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ABSTRACT

Facts in the real world are often tied to time, such as the spread of diseases, and
the state of military affairs. Therefore, knowledge graphs combined with tem-
poral factors have gained growing attention. In the temporal knowledge graph,
most researchers focus on the original facts and pay attention to their changes
over time. The temporal factors are only used as auxiliary information for repre-
sentation learning. In this paper, we try to observe from the perspective of time
and find some interesting properties of temporal knowledge graph: (1) Simulta-
neousness. Various facts occur at the same time; (2) Aggregation. The facts may
aggregately occur for a certain individual, organization, or location; (3) Associa-
tivity. Some specific relations tend to occur at specific times, such as celebrations
at festivals. Based on the above three properties, we add a simple time-aware mod-
ule to the existing tensor decomposition-based temporal knowledge graph model
TComplEx Lacroix et al. (2020), which obtains impressive improvements and
achieves state-of-the-art results on four standard temporal knowledge graph com-
pletion benchmarks. Specifically, in terms of mean reciprocal rank (MRR), we
advance the state-of-the-art by +21.8% on ICEWS14, +16.9% on ICEWS05-15,
+20.7% on YAGO15k, and 13.1% on GDELT.

1 INTRODUCTION

Knowledge graphs represent informative knowledge or facts of the real world as structured triples
(head entity, relation, tail entity) also known as (subject, predicate, object). They have gained
widespread attention for their successful usage in various applications (e.g., question answering Sax-
ena et al. (2020), bioinformatics Zitnik et al. (2018), and recommendation systems Mezni et al.
(2021)). Although millions of entities and billions of facts exist in large-scale knowledge graphs,
they still suffer from the incompleteness problem. Therefore, knowledge graph completion (also
known as link prediction) methods are proposed to predict missing links among entities based on
the known triples Bordes et al. (2013); Yang et al. (2015); Trouillon et al. (2016). Furthermore, in
the real world, many facts are inherently tied to a specific time. For example, “Barack Obama is the
president of USA” is only valid for the time period “2009 - 2017”. The task of temporal knowledge
graph completion is to find missing links in graphs at precise points in time Leblay & Chekol (2018);
Goel et al. (2020).

In temporal knowledge graph, these facts have some temporal metadata attached. The correspond-
ing triples are transformed into quadruples (head entity, relation, tail entity, timestamp). Com-
pared with timestamp, entities and relations have more interpretable interactions, such as symmet-
ric/antisymmetric, inversion, etc. Trouillon et al. (2016); Sun et al. (2019). Therefore, when ex-
tending static knowledge graphs to temporal knowledge graphs, most knowledge graph embedding
methods still mainly focus on triple facts Leblay & Chekol (2018); Garcia-Duran et al. (2018); Xu
et al. (2020); Chen et al. (2022) and pay attention to their changes over time. While the temporal
factors are only used as auxiliary information for representation learning, which leads to a lack of
deeper mining for temporal factors.

In this work, we try to observe the temporal knowledge graph from a new perspective - Time Per-
spective, and explore some general properties from it. We then improve the current tensor decom-
position model based on the observed properties. Our contributions can be summarized as follows:
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Firstly, we observe the temporal knowledge graph from time perspective, and obtain three important
properties, (1) Simultaneousness. Various facts occur at the same time; (2) Aggregation. The facts
may aggregately occur for a certain individual, organization, or location; (3) Associativity. Some
specific relations tend to occur at specific times, such as celebrations at festivals.

Then, we analyze the existing temporal tensor decomposition model TComplEx, and find that
TComplEx degenerates when the inverse relations occur. The degenerated model cannot fully repre-
sent the other facts on the current timestamp, that is, TComplEx cannot satisfy the property simulta-
neousness. In addition, there is no suitable solution for the properties aggregation and associativity.

Finally, we propose three modules for three properties of time perspective for TComplEx, named as
TPComplEx, and simplify to add the relative timestamp bias for the corresponding entities. Experi-
mental results show that TPComplEx outperforms current state-of-the-art methods on four standard
temporal knowledge graph completion benchmarks. Specifically, in terms of mean reciprocal rank
(MRR), we advance the state-of-the-art by +21.8% on ICEWS14, +16.9% on ICEWS05-15, +20.7%
on YAGO15k, and 13.1% on GDELT.

2 RELATED WORK

2.1 STATIC KNOWLEDGE GRAPH EMBEDDING MODEL

Roughly speaking, we can divide static knowledge graph embedding models into translational dis-
tance models and semantic matching models. The former use distance-based score functions, while
the latter use similarity-based ones. For translational distance models, TransE Bordes et al. (2013) is
the most widely used translation distance constraint model. It assumes that entities and relations sat-
isfy ℎ𝑒𝑎𝑑+𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ≈ 𝑡𝑎𝑖𝑙. However, TransE cannot handle 1-1-N, N-1-1, and N-1-N relations well
Wang et al. (2014). TransH Wang et al. (2014) projects entities onto relation-specific hyperplanes
to compensate for the shortcomings of TransE. TransR Lin et al. (2015) introduces relation-specific
spatial transformations instead of hyperplanes. Moreover, RotatE Sun et al. (2019) defines each
relation as a rotation from the source entity to the target entity in a complex vector space, which can
represent various relation patterns. For semantic matching models, RESCAL Nickel et al. (2011) is
a tensor factorization model which represents each relation as a full-rank matrix and obtains score
function by matrix multiplication. DistMult Yang et al. (2015) simplifies RESCAL by restricting
relation matrices to be diagonal. However, Distmult assumes that all relations are symmetric. Com-
plEx Trouillon et al. (2016) extends DistMult to complex space, and uses conjugate-transpose to
model asymmetric relations. QuatE Zhang et al. (2019) extends the complex space into the quater-
nion space with two rotating surfaces. ConvE Dettmers et al. (2018) and InteractE Vashishth et al.
(2020) employ convolutional neural networks to build score functions.

2.2 TEMPORAL KNOWLEDGE GRAPH EMBEDDING MODEL

Most static completion models cannot acquire temporal information when learning the embeddings
of knowledge graphs, and perform poorly on temporal knowledge graphs Garcia-Duran et al. (2018);
Leblay & Chekol (2018). TTransE Leblay & Chekol (2018) models the transition between time-
aware relations of two adjacent facts by imposing temporal order constraints on the geometry of
the embedding space. HyTE Dasgupta et al. (2018) associates temporal information with entities
and relations by projecting them onto a temporal hyperplane. Both of them are constrained by the
translational distance score function. TA-TransE and TA-DistMult Garcia-Duran et al. (2018) utilize
recurrent neural networks to learn time-aware representations of relations and use standard scoring
functions from TransE and DistMult. Motivated by diachronic word embeddings, DE-SimplE Goel
et al. (2020) combines the diachronic entity embedding function with the static model SimplE and
handles point-in-time event facts well. ATiSE Xu et al. (2019) regards the temporal evolution of en-
tity and relation embeddings as combinations of trend component, seasonal component and random
component. Inspired by the canonical decomposition of order-4 tensor, TComplEx Lacroix et al.
(2020) introduces an extension of ComplEx for temporal Knowledge graph completion by adding
additional complex temporal embeddings. ChronoR Sadeghian et al. (2021) propose chronological
rotation embedding to capture rich interaction between the temporal and multi-relational charac-
teristics. TeRo Xu et al. (2020) defines the temporal evolution of entity embedding as a rotation
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Figure 1: Examples of three properties of temporal knowledge graph extracted from the ICEWS14
knowledge graph. (a) Various facts occur on “2014-05-02”; (b) The facts that aggregately occur in
the Hague and Iran; (c) More cooperative relations on the “2014-09-21, International Day of Peace”,
and more incidents of releasing citizens on the “2014-12-10, Human Rights Day”.

in the complex vector space. RotateQVS Chen et al. (2022) further represents temporal entities as
rotations in quaternion vector space and obtains better performance.

