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Abstract
We study a lightweight Bayesian probe for analyzing neural networks trained with standard opti-
mization methods (e.g. SGD). Starting from trained parameters, we run stochastic-gradient Markov
chain Monte Carlo (SGMCMC) to explore the local posterior, analyzing the per-sample losses as
random quantities. The posterior mean of the per-sample loss change defines the posterior loss
gain, a practical measure of sample difficulty. High loss gain values indicate difficult, atypical,
or memorized samples, while lower values indicate easier, typical examples. The posterior covari-
ance between sample losses defines the posterior loss covariance kernel, reflecting shared structure
learned by the network. Experiments on MNIST show that the posterior loss gain effectively sep-
arates easy digits from hard or mislabeled ones. On ImageNet, initial explorations with the poste-
rior loss covariance kernel show examples of correlated images that suggest semantically coherent
groupings and potential cross-class relationships. Together, the posterior loss gain and loss kernel
offer a simple, post-training toolkit for investigating sample difficulty and semantic structure in
deep neural networks.

1. Introduction

Deep neural networks are trained on diverse datasets where individual samples can vary signifi-
cantly in complexity, typicality, and their influence on the learning process. While models achieve
high aggregate performance, they often obscure how specific data points shape the final solution
or how sensitive the model is to perturbations concerning individual examples. Uncovering these
sample-level dynamics and inter-dependencies is crucial for tasks ranging from data debugging and
curriculum design to improving model robustness and interpretability [15].

This paper introduces a framework for extracting fine-grained, sample-level structure from any
SGD-trained neural network using Bayesian probes. We leverage a local posterior (Eq. (1)) cen-
tered around the SGD solution, treating per-sample losses as random variables under this posterior.
By analyzing the first two cumulants of these loss fluctuations, we define:

1. The posterior loss gain (henceforth, loss gain) (Eq. (4)): The expected loss increase for a
sample, quantifying its learning difficulty or fragility.

2. The posterior loss covariance kernel (henceforth, loss kernel) (Eq. (5)): A kernel over data
points investigating shared model features and pairwise dependencies by measuring how their
losses co-vary under posterior perturbations.

Our contributions are twofold: (i) We provide a principled framework where the loss gain and
loss kernel refine complexity measures from singular learning theory to the per-sample case, and

© .



STUDYING SAMPLE COMPLEXITY AND LEARNED STRUCTURE IN NEURAL NETWORKS WITH BAYESIAN PROBES

Normal Inputs Mislabeled Inputs

tS
N

E1

tSNE2 Normal Inputs Mislabeled Inputs

a) The loss gain reflects an intuitive notion of complexity 
Experiment: Regular MNIST 


b) Both the loss gain and loss kernel distinguish 
memorized from generalized examples


Experiment: Mislabeled MNIST

101

100

10-6

10-2 10010-1

Figure 1: The loss kernel and loss gain extract interpretable input-level patterns from the pos-
terior geometry. Left: The lowest, highest, and average loss gain training inputs for a MLP trained
on MNIST. Low-loss-gain examples (left) are simple and prototypical; high-loss-gain examples
(right) are ambiguous or atypical. Below is a scatter plot of loss versus loss gain (both log-scaled)
for a random subset of training examples: the loss gain reveals structure not apparent from loss
alone. Right: Mislabeled inputs have ∼10x higher loss gain on average, and cluster together when
applying tSNE to the loss covariance kernel feature space.

where the loss kernel generalizes influence functions for singular models. (ii) We demonstrate
empirically on MNIST that loss gain captures intuitive notions of data complexity and that both the
loss gain and loss kernel can distinguish memorized from generalized examples. We then present
illustrative examples in the ImageNet setting suggesting that the posterior loss kernel can highlight
intuitively meaningful semantic relationships between inputs, based on their patterns of co-varying
loss under posterior perturbations. These probes offer a computationally tractable lens for exploring
the learned behavior of networks at a granular level.

2. Related Work

Our approach, the cumulant expansion (Eq. (3)) of per-sample loss changes under a local posterior,
connects complexity measures from Singular Learning Theory (SLT) [23, 24] to influence func-
tions from robust statistics. This expansion can be seen as a multivariate version of the expansion of
the Bayesian generalization error as studied in SLT; our first two cumulants (loss gain and loss ker-
nel) can be seen as per-sample, vector-valued generalizations of SLT’s Local Learning Coefficient
(LLC; Lau et al. 14) and singular fluctuation, respectively. (See Appendix B.)

