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Abstract

The scaling of model and data sizes has reshaped the AI landscape, establishing
finetuning pretrained models as the standard paradigm for solving downstream tasks.
However, dominant finetuning methods typically rely on weight adaptation–thus
often lacking interpretability– and depend on heuristically chosen hyperparameters.
In this paper, we take a different perspective and shift the focus from weights
to activation functions, viewing them through the lens of spline operators. We
propose Curvature Tuning (CT), an interpretable and principled steering method
that modulates a model’s decision boundary by injecting a single hyperparameter
into its activation functions. Making this hyperparameter trainable gives rise
to a novel and highly parameter-efficient finetuning method. This perspective
complements current finetuning methods–whose effect lies primarily in feature
adaptation–empirically improving both generalization and robustness.

1 Introduction

The scaling of model and data sizes has fueled a paradigm shift in machine learning: transition-
ing from training task-specific models from scratch to finetuning pretrained foundation models to
downstream applications. Full finetuning, the process of steering a pretrained model by adapting all
its parameters to downstream datasets, was once the primary approach for transferring knowledge.
While it effectively enhances generalization [1] and robustness [2], it is computationally expensive at
large model scales. To mitigate this, parameter-efficient finetuning (PEFT) methods such as Serial
Adapter [3] and LoRA [4] have been introduced, which finetune only a small subset of parameters.
However, these approaches usually lack interpretability and principled design. For instance, they
treat the model as a black box, making it unclear how the model is steered for downstream tasks.
Typically, they rely on heuristic choices—such as LoRA’s rank, placement, and initialization—with
minimal theoretical guidance. This leads to a natural question: how can we construct principled
steering solutions addressing both efficiency and interpretability? This work answers the question
by introducing a novel perspective. We observe that despite differences in specific forms, existing
finetuning methods all share a focus on adapting model weights. However, one critical model compo-
nent has been largely overlooked: the activation functions (e.g., ReLU), which are responsible for the
model’s nonlinearity and, ultimately, its expressivity [5, 6].

Contributions. Grounded in the spline interpretation of deep networks [7, 8], (1) we propose
Curvature Tuning (CT), a steering method that provably modulates a model’s decision boundary
curvature by injecting a single hyperparameter β into the activation function, as shown in Fig. 1.
(2) Additionally, allowing β to be trained leads to a novel finetuning method. (3) CT is highly
parameter-efficient: as a steering method, it introduces only one (hyper)parameter per network. As
a finetuning method, Trainable CT still uses significantly fewer parameters than LoRA with rank one,
requiring only 0.58% to 59.05% of the parameters used by LoRA in our experiments.

∗These authors contributed equally to this work.
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Figure 1: Illustration of Curvature Tuning (CT) on classification (top) and regression (bottom)
tasks. CT steers a pretrained model by replacing ReLUs with a β-parameterized activation function
and tuning β from 1 to 0, effectively modulating the model’s decision boundary curvature.

2 Background

Finetuning refers to steering1 a pretrained model to improve its downstream performance. Initially,
the common practice was to continue training all model parameters (full finetuning). However, with
growing model scales, the practice has become increasingly costly, especially given the limited
size of many downstream datasets, giving rise to parameter-efficient finetuning (PEFT). Additive
PEFT adds trainable parameters to the pretrained model, adapting only these new parameters during
finetuning. Examples include Serial Adapter [3], Prefix-tuning [9], (IA)3 [10] and RoAd [11].
Selective PEFT identifies a subset of parameters for finetuning, as in U-Diff and S-Diff pruning
[12]. Reparameterized PEFT decomposes pretrained weights into low-rank matrices, finetuning the
low-rank components, which are converted back during inference; examples include LoRA [4] and
DyLoRA [13]. Hybrid PEFT combines multiple PEFT approaches [14, 15]. While PEFT methods
differ in the parameters they update, they all adapt model weights and operate on learned features—an
approach that often relies on heuristic tuning. In contrast (Section 3), CT introduces only a single
hyperparameter in the activation functions by modulating curvature, offering a more interpretable
alternative that operates on the model’s underlying function space, without changing model weights.

3 Curvature Tuning (CT): a provable method for model steering

The spline formulation of deep networks We begin by briefly introducing relevant concepts in
spline theory, which provide a mathematical framework for CT. A spline function is a continuous
function s : RD → R defined piecewise by polynomials. An affine spline function is a special
case where each piece is defined by an affine mapping. Such a function can be parameterized
by three components: a matrix A ∈ RR×D representing the slopes of the affine mappings, a
vector b ∈ RR representing the offsets, and a partition Ω ≜ {ω1, . . . , ωR} of the input space RD

into R regions. For an input x ∈ RD, the affine spline function is defined as s[A,b,Ω](x) =∑R
r=1

(
⟨Ar,·,x⟩+br

)
1{x∈ωr}, where the indicator function 1{x∈ωr} equals 1 if x belongs to region

ωr and 0 otherwise. The key result underpinning our study is that many deep network layers—such
as fully connected and convolutional, and convex piecewise-linear activations (e.g., ReLU, max
pooling, or maxout)—can be exactly represented as max-affine spline functions [8] (further details in
Appendix A), which are special affine splines that do not need explicit knowledge of Ω:

s[A,b](x) = max
r=1...R

(⟨Ar,·,x⟩+ br) (1)

=

R∑
r=1

tr (⟨Ar,·,x⟩+ br) (2)

for one-hot encoded selection variable t ∈ {0, 1}R, with non-zero component tr∗ = 1, for
r∗ = argmaxr=1,...,R (⟨Ar,·,x⟩+ br).