3 OBSERVATION FROM TIME PERSPECTIVE

In this section, we introduce the Observation for temporal knowledge graph from fact perspective
and time perspective. Then, we introduce TCompEx, one of the current tensor decomposition-based
temporal knowledge graph embedding model, and discuss its limitations.

Fact Perspective. For the additional temporal factor in temporal knowledge graph, most models
only focus on the fact itself Leblay & Chekol (2018); Garcia-Duran et al. (2018); Xu et al. (2020);
Chen et al. (2022). And pay attention to how facts change over time, e.g. (Barack Obama, Ex-
press intent to meet or negotiate, Abdel Fattah Al-Sisi, 2014-06-06), (Barack Obama, Discuss by
telephone, Abdel Fattah Al-Sisi, 2014-06-11), (Adli Mansour, Accede to demands for change in
leadership, Abdel Fattah Al-Sisi, 2014-06-14), (Abdel Fattah Al-Sisi, Make optimistic comment,
Other Authorities / Officials (Egypt), 2014-06-24). These models usually pre-operate entity embed-
dings with additional temporal embeddings, such as weighted Goel et al. (2020), rotated Xu et al.
(2020); Chen et al. (2022). Or pre-operate on relation embeddings, such as translation Leblay &
Chekol (2018), LSTM Garcia-Duran et al. (2018). Finally, the transformed entities or relations are
used to construct the scoring function following the static knowledge graph embedding models. The
advantage of such operation is that it is simple and intuitive to introduce the temporal factors into
the classic knowledge graph embedding models, but it lacks deeper mining of the temporal factors.

Time Perspective. For the observation from time perspective, we pay more attention to the facts
that happened at a certain timestamp or time period. And it is easier to find some commonalities in
time by jumping out of the specific entities of concern. Here we summarize the findings obtained
from time perspective into three properties: (1) Simultaneousness. For example, at the timestamp
“2014-05-02”, there are facts (Barack Obama, Make a visit, South Korea), (John Kerry, Consult,
Ethiopia), (African Union, Occupy territory, Al-Shabaab), etc. There may not be any correlation
between these facts, that is, the embedding of time should have a greater generalization and can exist
in all kinds of facts at the same time. (2) Aggregation. For example, “The Hague” “host a visit”
at “2014-03-24” for “North Korea, South Korea, Julie Bishop, Barack Obama, etc.” A lot of facts
aggregately occur for a certain entity. (3) Associativity. For example, in the timestamp “2014-09-
21” (International Day of Peace), more cooperation relations appear, such as “Engage in diplomatic
cooperation, Express intent to engage in diplomatic cooperation (such as policy support)”. See
Figure 1 for more examples.

Symbol Description. Suppose that we have a temporal knowledge graph G. We use E to denote
the set of entities, R to denote the set of relations, and T to denote the set of timestamps. Then,
the temporal knowledge graph G can be defined as a collection of quadruples, noted as (𝑠, 𝑟, 𝑜, 𝑡),
where a relation 𝑟 ∈ R holds between a head entity 𝑠 ∈ E and an tail entity 𝑜 ∈ E at time 𝑡. The
actual time 𝑡 is represented by a timestamp 𝜏 ∈ T .

3



Under review as a conference paper at ICLR 2023

Limitations of TComplEx. TComplEx Lacroix et al. (2020) is an extension of ComplEx Trouil-
lon et al. (2016) for temporal knowledge graph. The specific method is to add additional complex
temporal embeddings to the Hermitian product. The scoring function is defined as

𝜙(𝑠, 𝑟, 𝑜, 𝑡) = Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑜, 𝐶𝑡

〉)
= Re (⟨(𝑎𝑠 + 𝑏𝑠i), (𝑎𝑟 + 𝑏𝑟 i), (𝑎𝑜 − 𝑏𝑜i), (𝑎𝑡 + 𝑏𝑡 i)⟩) ,

(1)

where𝐶∗ represents the complex embedding. i represents the imaginary unit. 𝑎∗, 𝑏∗ ∈ R𝑘 are the real
and imaginary parts, respectively, and 𝑘 is the embedding rank. Inverse relations (refer to Definition
3) widely exist in temporal knowledge graphs, such as (Barack Obama, Make a visit, South Korea,
2014-05-02) and (South Korea, Host a visit, Barack Obama, 2014-05-02). For such combination
(𝐶𝑠 , 𝐶𝑟1, 𝐶𝑜, 𝐶𝑡 ), (𝐶𝑜, 𝐶𝑟2, 𝐶𝑠 , 𝐶𝑡 ), we can get (refer to Appendix A.1 for more details)


𝑎𝑡 = 0
𝑎𝑟2 = −𝑎𝑟1
𝑏𝑟2 = 𝑏𝑟1

or

𝑏𝑡 = 0
𝑎𝑟2 = 𝑎𝑟1
𝑏𝑟2 = −𝑏𝑟1.

(2)

It means that the temporal complex embedding of TComplEx will degenerate to the real or imaginary
part (𝐶𝑡 = 𝑎𝑡 or 𝐶𝑡 = 𝑏𝑡 i) if there is an inversion relation on the timestamp. And the degenerated
model cannot fully represent the other facts on the current timestamp, that is, TComplEx cannot sat-
isfy the property 1 Simultaneousness - various facts occur at the same time. In Appendix A.1, we
visualize the phenomenon of Equation (2) when the inversion relation exists, and the performance
on link prediction decreases when the TComlEx temporal embedding has only real or imaginary
parts. In addition, TComplEx also lacks suitable solutions for properties 2 Aggregation and proper-
ties 3 Associativity.