The first cumulant, our posterior loss gain µi, measures sample-specific fragility. The loss
gain is closely related to the data-refined LLC of Wang et al. [22], and the sum of all loss gains
is proportional to the overall LLC, strengthening the loss gain’s interpretation as a data complexity
measure. (See Appendix B.1.)

The second cumulant, the posterior loss covariance kernel Kij , reveals pairwise sample in-
teractions. It generalizes classical influence functions [6, 13], and is well-defined for singular deep
learning models. The loss kernel coincides with a special case of the local Bayesian Influence
Function [1] and reduces to the influence Gram matrix g⊤i H

−1gj in non-singular settings [8, 12]
(derivation reproduced in Appendix C). It is closely related to Baker et al. [2]’s local susceptibilities.
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Figure 2: Top-correlated examples under the posterior loss kernel reveal interpretable pat-
terns. For each reference image (leftmost column), we show the top 5 most-correlated inputs under
the posterior loss correlation kernel R. We observe clustering by texture (e.g., fluffy fur coat and
fluffy animals), shape (e.g., circular objects and line angle), color and category (e.g., people play-
ing sports, electronics on a white background, dark vs. light brown dogs), and spatial layout (e.g.,
cluttered rooms). Additional visualizations are provided in Appendix D, and all computed correla-
tion results are available at https://github.com/singfluence-anon/sf_imagenet_
corrs.

This covariance kernel and its properties have been studied in prior work [12, 16, 19], but our work
applies it to interpreting SGD-trained deep learning models.

3. Method

This section formally defines the two statistics derived from our Bayesian probe: the posterior loss
gain and the posterior loss covariance kernel. We begin by establishing the local posterior and the
per-sample loss fluctuations, then derive the loss gain and loss kernel from the first two cumulants
of these fluctuations.

3.1. Local Posterior and Per-Sample Loss Fluctuations

Let D = {(xi, yi)}ni=1 ⊂ X × Y be the training data, fw : X → Y a neural network parameterized
by weights w ∈ Rd, and w∗ the parameters obtained by SGD. The per-sample loss for sample i is
ℓi(w) := ℓ

(
fw(xi), yi

)
.

To analyze the model’s sensitivity around w∗, we introduce a local posterior as a diagnostic
(following Lau et al. [14]):

p(w | D) ∝ exp
[
−β

n∑
j=1

ℓj(w)
]
N
(
w∗, γ−1I

)
, β > 0, γ > 0. (1)
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This posterior allows us to study the effects of small, data-informed weight perturbations. The expo-
nential term encourages fitting the data, while the Gaussian prior N (w∗, γI) localizes exploration
around w∗. The inverse temperature β adjusts the probe’s sensitivity.

For a weight draw w ∼ p(w | D), we define the loss change for sample i as ∆ℓi(w) :=
ℓi(w)− ℓi(w

∗). These are collected into the loss-change vector:

L(w) =
(
∆ℓ1(w), . . . ,∆ℓn(w)

)⊤ ∈ Rn, (2)

which is a random vector describing how each sample’s loss changes under perturbations from the
local posterior.

3.2. Loss Gain and Loss Kernel from Cumulants

The statistics of L(w) are derived from its cumulant generating function (CGF):

Φ(t) := logEw

[
et

⊤L(w)
]
.

Its expansion for small t is:

Φ(t) =

n∑
i=1

µi ti +

n∑
i=1

n∑
j=1

1
2Kij titj + O

(
∥t∥3

)
. (3)

The first two cumulants yield our primary statistics:

Posterior loss gain. The first cumulant, µi, defines the loss gain for sample xi:

µi = Ew

[
∆ℓi(w)

]
. (4)

Here, µi represents the expected change in sample i’s loss under local posterior perturbations, quan-
tifying its fragility or learning difficulty. As shown in Appendix B.1, the loss gain is closely related
to the Local Learning Coefficient (LLC).