1We use steering as a general term for model tuning, while finetuning for training-based parameter adaptation.
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In the following, we construct a model steering method operating on the activation functions, thereby
changing their local curvature, without modifying the network’s weights. For each neural network
layer interpretable as a max-affine spline operator (Eq. (1)), the method acts by smoothing the
neuron’s nonlinearity. This can be done in two ways, as detailed below.

1. Smoothing the spline region assignment process In Eq. (2), the affine transformation is selected
in a hard manner, picking the region index maximizing the activation output. Alternatively, the
variable t can be inferred via the following regularized (soft) region selection problem [16]:

tβ = arg max
t∈∆R

[
β

R∑
r=1

tr · (⟨Ar,·,x⟩+ br) + (1− β)H(t)

]
, (3)

where H(t) denotes the Shannon entropy of the selection variable, and ∆R is the probability simplex.

2. Smoothing the max computation Instead of soft region assignment, we can instead directly
smooth the maximum function in Eq. (1), leading to the log-sum-exp operator (i.e. SoftPlus):

(1− β) ln

[
R∑

r=1

exp

(
⟨Ar,·,x⟩+ br

1− β

)]
, (4)

where β → 1 recovers the original affine spline activation, e.g., ReLU.

Implementation of CT By combining the soft parameterizations in Eq. 3 and 4, we introduce an
expressive activation function, which we name CT Unit (CTU):

φβ,c(x) = c · σ
(

βx

1− β

)
· x+ (1− c) · ln

[
1 + exp

(
x

1− β

)]
· (1− β), (5)

where β ∈ [0, 1] modulates the curvature, c ∈ [0, 1] is the mixing coefficient, and σ(·) denotes the
sigmoid function. This is essentially a convex combination of reparameterized SiLU and SoftPlus:

SiLU(x) = σ(ηx) · x, η =
β

1− β
; SoftPlus(x) =

1

γ
· ln [1 + exp (γx)] , γ =

1

1− β
. (6)

Sec. A expands upon the theoretical motivation of CTU, while Sec. C provides a theoretical interpre-
tation of its shaping of curvature. Importantly, combining the two soft parameterizations yields an
expressive activation function, encompassing activations such as ReLU, SiLU, SoftPlus, and GELU.

Steering vs Trainable CT. We conclude by providing two implementations of CT differing in how
CTU is applied. The first, denoted CT, replaces all ReLUs in the network with CTUs using fixed
c = 0.5 and a shared β ∈ [0, 1]. This version is highly parameter-efficient—introducing only a single
hyperparameter—and does not require backpropagation, making it suitable as a steering method. The
second, named Trainable CT, also replaces all ReLUs with CTUs but assigns each output neuron its
own trainable pair (β, c), optimized via backpropagation. This version serves as a finetuning method:
while it introduces additional parameters, the increase is modest compared to methods like LoRA.

4 Enhancing Model Generalization and Robustness with CT

Improving generalization on downstream datasets. We evaluate the effectiveness of CT and
Trainable CT in improving model generalization across a variety of downstream datasets. Specifically,
we transfer ImageNet-pretrained ResNet-18/50/152 models to 12 downstream datasets (details in
Appendix B.1). For comparison, we consider two baselines: (i) linear probing on the pretrained
backbone, and (ii) finetuning the backbone with LoRA (rank r = 1, scale α = 1) while training the
linear head (experimental details in Appendix B.1 and Appendix B.2).

Results in Table 1 and Table 3 show that CT improves generalization compared to linear probing,
with average relative gains of 1.97%/1.16%/0.02% on ResNet-18/50/152. Trainable CT achieves the
highest performance across all methods, with average relative improvements on ResNet-18/50/152 of
6.75%/8.59%/8.34% over linear probing; 4.62%/7.14%/8.51% over CT; and 10.20%/4.64%/1.70%
over LoRA. Importantly, Trainable CT achieves better performance than LoRA with far fewer
parameters. On ResNet-18/50/152, the number of trainable parameters (excluding the classifier) is
only 11.05%/57.20%/59.09% of that required by LoRA, even when LoRA is set to its lowest rank
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Table 1: Accuracy (%) of ImageNet-pretrained ResNet-18/50 when transferred to 12 downstream
datasets. Inside the parentheses are number of trainable parameters (excluding the linear classifier).

ResNet-18 ResNet-50

Dataset Frozen CT LoRA Train CT Frozen CT LoRA Train CT
(0) (1) (35923) (3968) (0) (1) (79443) (45440)

Arabic Characters 81.91 87.65 93.37 93.76 80.65 83.66 94.21 95.67
Arabic Digits 97.93 98.77 99.08 99.03 98.33 98.37 99.08 99.16
Beans 87.76 90.36 93.23 94.01 89.58 91.93 94.79 95.57
CUB-200 62.84 63.18 54.83 64.30 65.23 64.62 66.17 71.03
DTD 62.80 62.66 54.36 63.62 67.34 66.91 64.70 65.07
FashionMNIST 88.63 88.70 91.65 91.07 90.05 90.34 92.19 92.78
FGVC-Aircraft 36.80 38.68 29.19 46.44 38.03 41.16 41.99 55.70
Flowers102 80.86 81.97 67.53 86.55 84.00 83.84 82.58 87.62
Food101 61.41 62.27 64.40 66.04 68.06 68.02 71.42 73.60
DermaMNIST 74.83 75.05 74.21 77.66 75.94 75.89 75.73 78.02
OCTMNIST 65.03 67.27 74.27 69.53 67.53 68.00 75.90 74.13
PathMNIST 86.77 87.51 87.62 87.17 90.08 90.26 85.43 87.33

Average 73.96 75.34 73.64 78.26 76.24 76.92 78.68 81.31

(r = 1), underscoring the parameter efficiency of CT. Additional experiments demonstrating the
effectiveness of Trainable CT on transformers is provided in Appendix B.3.