4 PROPOSED MODEL

To alleviate the problem of TComplEx degenerating when the inversion relation occurs, the intuitive
solution is to add extra temporal embeddings like 𝜙(𝑠, 𝑟, 𝑜, 𝑡) = Re

(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1

〉)
+ 𝐺 (𝐶𝑡∗),

where 𝐶𝑡∗ represents the extra temporal complex embedding. To address property 2 Aggregation
(examples can be seen in Figure 1 b), we define 𝐺1 (𝐶𝑡2) = Re

(〈
𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1, 𝐶𝑡2

〉)
for tail entity

aggregation, and 𝐺2 (𝐶𝑡3) = Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡3

〉)
for head entity aggregation. To address prop-

erty 3 Associativity (examples can be seen in Figure 1 c), we define 𝐺3 (𝐶𝑡4) = Re (⟨𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡4⟩)
for the associated relation and timestamp. Then, the new scoring function is defined as

𝜙(𝑠, 𝑟, 𝑜, 𝑡) = Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1

〉)
+ 𝐺1 (𝐶𝑡2) + 𝐺2 (𝐶𝑡3) + 𝐺3 (𝐶𝑡4)

= Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1

〉)
+ Re

(〈
𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1, 𝐶𝑡2

〉)
+ Re

(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡3

〉)
+ Re (⟨𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡4⟩) .

(3)

To reduce the temporal embedding vector, we denote the fourth temporal embedding vector as 𝐶𝑡4 =〈
𝐶𝑡2, 𝐶𝑡3

〉
. Then, we can obtain the final scoring function

𝜙(𝑠, 𝑟, 𝑜, 𝑡) = Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1

〉)
+ Re

(〈
𝐶𝑟 , 𝐶𝑜, 𝐶𝑡1, 𝐶𝑡2

〉)
+ Re

(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡3

〉)
+ Re

(〈
𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡2, 𝐶𝑡3

〉)
= Re

(〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑟 , 𝐶𝑜 + 𝐶𝑡3, 𝐶𝑡1

〉)
.

(4)
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Compared with TComplEx, TPComplEx adds two additional temporal embedding biases in head
entity and tail entity, respectively. We keep the total embedding parameters of the two models
consistent by controlling the embedding rank.

Loss Function. Following Lacroix et al. (2018), for each of the train quadruples (𝑠, 𝑟, 𝑜, 𝑡), the
instantaneous multiclass loss is

L = −𝜙(𝑠, 𝑟, 𝑜, 𝑡) + log

( ∑︁
𝑜′≠𝑜∪𝑜′∈E

exp (𝜙(𝑠, 𝑟, 𝑜′, 𝑡))
)
+Ω(𝑠, 𝑟, 𝑜, 𝑡), (5)

where Ω(𝑠, 𝑟, 𝑜, 𝑡) is regularization. We take the entities with temporal bias as the input of regular-
ization, and adopt N3 regularization Lacroix et al. (2018), which is defined as

Ω(𝑠, 𝑟, 𝑜, 𝑡) = 𝜆1

(
∥𝐶𝑠 + 𝐶𝑡2∥3

3 + ∥𝐶𝑟 ∥3
3 + ∥𝐶𝑜 + 𝐶𝑡3∥3

3

)
+ 𝜆2∥𝐶𝑡1∥3

3, (6)

where 𝜆1 and 𝜆2 are the regularization weights of entity-relation embedding and temporal embed-
ding, respectively.

4.1 MODELING THE PROPERTIES OF TIME PERSPECTIVE

For property 1 Simultaneousness, when there is an inverse relation pattern, 𝐶𝑡1 = 𝑎𝑡1 + 𝑏𝑡1i will
degenerate into 𝐶𝑡1 = 𝑎𝑡1, or 𝐶𝑡1 = 𝑏𝑡1i (refer to Appendix A.4 for details). While 𝐶𝑡2, 𝐶𝑡3 can
still retain the value of the real and imaginary parts at the same time. We test the degraded model in
Appendix A.4, and the experiments show that TPComplEx gets a smaller decrease than TComplEx
when the temporal complex embedding 𝐶𝑡1 has only real or imaginary parts.

For property 2 Aggregation, we take head entity aggregation as an example. An aggregated head en-
tity will exist that ∀𝑖 ∈ {1, ..., 𝑚}, (𝑠, 𝑟, 𝑜𝑖 , 𝑡) can hold in temporal knowledge graphs simultaneously.
For the head entity aggregation part of TPComplEx 𝐺2 (𝑠, 𝑟, 𝑜, 𝑡), we always have

𝐺2 (𝑠, 𝑟, 𝑜1, 𝑡) = Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡3

〉)
= ... = 𝐺2 (𝑠, 𝑟, 𝑜𝑚, 𝑡) (7)

Similarly, the same conclusion can be obtained in the tail entity aggregation part of TPComplEx.

For property 3 Associativity, we define the relation 𝑟 and timestamp 𝑡 are associated if ∀𝑖 ∈
{0, ..., 𝑚}, (𝑠𝑖 , 𝑟, 𝑜𝑖 , 𝑡) can hold in temporal knowledge graphs simultaneously. For this part of
TPComplEx 𝐺3 (𝑠, 𝑟, 𝑜, 𝑡), we always have

𝐺3 (𝑠1, 𝑟, 𝑜1, 𝑡) = Re
(〈
𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡2, 𝐶𝑡3

〉)
= ... = 𝐺2 (𝑠𝑚, 𝑟, 𝑜𝑚, 𝑡) (8)

The relation here mainly refers to having a specific meaning and existing on a specific timestamp,
such as “Engage in diplomatic cooperation” with “2014-09-21 (International Day of Peace)”, etc.
But there are also relations like “Make statement”. These generalized relations exist on almost all
timestamps, and their associations are not strong.

4.2 MODELING VARIOUS RELATION PATTERNS.

Definition 1 A relation r is symmetric, if ∀𝑠, 𝑜, 𝑡, 𝑟 (𝑠, 𝑜, 𝑡) ∧ 𝑟 (𝑜, 𝑠, 𝑡) holds True

Definition 2 A relation r is asymmetric, if ∀𝑠, 𝑜, 𝑡, 𝑟 (𝑠, 𝑜, 𝑡) ∧ ¬𝑟 (𝑜, 𝑠, 𝑡) holds True

Definition 3 Relation 𝑟1 is the inverse of 𝑟2, if ∀𝑠, 𝑜, 𝑡, 𝑟1 (𝑠, 𝑜, 𝑡) ∧ 𝑟2 (𝑜, 𝑠, 𝑡) holds True

Similar to TComplEx, TPComplEx can also represent various relational patterns. In addition, in a
specific relation pattern, the additional temporal bias has some properties, such as 𝐶𝑡2 = 𝐶𝑡3 in both
the symmetric relation and inverse relation patterns. The specific lemmas and proofs are as follows:
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Lemma 1 TPComplEx can infer the symmetry pattern. (See proof in Appendix A.2)

Lemma 2 TPComplEx can infer the antisymmetry pattern. (See proof in Appendix A.3)

Lemma 3 TPComplEx can infer the inversion pattern. (See proof in Appendix A.4)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Benchmark Datasets: To evaluate our proposed TPComplEx, we perform link prediction task on
four commonly used temporal knowledge graph benchmark datasets, namely ICEWS14, ICEWS05-
15, YAGO15k Garcia-Duran et al. (2018) and GDELT Trivedi et al. (2017). Table 1 summarises
the details of the four datasets.

