2023; Xiao et al., 2022). Furthermore, these
methods cannot realize online learning, particularly forward-
in-time learning which is crucial for neuromorphic hardware
compatibility. In contrast, our NDOT method reduces the
huge memory cost of the BPTT framework and maintains
the online property.

Online Training Neural Networks. Our focus is on
algorithms that process samples sequentially to facilitate
real-time parameter updates, which are particularly use-
ful for RNNs and SNNs across multiple time-steps. In
the domain of RNNs, various alternatives of BPTT have
been proposed to enable online learning, such as Real-Time
Recurrent Learning (RTRL) (Williams & Zipser, 1989),
UORO (Tallec & Ollivier, 2018), KF-RTRL (Mujika et al.,
2018), and SnAp (Menick et al., 2020). Particularly, the
Forward Propagation Through Time (FPTT), introduced
by (Kag & Saligrama, 2021), updates parameters in an on-
line fashion, using decoupled gradients in combination with
regularization at each time-step. Yet, these methods are
designed for RNNs and are not tailored to SNNs. In the
domain of SNNs, numerous studies have drawn inspiration
from online training techniques developed for RNNs. Sev-
eral online training techniques have been introduced and
adapted for SNNs (Zenke & Ganguli, 2018; Bellec et al.,
2020; Bohnstingl et al., 2022), adopting similar ideas to
achieve memory-efficient and online learning. In Kaiser
et al. (2020), local losses are leveraged, and temporal depen-
dencies are disregarded for the online local training of SNNs.
Meanwhile, (Yin et al., 2023) directly applies the method
introduced in (Kag & Saligrama, 2021) for SNN training,
requiring a specially designed gated neuron model. Online
Training Through Time (OTTT) (Xiao et al., 2022) success-
fully extends online training methods to handle large-scale
tasks such as the ImageNet classification. Recently, the
Spatial Learning Through Time (SLTT) (Meng et al., 2023)
was introduced for SNNs, arguing that gradients through the
temporal domain are unimportant and should be ignored in
the computational graph during backpropagation. However,
these approaches for SNNs do not incorporate precise gradi-
ents along the temporal domain, leading to a performance

disadvantage due to gradient approximation compared to
their BPTT counterparts in RNNs.

Regularized Online Optimization. Online algorithms
operate by drawing random examples one at a time and
adjusting the learning variables based on observations that
are currently available (Xiao, 2009). We introduce regu-
larized stochastic learning and online optimization prob-
lems, where samples are processed sequentially as they
become available (Shalev-Shwartz et al., 2012). There is
a lot of research work on regularized online optimization,
with most focusing on promoting sparsity (Duchi et al.,
2011; Xiao, 2009; Duchi & Singer, 2009). Without regular-
ization, online gradient descent updates the parameters in
real-time by subtracting the gradient of the instantaneous
loss ℓt(w) incurred in round t from the current parameter
wt, i.e., wt+1 = wt − η∇wℓt(w). With a “hard” set con-
straint (the regularization), one of the most widely used
online algorithms is the Online Stochastic Gradient Descent
(OSGD) method (Robbins & Monro, 1951; Kiefer & Wol-
fowitz, 1952) which updates wt+1 =

∏
C(wt−ηt∇wℓt(w)),

where
∏

C denotes Euclidean projection onto the set C and
ηt is an appropriate stepsize. The OSGD method has been
very popular in the machine learning community due to
its capability of scaling with very large data sets and good
generalization performances observed in practice (Bottou &
Bousquet, 2007; Langford et al., 2009; Shalev-Shwartz et al.,
2007). For example, Truncated Gradient (TG) was proposed
by (Langford et al., 2009) to induce sparsity in the weights
for online learning with convex loss functions. Regularized
Dual Averaging (RDA) method (Xiao, 2009) was introduced
to exploit the regularization structure in an online setting.
At each iteration of RDA methods, the learning variables
are adjusted by solving a simple minimization problem that
involves the running average of all past subgradients of the
loss function and the whole regularization term, not just its
subgradient. At the same time, the FOBOS (Duchi & Singer,
2009) framework was proposed for empirical loss mini-
mization with regularization, which alternates between two
phases. On each iteration, an unconstrained gradient descent
step is first performed, then an instantaneous optimization
problem is cast and solved which trades off minimization
of a regularization term while keeping close proximity to
the result of the first phase. More descent algorithms were
developed such as Composite Objective Mirror Descent
(COMID) algorithm (Duchi et al., 2010), Adaptive Online
Gradient Descent (AOGD) algorithm (Hazan et al., 2007).
Finally, it is proved that many mirror descent algorithms for
online convex optimization (such as online gradient descent)
have an equivalent interpretation as follow-the-regularized-
leader (FTRL) algorithms (McMahan, 2011), where the key
difference between these algorithms is how they handle the
cumulative L1-penalty.

3

NDOT: Neuronal Dynamics-based Online Training for SNNs

3. Preliminaries
3.1. Spiking Neural Networks

As the foundational elements within SNNs, spiking neurons
draw inspiration from the complex functions of biological
neurons in the brain. In SNNs, a spiking neuron integrates
input spike trains into its membrane potential, u(t), and
fires a spike only when u(t) exceeds a threshold, and then
resets its membrane potential u(t) after firing (Gerstner
et al., 2014). Spikes are numerically expressed as 0 and 1,
indicating resting and active, respectively. This 0-1 spike
train conveys network information between layers, enabling
energy-efficient and event-based computation on neuromor-
phic chips (Davies et al., 2018; Pei et al., 2019).

The leaky integrate-and-fire (LIF) neuron model is a widely
used spiking neuron model, which captures the neuronal
dynamics of the membrane potential as follows:

τ
du(t)

dt
= −(u(t)− urest) + I(t), u(t) < Vth , (1)

where τ is the time constant, I(t) is the input current, and
Vth is the threshold. A spike is generated when u(t) reaches
Vth at time tf , and u(t) is reset to the resting potential
u(t) = urest, which is often zero. The spike train is defined
using the Dirac delta function: s(t) =

∑
tf
δ(t− tf).

Spiking neural networks consist of multiple layers with in-
terconnected neurons and associated connection weights.
Consider a simple input current model Ii[t] =

∑
j Wijsj [t],

where Ii[t] is the current at time-step t for neuron i, Wij rep-
resents the weight from neuron j in the previous layer to neu-
ron i in the current layer. To establish the computational link
between layers and time-steps along the spatial-temporal
dimension, the discrete LIF model can be formulated as:

ui[t+ 1] = λ (ui[t]− Vthsi[t]) +
∑
j

Wijsj [t+ 1] , (2)

si[t] = H(ui[t]− Vth) , (3)

where H(·) is the Heaviside step function, si[t] is the spike
train at discrete time-step [t] for neuron i, and λ is a leaky
constant (typically taken as 1− 1

τ). The reset operation is
implemented by subtraction the threshold Vth.

3.2. Previous SNN Training Methods

Spike Representation. The spike representation (Xiao
et al., 2021; Meng et al., 2022), i.e., (weighted) firing rate,
merges information across the temporal dimension of neu-
rons, eliminating the need to explicitly backpropagating
through the temporal dimension during SNN training. The
spike representation makes training SNNs feasible by calcu-
lating the gradients from the equivalent mappings between
spike representations, similar to the training process for
ANNs.

We focus on the weighted firing rate which has connec-
tions with NDOT in this work. Define the weighted fir-
ing rates a[t] =

∑t
τ=1 λt−τ s[τ]∑t

τ=1 λt−τ , the weighted average in-

puts x̄[t] =
∑t

τ=1 λt−τx[τ]∑t
τ=1 λt−τ in the discrete condition. With

multi-layer feed-forward SNNs, the closed-form mappings
between successive layers can be established with the
weighted firing rates, al[T] ≈ σ

(
1

Vth
Wlal−1[T]

)
, where

σ(x) = min(max(0, x), 1) is a clamp function in discrete
version. The gradients can be calculated with this spike rep-
resentation ∂L

∂Wl = ∂L
∂aN [T]

∏N−1
j=l

∂aj+1[T]
∂aj [T]

∂al[T]
∂Wl , where

the weighted firing rates al[T], i.e. spike representations,
are similar to the activations between layers in ANNs.