Improving robustness to adversarial and corrupted data. To conclude, we demonstrate that
CT can enhance model robustness without any adversarial training. We evaluate robustness of
ResNet-18/50/152 on CIFAR-10/100 and ImageNet using the ℓ2/ℓ∞/corruption benchmarks from
RobustBench [17]. Here, when applying CT, we replace all ReLU activations in the backbone with
CTUs and perform a grid search over β ∈ [0.7, 1] with a step size of 0.01, reporting the value
that yields the best performance on each benchmark. For experimental details, see Appendix B.4.
As summarized in Table 2, CT is particularly effective against ℓ∞ attacks, achieving large relative
improvements of 44.01%/1032.64%/1494.46% for ResNet-18/50/152. We also show that Trainable
CT can also enhance the model’s ℓ∞ robustness without adversarial training in Appendix B.5.

Table 2: Robust accuracy (%) of ImageNet-pretrained ResNets under ℓ2/ℓ∞ attacks and corruptions.
ℓ2 ℓ∞ Corruption

Model Dataset Base CT β Base CT β Base CT β

ResNet18
CIFAR10 53.67 53.67 1.00 11.17 14.93 0.90 77.73 77.73 1.00

CIFAR100 24.30 25.50 0.92 4.47 6.90 0.92 51.81 51.95 0.94
ImageNet 23.37 23.37 1.00 0.00 7.00 0.89 33.11 33.32 0.92

Average 33.78 34.18 0.97 5.21 9.61 0.90 54.22 54.33 0.95

ResNet50
CIFAR10 55.10 56.53 0.97 10.10 12.08 0.90 77.26 77.26 1.00

CIFAR100 23.83 25.80 0.96 4.43 7.90 0.93 53.91 53.93 0.98
ImageNet 31.90 31.90 1.00 0.30 9.30 0.93 39.64 39.64 1.00

Average 36.94 38.08 0.98 4.94 10.68 0.94 56.94 56.94 0.99

ResNet152
CIFAR10 56.27 56.27 1.00 11.47 15.00 0.99 78.82 78.83 0.99

CIFAR100 27.90 28.23 0.98 5.40 7.70 0.99 56.12 56.12 1.00
ImageNet 42.50 42.50 1.00 0.30 13.53 0.97 45.47 45.47 0.99

Average 42.22 42.33 0.99 5.72 12.08 0.98 60.14 60.14 0.99

5 Conclusion

This paper proposes Curvature Tuning (CT), an interpretable and principled model steering method
that provably modulates a model’s decision boundary via a single parameter injected into its activation
functions, without changing the model weights. We apply CT in two forms: as a steering method with
fixed parameters (CT) and as a finetuning method with learnable ones (Trainable CT). Both improve
generalization and enhance robustness, with Trainable CT approaching LoRA’s performance.

4



Acknowledgments and Disclosure of Funding

Computations were in part enabled by the Berzelius resource provided by the Knut and Alice
Wallenberg Foundation at the National Supercomputer Centre.

References
[1] Alec Radford. Improving language understanding by generative pre-training. 2018.

[2] Ahmadreza Jeddi, Mohammad Javad Shafiee, and Alexander Wong. A simple fine-tuning
is all you need: Towards robust deep learning via adversarial fine-tuning. arXiv preprint
arXiv:2012.13628, 2020.

[3] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp, 2019. URL https://arxiv.org/abs/1902.00751.

[4] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL
https://arxiv.org/abs/2106.09685.

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[6] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[7] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. Advances in neural information processing systems, 27,
2014.

[8] Randall Balestriero and Richard Baraniuk. A spline theory of deep learning. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 374–383. PMLR,
10–15 Jul 2018. URL https://proceedings.mlr.press/v80/balestriero18b.html.

[9] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[10] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

[11] Baohao Liao and Christof Monz. 3-in-1: 2d rotary adaptation for efficient finetuning, efficient
batching and composability. arXiv preprint arXiv:2409.00119, 2024.

[12] Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. arXiv preprint arXiv:2012.07463, 2020.

[13] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

[14] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih,
and Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model
tuning. arXiv preprint arXiv:2110.07577, 2021.

[15] Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient
fine-tuning design spaces. arXiv preprint arXiv:2301.01821, 2023.

[16] Randall Balestriero and Richard G. Baraniuk. From hard to soft: Understanding deep network
nonlinearities via vector quantization and statistical inference, 2018. URL https://arxiv.
org/abs/1810.09274.

5

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://proceedings.mlr.press/v80/balestriero18b.html
https://arxiv.org/abs/1810.09274
https://arxiv.org/abs/1810.09274


[17] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized
adversarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

[18] Ahmed El-Sawy, Mohamed Loey, and Hazem El-Bakry. Arabic handwritten characters recogni-
tion using convolutional neural network. WSEAS Transactions on Computer Research, 5:11–19,
2017.

[19] Ahmed El-Sawy, EL-Bakry Hazem, and Mohamed Loey. Cnn for handwritten arabic digits
recognition based on lenet-5. In International conference on advanced intelligent systems and
informatics, pages 566–575. Springer, 2016.

[20] Makerere AI Lab. Bean Disease Dataset, January 2020. URL https://github.com/
AI-Lab-Makerere/ibean/.