• ICEWS datasets are samplings from the Integrated Conflict Early Warning System
(ICEWS) Lautenschlager et al. (2015), which is a repository containing political events
with a specific timestamp. ICEWS14 and ICEWS05-15 Garcia-Duran et al. (2018) are
two subsets of ICWES corresponding to facts in 2014 and facts between 2005 and 2015.

• Yago15K Garcia-Duran et al. (2018) is a modification of FB15k Bordes et al. (2013) and
YAGO Hoffart et al. (2013) which adds “occursSince” and “occursUntil” timestamps to
each quadruples. In the evaluation setting of Garcia-Duran et al. (2018), the incomplete
triples to complete are of the form (subject, predicate, ?, occursSince | occursUntil, times-
tamp) (with tensors of order 5). Following the setting of Lacroix et al. (2020), we choose
to unfold the (occursSince, occursUntil) and the predicate mode (using reciprocal setting)
together, multiplying its size by two.

• GDELT Trivedi et al. (2017) is a subset of Global Database of Events, Language, and
Tone Leetaru & Schrodt (2013), consisting of the facts from April 1, 2015 to March 31,
2016. We take the same pretreatment of the train, validation and test sets as Goel et al.
(2020), to make the problem into a Temporal Knowledge Graph Completion rather than an
extrapolation problem.

Dataset #Entities #Relations #Timestamps #train #validation #test

ICEWS14 7,128 230 365 72,826 8,941 8,963
ICEWS05-15 10,488 251 4,017 386,962 46,275 46,092

YAGO15k 15,403 34 198 110,441 13,815 13,800
GDELT 500 20 366 2,735,685 341,961 341,961

Table 1: Statistics of four experimented datasets.

Evaluation Protocol: For each quadruple (𝑠, 𝑟, 𝑜, 𝑡) in the test dataset, we replace either the head
entity 𝑠 or the tail entity 𝑜 with the total list of the embedding entities. Then, we base the score
function to rank the candidate entities in descending order. The filtered setting is used to remove
some correct results that appear in the training set or validation set but not in test set. We choose
Mean Reciprocal Rank (MRR) and Hits at N (H@N) as the evaluation metrics. MRR is the average
inverse rank for correct entities. Hit@n measures the proportion of correct entities in the top n
entities. Higher MRR or H@N indicates better performance.

Baselines: We compare with both SOTA static and temporal knowledge graph embedding mod-
els. For static models, we reporte TransE Bordes et al. (2013), DistMult Yang et al. (2015), Com-
plEx Trouillon et al. (2016), SimplE Kazemi & Poole (2018a). For temporal models, we reporte
TTransE Leblay & Chekol (2018), HyTE Dasgupta et al. (2018), TA-DistMult Garcia-Duran et al.
(2018), TComplEx Lacroix et al. (2020), DE-SimplE Goel et al. (2020), TeRo Xu et al. (2020),
ChronoR Sadeghian et al. (2021), RotateQVS Chen et al. (2022). Note that TComplEx Lacroix
et al. (2020) is our main baseline. Our TPComplEx is improved based on this model, and both have
the same number of embedding parameters (refer to Table 8).
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Implementation Details: We implement our method based on the PyTorch library Paszke et al.
(2019), and run on a single NVIDIA RTX 2080 Ti. We tune our model using grid search to select the
optimal hyperparameters based on the performance of the validation dataset. The ranges of the hy-
perparameters of regularization rates 𝜆1 and 𝜆2 are adjusted in {1.0, 0.01, 0.001, 0.0001, 0.00001}.
In order to obtain comparable results, we use Table 8 and dataset statistics Table 1 to compute
the rank for each (model, dataset) pair that matches the number of parameters used in TCom-
plEx Lacroix et al. (2020). Our model is optimized with Adagrad Duchi et al. (2011), with a
learning rate of 0.1, and a batch-size of 1000 for all datasets. For specific embedding ranks, please
refer to Table 8, and our code will be released.

ICEWS14 ICEWS05-15
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE Bordes et al. (2013) 28.0 9.4 - 63.7 29.4 9.0 - 66.3
DistMult Yang et al. (2015) 43.9 32.3 - 67.2 45.6 33.7 - 69.1
ComplEx Trouillon et al. (2016) 47 35 54 71 49 37 55 73
SimplE Kazemi & Poole (2018b) 45.8 34.1 51.6 68.7 47.8 35.9 53.9 70.8
TTransE Leblay & Chekol (2018) 25.5 7.4 - 60.1 27.1 8.4 - 61.6
HyTE Dasgupta et al. (2018) 29.7 10.8 41.6 65.5 31.6 11.6 44.5 68.1
TA-DistMult Garcia-Duran et al. (2018) 47.7 36.3 - 68.6 47.4 34.6 - 72.8
TComplEx Lacroix et al. (2020) (B/L) 61 53 66 77 66 59 71 80
DE-SimplE Goel et al. (2020) 52.6 41.8 59.2 72.5 51.3 39.2 57.8 74.8
TeRo Xu et al. (2020) 56.2 46.8 62.1 73.2 58.6 46.9 66.8 79.5
ChronoR Sadeghian et al. (2021) 62.5 54.7 66.9 77.3 67.5 59.6 72.3 82.0
RotateQVS Chen et al. (2022) 59.1 50.7 64.2 75.4 63.3 52.9 70.9 81.3
TPComplEx 84.3 79.5 87.5 92.7 84.4 79.2 88.0 93.2

Table 2: Evaluation results on ICEWS14 and ICEWS05-15 datasets. The best score is in bold and
second best score is underlined.

YAGO15k GDELT
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE Bordes et al. (2013) 29.6 22.8 - 46.8 11.3 0.0 15.8 31.2
DistMult Yang et al. (2015) 27.5 21.5 - 43.8 19.6 11.7 20.8 34.8
ComplEx Trouillon et al. (2016) 36 29 36 54 23.1 14.4 24.8 40.3
SimplE Kazemi & Poole (2018b) - - - - 20.6 12.4 22.0 36.6
TTransE Leblay & Chekol (2018) 32.1 23.0 - 51.0 11.5 0.0 16.0 31.8
HyTE Dasgupta et al. (2018) 11.8 0.0 16.5 32.6
TA-DistMult Garcia-Duran et al. (2018) 29.1 21.6 - 47.6 20.6 12.4 21.9 36.5
TComplEx Lacroix et al. (2020) (B/L) 36 28 38 54 26.8 17.8 28.7 43.1
DE-SimplE Goel et al. (2020) - - - - 23.0 14.1 24.8 40.3
TeRo Xu et al. (2020) - - - - 24.5 15.4 26.4 42.0
ChronoR Sadeghian et al. (2021) 36.6 29.2 37.9 53.8 - - - -
RotateQVS Chen et al. (2022) - - - - 27.0 17.5 29.3 45.8
TPComplEx 57.3 51.5 60.0 68.4 40.1 32.1 42.6 55.6

Table 3: Evaluation results on YAGO15k and GDELT datasets. The best score is in bold and second
best score is underlined.