Posterior loss covariance kernel. The second cumulant, Kij , defines the kernel:

Kij := Covw
[
∆ℓi(w), ∆ℓj(w)

]
. (5)

This positive semidefinite kernel K captures pairwise interactions. Kij > 0 suggests that pertur-
bations affecting xi similarly affect xj , indicating shared dependencies. As shown in Appendix C,
Kij generalizes classical influence functions to singular settings. For analysis and visualization,
we often use its normalized form, the correlation kernel R, which measures the correlation of loss
changes:

Rij :=
Kij√
KiiKjj

, −1 ≤ Rij ≤ 1, (6)

with the convention Rij = 0 if Kii = 0 or Kjj = 0. From a feature-map perspective, Kij can be
viewed as an inner product ⟨φi, φj⟩L2(p) where φi(w) := ∆ℓi(w) − µi, the loss trace of the i-th
sample.
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3.3. Practical Estimation via SGLD

Expectations over p(w | D) are approximated using S samples {ws}Ss=1 from a Stochastic Gradient
Langevin Dynamics (SGLD) [26] chain (or multiple chains) initialized at w∗. Standard unbiased
plug-in estimators are used for µ̂i and K̂ij , from which R̂ij is computed. For details on SGLD and
its hyperparameters, see Appendix A.1

4. Results

Posterior diagnostics appear to reveal meaningful sample structure. We evaluate the loss gain
and loss kernel across both controlled and large-scale settings. For an MNIST MLP, we compute
the loss gain for every training example and find that it correlates well with intuitive notions of
complexity (Fig. 1). Examples with low loss gain values tend to be simple and prototypical digits,
while high loss gain examples are ambiguous or atypical. This suggests that the loss gain captures
how “fragile” or “precise” the configuration of parameters which the model uses on each individual
input is. We also show that the loss gain does not simply reflect the loss of the trained model: the
Pearson correlation between loss and loss gain is r = −0.0302, indicating that loss gain values are
not predictive of the loss.

The loss gain separates generalization from memorization. To test whether the loss gain dis-
tinguishes robust generalization from rote memorization, we introduce label noise into the MNIST
dataset by randomly relabeling 10% of the training examples. We train the model until it has high
accuracy on mislabeled inputs: After training, we observe that mislabeled examples have a much
higher average loss gain than clean ones (10x higher). Moreover, when applying kernel dimension-
ality reduction to the loss covariance kernel (here using tSNE), the mislabeled inputs form a distinct
cluster, isolated from the main body of clean examples.

The loss kernel appears to reflect semantic structure in ImageNet. We next apply our method
to a pretrained InceptionV1 model on ImageNet. For 2,500 random validation examples, we com-
pute the posterior loss correlation matrix and examine top correlated inputs. Preliminarily, we find
that nearest neighbors are highly interpretable and that they often capture nuanced connections be-
tween images. We find consistent patterns of color, texture, shape, and content across the vast
majority of samples. Also, the number of samples for which we computed loss traces was rela-
tively small: we expect that increasing the number of samples will improve the overall quality of
top-correlating inputs significantly.

See Appendix A for dataset and model details, and Appendix D for extended visualizations.

5. Conclusion

We introduced Bayesian probes — the posterior loss gain and the posterior loss covariance kernel —
derived from a local posterior to analyze per-sample loss statistics in SGD-trained networks. These
principled tools appear to quantify sample fragility (loss gain) and reveal shared model features (loss
kernel), potentially offering utility in uncovering intuitive complexity and semantic relationships,
especially in singular models like neural networks. Future work includes solidifying these existing
findings, as well as exploring higher-order cumulants, the behavior of these metrics over training
time, and broader applications in anomaly detection, data understanding, and interpretability.
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Appendix A. Further Experimental Details

A.1. Stochastic-Gradient MCMC Estimator

Evaluating the posterior loss covariance kernel Kij = Covw[∆ℓi(w),∆ℓj(w)] and the loss gain
µi = Ew[∆ℓi(w)] requires Monte-Carlo samples from the local posterior p(w | D) in Eq. (1).
Following Lau et al. [14], we use Stochastic Gradient Langevin Dynamics (SGLD; Welling and Teh
26).

Update rule. With stochastic mini-batch Bt ⊂ [n] of size m and step size ϵ, SGLD performs

wt+1 = wt −
ϵ

2

( n

m

∑
k∈Bt

∇wℓk(wt) + γ
(
wt − w∗))+

√
ϵ ξt, ξt ∼ N (0, I). (7)

The first term is the stochastic gradient of the log-likelihood; the second is the gradient of the Gaus-
sian localization potential γ

2∥w−w∗∥2; the injected Gaussian noise ensures asymptotic convergence
to p(w | D) as ϵ → 0.

Parallel chains and burn-in. To improve mixing we run C independent chains, each initialized
at w∗. After discarding a burn-in of b iterations, we retain T draws {wc,t}Tt=1 per chain. For every
retained weight we record the vectors ∆ℓ(wc,t).