BPTT (backpropagation through time) with SG. Con-
sider the multi-layer feedforward SNNs with the LIF neuron
model based on Eq. (2)

ul[t+ 1] = λ
(
ul[t]− Vths

l[t]
)
+Wlsl−1[t+ 1] , (4)

where l ∈ {1, · · · , N} is the layer index, t ∈ {1, · · · , T} is
the discrete time-step index, sl[t] are the output spike trains
of the l-th layer, Wl are the weights to be trained, and sN [t]
are the output spike trains at the last layer.

The BPTT method unfolds the iterative update equation
in Eq. (4) and backpropagates through time along the un-
folded computational graph as shown in Fig. 1. The gradi-
ents with T time-steps are calculated by 1

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

{
∂ul[t]

∂Wl
(5)

+
∑
k<t

t−1∏
i=k

(
∂ul[i+ 1]

∂ul[i]
+

∂ul[i+ 1]

∂sl[i]

∂sl[i]

∂ul[i]

)
∂ul[k]

∂Wl

}
,

where L is the loss and Wl is the weight from layer l − 1

to l. The non-differentiable term ∂sl[i]
∂ul[i]

will be replaced
with surrogate gradients, i.e., derivatives of rectangular or
sigmoid functions, ∂s

∂u = 1
a1
sign(|u− Vth| < a1

2) or ∂s
∂u =

1
a2

e−(u−Vth)/a2

(1+e−(u−Vth)/a2)2
, where a1, a2 are hyperparameters.

3.3. Follow-the-Regularized-Leader (FTRL)

In regularized stochastic learning and online optimization
problems, the objective function ft(·) is the sum of two con-
vex terms: the loss function of the learning task ℓt(·), and the
regularization function of exploiting problem structure Ψ(·),
i.e., ft(w) = ℓt(w)+Ψ(w). The L1-regularization is popu-
larly used for promoting sparsity. Online algorithms process
samples sequentially as they become available. More specif-
ically, on each round t = 1, 2, · · · , T , we draw a sequence

1This paper follows numerator layout convention. ∇WL =(
∂L
∂W

)⊤.

4

NDOT: Neuronal Dynamics-based Online Training for SNNs

of i.i.d. samples z1, z2, · · · , zT and use them to calculate a
sequence of weights w1, w2, · · · , wT . Suppose at time t, we
have the most up-to-date weight vector wt. Whenever zt is
available, we can evaluate the instantaneous loss ℓt(wt; zt)
and also a subgradient gt = ∇ℓt(wt; zt) (with respect to w).
Then we compute wt+1 based on this information.

The follow-the-regularized-leader (FTRL) algorithm
is the follow-the-leader algorithm with a regularized
term Ψ(·) added, where Ψ : W −→ R. Specifically, for
L1-regularization, i.e., Ψ(w) = λ∥w∥1, the FTRL is
highly effective in obtaining sparse solutions. Numerous
mirror descent algorithms (McMahan & Streeter, 2010;
Duchi et al., 2011), including RDA (Xiao, 2009), FO-
BOS (Duchi & Singer, 2009), AOGD (Hazan et al., 2007),
are demonstrated to have an equivalent interpretation
within the follow-the-regularized-leader (FTRL)-Proximal
framework (McMahan, 2011). The updating rule of
the FTRL-Proximal is formulated as follows: wt+1 =

argminw

(
g1:tw + tΨ(w) + 1

2

∑t
s=1 ∥Q

1
2
s (w − ws)∥22

)
,

where g1:tw approximates ℓ1:t based on the gradients
gt = ∇ℓt(wt), and the matrices Qs represent generalized
learning rates.

4. Neuronal Dynamics-based Online Training
4.1. Observation from Neuronal Dynamics

In this section, we will review the discrete temporal depen-
dency representation for SNNs, ϵ[t], and introduce the con-
tinuous temporal dependency representation for neuronal
dynamics, e[t]. The observation that the two representations
are closely related motivates the proposed method discussed
in Sect. 4.2.

The LIF model captures the biological neuron functioning
through three fundamental processes: charging, leakage,
and firing. These processes are vital for understanding the
temporal dependencies within the neuronal (membrane) dy-
namics. When examining the temporal information flow
from u(t) to u(t+1), we can observe three distinct compo-
nents: charging from presynaptic inputs s(t)↬ u(t+ 1),
direct leakage or decaying u(t) → u(t+ 1), and the firing
procedure mediated by spikes u(t)↬ s(t).

Discrete temporal dependency representation in SNNs.
As shown in Fig. 1, BPTT has to maintain the computational
graph of the previous time-steps and backpropagate through
time. In SNNs, the temporal dependency lies in the dynam-
ics of each spiking neuron, i.e. ∂ul[i+1]

∂ul[i]
and ∂ul[i+1]

∂sl[i]
∂sl[i]
∂ul[i]

in Eq. (5). We further define

ϵl[t] =
∂ul[t+ 1]

∂ul[t]
+

∂ul[t+ 1]

∂sl[t]

∂sl[t]

∂ul[t]
(6)

as the discrete temporal dependency/sensitivity of ul[t+ 1]

with respect to ul[t], represented by the colored arrows
in Fig. 1. Then the BPTT in Eq. (5) can be written as

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

ϵl[i]
∂ul[k]

∂Wl

)
︸ ︷︷ ︸

temporal component

.

(7)

If we apply surrogate derivatives to ∂sl[i]
∂ul[i]

, then we have
surrogate gradient methods (Chowdhury et al., 2022; Rathi
& Roy, 2021; Rathi et al., 2019). If we do not apply sur-
rogate derivatives and instead set ∂ul[i+1]

∂sl[i]
∂sl[i]
∂ul[i]

≈ 0, then
OTTT (Xiao et al., 2022) is obtained.

An Overview of OTTT: With
∏t−1

i=k ϵ
l[i] = λt−k, the gra-

dient calculation in OTTT is degenerated to

∂L
∂Wl

=
T∑

t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

∑
k⩽t

λt−k ∂u
l[k]

∂Wl

 .

Continuous temporal dependency representation for
neuronal dynamics. We encapsulate the entire tempo-
ral dependency from u(t) to u(t + 1) using the notation
u(t)⇝ u(t+ 1). This concise representation is expressed
through the implicit function u(t+ 1) = Im(u(t)), where
Im(·) effectively captures the complex interactions of charg-
ing, leakage, and firing dynamics in the LIF model.

To derive the derivatives of membrane potential u(t) us-
ing the implicit function u(t)⇝ u(t+ 1), we utilize the
chain rule. First, we express the derivative du(t+1)

dt and
apply the chain rule as follows: du(t+1)

dt = ∂Im
∂u(t)

∂u(t)
∂t =

∂u(t+1)
∂u(t)

∂u(t)
∂t . This leads to the definition of e(t), represent-

ing the continuous temporal dependency, expressed as:

e(t) ≜
∂u(t+ 1)

∂u(t)
= u′(t+ 1)⊘ u′(t)

Here, e(t) encapsulates the continuous temporal depen-
dency from u(t) to u(t+ 1). The symbol ⊘ (or /) denotes
element-wise division.

Combining Eq. (1), we have e(t) = u(t+1)−I(t+1)
u(t)−I(t) . This

representation illuminates the intricate temporal relation-
ships within the neuronal dynamics and holds true for
any continuous time t. When evaluating this at discrete
time-steps [t] across different layers in SNNs, we get
el[t] = ul[t+1]−Il[t+1]

ul[t]−Il[t]
. Combining Eq. (4), the continu-

ous temporal dependency representation el[t] becomes 2

el[t] =
ul[t]− Vths

l[t]

ul[t− 1]− Vthsl[t− 1]
. (8)

2When t = 1, el[t] = ul[t]− Vths
l[t]. Refer to Appendix A.2

for “numerical stability enhancing strategy”.