5.2 MAIN RESULTS

The experimental results on ICEWS14 and ICEWS05-15 datasets are reported in Table 2, results
on YAGO15k and GDELT datasets are reported in Table 3. Overall, temporal knowledge graph
embedding models are better than static knowledge graph embedding models, which demonstrates
the effectiveness of incorporating temporal information. For the proposed TPComplEx, we observe

7
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that our model substantially outperforms all the baseline models over the four datasets across all
metrics consistently. Especially compared to TComplEx, TPComplEx has the same number of
embedding parameters, but achieves a large improvement with an average MRR +19.1% on the four
datasets.

For the ICEWS14 and ICEWS05-15 datasets, both of which are datasets recording political events.
Their simultaneousness and associativity are obvious from time perspective, so they have been
greatly improved in TPComplEx. YAGO15K dataset is constructed based on FB15k, which con-
tains large 1-N and N-1 relations Wang et al. (2014), so it satisfies the aggregation from time
perspective and TPComplEx is suitable for this dataset. GDELT dataset is a comprehensive record
of time facts, but due to its small number of entities and relations (500+20), and relatively large
number of timestamps (366), our model (using 3 × 𝐶𝑡 for timestamp) has smaller embedding rank
under the same number of embedding parameters. Therefore, TPComplEx has limited improvement
compared to the other three datasets.

For the training time, we take the GDELT dataset as an example. Under the same number of em-
bedding parameters, we obtain a speed of 57.5k triples per second, leading to experiments time of
1.58 hours. Correspondingly, TComplEx is 64.4k triples per second and 1.42 hours. When ten times
the embedding rank, TPComplEx is 6.3k triples per second and 14.42 hours, and TComplEx is 6.9k
triples per second and 13.22 hours. Overall, the increase in training time is acceptable compared to
the improvement in results.

Quadruples in test set TP TComplEx TPComplEx
MRR H@1 H@10 MRR H@1 H@10

(*, *, *, 2014-05-02) P1 73.6 69.6 82.1 85.8 82.1 94.6
(*, *, *, 2014-11-19) P1 64.7 57.9 77.6 85.9 82.6 92.1

(Citizen (Nigeria), Make an appeal or request, *, 2014-12-29) P2 80.5 70.0 90.0 88.3 80.0 100.0
(*, Make statement, Iraq, 2014-08-11) P2 73.8 58.3 91.7 95.8 91.7 100.0

(*, Exp. intent to engage in diplomatic cooperation, *, *-08-11) P3 26.6 16.7 58.3 75.7 66.7 83.3
(*, Arrest, detain, or charge with legal action, *, *-12-10) P3 87.5 75.0 100.0 95.8 92.9 100.0

Table 4: Evaluation results on different quadruples in test set. Where TP represents time perspective,
P1 represents property 1 Simultaneousness, P2 represents property 2 Aggregation, P3 represents
property 3 Associativity, * in *-08-11 and *-12-10 represents the years 2005 to 2015, other * repre-
sents the rest elements of quadruples in the test set that satisfy the current constraints. The first four
group quadruples are from the ICEWS14 dataset, and the others are from the ICEWS05-15 dataset.

2(a) ta 3(b) ta 2 3(c) t ta a− (d) ra

(e) rb 1(f) ta 1(g) tb 1 1(h) r t r ta b b a+

Figure 2: Histogram visualization of TPComplEx symmetry relation and timestamp. The relation 𝑟

is “Consult”, and the timestamp 𝑡 is “2014-10-23”. From Appendix A.2 we can get 𝑎𝑡2 = 𝑎𝑡3 and
𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1 = 0.
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5.3 ANALYSIS AND CASE STUDY

Quadruple Test of Different Properties from Time Perspective. According to the definition of
the three properties of time perspective in Section 3, we select different groups of quadruples for
testing. Table 4 shows the main results. Among them, the timestamp in TP1 (property 1 Simultane-
ousness) is selected with inversion relations exiting (such as “Make a visit” and “Host a visit”). In
TP2 and TP3 (property 2 Aggregation and property 3 Associativity), due to the strong constraints
in quadruples, we also take the validation set for testing. It can be seen from Table 4 that the test
results of TPComplEx in these groups of quadruples are all better than TComplEx.

Visualize Some Typical Relation Patterns. To further verify the learned relation patterns, we
visualize some examples. For symmetry pattern, TPComplEx requires relation and timestamp em-
beddings to satisfy 𝑎𝑡2 = 𝑎𝑡3, 𝑏𝑡2 = 𝑏𝑡3 and 𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1 = 0 (refer to Appendix A.2 for details).
We take the facts (France, Consult, Canada, 2014-10-23) and (Canada, Consult, France, 2014-10-
23) as examples, as shown in Figure 2. In addition, Figure 4 shows a visualization of the inversion
relations, see Appendix A.4 for more details.

ICEWS05-15 GDELT
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TPComplEx (×0.1) 74.5 68.0 78.5 86.6 28.3 19.9 30.4 44.6
TPComplEx (×0.2) 76.8 70.7 80.6 87.9 31.2 22.7 33.4 47.5
TPComplEx (×0.5) 82.6 77.3 86.3 92.3 35.5 27.2 37.9 51.6
TPComplEx 84.4 79.2 88.0 93.2 40.1 32.1 42.6 55.6
TPComplEx (×2) 84.5 79.3 88.2 93.3 43.1 35.5 45.8 57.9
TPComplEx (×5) 84.5 79.3 88.1 93.3 50.7 43.9 53.7 63.2
TPComplEx (×10) 84.6 79.5 88.2 93.4 51.1 43.5 54.6 65.4

Table 5: Evaluation results on ICEWS05-15 and GDELT with different embedding ranks. Where ×
means n times the embedding rank than the original, e.g. 0.1 × of embedding rank 886 in IEWSC05-
15 is 88.

Effect of Embedding Rank. We mainly test the effect of different embedding ranks on ICEWS05-
15 and GDELT datasets. From Table 5, when the embedding rank is reduced, the test results
decrease accordingly. However, even if the embedding rank is reduced to one-tenth of the original
model, the obtained results are still very competitive (refer to Table 2 and Table 3). Furthermore,
increasing the embedding rank has a larger impact on GDELT dataset, which is consistent with our
analysis in Section 5.2. Compared to the original model, the ten times embedding rank improves
result by +11.0% on MRR.