Cumulant estimators. The unbiased plug-in estimators are

µ̂i =
1

CT

∑
c,t

∆ℓi(wc,t),

K̂ij =
1

CT − 1

C∑
c=1

T∑
t=1

(
∆ℓi(wc,t)− µ̂i)

(
∆ℓj(wc,t)− µ̂j)

R̂ij = K̂ij/

√
K̂iiK̂jj .

A.2. Correlation Kernel Hyperparameters

Table 1 summarizes the hyperparameter settings for the correlation kernel experiments. We sample
with SGLD: m is the batch size, C is the number of chains, T the number of draws per chain, b is the
number of burn-in steps, ϵ is the learning rate, β is the inverse temperature, and γ is the localization
strength. For more information on the hyperparameters refer to Appendix A.1. We use the same
loss traces to compute both the loss gain and loss kernel (the hyperparameters are the same).

Table 1: Summary of hyperparameter settings for correlation kernel experiments. Hyperparameters
are defined in Appendix A.1 and Section 3.1.

Section Model Dataset m C T b ϵ nβ γ

Section 4 2 Layer MLP MNIST Train Set 64 5 500 10 5× 10−3 10 30
Section 4 2 Layer MLP Mislabeled MNIST Train Set 64 1 500 100 5× 10−3 10 30
Section 4 InceptionV1 ImageNet 64 30 1000 100 1× 10−4 10 1000
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A.3. MNIST

We train a two-layer ReLU MLP (width 512) on the MNIST dataset and compute loss gain values
for the full train set (60,000 examples). In Figure 1, we plot representative samples of low, average,
and high loss gain inputs and plot loss vs loss gain for 10,000 training examples. Low loss gain
inputs are neat and formulaic while high loss gain inputs are convoluted outliers.

A.4. Detecting Memorized MNIST Inputs

We next test whether the posterior loss gain distinguishes genuine generalization from rote memo-
rization.

To force memorization, we create a noisy training set by randomly relabeling 10% of the
MNIST train set (6,000 of 60,000 total). We reuse the architecture of Section A.3 and train for
100 full-dataset passes. This creates two distinct populations within our training set: normal ex-
amples that can be classified using generalizable features and mislabeled examples that must be
individually memorized. After training, the network attains 99% accuracy on the clean (training)
portion of the data and 98% on the mislabeled subset. We then compute the loss kernel and loss
gain for every training example. Fig. 1 shows covariance kernel tSNE plots for 10,000 inputs at
epoch 100. We also plot the average loss gain for the mislabeled and normal inputs at epoch 100.
On average, mislabeled inputs have a roughly 10x higher loss gain than normal inputs (23. vs 2.31,
respectively). Runtime for this experiment on a standard Macbook M3 is less than 15 minutes.

A.5. InceptionV1

We apply our method to InceptionV1 [18], evaluating posterior correlations over 2,500 ImageNet
validation samples. To reduce memory overhead, we downscale all images to 256x256 resolution.
Full hyperparameters are included in 1. We find that the quality of correlations depends significantly
on total draws used - we take a total of 30,000 draws across 30 chains. We sample over the full
ImageNet [7] validation dataset. Total runtime was 3 hours on 4 A100 GPUs. We include more
examples in Appendix D.

It is almost always the case that the first-n top correlated inputs will share a label with the ref-
erence image; we would argue, however, that this is much less intriguing than correlations between
images that don’t share a label, as one can trivially recover groupings by label simply by randomly
perturbing the logits enough times. What’s more interesting are cross-label correlations; we argue
that because these aren’t confounded by logit noise they are a more interesting measure.

Figure 2 displays a few interesting examples of such correlations. In the top left, the reference
image is a woman wearing a poofy, brown fur coat; The top correlated image is another poofy coat of
the same label, but the following are brown Chow Chow dogs and fluffy monkeys. The middle-left
example shows a reference image of a basketball player, with the most correlated images including
other sports scene action shots, despite differing class label. The bottom left reference image is a
sundial - it’s top correlated inputs are firstly two sundials, followed by images which all have straight
line and circular features. Strikingly, the angles of the red pen and black pens in the styrofoam cup in
the 4th most correlated input nearly align with the angle of the sundial and shadow in the reference
image. Similarly intriguing patterns are displayed in the other examples. Appendix D contains
many more examples randomly selected from our results and contains a link to a github repository
containing the top-16 correlated images for every input we computed the loss kernel for in this
experiment.