5

NDOT: Neuronal Dynamics-based Online Training for SNNs

4.2. Derivation of NDOT

As discussed in Sect. 4.1, within the BPTT framework, ϵl[t]
encapsulates the discrete temporal dependency of ul[t+ 1]
with respect to ul[t] in SNNs. Similarly, our analysis shows
that e(t) captures the continuous temporal dependency of
u(t+ 1) with respect to u(t) from the perspective of neu-
ronal dynamics. Given that e[t] and ϵl[t] represent the same
characteristic, a natural question arises: why not employ
neuronal dynamics-based e[t] for computing gradients in
SNNs? This question motivates our new method, Neuronal
Dynamics-based Online Training (NDOT).

Algorithm 1 One iteration of NDOT for training SNNs
1: Input: Training data (x,y), Time-steps T .
2: Output: Trained network parameters {Wl}Nl=1.
3: for t = 1, 2, · · · , T do
4: for l = 1, 2, · · · , N // Forward do
5: Update ul[t] and generate spikes sl[t];
6: Update el[t] = ul[t]−Vths

l[t]
ul[t−1]−Vthsl[t−1]

;
7: Update âl[t] = el[t− 1]⊙ âl[t− 1] + sl[t] as the

temporal gradients;
8: end for
9: for l = N,N − 1, · · · , 1 // Backward do

10: Calculate the spatial gradients gul [t] at t;
11: Calculate the instantaneous gradients ∇WlL =

gul [t]âl−1[t]⊤;
12: Update Wl with ∇WlL based on the gradient-

based optimizer.
13: end for
14: end for

To enable forward-in-time online learning, we decouple the
full gradients into temporal components and spatial com-
ponents, as illustrated in Fig. 1. We redefine the temporal
component gradients3 in Eq. (7) as follows:

âl−1[t] ≜
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

el−1[i]⊙ ∂ul[k]

∂Wl
. (9)

We further define Pl
k,t ≜

∏t−1
i=k e

l[i] = el[k]⊙ · · · ⊙ el[t−
1] = ul[t−1]−Vths

l[t−1]
ul[k−1]−Vthsl[k−1]

. Using this, we have the gradients

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

Pl−1
k,t ⊙ ∂ul[k]

∂Wl

)

∇WlL =

T∑
t=1

gul [t]

(
sl−1[t] +

∑
k<t

Pl−1
k,t ⊙ sl−1[k]

)⊤

,

(10)

where gul [t] ≜
(

∂L
∂sl[t]

∂sl[t]
∂ul[t]

)⊤
is the spatial gradient for

ul[t]. Based on Eq. (10), we can track the temporal gradient

3We use ⊙ for element-wise multiplication.

(also called the presynaptic activities):

âl−1[t] = sl−1[t] +
∑
k<t

Pl−1
k,t ⊙ sl−1[k] . (11)

In the forward procedure, the relationship between two suc-
cessive time-steps can be formulated as follows:

âl−1[t] = el−1[t− 1]⊙ âl−1[t− 1] + sl−1[t] . (12)

The pseudo-code is provided in Algorithm 1. More details
can be found in Appendix A.1.
Remark 4.1. At each time-step, given gul [t], the full
gradients can be calculated independently by ∇WlL =
gul [t]âl−1[t]⊤ without backpropagation through time over
∂ul[i+1]
∂ul[i]

and ∂ul[i+1]
∂sl[i]

∂sl[i]
∂ul[i]

.

Remark 4.2. In the full gradient ∇WlL = gul [t]âl−1[t]⊤,
gul [t] represents the spatial gradient along the spatial di-
mension, while âl−1[t] denotes the temporal gradient along
the temporal dimension. This decoupled gradient calcula-
tion enables forward-in-time learning.

So the remaining question is how to compute gul [t]. We
will address this in the following.

Instantaneous Loss. In typical SNN training, the
classification is usually based on the average firing rate,
1
T

∑T
t=1 s

N [t]. The offline loss function Loff (·) depends
on {sN [1], · · · , sN [T]} at all time-steps and does not sup-
port online learning. To facilitate online learning, we use
the instantaneous loss L[t]. The two types of losses are
defined as follows: Loff = ℓ(1

T

∑T
t=1 s

N [t],y) , L[t] =
1
T ℓ(s

N [t],y), where y is the label, sN [t] are the output spike
trains at the last layer, and ℓ(·) can be the cross-entropy (CE)
loss. The total loss L ≜

∑T
t=1 L[t] is the upper bound of

Loff when ℓ(·) is a convex function.

Previous studies such as OTTT (Xiao et al., 2022) and
TET (Deng et al., 2021) have shown that incorporating
the mean-square-error (MSE) loss for training SNNs can
enhance the accuracy. Building upon this, we combine CE
loss and MSE loss, using it as the NDOT loss, i.e.

L[t] = (1−α) ·ℓCE(s
N [t],y)+α ·ℓMSE(s

N [t],y) . (13)

With the instantaneous loss, the gradient for ul[t], i.e. gul [t],
can be independently calculated at each time-step without
information from other time-steps,

gul [t] =

 ∂L[t]
∂sN [t]

N−1∏
j=l

∂sj+1[t]

∂uj [t]

∂sl[t]

∂ul[t]

⊤

. (14)

The spatial gradients gul [t] represent gradients between
layers and can be efficiently computed using PyTorch’s
auto-grad functionality.

6

NDOT: Neuronal Dynamics-based Online Training for SNNs

Our NDOT method is proposed to tackle the challenge
of excessive memory consumption inherent in traditional
approaches like BPTT by mitigating the need for stor-
ing vast amounts of intermediate information at all time-
steps. Our proposed NDOT method enables forward-in-
time online training of SNNs by using a “Continuous tem-
poral dependency/sensitivity representation for neuronal
dynamics” rather than using the “discrete temporal depen-
dency/sensitivity in SNNs”, hereby accurately capturing the
temporal dependencies. Central to our method is the de-
composition of the full gradient ∂L

∂W l into spatial gradient
gul [t] and temporal gradient âl−1[t], as shown in Fig. 1 and
detailed in Algorithm 1. The spatial gradients gul [t] are
efficiently computed with the PyTorch’s auto-grad function-
ality, while the temporal gradients âl−1[t] are recursively
calculated in a “forward” manner, as described in Eq. (12).

4.3. Intuition Behind the NDOT Method

In this section, we will demonstrate that our NDOT method
effectively utilizes temporal dependencies, even more so
than methods that explicitly use temporal dependencies.

To understand how the NDOT method implicitly lever-
ages temporal dependencies, we draw inspiration from the
Follow-the-Regularized-Leader (FTRL) algorithm. We com-
pare the results of FTRL-OTTT, which explicitly uses histor-
ical temporal information, with our NDOT method, which
implicitly captures temporal dependencies through neuronal
dynamics. Many state-of-the-art (SOTA) online SNN train-
ing algorithms, such as those discussed by Xiao et al. (2022),
rely on instantaneous loss, potentially limiting their ability
to exploit temporal dependencies. In contrast, our NDOT
method also employs instantaneous loss but maximizes the
use of temporal dependencies by incorporating neural dy-
namics in the gradient calculations.

FTRL-OTTT: Explicit utilization of historical informa-
tion. Inspired by FTRL’s explicit leveraging historical in-
formation, we introduce FTRL-OTTT, a two-phase learning
strategy designed to address the limitations of instantaneous
loss in OTTT (Xiao et al., 2022). In the first phase, we train
an SNN with a small simulation time-step (e.g. T = 2)
using extended epochs to obtain optimal solutions/weights,
denoted as Ŵ. In the second phase, we use a larger target
time-step (e.g. T = 4) and formulate an optimization prob-
lem that balances minimizing the instantaneous loss while
remaining close to the optimal weights obtained in the first
phase. The FTRL-OTTT loss is defined as

L̂[t] = L[t] + ρ∥W − Ŵ∥22 or ρ∥W − Ŵ∥1 .