6 CONCLUSION

In this work, we analyze the temporal knowledge graph from a new perspective - Time Perspec-
tive, and obtain three important properties, namely Simultaneousness, Aggregation, and Associa-
tivity. Then, we analyze the existing temporal tensor decomposition model TComplEx, and find
that TComplEx degenerates when the inverse relations occur. The degenerated model cannot fully
represent the other facts on the current timestamp, that is, TComplEx cannot satisfy the property
simultaneousness. In addition, there is lack of suitable solutions for the properties aggregation and
associativity. Based on this, we propose three modules for three properties, and simplify them to
add the relative temporal bias for the corresponding entities. Experimental results show that TP-
ComplEx outperforms current state-of-the-art methods by a large margin on four standard datasets.
Further experimental analysis verifies that TPComplEx can better handle the three properties of
time perspective and model various relation patterns. For further work, one direction is to mine
the properties of temporal knowledge graph from different perspectives, and apply them to more
temporal knowledge graph completion models, such as ChronoR Sadeghian et al. (2021), Rotate-
QVS Chen et al. (2022), etc. Another direction is to eliminate the gap between low-dimensional and
high-dimensional models, and increase the expressivity of models at a lower number of embedding
parameters per entity.
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A APPENDIX

A.1 TCOMPLEX WITH INVERSE RELATION PATTERN

For TComplEx, we can partially expand its scoring function

𝜙(𝑠, 𝑟, 𝑜, 𝑡) = Re
(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑜, 𝐶𝑡

〉)
= Re

(〈
⟨𝐶𝑠 , 𝐶𝑜⟩, ⟨𝐶𝑟 , 𝐶𝑡 ⟩

〉)
= Re (⟨(𝑎𝑠𝑎𝑜 + 𝑏𝑠𝑏𝑜 + (−𝑎𝑠𝑏𝑜 + 𝑏𝑠𝑎𝑜)i), (𝑎𝑟𝑎𝑡 − 𝑏𝑟𝑏𝑡 + (𝑎𝑟𝑏𝑡 + 𝑏𝑟𝑎𝑡 )i)⟩)
= (𝑎𝑠𝑎𝑜 + 𝑏𝑠𝑏𝑜) (𝑎𝑟𝑎𝑡 − 𝑏𝑟𝑏𝑡 ) − (−𝑎𝑠𝑏𝑜 + 𝑏𝑠𝑎𝑜) (𝑎𝑟𝑏𝑡 + 𝑏𝑟𝑎𝑡 ).

(9)

For the inversion relations (𝑠, 𝑟1, 𝑜, 𝑡) and (𝑜, 𝑟2, 𝑠, 𝑡), we need to prove that ∀𝑠, 𝑜, 𝑡, the following
equations hold

Re
(〈
𝐶𝑠 , 𝐶𝑟1, 𝐶𝑜, 𝐶𝑡

〉)
= Re

(〈
𝐶𝑜, 𝐶𝑟2, 𝐶𝑠 , 𝐶𝑡

〉)
. (10)

Firstly, we expand the left term:

Re
(〈
𝐶𝑠 , 𝐶𝑟1, 𝐶𝑜, 𝐶𝑡

〉)
= (𝑎𝑠𝑎𝑜 + 𝑏𝑠𝑏𝑜) (𝑎𝑟1𝑎𝑡 − 𝑏𝑟1𝑏𝑡 ) − (−𝑎𝑠𝑏𝑜 + 𝑏𝑠𝑎𝑜) (𝑎𝑟1𝑏𝑡 + 𝑏𝑟1𝑎𝑡 ).

(11)

We then expand the right term:

Re
(〈
𝐶𝑜, 𝐶𝑟2, 𝐶𝑠 , 𝐶𝑡

〉)
= (𝑎𝑜𝑎𝑠 + 𝑏𝑜𝑏𝑠) (𝑎𝑟2𝑎𝑡 − 𝑏𝑟2𝑏𝑡 ) − (−𝑎𝑜𝑏𝑠 + 𝑏𝑜𝑎𝑠) (𝑎𝑟2𝑏𝑡 + 𝑏𝑟2𝑎𝑡 )
= (𝑎𝑠𝑎𝑜 + 𝑏𝑠𝑏𝑜) (𝑎𝑟2𝑎𝑡 − 𝑏𝑟2𝑏𝑡 ) − (−𝑎𝑜𝑏𝑠 + 𝑏𝑜𝑎𝑠) (−𝑎𝑟2𝑏𝑡 − 𝑏𝑟2𝑎𝑡 ).

(12)

Comparing Equation (11) and Equation (12), we can get

{
𝑎𝑡 (𝑎𝑟1 − 𝑎𝑟2) − 𝑏𝑡 (𝑏𝑟1 − 𝑏𝑟2) = 0
𝑏𝑡 (𝑎𝑟1 + 𝑎𝑟2) + 𝑎𝑡 (𝑏𝑟1 + 𝑏𝑟2) = 0.

(13)

The satisfaction of Equation (13) requires a constraint on timestamp 𝑡, that is,


𝑎𝑡 = 0
𝑎𝑟2 = −𝑎𝑟1
𝑏𝑟2 = 𝑏𝑟1

or

𝑏𝑡 = 0
𝑎𝑟2 = 𝑎𝑟1
𝑏𝑟2 = −𝑏𝑟1.

(14)

We visualize the TComplEx embedding vector of inverse relation and the timestamp ((Romania,
Host a visit, Evangelos Venizelos, 2014-02-20) and (Evangelos Venizelos, Make a visit, Romania,
2014-02-20)) in Figure 3, which is as expected from Equation (14). Therefore, when a reverse rela-
tion occurs in some timestamp, the embedding vector of timestamp will degenerate into a pure real
or pure imaginary part, which affects TComplEx modeling other facts under that timestamp. That
is, TComplEx cannot satisfy the requirement of temporal perspective property 1 Simultaneousness.
Table 6 shows that the experimental performance decreases when the temporal complex embedding
of TComplEx has only real or imaginary parts.

12



Under review as a conference paper at ICLR 2023

1(a) ra 2(b) ra

(g) ta 1 2(h) ( )t r ra b b+1(e) rb 2(f) rb

(c) tb 1 2(d) ( )t r rb a a+

Figure 3: Histogram visualization of TComplEx inverse relation and timestamp. The relation 𝑟1
is “Host a visit”, the relation 𝑟2 is “Make a visit”, and the timestamp 𝑡 is “2014-02-20”. From
Equation (14) we can get 𝑏𝑡 (𝑎𝑟1 + 𝑎𝑟2) = 0 and 𝑎𝑡 (𝑏𝑟1 + 𝑏𝑟2) = 0.

ICEWS05-15
MRR H@1 H@3 H@10

TComplEx real 62.3 55.1 68.2 77.0
TComplEx imag 62.1 54.9 67.6 76.8
TComplEx 66 59 71 80

Table 6: Evaluation results on ICEWS05-15 for TComplEx when the temporal complex embedding
𝐶𝑡 has only real or imaginary parts.