[21] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[22] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[23] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[24] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[25] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In 2008 Sixth Indian conference on computer vision, graphics & image
processing, pages 722–729. IEEE, 2008.

[26] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative
components with random forests. In European Conference on Computer Vision, 2014.

[27] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1):41, 2023.

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

6

https://github.com/AI-Lab-Makerere/ibean/
https://github.com/AI-Lab-Makerere/ibean/


Appendix

The remainder of the paper collects additional experimental validation and theoretical derivations
supporting our main results. The appendix is organized as follows.

1. Appendix A briefly connects several deep network architectures to affine spline operators.

2. Appendix B details our experimental setup.

3. Appendix C provides theoretical intuition behind CT.

4. Appendix D provides pseudocode for CT as well as Trainable CT.

5. Appendix E provides pseudocode for LoRA, describing how the method was applied
throughout our experiments (Section 4).

A Spline Theory

The spline theory of deep learning establishes that a large class of deep network (DN) layers can be
modeled as Max Affine Spline Operators (MASOs). More precisely:
Theorem A.1. (Propositions 1-4 in Balestriero and Baraniuk [8]) Any DN layer comprising a
linear operator (e.g., fully connected or convolutional layer) followed by a convex and piecewise
affine non-linear operator (e.g., ReLU, leaky-ReLU, absolute value activation, max/average/channel
pooling, maxout; with or without skip connections) is a MASO.

Consequently, a deep network (e.g., MLP, CNN, RNN, ResNet) composed of such linear operators
and convex, piecewise affine non-linear operators is a composition of MASOs. However, it is
important to note that the network as a whole is not a MASO but an Affine Spline Operator (ASO). In
other words, conditioned on the input, such deep networks are equivalent to an affine transformation,
but globally, the transformation is not convex.

Smoothing nonlinearity by smoothing the region assigning process. For completeness, we note
that Eq. (3) can be written in close form as:

tβr =
exp

(
β(⟨Ar,·,x⟩+br)

1−β

)
∑R

i=1 exp
(

β(⟨Ai,·,x⟩+bi)
1−β

) for r = 1, . . . , R. (7)

Using Eq. (3) and a ReLU activation function, switching from β = 1 to β = 0.5 is provably equivalent
to replacing ReLU with the Sigmoid Linear Unit (SiLU). In the limit as β → 0, the activation function
becomes linear—thus making the entire input-output mapping of the network linear as well.

Smoothing nonlinearity by smoothing the max operation Instead of relying on a soft region
assignment, we can instead directly smooth the maximum function. It is already well known that
smoothing the maximum operator leads to the log-sum-exp operator (i.e. SoftPlus). Hence, the
mapping from Eq. (1) in close form becomes

(1− β) ln

[
R∑

r=1

exp

(
⟨Ar,·,x⟩+ br

1− β

)]
, (8)

where we parameterized the mapping so that its behavior is akin to Eq. (3), a value of β → 1 recovers
the original affine spline activation, e.g., ReLU.

CTU: Combining smoothing strategies Building on the MASO interpretation, curvature tuning
proposes to smoothen non-linearities (e.g. ReLU) of a DN as a novel form of model steering, that
avoids retraining or fine-tuning the learned layers. By recalling Section 3, when smoothing is
performed by applying Eq. (3) or Eq. (4) to a DN layer (interpreted as a MASO), the layer’s output
is statistically biased by either a negative or a positive factor, respectively. In order to counter the
bias without retraining, a convex combination of the two equations is used, as shown in Fig. 2 for
different values of β.
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Figure 2: Visualization of non-linearity smoothing through region assignment smoothing, max
smoothing, and their combination. The combined approach mitigates the opposing biases intro-
duced by the individual methods.

B Supplementary experimental details

This section provides additional experimental setup details and results, organized to correspond with
the subsections in Section 4.

All experiments were conducted using 8 RTX 3090 GPUs and one L40 GPU, with runs performed
under random seeds 42, 43, and 44.

B.1 Improving generalization on downstream datasets with CT

The downstream datasets we use include Arabic Characters [18], Arabic Digits [19], Beans [20], CUB-
200-2011 [21], DTD [22], FashionMNIST [23], FGVC-Aircraft [24], Flowers102 [25], Food101 [26],
and three subsets from MedMNIST-PathMNIST, OCTMNIST, and DermaMNIST [27]. For each of
the 12 downstream datasets, we split the data into training, validation, and test sets. If a dataset does
not include a validation set, we hold out 20% of the training data using stratified sampling. Otherwise,
we use the original validation split provided.

To apply CT, we replace all ReLUs in the backbone with CTUs, freeze the backbone weights, and
train a new linear classifier on the penultimate layer. The optimal β is selected via grid search over
β ∈ [0.7, 1] with a step size of 0.01. The linear classifiers are trained for 20 epochs using the Adam
optimizer with a learning rate of 10−3, employing linear warm-up during the first epoch and decaying
the learning rate by a factor of 10 after epoch 10. The linear probing baseline follows the same
training configuration.

For both CT and linear probing, models are trained on the training split of each downstream dataset,
with the checkpoint achieving the highest validation accuracy selected for evaluation on the test set.

Additional results are provided as follows:

• Table 3: mean accuracy over three runs of ImageNet-pretrained ResNet-152 when transferred
to 12 downstream datasets, comparing linear probing with and without CT.

• Table 4: average optimal β values for CT across three runs.

• Fig. 3: example validation accuracy vs. β curves over three runs for CT.