Here, Ŵ represents the optimal weights, summarizing the
historical information and explicitly included as an FTRL
regularization term. This two-stage FTRL-OTTT approach
combines instantaneous and historical information to fully

exploit temporal dependencies, enhancing the training ef-
ficiency and overall performance of existing SOTA online
SNN training algorithms.

A related approach, Time Inheritance Training (TIT) in
TET (Deng et al., 2021), addresses the training time issue
by initializing weights for larger simulation time-steps with
optimal weights Ŵ obtained from smaller simulation time-
steps. However, TET (Deng et al., 2021) only uses Ŵ as
initialization values and continues to optimize the original
loss function.

NDOT Method: Implicit utilization of temporal depen-
dencies. Although our NDOT method does not explicitly
include an FTRL regularization term in its total loss, it
works similarly by implicitly capturing temporal dependen-
cies through neuronal dynamics. This is analogous to how
FTRL’s use of historical information stored in Ŵ , which
helps us understand the intuition behind the NDOT method.

Experimental observations of FTRL-OTTT in Table 1 show
substantial performance improvements when the FTRL loss
is incorporated into other online training algorithms, such
as OTTT (Xiao et al., 2022). This inclusion clarifies the
intuition behind our proposed NDOT method. In summary,
the NDOT method captures temporal dependencies through
neuronal dynamics, functioning similarly to the explicit use
of FTRL regularization in capturing historical information.

5. Experiments
In this section, we conduct extensive experiments on CIFAR-
10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al.,
2009), and CIFAR10-DVS (Li et al., 2017) to demon-
strate the superior performance of our proposed NDOT
method on large-scale static and neuromorphic datasets.
In our experiments, we use the VGG network architec-
ture (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-
AP2-512C3-512C3-GAP-FC). We use the SGD optimizer
with no weight decay. The initial learning rate is 0.1 and
will cosine decay to 0 during the training for all experi-
ments. For the hyperparameters of LIF neuron models, we
set Vth = 1, λ = 0.5. For our proposed NDOT method, we
offer two parameter update strategies. NDOTO: this variant
represents the online real-time update, where parameters are
updated immediately at each time-step before proceeding
to the next calculation. NDOTA: this variant represents the
accumulated-time update, where gradients are accumulated
over T time-steps before performing parameter updates. For
detailed training procedures, please refer to Appendix A.3.

In practice, most BPTT with SG methods leverage batch nor-
malization (BN) along the temporal dimension to achieve
high performance with extremely low latency (Zheng et al.,
2021; Duan et al., 2022), which requires calculating the
mean and variance statistics for all time steps during the

7

NDOT: Neuronal Dynamics-based Online Training for SNNs

Table 1. Comparison between the proposed NDOT method and other SOTA methods in SNNs.
Dataset Model Method Arch. Time-steps Acc. (%)

CIFAR-10

SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN VGG-16 2500 91.55
ReLuTS (Deng & Gu, 2020) ANN-to-SNN VGG-16 16 92.29
QCFS (Bu et al., 2021) ANN-to-SNN VGG-16 4 93.96
SlipReLu (Jiang et al., 2023) ANN-to-SNN ResNet-18 1 93.11
BNTT (Kim & Panda, 2021) BPTT VGG-9 20 90.30
TEBN (Duan et al., 2022) BPTT VGG-9 4 92.81
tdBN (Zheng et al., 2021) BPTT ResNet-19 4 92.92
SLTT (Meng et al., 2023) BPTT ResNet-18 6 94.59
LTL (Yang et al., 2022) Tandem Learning VGG-11 16 93.20
OTTT (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 6 93.73

NDOTO (Ours) Forward-in-time VGG-11 (WS)

6 94.89
4 94.79
2 94.44
1 94.28

NDOTA (Ours) Forward-in-time VGG-11 (WS)
6 94.90
4 94.86
2 94.41

CIFAR-100

SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN VGG-16 2500 70.90
SlipReLu (Jiang et al., 2023) ANN-to-SNN ResNet-18 4 74.89
Hybrid (Rathi et al., 2019) Hybrid VGG-11 125 67.87
BNTT (Kim & Panda, 2021) BPTT VGG-11 50 66.60
TEBN (Duan et al., 2022) BPTT VGG-11 4 74.37
TET (Deng et al., 2021) BPTT ResNet-19 4 74.62
LTL (Yang et al., 2022) Tandem Learning VGG-11 16 72.63
OTTT (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 6 71.11

FTRL-OTTT Forward-in-time VGG-11 (WS)
6 75.89
4 74.95
2 74.55

NDOTO (Ours) Forward-in-time VGG-11 (WS)

6 76.61
4 76.18
2 75.27
1 73.24

NDOTA (Ours) Forward-in-time VGG-11 (WS)
6 76.47
4 76.12
2 75.01

DVS-CIFAR10

NeuNorm (Wu et al., 2019) BPTT 7-layer CNN 40 60.50
BNTT (Kim & Panda, 2021) BPTT 7-layer CNN 20 63.20
tdBN (Zheng et al., 2021) BPTT ResNet-19 10 67.80
TEBN (Duan et al., 2022) BPTT 7-layer CNN 10 75.10
PLIF (Fang et al., 2021b) BPTT 7-layer CNN 20 74.80
SLTT (Meng et al., 2023) BPTT VGG-11 10 77.30
OTTT (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 10 77.10

NDOTO (Ours) Forward-in-time VGG-11 (WS) 10 77.50
NDOTA (Ours) Forward-in-time VGG-11 (WS) 10 77.40

forward procedure, making it incompatible with online
gradients. To overcome this, we opt for a normalization-
free approach inspired by ResNets (NF-ResNets) (Brock
et al., 2020; 2021) and replace BN with scaled weight stan-
dardization (WS). WS standardizes weights by Ŵi,j =

γ
Wi,j−µWi,

σWi,

√
N

, where γ is a scale parameter.

5.1. Comparison of Performance

We compare our NDOT approach with other SOTA work
for SNN training, including ANN-to-SNN conversion (Bu

et al., 2021; Jiang et al., 2023), BPTT with SG (Duan et al.,
2022; Deng et al., 2021), and other online learning meth-
ods (Xiao et al., 2022). Among them, OTTT (Xiao et al.,
2022) enables direct forward-in-time training on large-scale
datasets with relatively low training costs, yet when track-
ing the temporal gradients, OTTT uses an approximation
by setting ∂ul[i+1]

∂sl[i]
∂sl[i]
∂ul[i]

≈ 0 and arguing that the deriva-
tive of the Heaviside step function is 0 almost everywhere.
While in our NDOT, we use el−1[t] to capture the temporal
dependency and leverage the temporal gradients âl−1[t] to
facilitate forward-in-time learning.

8

NDOT: Neuronal Dynamics-based Online Training for SNNs

We compare our proposed NDOT method with OTTT under
the same experimental settings of network structures and
total time-steps. In order to understand better the effective-
ness of our proposed NDOT method, we employ OTTT’s
variant with FTRL loss, termed as FTRL-OTTT. The results
are shown in Table 1. NDOT outperforms OTTT on all
the datasets regarding accuracy under the same time-step,
indicating the superior efficiency of NDOT.

On CIFAR-10, our NDOT method outperforms all exist-
ing approaches, achieving the highest accuracy. Even with
T = 1, NDOT shows a 1.08% improvement compared to
LTL (93.20%) with a simulation length of T = 16. The
superiority of NDOT is more evident on CIFAR-100, with
an accuracy increase exceeding 5% on VGG compared to
OTTT at T = 6. Notably, NDOT’s advantage is more pro-
nounced on complex datasets like CIFAR-100. We get
comparable results from FTRL-OTTT and NDOT, indi-
cating that explicitly leveraging historical information en-
hances network performance, highlighting the effectiveness
of NDOT in capturing precise temporal dependencies. For
more experimental results, please refer to Appendix A.4.