10



STUDYING SAMPLE COMPLEXITY AND LEARNED STRUCTURE IN NEURAL NETWORKS WITH BAYESIAN PROBES

Appendix B. Singular Learning Theory

In the theory of statistical learning, we are given a prior distribution over parameters φ(w), a data set
Dn = {x1, . . . , xn}, and a true underlying distribution q(x). Furthermore, let p(x | w) describe a
model with input x parametrized by weights w ∈ W ⊂ Rd. According to Bayes’ rule, the posterior
distribution over the parameters is given by

p(w | Dn) =
p(Dn | w)φ(w)

p(Dn)
. (8)

The classical results of statistical learning theory hold when the model p(x | w) is regular,
which, roughly speaking, means that there are no directions in weight space that leave the model’s
behavior invariant. More precisely, a model is regular if the Fisher information matrix

Ijk(w) :=

∫ (
∂

∂wj
log p(x | w)

)(
∂

∂wk
log p(x | w)

)
p(x | w) dx

is everywhere (in parameter space) strictly positive definite. Modern deep learning models fail to be
regular [25]; such models are called strictly singular. Singular learning theory is the learning theory
of such models.

The posterior in Eq. (8) reads [11, 23]

p(w|Dn) =
1

Z0
n

φ(w)e−nβKn(w), (9)

where β > 0 is the inverse temperature, Z0
n is the partition function (ensuring that

∫
p(w | Dn) dw =

1), and Kn(w) is the Kullback-Leibler divergence

Kn(w) =
1

n

n∑
i=1

log
q(xi)

p(xi|w)
. (10)

Let Ew be the expectation with respect to p(w | Dn). The Gibbs training error is then given by

Gn = Ew[Kn(w)] (11)

The Gibbs training error is a central quantity in statistical learning theory. If it is small, it means that
the model approximates the true underlying distribution well. It can be shown for singular models
that

ED[Gn] =
λ− νβ

βn
+ o

(
1

n

)
(12)

where the expectation is over possible datasets D sampled IID from the true distribution [23]. Here,
λ is the learning coefficient and ν is the singular fluctuation. Both quantities are fundamental
observables in singular learning theory.

The loss gain and loss kernel can be seen as per-sample generalizations of the (local)1 learning
coefficient and (local) singular fluctuation, as explored in Appendix B.1 and Appendix B.2.

1. We only need these “(local)” parentheticals because we defined the loss gain and loss kernel using local posterior; if
we had defined them using the ordinary posterior the “local” qualifiers would not apply.

11
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B.1. Connection between Local Learning Coefficient (LLC) and Posterior Loss Gain

Extending Watanabe [23]’s learning coefficient λ, Lau et al. [14] defines the local learning coeffi-
cient (LLC) λ(w∗) as a measure of the complexity of a model near a parameter w∗. They define a
posterior estimator for the LLC as:

λ̂(w∗) = nβ Ew

[
n∑

i=1

∆ℓi

]

This may be rewritten as a sum of loss gains µi times nβ:

λ̂(w∗) = nβ
n∑

i=1

Ew [∆ℓi] = nβ
n∑

i=1

µi

In other words, the estimated LLC is equal to the sum of the loss gains across all samples, up to
a constant factor. Given the significant theoretical and empirical work supporting the LLC as a
complexity measure [3–5, 10, 14, 17, 20–22], this serves to support the interpretation of the loss
gain as a complexity measure by association.

B.2. Connection between Singular Fluctuation and Posterior Loss Covariance Kernel

The (local) empirical variance is defined as the sum of (local) posterior per-sample loss variances
[23]:

V =
n∑

i=1

Varw(ℓi(w)). (13)

This is clearly the trace of the posterior loss covariance kernel, as Iba [12] first noticed:

V =

n∑
i=1

Kii.

The (local) singular fluctuation ν, see Eq. (12), is related to the (local) empirical variance by:

ν =
β

2
lim
n→∞

ED[V ] , (14)

where the expectation is over different possible datasets D.
As we have assumed i.i.d. data, we can drop the expectation over datasets and estimate the

singular fluctuation directly from the empirical variance. The convergence of this relation scales
quadratically in n.

Appendix C. Relating Posterior Loss Covariance Kernel and Classical Influence
Functions

A companion paper [1] extends “Bayesian Influence Functions” [8, 12] to the local setting:

BIFγ(zi, ϕ) = Covw, γ

[
ℓi(w), ϕ(w)

]
, (15)

12
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where the covariance is taken over the local posterior as in Eq. (1). The loss kernel (see Eq. (5))
coincides with a special case of this local BIF, when ϕ(w) = ℓj(w). This follows from the fact that
the covariance is invariant to a constant translation:

Covw
[
ℓi(w), ℓj(w)

]
= Covw

[
∆ℓi(w), ∆ℓj(w)

]
=: Kij . (16)

Below we reproduce Appendix B from the companion work [1], which details the relationship
between the local BIF and classical influence functions (IFs). This establishes that, for regular mod-
els, the classic IF is the leading-order term in the Taylor expansion of the posterior loss covariance
kernel.