As shown in Table 4, the average optimal β values for CT across datasets are 0.84 for ResNet-18,
0.94 for ResNet-50, and 0.96 for ResNet-152. These values are consistently close to 1, suggesting the
search range can be narrowed for efficiency. The upward trend with model size indicates that larger
models require less curvature adjustment, which is intuitive as deeper networks can approximate
complex curvature more effectively. Example accuracy curves in Fig. 3 show that accuracy varies
smoothly with β and typically peaks in the middle of the search range.
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Table 3: Mean accuracy (%) over three runs of ImageNet-pretrained ResNet-152 when transferred
to 12 downstream datasets. The second row under each method indicates the number of trainable
parameters (excluding the linear classifier). CT outperforms linear probing on the frozen backbone,
and Trainable CT surpasses LoRA (rank 1).

Dataset Frozen CT LoRA Train CT
(0) (1) (243283) (143744)

Arabic Characters 79.86 79.21 95.96 96.47
Arab Digits 98.07 98.15 99.15 99.10
Beans 87.50 87.50 93.75 96.35
CUB-200 67.68 68.15 70.59 73.04
DTD 66.97 66.99 66.63 63.39
FashionMNIST 90.44 90.51 92.77 93.39
FGVC-aircraft 38.74 38.51 48.84 58.16
Flowers102 82.98 83.28 84.40 83.43
Food101 71.11 71.13 74.66 76.08
DermaMNIST 75.68 76.23 76.91 77.94
OCTMNIST 69.27 69.10 76.43 75.17
PathMNIST 89.91 89.82 84.94 83.60

Average 76.52 76.55 80.42 81.34

Table 4: Mean β of CT over three runs of ImageNet-pretrained ResNet-18/50/152 and Imagenette-
pretrained Swin-T/S when transferred to 12 downstream datasets. The learned β values are
consistently high (ranging from 0.84 to 0.96 across models), and tend to be larger for larger
models.

Dataset ResNet-18 ResNet-50 ResNet-152 Swin-T Swin-S

Arabic Characters 0.77 0.89 0.96 0.92 0.97
Arabic Digits 0.75 0.93 0.95 0.86 0.96
Beans 0.76 0.94 0.97 0.94 0.98
CUB-200 0.91 0.93 0.94 0.97 0.87
DTD 0.88 0.98 0.98 0.96 0.95
FashionMNIST 0.92 0.95 0.96 0.89 0.98
FGVC-Aircraft 0.82 0.90 0.95 0.93 0.97
Flowers102 0.84 0.96 0.95 0.99 0.97
Food101 0.87 0.98 0.99 0.97 0.99
DermaMNIST 0.94 0.95 0.95 0.93 0.89
OCTMNIST 0.80 0.94 0.98 0.88 0.95
PathMNIST 0.83 0.96 0.92 0.90 0.94

Average 0.84 0.94 0.96 0.93 0.95
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(b) ResNet-50 on FGVC-Aircraft
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(c) ResNet-152 on DermaMNIST

Figure 3: Validation accuracy (%) of CT during the β search, averaged over three runs. The accuracy
curve varies smoothly and typically peaks in the middle of the β range.
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B.2 Trainable CT is comparable to LoRA

To apply Trainable CT, we replace all ReLUs in the backbone with CTUs, freeze the backbone
weights, and train a new linear classifier on the penultimate layer. All β parameters are initialized to
0.8 and all c parameters to 0.5, and these are jointly trained with the linear head.

And LoRA is applied to all convolutional and linear layers in the backbone. We provide the
implementation details for it in Appendix E.

Both Trainable CT and LoRA are trained for 20 epochs using the Adam optimizer. To ensure proper
convergence, we use different learning rates: for Trainable CT, a learning rate of 10−1 is applied
to the (β, c) parameters and 10−3 to the linear classifier; for LoRA, a learning rate of 10−4 is used
for both the adapter parameters and the classifier. As before, we apply linear warm-up during the
first epoch and decay the learning rate by a factor of 10 after epoch 10. For both methods, models
are trained on the training set of each downstream dataset, selected based on the highest validation
accuracy, and evaluated on the test set.

Additional results are provided as follows:

• Table 3: mean accuracy over three runs of ImageNet-pretrained ResNet-152 when transferred
to 12 downstream datasets, comparing LoRA and Trainable CT.

• Tables 5 and 6: mean and standard deviation of the learned β and c values for Trainable CT
across three runs.

• Figs. 4 and 5: example distributions of β and c values in Trainable CT, illustrating commonly
and uncommonly observed patterns.

Table 5: Distribution of β values in Trainable CT, computed over all β parameters across all three
runs of ImageNet-pretrained ResNet-18/50/152 and Imagenette-pretrained Swin-T/S when transferred
to 12 downstream datasets. The mean and standard deviation of β are similar across models
(means between 0.69–0.77, stds between 0.31–0.37), suggesting consistent tuning behavior at
the model level, while the relatively large standard deviations indicate substantial variation of
β within each network.