2 4 6 8 10 12 16 20 30
Time-steps

0

1

2

3

4

5

GP
U

Tr
ai

ni
ng

 M
em

or
y

(G
)

bs=32
bs=64
bs=96
bs=128
bs=160
bs=192
bs=224
bs=256

Figure 2. Training memory costs of NDOT with different batch
size under different time-steps.

5.2. The Training Memory Costs

A major advantage of our proposed NDOT method is that it
does not require backpropagation along the temporal dimen-
sion. This means NDOT maintains only constant training
memory costs regardless of the number of time-steps used,
which avoids the large memory costs of BPTT.

We verify this by training the VGG network on CIFAR-100
with batch sizes ranging from 32 to 256 across different
time-steps, then calculating the memory costs on the GPU.
As shown in Fig. 2, the training memory of NDOT remains
constant for a given batch size, regardless of the number of
time-steps. Indeed, this advantage also allows for potential
training acceleration of SNNs by using larger batch sizes
with the same computational resources.

5.3. Ablation Study on Hyper-parameter α in Loss L[t]

To comprehensively examine the impact of the hyper-
parameter α in Eq. (13), we conducted experiments on
DVS-CIFAR10 with a fixed time-step of T = 6 in the
online setting, varying α from 0.0 to 1.0 in increments of
0.1. The results are summarized in Table 2.

Table 2. Effect of Different α on DVS-CIFAR10 with Time-step
T = 6 using our NDOTO method.

α 0.0 0.05 0.1 0.2 0.3 0.4
Accuracy (%) 74.2 75.1 75.6 75.1 74.8 74.7

α 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy (%) 73.8 74.1 73.1 73.7 72.6 71.0

From Table 2, it is evident that varying α leads to fluctu-
ations in model performance. (a) Notably, an α value of
0.1 yields the highest accuracy of 75.6%, indicating optimal
performance under these experimental conditions. How-
ever, as α deviates further from this value, the accuracy
tends to decline gradually. For instance, at α = 0.0 and
α = 1.0, the accuracy decreases significantly to 74.2% and
71.0%, respectively. (b) This analysis suggests that a bal-
anced combination of cross-entropy and mean-square-error
losses, represented by an intermediate α value, contributes
to optimal model performance.

6. Conclusion
This paper addresses the forward-in-time training challenge
in SNNs, aiming to avoid unfolding the computation graph
along the temporal dimension and reduce memory costs.
We propose the Neuronal Dynamics-based Online Training
(NDOT) method, which incorporates neuronal dynamics
into the gradient calculation. By combining spatial gradients
across layers with temporal gradients, our NDOT method
enables full gradient representation and facilitates forward-
in-time training. Extensive experiments demonstrate the
consistent superiority of our DNOT method. The FTRL
algorithm helps illustrate the intuition behind NDOT’s use
of the temporal dependencies. FTRL explicitly utilizes his-
torical information, similar to how NDOT captures temporal
dependencies through neuronal dynamics, as confirmed by
experimental results.

Acknowledgements
This work is part of the research project (“Energy-based
probing for Spiking Neural Networks”, Contract No.
TII/ARRC/2073/2021) in collaboration between Technol-
ogy Innovation Institute (TII, Abu Dhabi) and Mohamedbin
Zayed University of Artificial Intelligence (MBZUAI, Abu
Dhabi).

9

NDOT: Neuronal Dynamics-based Online Training for SNNs

Impact Statement
Our research aims to advance the field of Machine Learn-
ing, specifically focusing on energy-efficient AI algorithms.
While there are many potential societal impacts of our work,
none require specific highlighting at this time.

Our research study primarily focuses on the direct training
of high-performance and low-latency SNNs, which does
not bring obvious negative effects. Additionally, due to
their energy-saving properties, SNNs are likely to become
essential in edge computing applications as their adoption
increases.

References
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R.,

Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta,
P., Nam, G.-J., et al. Truenorth: Design and tool flow of
a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE transactions on computer-aided design of
integrated circuits and systems, 34(10):1537–1557, 2015.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and
Maass, W. Long short-term memory and learning-to-
learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D.,
Legenstein, R., and Maass, W. A solution to the learn-
ing dilemma for recurrent networks of spiking neurons.
Nature communications, 11(1):3625, 2020.

Bohnstingl, T., Woźniak, S., Pantazi, A., and Eleftheriou, E.
Online spatio-temporal learning in deep neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Bottou, L. and Bousquet, O. The tradeoffs of large scale
learning. Advances in neural information processing
systems, 20, 2007.

Brock, A., De, S., and Smith, S. L. Characterizing signal
propagation to close the performance gap in unnormal-
ized resnets. In International Conference on Learning
Representations, 2020.

Brock, A., De, S., Smith, S. L., and Simonyan, K. High-
performance large-scale image recognition without nor-
malization. In International Conference on Machine
Learning, pp. 1059–1071. PMLR, 2021.

Bu, T., Fang, W., Ding, J., DAI, P., Yu, Z., and Huang, T.
Optimal ann-snn conversion for high-accuracy and ultra-
low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

Chowdhury, S. S., Rathi, N., and Roy, K. Towards ultra low
latency spiking neural networks for vision and sequential
tasks using temporal pruning. In European Conference
on Computer Vision, pp. 709–726. Springer, 2022.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., Zhao,
G., Li, P., and Xie, Y. Rethinking the performance com-
parison between snns and anns. Neural networks, 121:
294–307, 2020.

Deng, S. and Gu, S. Optimal conversion of conventional
artificial neural networks to spiking neural networks. In
International Conference on Learning Representations,
2020.

Deng, S., Li, Y., Zhang, S., and Gu, S. Temporal effi-
cient training of spiking neural network via gradient re-
weighting. In International Conference on Learning Rep-
resentations, 2021.

Deng, S., Lin, H., Li, Y., and Gu, S. Surrogate module
learning: Reduce the gradient error accumulation in train-
ing spiking neural networks. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and
Pfeiffer, M. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In
2015 International joint conference on neural networks
(IJCNN), pp. 1–8. ieee, 2015.

Duan, C., Ding, J., Chen, S., Yu, Z., and Huang, T. Temporal
effective batch normalization in spiking neural networks.
Advances in Neural Information Processing Systems, 35:
34377–34390, 2022.

Duchi, J. and Singer, Y. Efficient online and batch learn-
ing using forward backward splitting. The Journal of
Machine Learning Research, 10:2899–2934, 2009.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Duchi, J. C., Shalev-Shwartz, S., Singer, Y., and Tewari, A.
Composite objective mirror descent. In COLT, volume 10,
pp. 14–26. Citeseer, 2010.

10

NDOT: Neuronal Dynamics-based Online Training for SNNs

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:21056–21069, 2021a.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pp. 2661–2671, 2021b.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L.
Neuronal dynamics: From single neurons to networks
and models of cognition. Cambridge University Press,
2014.

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X.,
and Ma, Z. Im-loss: information maximization loss for
spiking neural networks. Advances in Neural Information
Processing Systems, 35:156–166, 2022.

Hazan, E., Rakhlin, A., and Bartlett, P. Adaptive online gra-
dient descent. Advances in neural information processing
systems, 20, 2007.

Huh, D. and Sejnowski, T. J. Gradient descent for spik-
ing neural networks. Advances in neural information
processing systems, 31, 2018.

Jiang, H., Anumasa, S., De Masi, G., Xiong, H., and Gu,
B. A unified optimization framework of ann-snn conver-
sion: Towards optimal mapping from activation values
to firing rates. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

Kag, A. and Saligrama, V. Training recurrent neural net-
works via forward propagation through time. In Interna-
tional Conference on Machine Learning, pp. 5189–5200.
PMLR, 2021.