Let w∗ be a model checkpoint. In this section, all gradients and Hessians are evaluated at
w∗; thus, to reduce notational clutter, we omit the dependence on w. For any function f(w), we
denote its gradient at w∗ as gf = ∇wf(w

∗) and its Hessian as Hf = ∇2
wf(w

∗). In particular,
gi = ∇wℓi(w

∗) and Hi = ∇2
wℓi(w

∗) for a per-sample loss ℓi(w). The total Hessian of the empirical
risk Ltrain(w) =

∑n
k=1 ℓk(w) at w∗ is denoted H =

∑n
k=1Hk.

The posterior loss covariance kernel is given by (see Eq. (5)):

Kij := Covw
[
∆ℓi(w), ∆ℓj(w)

]
= Covw

[
ℓi(w), ℓj(w)

]
, (17)

where the covariance is taken over w ∼ p(w | D).
To understand the components of this covariance and its relation to classical IFs, we consider

an idealized scenario where the model is regular. Under this strong assumption, which does not
hold for deep neural networks [25], the posterior p(w | D) can be approximated by a Laplace
approximation around w∗:

p(w | D) ≈ pLap(w|D) = N (w∗, H−1). (18)

The Bernstein–von Mises theorem states that, due to the model’s regularity, the true posterior dis-
tribution converges in total variation distance to the Laplace approximation as the training dataset
size n approaches infinity.

Let ∆w = w − w∗. Assuming analyticity, we can express ℓi(w) using its full Taylor series
expansions around w∗:

ℓi(w) = ℓi(w
∗) + g⊤i ∆w +

1

2
∆w⊤Hi∆w +

∞∑
k=3

1

k!
Dkℓi(w

∗) [∆w, . . . ,∆w]︸ ︷︷ ︸
k−times

, (19)

where Dkf(w∗)[∆w, . . . ,∆w] denotes the k-th order differential of f at w∗ applied to k copies of
∆w.

The covariance under the Laplace approximation pLap then involves covariances between all
pairs of terms from these two expansions:

CovpLap(ℓi(w), ℓj(w)) =
∞∑
k=1

∞∑
m=1

CovpLap (Termk[ℓi(w)],Termm[ℓj(w)]) , (20)

where Termk[ℓi(w)] is the k-th order term in the Taylor expansion of Eq. (19). In the Laplace
approximation, ∆w ∼ N (0, H−1), the leading linear term (k = 1,m = 1) is:

CovpLap(g⊤i ∆w, g⊤j ∆w) = g⊤i H
−1
w∗ gj .

13
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Thus, Kij under these regularity and Laplace approximations becomes:

Kij ≈ −g⊤i H
−1gj + Higher-order corrections. (21)

The leading term −g⊤i H
−1gj = −∇wℓi(w

∗)⊤H−1
w∗∇wℓj(w

∗) is precisely the definition of a clas-
sical influence function IF(zi, ϕ) where the observable ϕ is chosen to be the loss ℓi [9]. The poste-
rior loss covariance kernel formulation, even when analyzed via Laplace approximation, naturally
includes this term and also explicitly shows a second-order correction involving products of the
Hessians of the loss and observable. More generally, the exact posterior loss covariance kernel
definition (Eq. (5)) encapsulates all higher-order dependencies without truncation.

Appendix D. Extra ImageNet Examples

We provide more examples of the top correlated inputs from experiment 4. These inputs were
randomly selected in chunks of 10 from between the 600th and 700th inputs of the 2500 for which
we computed the loss kernel. The full set top-correlated inputs for all 2500 inputs is available at
https://github.com/singfluence-anon/sf_imagenet_corrs.

14
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6 7 8 9 10 11 12 13 14 15

Figure 3: Top 15 Correlated Inputs With Reference Input (randomly selected references).
Reference images are the leftmost column.
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Figure 4: Top 15 Correlated Inputs With Reference Input (randomly selected references).
Reference images are the leftmost column.
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Figure 5: Top 15 Correlated Inputs With Reference Input (randomly selected references).
Reference images are the leftmost column.
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