Dataset ResNet-18 ResNet-50 ResNet-152 Swin-T Swin-S

Arabic Characters 0.72 ± 0.34 0.65 ± 0.41 0.68 ± 0.39 0.73 ± 0.35 0.76 ± 0.33
Arabic Digits 0.70 ± 0.43 0.62 ± 0.48 0.62 ± 0.47 0.65 ± 0.42 0.64 ± 0.43
Beans 0.72 ± 0.26 0.76 ± 0.23 0.77 ± 0.19 0.79 ± 0.24 0.83 ± 0.23
CUB-200 0.81 ± 0.17 0.76 ± 0.29 0.79 ± 0.29 0.82 ± 0.27 0.83 ± 0.28
DTD 0.78 ± 0.19 0.77 ± 0.25 0.79 ± 0.24 0.87 ± 0.17 0.88 ± 0.19
FashionMNIST 0.72 ± 0.41 0.65 ± 0.46 0.63 ± 0.46 0.67 ± 0.42 0.66 ± 0.43
FGVC-Aircraft 0.75 ± 0.23 0.70 ± 0.33 0.74 ± 0.32 0.81 ± 0.25 0.82 ± 0.27
Flowers102 0.75 ± 0.16 0.75 ± 0.21 0.79 ± 0.17 0.81 ± 0.22 0.84 ± 0.22
Food101 0.80 ± 0.30 0.71 ± 0.43 0.76 ± 0.40 0.78 ± 0.36 0.74 ± 0.40
DermaMNIST 0.74 ± 0.34 0.70 ± 0.39 0.70 ± 0.37 0.76 ± 0.32 0.77 ± 0.32
OCTMNIST 0.67 ± 0.45 0.62 ± 0.48 0.63 ± 0.47 0.76 ± 0.37 0.64 ± 0.45
PathMNIST 0.69 ± 0.43 0.65 ± 0.47 0.61 ± 0.48 0.78 ± 0.36 0.70 ± 0.43

Average 0.74 ± 0.31 0.69 ± 0.37 0.71 ± 0.35 0.77 ± 0.31 0.76 ± 0.33

For Trainable CT, to better understand how it behaves during training, we analyze the distributions
of learned β and c values (as shown in Appendix Tables 5 and 6). We observe a high degree of
within-model variation, with standard deviations ranging from 0.31 to 0.38, while the means remain
remarkably stable across architectures: 0.69 to 0.74 for β and 0.57 to 0.59 for c. These mean values
are close to those used in CT, though the learned β values tend to be smaller than the optimal shared
β found in CT (0.84 to 0.96), while the learned c values are larger than the fixed c = 0.5.

We further visualize the distributions of the learned β and c values of Trainable CT in Appendix
Figs. 4 and 5. In most datasets, as shown in Appendix Fig. 4 (OCTMNIST), both β and c exhibit
a sharp U-shaped distribution—concentrating near 0 and 1 with a flat middle. This suggests that
Trainable CT leverages its parameter flexibility to assign values at the extremes, producing an effective

10



Table 6: Distribution of c values in Trainable CT, computed over all c parameters across all three runs
of ImageNet-pretrained ResNet-18/50/152 and Imagenette-pretrained Swin-T/S when transferred to
12 downstream datasets. The three ResNet models exhibit similar distributions (means around
0.57–0.59, stds around 0.36–0.38), while the two Swin models also show comparable statistics
with higher means (0.67–0.70), and similar stds (0.35-0.37). All models display substantial
within-network variation, and the higher average c in Swin models may reflect insufficient
pretraining relative to the ResNets.

Dataset ResNet-18 ResNet-50 ResNet-152 Swin-T Swin-S

Arabic Characters 0.63 ± 0.39 0.61 ± 0.39 0.57 ± 0.37 0.66 ± 0.41 0.70 ± 0.38
Arabic Digits 0.59 ± 0.43 0.57 ± 0.42 0.55 ± 0.41 0.63 ± 0.45 0.71 ± 0.43
Beans 0.61 ± 0.29 0.54 ± 0.25 0.53 ± 0.23 0.67 ± 0.26 0.69 ± 0.24
CUB-200 0.60 ± 0.37 0.63 ± 0.37 0.60 ± 0.34 0.70 ± 0.33 0.70 ± 0.33
DTD 0.59 ± 0.31 0.60 ± 0.32 0.57 ± 0.30 0.68 ± 0.25 0.74 ± 0.24
FashionMNIST 0.55 ± 0.44 0.60 ± 0.42 0.56 ± 0.42 0.62 ± 0.46 0.69 ± 0.43
FGVC-Aircraft 0.61 ± 0.36 0.63 ± 0.37 0.58 ± 0.35 0.71 ± 0.33 0.68 ± 0.33
Flowers102 0.58 ± 0.26 0.54 ± 0.26 0.54 ± 0.23 0.65 ± 0.29 0.66 ± 0.25
Food101 0.46 ± 0.47 0.63 ± 0.44 0.60 ± 0.43 0.72 ± 0.42 0.76 ± 0.39
DermaMNIST 0.58 ± 0.38 0.59 ± 0.37 0.57 ± 0.36 0.66 ± 0.36 0.71 ± 0.33
OCTMNIST 0.55 ± 0.45 0.60 ± 0.42 0.57 ± 0.42 0.58 ± 0.47 0.65 ± 0.45
PathMNIST 0.51 ± 0.45 0.58 ± 0.43 0.57 ± 0.42 0.71 ± 0.42 0.76 ± 0.40

Average 0.57 ± 0.38 0.59 ± 0.37 0.57 ± 0.36 0.67 ± 0.37 0.70 ± 0.35
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Figure 4: Common distributions of β (top) and c (bottom) in Trainable CT across ResNet-18/50/152,
averaged over three runs (OCTMNIST shown as a representative dataset). Both β and c consistently
exhibit sharp U-shaped distributions that appear similar across all models.
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Figure 5: Uncommon distributions of β (top) and c (bottom) in Trainable CT across ResNet-
18/50/152, averaged over three runs (DTD shown as an example dataset). While the overall shape is
dataset-specific, the distributions of both β and c remain consistent across models.

average close to the manually chosen settings in CT, rather than concentrating around the mean values
themselves.2 In a few datasets, we observe deviations from this trend, as exemplified in Appendix
Fig. 5 (DTD). Nonetheless, a consistent pattern is that for any given dataset, the distributions remain
visually similar across all models.