Kaiser, J., Mostafa, H., and Neftci, E. Synaptic plasticity dy-
namics for deep continuous local learning (DECOLLE).
Frontiers in Neuroscience, 14:424, 2020.

Kiefer, J. and Wolfowitz, J. Stochastic estimation of the
maximum of a regression function. The Annals of Mathe-
matical Statistics, pp. 462–466, 1952.

Kim, Y. and Panda, P. Revisiting batch normalization for
training low-latency deep spiking neural networks from
scratch. Frontiers in neuroscience, pp. 1638, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Langford, J., Li, L., and Zhang, T. Sparse online learning
via truncated gradient. Journal of Machine Learning
Research, 10(3), 2009.

Lee, J. H., Delbruck, T., and Pfeiffer, M. Training deep
spiking neural networks using backpropagation. Frontiers
in neuroscience, 10:508, 2016.

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. Cifar10-dvs: an
event-stream dataset for object classification. Frontiers
in neuroscience, 11:309, 2017.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free
lunch from ann: Towards efficient, accurate spiking neu-
ral networks calibration. In International conference on
machine learning, pp. 6316–6325. PMLR, 2021a.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. Dif-
ferentiable spike: Rethinking gradient-descent for train-
ing spiking neural networks. Advances in Neural Infor-
mation Processing Systems, 34:23426–23439, 2021b.

Li, Y., Kim, Y., Park, H., Geller, T., and Panda, P. Neuro-
morphic data augmentation for training spiking neural
networks. In European Conference on Computer Vision,
pp. 631–649. Springer, 2022.

Maass, W. Networks of spiking neurons: the third genera-
tion of neural network models. Neural networks, 10(9):
1659–1671, 1997.

McMahan, B. Follow-the-regularized-leader and mirror de-
scent: Equivalence theorems and l1 regularization. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 525–533. JMLR
Workshop and Conference Proceedings, 2011.

McMahan, H. B. and Streeter, M. Adaptive bound optimiza-
tion for online convex optimization. COLT 2010, pp. 244,
2010.

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-
Q. Training high-performance low-latency spiking neural
networks by differentiation on spike representation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12444–12453, 2022.

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo,
Z.-Q. Towards memory-and time-efficient backpropaga-
tion for training spiking neural networks. arXiv preprint
arXiv:2302.14311, 2023.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K.,
and Graves, A. Practical real time recurrent learning with
a sparse approximation. In International conference on
learning representations, 2020.

Mujika, A., Meier, F., and Steger, A. Approximating real-
time recurrent learning with random kronecker factors.
Advances in Neural Information Processing Systems, 31,
2018.

11

NDOT: Neuronal Dynamics-based Online Training for SNNs

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S.,
Wang, G., Zou, Z., Wu, Z., He, W., et al. Towards artificial
general intelligence with hybrid tianjic chip architecture.
Nature, 572(7767):106–111, 2019.

Rathi, N. and Roy, K. Diet-snn: A low-latency spiking
neural network with direct input encoding and leakage
and threshold optimization. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. Enabling
deep spiking neural networks with hybrid conversion and
spike timing dependent backpropagation. In International
Conference on Learning Representations, 2019.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Roy, K., Jaiswal, A., and Panda, P. Towards spike-based ma-
chine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. Going
deeper in spiking neural networks: VGG and residual
architectures. Frontiers in neuroscience, 13:95, 2019.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:
Primal estimated sub-gradient solver for svm. In Pro-
ceedings of the 24th international conference on Machine
learning, pp. 807–814, 2007.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Shrestha, S. B. and Orchard, G. Slayer: Spike layer error
reassignment in time. Advances in Neural Information
Processing Systems, 31, 2018.

Tallec, C. and Ollivier, Y. Unbiased online recurrent op-
timization. In International Conference on Learning
Representations, 2018.

Thiele, J. C., Bichler, O., and Dupret, A. Spikegrad: An ann-
equivalent computation model for implementing back-
propagation with spikes. In International Conference on
Learning Representations, 2019.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
computation, 1(2):270–280, 1989.

Wu, H., Zhang, Y., Weng, W., Zhang, Y., Xiong, Z., Zha, Z.-
J., Sun, X., and Wu, F. Training spiking neural networks
with accumulated spiking flow. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pp.
10320–10328, 2021.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in neuroscience, 12:
331, 2018.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. Direct
training for spiking neural networks: Faster, larger, bet-
ter. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 1311–1318, 2019.

Xiao, L. Dual averaging method for regularized stochastic
learning and online optimization. Advances in Neural
Information Processing Systems, 22, 2009.

Xiao, M., Meng, Q., Zhang, Z., Wang, Y., and Lin, Z. Train-
ing feedback spiking neural networks by implicit differ-
entiation on the equilibrium state. Advances in Neural
Information Processing Systems, 34:14516–14528, 2021.

Xiao, M., Meng, Q., Zhang, Z., He, D., and Lin, Z. On-
line training through time for spiking neural networks.
Advances in Neural Information Processing Systems, 35:
20717–20730, 2022.

Yang, Q., Wu, J., Zhang, M., Chua, Y., Wang, X., and Li,
H. Training spiking neural networks with local tandem
learning. Advances in Neural Information Processing
Systems, 35:12662–12676, 2022.

Yin, B., Corradi, F., and Bohté, S. M. Accurate online
training of dynamical spiking neural networks through
forward propagation through time. Nature Machine Intel-
ligence, pp. 1–10, 2023.

Zenke, F. and Ganguli, S. Superspike: Supervised learning
in multilayer spiking neural networks. Neural computa-
tion, 30(6):1514–1541, 2018.

Zenke, F. and Vogels, T. P. The remarkable robustness of
surrogate gradient learning for instilling complex function
in spiking neural networks. Neural computation, 33(4):
899–925, 2021.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. Going
deeper with directly-trained larger spiking neural net-
works. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 35, pp. 11062–11070, 2021.

Zhou, S., Li, X., Chen, Y., Chandrasekaran, S. T., and
Sanyal, A. Temporal-coded deep spiking neural network
with easy training and robust performance. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 35, pp. 11143–11151, 2021.

12

NDOT: Neuronal Dynamics-based Online Training for SNNs

A.1. Detailed Derivation of NDOT
A.1.1. Derivation of Eq. (10)

The gradients of BPTT with T time-steps are calculated by

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

{
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

(
∂ul[i+ 1]

∂ul[i]
+

∂ul[i+ 1]

∂sl[i]

∂sl[i]

∂ul[i]

)
∂ul[k]

∂Wl

}
︸ ︷︷ ︸

temporal component

We further define

ϵl[t] =
∂ul[t+ 1]

∂ul[t]
+

∂ul[t+ 1]

∂sl[t]

∂sl[t]

∂ul[t]

as the neuronal temporal dependency/sensitivity of ul[t+ 1] with respect to ul[t] in the discrete condition, represented by
the colored arrows in Fig. 1. Then BPTT in Eq. (5) can be rewritten as

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

ϵl[i]
∂ul[k]

∂Wl

)
︸ ︷︷ ︸

temporal component

All the temporal information going from u(t) to u(t + 1) contains two parts: directly decaying u(t) → u(t+ 1) and
two-step going through spikes u(t)↬ s(t)↬ u(t+ 1). We wrap all the temporal information going from u(t) to u(t+ 1)
as u(t)⇝ u(t+ 1) and denote with an implicit function

u(t+ 1) = Im(u(t)) .

Then the derivatives of membrane potential u(t) with respect to time t can be calculated through the implicit function,
u(t)⇝ u(t+ 1), with the chain rule,

du(t+ 1)

dt
=

∂Im
∂u(t)

∂u(t)

∂t
=

∂u(t+ 1)

∂u(t)

∂u(t)

∂t
.