A.2 PROOF OF LEMMA 1

For TPComplEx, we can partially expand its scoring function

𝜙(𝑠, 𝑟, 𝑜, 𝑡) = Re
(〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑟 , 𝐶𝑜 + 𝐶𝑡3, 𝐶𝑡1

〉)
= Re

(〈〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑜 + 𝐶𝑡3

〉
, ⟨𝐶𝑟 , 𝐶𝑡1⟩

〉)
= Re(⟨(𝑎𝑠𝑎𝑜 + 𝑎𝑠𝑎𝑡3 + 𝑎𝑡2𝑎𝑜 + 𝑎𝑡2𝑎𝑡3 + 𝑏𝑠𝑏𝑜 + 𝑏𝑠𝑏𝑡3 + 𝑏𝑡2𝑏𝑜 + 𝑏𝑡2𝑏𝑡3

+ (−𝑎𝑠𝑏𝑜 − 𝑎𝑠𝑏𝑡3 − 𝑎𝑡2𝑏𝑜 − 𝑎𝑡2𝑏𝑡3 + 𝑏𝑠𝑎𝑜 + 𝑏𝑠𝑎𝑡3 + 𝑏𝑡2𝑎𝑜 + 𝑏𝑡2𝑎𝑡3)i),
(𝑎𝑟𝑎𝑡1 − 𝑏𝑟𝑏𝑡1 + (𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1)i)⟩)
= (𝑎𝑠𝑎𝑜 + 𝑎𝑠𝑎𝑡3 + 𝑎𝑡2𝑎𝑜 + 𝑎𝑡2𝑎𝑡3 + 𝑏𝑠𝑏𝑜 + 𝑏𝑠𝑏𝑡3 + 𝑏𝑡2𝑏𝑜 + 𝑏𝑡2𝑏𝑡3) (𝑎𝑟𝑎𝑡1 − 𝑏𝑟𝑏𝑡1)
− (−𝑎𝑠𝑏𝑜 − 𝑎𝑠𝑏𝑡3 − 𝑎𝑡2𝑏𝑜 − 𝑎𝑡2𝑏𝑡3 + 𝑏𝑠𝑎𝑜 + 𝑏𝑠𝑎𝑡3 + 𝑏𝑡2𝑎𝑜 + 𝑏𝑡2𝑎𝑡3) (𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1).

(15)

Proof of symmetry pattern. For the symmetry relations (𝑠, 𝑟, 𝑜, 𝑡) and (𝑜, 𝑟, 𝑠, 𝑡), we need to prove
that ∀𝑠, 𝑜, 𝑡, the following equations hold

Re
(〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑟 , 𝐶𝑜 + 𝐶𝑡3, 𝐶𝑡1

〉)
= Re

(〈
𝐶𝑜 + 𝐶𝑡2, 𝐶𝑟 , 𝐶𝑠 + 𝐶𝑡3, 𝐶𝑡1

〉)
. (16)

Firstly, we expand the left term:

Re
(〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑟 , 𝐶𝑜 + 𝐶𝑡3, 𝐶𝑡1

〉)
= (𝑎𝑠𝑎𝑜 + 𝑎𝑠𝑎𝑡3 + 𝑎𝑡2𝑎𝑜 + 𝑎𝑡2𝑎𝑡3 + 𝑏𝑠𝑏𝑜 + 𝑏𝑠𝑏𝑡3 + 𝑏𝑡2𝑏𝑜 + 𝑏𝑡2𝑏𝑡3) (𝑎𝑟𝑎𝑡1 − 𝑏𝑟𝑏𝑡1)
− (−𝑎𝑠𝑏𝑜 − 𝑎𝑠𝑏𝑡3 − 𝑎𝑡2𝑏𝑜 − 𝑎𝑡2𝑏𝑡3 + 𝑏𝑠𝑎𝑜 + 𝑏𝑠𝑎𝑡3 + 𝑏𝑡2𝑎𝑜 + 𝑏𝑡2𝑎𝑡3) (𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1).

(17)
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We then expand the right term:

Re
(〈
𝐶𝑜 + 𝐶𝑡2, 𝐶𝑟 , 𝐶𝑠 + 𝐶𝑡3, 𝐶𝑡1

〉)
= (𝑎𝑜𝑎𝑠 + 𝑎𝑜𝑎𝑡3 + 𝑎𝑡2𝑎𝑠 + 𝑎𝑡2𝑎𝑡3 + 𝑏𝑜𝑏𝑠 + 𝑏𝑜𝑏𝑡3 + 𝑏𝑡2𝑏𝑠 + 𝑏𝑡2𝑏𝑡3) (𝑎𝑟𝑎𝑡1 − 𝑏𝑟𝑏𝑡1)
− (−𝑎𝑜𝑏𝑠 − 𝑎𝑜𝑏𝑡3 − 𝑎𝑡2𝑏𝑠 − 𝑎𝑡2𝑏𝑡3 + 𝑏𝑜𝑎𝑠 + 𝑏𝑜𝑎𝑡3 + 𝑏𝑡2𝑎𝑠 + 𝑏𝑡2𝑎𝑡3) (𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1).

(18)

Comparing Equation (17) and Equation (18), we can get


𝑎𝑡2 = 𝑎𝑡3
𝑏𝑡2 = 𝑏𝑡3
𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1 = 0.

(19)

A.3 PROOF OF LEMMA 2

Proof of antisymmetry pattern. In contrast to symmetric relations, antisymmetric relations require
that Equation (17) and Equation (18) are not equal. Based on this, we can obtain

𝑎𝑡2 ≠ 𝑎𝑡3 or 𝑏𝑡2 ≠ 𝑏𝑡3 or 𝑎𝑟𝑏𝑡1 + 𝑏𝑟𝑎𝑡1 ≠ 0. (20)

2(a) ta 3(b) ta 2 3(c) t ta a−

1(d) ra 2(e) ra 1(f) tb 1 1 2(g) ( )t r rb a a+

1(h) rb 2(i) rb 1(j) ta 1 1 2(k) ( )t r ra b b+

Figure 4: Histogram visualization of TPComplEx inverse relation and timestamp. The relation 𝑟1
is “Host a visit”, the relation 𝑟2 is “Make a visit”, and the timestamp 𝑡 is “2014-04-28”. From
Equation (25) we can get 𝑎𝑡2 = 𝑎𝑡3, 𝑏𝑡1 (𝑎𝑟1 + 𝑎𝑟2) = 0 and 𝑎𝑡1 (𝑏𝑟1 + 𝑏𝑟2) = 0.