B.3 CT shows promise on transformers and emerging architectures

In this subsection, we investigate the effectiveness of Trainable CT on transformer architectures.
Unlike ResNets, transformers incorporate attention layers and typically use non-piecewise-affine
activation functions (e.g., SiLU, GELU), which fall outside the max-affine spline framework and thus
weaken theoretical guarantees. Nevertheless, we validate their effectiveness empirically.

We consider Swin-T/S [28], whose activation function is GELU. Since GELU can be closely approxi-
mated by a CTU with β = 0.6403 and c = 1, we initialize all CTU parameters in Trainable CT with
these values. We compare against both the linear probing baseline and LoRA (rank r = 1, scale
α = 1), where LoRA is applied to all QKV projection layers.

For fairness, we cross-validate the learning rate for each method. Specifically, for Trainable CT, we
test initial learning rates of 10−1, 10−2, and 10−3 for the (β, c) parameters. For the linear probing
baseline, we use 10−2, 10−3, and 10−4, and for LoRA, 10−3, 10−4, and 10−5. We report the best
performance achieved for each method across these choices.

The results in Table 7 show that Trainable CT yields average relative improvements of 0.61% and
1.76% over the frozen baseline on Swin-T and Swin-S, respectively, but trails LoRA by 3.45% and
4.61%. Notably, Trainable CT achieves this competitive performance with only 0.71% and 0.58% as
many trainable parameters as LoRA on Swin-T and Swin-S, a much smaller ratio than in the ResNet
experiments. Importantly, since Trainable CT operates orthogonally to other PEFT methods such as
LoRA, the goal is not to demonstrate that CT surpasses them, but rather that it can be combined with
them to further enhance performance. Thus, even though Trainable CT underperforms LoRA in this
setting, the results highlight its potential on transformer models.

2This behavior may in part be influenced by the sigmoid-based parameterization used in our implementation
of Trainable CT to constrain β and c during training.
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Table 7: Accuracy (%) of Imagenet-pretrained Swin-T/S when transferred to 12 downstream datasets.
The second row under each method indicates the number of trainable parameters (excluding the linear
classifier). Trainable CT outperforms linear probing but underperforms LoRA.

Swin-T Swin-S

Dataset Frozen LoRA Train CT Frozen LoRA Train CT
(0) (74832) (532) (0) (148560) (868)

Arabic Characters 83.27 93.57 86.10 83.78 94.58 86.76
Arabic Digits 98.24 99.12 98.39 98.32 99.18 98.39
Beans 89.84 95.31 92.19 92.97 92.97 92.19
CUB-200 73.65 77.60 74.23 72.61 79.98 73.42
DTD 71.17 70.32 71.86 70.16 70.48 72.82
FashionMNIST 89.75 92.95 90.25 89.85 93.45 89.96
FGVC-Aircraft 47.61 47.16 47.73 44.52 52.42 45.09
Flowers102 86.88 90.57 85.41 83.28 90.29 85.04
Food101 77.05 83.23 78.97 77.72 85.50 79.60
DermaMNIST 76.51 77.11 75.76 76.66 77.41 77.41
OCTMNIST 69.10 76.70 67.30 67.00 77.00 69.70
PathMNIST 90.65 92.56 91.84 89.89 92.60 92.08

Average 79.48 83.02 80.00 78.90 83.82 80.21

B.4 Improving robustness on adversarial and corrupted data with CT

Due to computational constraints, we evaluate each benchmark using 1,000 samples. For adversarial
evaluations, we follow the official RobustBench settings: ε2 = 0.5 for ℓ2 attacks and ε∞ = 8

255 for
ℓ∞ attacks.

B.5 Improving ℓ∞ robustness with Trainable CT

In Section 4, we showed that CT can significantly improve ℓ∞ robustness by adjusting the curvature
of the model’s decision boundary, without relying on labeled data or explicit loss functions. Since
Trainable CT also directly modulates decision boundary curvature, it is expected to yield similar
effects. In this subsection, we demonstrate that Trainable CT can indeed improve ℓ∞ robustness as a
natural byproduct of standard finetuning, even without explicitly targeting adversarial robustness.

To evaluate this, we extend the RobustBench benchmark to Trainable CT and LoRA. Specifically, we
transfer ImageNet-pretrained ResNet-18/50/152 models to CIFAR-10/100 using the same setup as in
Section 4—linear probing, Trainable CT, and LoRA—and then assess ℓ∞ robustness under attack
using RobustBench.

Table 8: Mean robust accuracy (%) over three runs of ImageNet-pretrained ResNet-18/50/152
transferred to CIFAR-10/100 under ℓ∞ attack. Trainable CT substantially enhances ℓ∞ robustness
as a byproduct of finetuning, whereas LoRA provides limited or even negative gains.

Model Dataset Frozen LoRA Train CT

ResNet18
CIFAR10 0.30 0.70 1.57

CIFAR100 0.03 0.07 0.17
Average 0.17 0.38 0.87

ResNet50
CIFAR10 0.20 0.33 2.43

CIFAR100 0.00 0.03 0.07
Average 0.10 0.18 1.25

ResNet152
CIFAR10 0.43 0.20 5.10

CIFAR100 0.17 0.00 0.00
Average 0.30 0.10 2.55
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As shown in Appendix Table 8, Trainable CT achieves average relative improvements of 411.11%,
1116.67%, and 488.46% over linear probing on ResNet-18/50/152, respectively. Furthermore, it
consistently surpasses LoRA by 136.90%, 365.00%, and 2450.00% on the same architectures. These
results indicate that, even without explicit adversarial training, Trainable CT substantially enhances
ℓ∞ robustness by directly modulating decision boundary curvature. LoRA, by contrast, leaves
activation nonlinearities unchanged and thus offers limited or even negative robustness benefits. This
empirical finding underscores the practical advantage of Trainable CT: by shaping decision boundary
curvature, it yields direct gains in adversarial robustness without relying on adversarial objectives.