This leads to the definition of e(t) as the neuronal temporal dependency or sensitivity, expressed as:

e(t) ≜
∂u(t+ 1)

∂u(t)
=

du(t+ 1)

dt
⊘ du(t)

dt
= u′(t+ 1)⊘ u′(t) =

u′(t+ 1)

u′(t)
.

Here, e(t) encapsulates the continuous neuronal temporal dependency or sensitivity of u(t+ 1) with respect to u(t), and
the symbol ⊘ (or /) is element-wise division.

To summarize, for the continuous temporal dependency, we have

e(t) =
∂u(t+ 1)

∂u(t)
=

u′(t+ 1)

u′(t)
(This means ⊘)

e(t) =
u(t+ 1)− I(t+ 1)

u(t)− I(t)
(Neuron Dynamics) .

This representation illuminates the intricate temporal relationships within the neuronal dynamics, holding true for any
continuous value of time t.

Evaluating this at discrete time-steps [t] across different layers in SNNs, we obtain:

el[t] =
ul[t+ 1]− Il[t+ 1]

ul[t]− Il[t]
=
(
ul[t+ 1]− Il[t+ 1]

)
⊘
(
ul[t]− Il[t]

)
.

13

NDOT: Neuronal Dynamics-based Online Training for SNNs

Combining Eq. (4), we have

el[t] =
ul[t+ 1]− Il[t+ 1]

ul[t]− Il[t]
=

ul[t]− Vths
l[t]

ul[t− 1]− Vthsl[t− 1]
=
(
ul[t]− Vths

l[t]
)
⊘
(
ul[t− 1]− Vths

l[t− 1]
)
.

Here division represents the element-wise division.

As in SNNs, we use the discrete version of ul[t] across different layers and consecutive time-steps, we can evaluate the
continuous function e(t) at time-step t, as follows:

el[t] =
ul[t+ 1]− Il[t+ 1]

ul[t]− Il[t]

=
ul[t+ 1]−Wlsl−1[t+ 1]

ul[t]−Wlsl−1[t]
(SNNs with Eq. (4))

=
ul[t]− Vths

l[t]

ul[t− 1]− Vthsl[t− 1]
(Using Eq. (4) for ul[t+ 1])

Then, we have

el[t] =
ul[t]− Vths

l[t]

ul[t− 1]− Vthsl[t− 1]
.

Here division represents the element-wise division.

By replacing the term ϵl[t] in BPTT with el−1[t] and use the element-wise multiplication ⊙ between the temporal
components, we redefine the temporal component gradients in Eq. (7) as follows:

âl−1[t] ≜
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

el−1[i]⊙ ∂ul[k]

∂Wl
. (S.1)

Remark A.1.1. We use element-wise multiplication ⊙ to ensure the dimensions match in each layer without introducing
additional dimensions. That is why we use el−1[i] in âl−1[t].

Then we have

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

{
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

(
∂ul[i+ 1]

∂ul[i]
+

∂ul[i+ 1]

∂sl[i]

∂sl[i]

∂ul[i]

)
∂ul[k]

∂Wl

}
⇐⇒

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

ϵl[i]
∂ul[k]

∂Wl

)
︸ ︷︷ ︸

temporal component

≈
T∑

t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

el−1[t− 1]⊙ el−1[t− 2]⊙ · · · ⊙ el−1[k + 1]⊙ el−1[k]⊙ ∂ul[k]

∂Wl

)
︸ ︷︷ ︸

temporal component

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

el−1[i]⊙ ∂ul[k]

∂Wl

)
︸ ︷︷ ︸

temporal component

=⇒

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k

ul−1[i]− Vths
l−1[i]

ul−1[i− 1]− Vthsl−1[i− 1]
⊙ ∂ul[k]

∂Wl

)

14

NDOT: Neuronal Dynamics-based Online Training for SNNs

Further, we denote

Pl
k,t ≜

t−1∏
i=k

el[i] = el[k]⊙ · · · ⊙ el[t− 1] =
ul[t− 1]− Vths

l[t− 1]

ul[k − 1]− Vthsl[k − 1]
.

Therefore, we have

∂L
∂Wl

=

T∑
t=1

∂L
∂sl[t]

∂sl[t]

∂ul[t]

(
∂ul[t]

∂Wl
+
∑
k<t

Pl−1
k,t ⊙ ∂ul[k]

∂Wl

)

∇WlL =

T∑
t=1

gul [t]

(
sl−1[t] +

∑
k<t

Pl−1
k,t ⊙ sl−1[k]

)⊤

=

T∑
t=1

gul [t]
(
âl−1[t]

)⊤

where gul [t] =
(

∂L
∂sl[t]

∂sl[t]
∂ul[t]

)⊤
is the gradient for ul[t] along the spatial dimension. Based on Eq. (10), we can track

presynaptic activities along the temporal/time dimension.

âl−1[t] ≜ sl−1[t] +
∑
k<t

Pl−1
k,t ⊙ sl−1[k] .

For each neuron during the forward procedure, the relationship between two successive time-steps (from time-step t− 1 to
time-step t) can be formulated as

âl−1[t] = el−1[t− 1]⊙ âl−1[t− 1] + sl−1[t] ,

where

el−1[t] =
ul−1[t]− Vths

l−1[t]

ul−1[t− 1]− Vthsl−1[t− 1]
= (ul−1[t]− Vths

l−1[t])⊘ (ul−1[t− 1]− Vths
l−1[t− 1]) .

A.1.2. Derivation from Eq. (9) to Eq. (12)

From the definition of Pl
k,t, we have

Pl
k,t ≜

t−1∏
i=k

el[i] = el[k]⊙ · · · ⊙ el[t− 1] =
ul[t− 1]− Vths

l[t− 1]

ul[k − 1]− Vthsl[k − 1]
.

Based on Eq. (9), we can get Eq. (10) as follows,

âl−1[t] ≜ sl−1[t] +
∑
k<t

Pl−1
k,t ⊙ sl−1[k]

= sl−1[t] +
∑
k<t

el−1[k]⊙ · · · ⊙ el−1[t− 1]⊙ sl−1[k]

= sl−1[t] +
∑
k<t

ul−1[t− 1]− Vths
l−1[t− 1]

ul−1[k − 1]− Vthsl−1[k − 1]
⊙ sl−1[k]

Based on Eq. (10), we can track presynaptic activities along the temporal/time dimension at t− 1,

âl−1[t− 1] ≜ sl−1[t− 1] +
∑

k<t−1

el−1[k]⊙ · · · ⊙ el−1[t− 2]⊙ sl−1[k]

= sl−1[t− 1] +
∑

k<t−1

ul−1[t− 2]− Vths
l−1[t− 2]

ul−1[k − 1]− Vthsl−1[k − 1]
⊙ sl−1[k]

15

NDOT: Neuronal Dynamics-based Online Training for SNNs

Then

el−1[t− 1]⊙ âl−1[t− 1]

= el−1[t− 1]⊙

(
sl−1[t− 1] +

∑
k<t−1

ul−1[t− 2]− Vths
l−1[t− 2]

ul−1[k − 1]− Vthsl−1[k − 1]
⊙ sl−1[k]

)

=
ul−1[t− 1]− Vths

l−1[t− 1]

ul−1[t− 2]− Vthsl−1[t− 2]
⊙

(
sl−1[t− 1] +

∑
k<t−1

ul−1[t− 2]− Vths
l−1[t− 2]

ul−1[k − 1]− Vthsl−1[k − 1]
⊙ sl−1[k]

)

=
ul−1[t− 1]− Vths

l−1[t− 1]

ul−1[t− 2]− Vthsl−1[t− 2]
⊙ sl−1[t− 1] +

∑
k<t−1

ul−1[t− 1]− Vths
l−1[t− 1]

ul−1[k − 1]− Vthsl−1[k − 1]
⊙ sl−1[k]

=
∑
k<t

ul−1[t− 1]− Vths
l−1[t− 1]

ul−1[k − 1]− Vthsl−1[k − 1]
⊙ sl−1[k]