A.4 PROOF OF LEMMA 3

Proof of inverse pattern. For the inverse relations (𝑠, 𝑟1, 𝑜, 𝑡) and (𝑜, 𝑟2, 𝑠, 𝑡), we need to prove that
∀𝑠, 𝑜, 𝑡, the following equations hold

Re
(〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑟1, 𝐶𝑜 + 𝐶𝑡3, 𝐶𝑡1

〉)
= Re

(〈
𝐶𝑜 + 𝐶𝑡2, 𝐶𝑟2, 𝐶𝑠 + 𝐶𝑡3, 𝐶𝑡1

〉)
. (21)

Firstly, we expand the left term:

14
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Re
(〈
𝐶𝑠 + 𝐶𝑡2, 𝐶𝑟1, 𝐶𝑜 + 𝐶𝑡3, 𝐶𝑡1

〉)
= (𝑎𝑠𝑎𝑜 + 𝑎𝑠𝑎𝑡3 + 𝑎𝑡2𝑎𝑜 + 𝑎𝑡2𝑎𝑡3 + 𝑏𝑠𝑏𝑜 + 𝑏𝑠𝑏𝑡3 + 𝑏𝑡2𝑏𝑜 + 𝑏𝑡2𝑏𝑡3) (𝑎𝑟1𝑎𝑡1 − 𝑏𝑟1𝑏𝑡1)
− (−𝑎𝑠𝑏𝑜 − 𝑎𝑠𝑏𝑡3 − 𝑎𝑡2𝑏𝑜 − 𝑎𝑡2𝑏𝑡3 + 𝑏𝑠𝑎𝑜 + 𝑏𝑠𝑎𝑡3 + 𝑏𝑡2𝑎𝑜 + 𝑏𝑡2𝑎𝑡3) (𝑎𝑟1𝑏𝑡1 + 𝑏𝑟1𝑎𝑡1).

(22)

We then expand the right term:

Re
(〈
𝐶𝑜 + 𝐶𝑡2, 𝐶𝑟2, 𝐶𝑠 + 𝐶𝑡3, 𝐶𝑡1

〉)
= (𝑎𝑜𝑎𝑠 + 𝑎𝑜𝑎𝑡3 + 𝑎𝑡2𝑎𝑠 + 𝑎𝑡2𝑎𝑡3 + 𝑏𝑜𝑏𝑠 + 𝑏𝑜𝑏𝑡3 + 𝑏𝑡2𝑏𝑠 + 𝑏𝑡2𝑏𝑡3) (𝑎𝑟2𝑎𝑡1 − 𝑏𝑟2𝑏𝑡1)
− (−𝑎𝑜𝑏𝑠 − 𝑎𝑜𝑏𝑡3 − 𝑎𝑡2𝑏𝑠 − 𝑎𝑡2𝑏𝑡3 + 𝑏𝑜𝑎𝑠 + 𝑏𝑜𝑎𝑡3 + 𝑏𝑡2𝑎𝑠 + 𝑏𝑡2𝑎𝑡3) (𝑎𝑟2𝑏𝑡1 + 𝑏𝑟2𝑎𝑡1).

(23)

Comparing Equation (22) and Equation (23), we can get


𝑎𝑡2 = 𝑎𝑡3
𝑏𝑡2 = 𝑏𝑡3
𝑎𝑡 (𝑎𝑟1 − 𝑎𝑟2) − 𝑏𝑡 (𝑏𝑟1 − 𝑏𝑟2) = 0
𝑏𝑡 (𝑎𝑟1 + 𝑎𝑟2) + 𝑎𝑡 (𝑏𝑟1 + 𝑏𝑟2) = 0.

(24)

Similarly, the satisfaction of Equation (24) requires a constraint on timestamp 𝑡, that is,



𝑎𝑡2 = 𝑎𝑡3
𝑏𝑡2 = 𝑏𝑡3
𝑎𝑡 = 0
𝑎𝑟2 = −𝑎𝑟1
𝑏𝑟2 = 𝑏𝑟1

or



𝑎𝑡2 = 𝑎𝑡3
𝑏𝑡2 = 𝑏𝑡3
𝑏𝑡 = 0
𝑎𝑟2 = 𝑎𝑟1
𝑏𝑟2 = −𝑏𝑟1.

(25)

Although 𝐶𝑡1 degenerates to the real or imaginary part like TComplEx, TPComplEx still retains the
timestamp embedding complex vector 𝐶𝑡2 = 𝐶𝑡3, which is beneficial to the representation of other
facts at the same timestamp. We visualize the TPComplEx embedding vector of inverse relation and
the timestamp ((Barack Obama, Make a visit, Malaysia, 2014-04-28) and (Malaysia, Host a visit,
Barack Obama, 2014-04-28)) in Figure 4, which is as expected from Equation (25). Compared
with Table 6 and Table 7, TPComplEx shows a smaller decrease in performance when the temporal
complex embedding 𝐶𝑡1 has only real or imaginary parts.

ICEWS05-15
MRR H@1 H@3 H@10

TPComplEx real 83.5 78.3 87.2 92.6
TPComplEx imag 83.2 78.1 87.0 92.3
TPComplEx 84.4 79.2 88.0 93.2

Table 7: Evaluation results on ICEWS05-15 for TPComplEx when the temporal complex embedding
𝐶𝑡1 has only real or imaginary parts.

Models Parameters ICEWS14 ICEWS05-15 YAGO15k GDELT

ComplEx 2𝑟 ( |𝐸 | + 2|𝑃 |) 1820 1860 1960 3820
TComplEx 2𝑟 ( |𝐸 | + |𝑇 | + 2|𝑃 |) 1740 1360 1940 2270

TPComplEx 2𝑟 ( |𝐸 | + 3|𝑇 | + 2|𝑃 |) 1594 886 1892 1256

Table 8: Embedding ranks for each model in different datasets.
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A.5 ABLATION STUDY

Table 9 shows the results of the ablation experiments. We mainly test the simplified model (refer to
Equation (4)). Therefore, after removing the temporal bias of head or tail entity, the model becomes
an asymmetric structure, which leads to a large decline in the experimental performance. And we
can find that ICEWS14, ICEWS05-15 and GDELT have more head entity aggregation (retaining tail
entity bias of 𝐶𝑡3, and Re

(〈
𝐶𝑠 , 𝐶𝑟 , 𝐶𝑡1, 𝐶𝑡3

〉)
is used for head entity aggregation, ). In contrast,

YAGO15k has more facts about tail entity aggregation.

ICEWS14 ICEWS05-15
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TPComplEx head 60.4 51.7 65.6 76.5 59.9 50.6 65.3 77.1
TPComplEx tail 62.3 54.2 66.8 77.6 65.8 57.6 70.7 81.3
TPComplEx 84.3 79.5 87.5 92.7 84.4 79.2 88.0 93.2

YAGO15k GDELT
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TPComplEx head 44.3 37.2 47.7 58.0 20.4 14.4 21.3 31.5
TPComplEx tail 36.3 28.0 38.6 54.5 35.8 27.4 38.4 52.1
TPComplEx 57.3 51.5 60.0 68.4 40.1 32.1 42.6 55.6

Table 9: Ablation study for TPComplEx on four datasets. Where TPComplEx head means that only
the temporal bias of the head entity is preserved, and TPComplEx tail means that only the temporal
bias of the tail entity is preserved.

A.6 STANDARD DEVIATIONS

Table 10 shows the standard deviations for the MRR computed over 5 runs of TPComplEx on all
datasets.

ICEWS14 ICEWS05-15 YAGO15k GDELT

TPComplEx 0.0015 0.0027 0.0025 0.0039

Table 10: Standard deviations for the MRR on four datasets.
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