=
∑
k<t

Pl−1
k,t ⊙ sl−1[k]

= âl−1[t]− sl−1[t]

Therefore, we have the following, which is Eq. (12)

âl−1[t] = el−1[t− 1]⊙ âl−1[t− 1] + sl−1[t]

Similarly, for the l-th layer, we have
âl[t] = el[t− 1]⊙ âl[t− 1] + sl[t]

A.2. Numerical Stability Enhancing Strategy
To address potential numerical instabilities in the computations of el−1[t], i.e.,

el−1[t] =
ul−1[t]− Vths

l−1[t]

ul−1[t− 1]− Vthsl−1[t− 1]
= (ul−1[t]− Vths

l−1[t])⊘ (ul−1[t− 1]− Vths
l−1[t− 1])

we implement a “numerical stability enhancing strategy” in our codes implementation. Specifically, when the denominator
of el−1[t], ul−1[t− 1]− Vths

l−1[t− 1], equals zero, we first determine the sign of ul−1[t− 1]. Then we apply a clamping
function to restrict the value within the range [−λ, λ]. These adjustments help mitigate numerical instability concerns and
ensure the robustness of our computational approach.

A.3. Implementation Details

As introduced in Sect. 4.2, we will calculate instantaneous gradients ∂L[t]
∂Wl = gul [t]âl−1[t] at each time step. We can choose

to immediately update parameters before the calculation of the next time step, which we denote as NDOTO, or we can
accumulate the gradients by T time steps and then update parameters, which we denote as NDOTA. For NDOTO, we
assume that the online update is small and has negligible effects for the following calculation.

An important issue in practice is that previous BPTT with SG works leverage batch normalization (BN) along the temporal
dimension to achieve high performance with extremely low latency on large-scale datasets (Duan et al., 2022; Li et al.,
2021b), which requires calculating the mean and variance statistics for all time steps during the forward procedure. This
technique intrinsically prevents online gradients and has to suffer from large memory costs. To overcome this shortcoming,
we do not use BN, but borrow the idea from normalization-free (NF-ResNets) (Brock et al., 2020; 2021) and replace BN
with scaled weight standardization (WS). SW standardizes weights by

Ŵi,j = γ
Wi,j − µWi,

σWi,

√
N

where γ is a scale parameter.

16

NDOT: Neuronal Dynamics-based Online Training for SNNs

A.3.1. Datasets

In this work, we conduct extensive experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and CIFAR10-DVS (Li et al., 2017) to demonstrate the superior performance of our proposed NDOT method on
large-scale static and neuromorphic datasets.

CIFAR-10 CIFAR-10 consists of color images categorized into 10 classes of objects, comprising 50,000 training samples
and 10,000 testing samples. Each sample is a 32 × 32 × 3 color image. Our pre-processing involves normalizing the
inputs based on global mean and standard deviation, along with employing random cropping, horizontal flipping, and
cutout (DeVries & Taylor, 2017) for data augmentation. The inputs to the first layer of SNNs at each time step directly
correspond to pixel values, akin to real-valued input currents.

CIFAR-100 CIFAR-100, akin to CIFAR-10, is a dataset featuring 100 classes of objects. With 50,000 training samples
and 10,000 testing samples, it mirrors the structure of CIFAR-10. Our pre-processing methods align with those employed
for CIFAR-10. Both CIFAR-10 and CIFAR-100 datasets are governed by the MIT License.

DVS-CIFAR10 The DVS-CIFAR10 dataset represents a neuromorphic adaptation of the CIFAR-10 dataset, generated by
a Dynamic Vision Sensor (DVS). Comprising 10,000 samples, it constitutes one-sixth of the original CIFAR-10 dataset
and is characterized by spike trains with two channels denoting ON-event and OFF-event spikes. The pixel dimension is
expanded to 128× 128. Following standard procedures, we partition the dataset into 9000 training samples and 1000 testing
samples.

In terms of data pre-processing, we enhance efficiency by aggregating spike events into 2 time-steps and reducing the spatial
resolution to 48× 48 through interpolation. Similar to CIFAR-10 datasets, random cropping augmentation is applied to
input data. Additionally, inputs are normalized using the global mean and standard deviation of all time steps, a process
seamlessly integrated into the connection weights of the first layer

A.4. More Experiments
We have conducted additional experiments to evaluate the performance of our NDOT method on CIFAR-100 and DVS-
CIFAR 10 datasets using both NDOTA and NDOTO. The results are summarized in Table S1.

Based on the results, we have (a) For the CIFAR-100 dataset, our NDOTA method achieved an accuracy of 73.24% with
time-step T = 1, surpassing OTTTA which attained an accuracy of 71.11% with a longer time-step T = 6. Notably, with
time-step T = 6, our NDOTA method exhibited a substantial accuracy improvement of 5.35%, achieving an accuracy of
76.47%. (b) For the DVS-CIFAR10 dataset, both our NDOTA and NDOTO performed well even with a minimal time-step
of 2. Specifically, Our NDOTA achieved an accuracy of 77.3% with time-step T = 8, surpassing OTTTA’s accuracy of
76.30% with time-step T = 10. (c) These results highlight the superior performance of our NDOT methods, both NDOTO

and NDOTA, across different datasets (such as CIFAR-100 and DVS-CIFAR10 datasets) and time-steps, showcasing its
robustness and versatility in training spiking neural networks.

17

NDOT: Neuronal Dynamics-based Online Training for SNNs

Table S1. Results of our NDOT method (NDOTO and NDOTA) on CIFAR-100 and DVS-CIFAR10 datasets with various time-steps.

Dataset Model Method Architecture Time-steps Accuracy (%)

CIFAR-100 NDOTA (Ours) Forward-in-time VGG-11 (WS) 6 76.47
CIFAR-100 NDOTA (Ours) Forward-in-time VGG-11 (WS) 4 76.12
CIFAR-100 NDOTA (Ours) Forward-in-time VGG-11 (WS) 2 75.01
CIFAR-100 NDOTA (Ours) Forward-in-time VGG-11 (WS) 1 73.24
CIFAR-100 OTTTA (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 6 71.11
CIFAR-100 OTTTO (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 6 71.11
CIFAR-100 NDOTO (Ours) Forward-in-time VGG-11 (WS) 6 76.61
CIFAR-100 NDOTO (Ours) Forward-in-time VGG-11 (WS) 4 76.18
CIFAR-100 NDOTO (Ours) Forward-in-time VGG-11 (WS) 2 75.27
CIFAR-100 NDOTO (Ours) Forward-in-time VGG-11 (WS) 1 73.24

DVS-CIFAR10 NDOTA (Ours) Forward-in-time VGG-11 (WS) 10 77.4
DVS-CIFAR10 NDOTA (Ours) Forward-in-time VGG-11 (WS) 8 77.3
DVS-CIFAR10 NDOTA (Ours) Forward-in-time VGG-11 (WS) 6 76.0
DVS-CIFAR10 NDOTA (Ours) Forward-in-time VGG-11 (WS) 4 74.9
DVS-CIFAR10 NDOTA (Ours) Forward-in-time VGG-11 (WS) 2 71.1
DVS-CIFAR10 OTTTA (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 10 76.30
DVS-CIFAR10 OTTTO (Xiao et al., 2022) Forward-in-time VGG-11 (WS) 10 77.10
DVS-CIFAR10 NDOTO (Ours) Forward-in-time VGG-11 (WS) 10 77.5
DVS-CIFAR10 NDOTO (Ours) Forward-in-time VGG-11 (WS) 8 77.3
DVS-CIFAR10 NDOTO (Ours) Forward-in-time VGG-11 (WS) 6 75.6
DVS-CIFAR10 NDOTO (Ours) Forward-in-time VGG-11 (WS) 4 74.1
DVS-CIFAR10 NDOTO (Ours) Forward-in-time VGG-11 (WS) 2 71.1

18