C Theoretical Intuition

This section provides theoretical intuition behind Curvature Tuning. Section C.1 casts CT as a
projection over a space of smooth functions, while Section C.2 provides a toy example illustrating
how CT can improve approximation of a target function of non-vanishing curvature, upon an ideal
baseline ReLU network.

C.1 CT Operates as a Projection

At its core, Curvature Tuning operates by modulating the non-linearity of the activation functions of
a trained model, providing a novel approach to model steering. In order to formalize the effect of CT,
the following briefly introduces the notion of spaces of smooth functions.

Sobolev spaces Let f : Rd → R be a function and Ω ⊆ Rd be a bounded domain. For 1 ≤ p < ∞,
define Lp(Ω) as the space of functions f : Ω → R such that the Lp norm is finite, i.e.

∥f∥Lp(Ω) :=

(∫
Ω

|f(x)|pdx
) 1

p

< ∞ (9)

Let α = (α1, . . . , αd) denote a multi-index, with |α| :=
∑d

i αi, and αi ∈ N,∀i = 1, . . . , d. Let
q ∈ N∗. For |α| > 0, define the Sobolev semi-norm

|f |W q,p(Ω) :=

∑
|α|≤q

∥Dαf∥pLp(Ω)

 1
p

(10)

with Dαf := ∂|α|f

∂x
α1
1 ...∂x

αd
d

denoting |α|-th order partial derivatives of f . Define the Sobolev norm

∥f∥W q,p(Ω) :=
(
∥f∥pLp(Ω) + |f |pW q,p(Ω)

) 1
p

(11)

and the Sobolev space W q,p(Ω) := {f : Ω → R s.t. ∥f∥pLp(Ω) + |f |pW q,p(Ω) < ∞}.

For a finite set D = {xi}ni=1, the Sobolev semi-norm becomes

|f |W q,p(D) :=

∑
|α|≤q

1

n

n∑
i=1

∥Dαf(xi)∥pp

 1
p

(12)

Finally, for x ∈ Rd, let ∥x∥p denote the p-norm, corresponding to the Euclidean norm for p = 2.

Curvature Tuning acts as a Sobolev Projection To characterize Curvature Tuning, we are inter-
ested in the space W 2,2(Ω), equipped with the Sobolev semi-norm

|f |2W 2,2(Ω) = ∥∇xf∥2L2(Ω) + ∥∇2
xf∥2L2(Ω) (13)

We begin by considering the Sobolev semi-norm of a ReLU network (equivalent to the case of Eq. (5)
with β → 1). For each x ∈ Rd, the gradient of a ReLU network

f(x) =
(
WL ◦ φ ◦ . . . ◦ φ ◦W 1

)
(x) (14)
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with φ(z) := max(0, z), for z ∈ R, is given by

∇xf(x) = WL
1∏

ℓ=L−1

Dℓ(x)W ℓ (15)

where Dℓ(x) is a diagonal matrix with Dℓ
ii(x) = 1{zℓ

i>0}, with zℓi = W ℓ
i z

ℓ−1 + bℓ
i denoting the

pre-activation of the ℓ-th layer, for ℓ = 1, . . . , L, with z0 := x.

We make the following observations:

O1 Since ReLU networks are differentiable a. e., the gradients ∇xf(x) are bounded in norm by
the network’s Lipschitz constant, which can be defined as C = supx∈Ω ∥∇xf(x)∥2. Hence,
for Ω = D, the Lipschitz constant provides an upper bound on the first-order term of the
Sobolev semi-norm in Equation 13.

O2 Finally, we observe that since ReLU networks express piece-wise affine functions, the
Hessian norm vanishes a.e. (i.e. wherever the Hessian is well defined), providing a bound on
the second-order term of Equation 13.

Equipped with the above observations, in the following we characterize CT.
Theorem C.1. Let f : Rd → R denote a ReLU network, with model parameter W collecting all
weights and biases. For c ∈ [0, 1] and fixed β ∈ [0, 1), replacing every instance of ReLU with
a CTU (Equation 5) with hyperparameters β, c is equivalent to projecting f to a smooth function
fβ,c ∈ W 2,2(Ω) in the Sobolev space W 2,2(Ω), with bounded Sobolev semi-norm.

Particularly, it holds ∥∇2
xf(x)∥L2(Ω) ≤ ∥∇2

xfβ,c(x)∥L2(Ω), from which fβ,a enjoys higher local
expressivity (non-vanishing curvature), while retaining the same model parameter W.

Before proving Theorem C.1, we state the following Lemma, bounding the derivative of a CTU.
Lemma C.2. Let φβ,c(x) be defined according to Eq. (5), for β ∈ [0, 1) and c ∈ [0, 1]. Then

φ′
β,c(x) = c (σ(bx) + bxσ(bx)(1− σ(bx))) + (1− c)σ

(
bx

β

)
(16)

where b := β
1−β and σ(x) = exp x

1+exp x is the sigmoid activation.

Furthermore, ∃ hb ∈ R+ such that

−chb ≤ φ′
β,c(x) ≤ 1 + chb ∀x ∈ R, β ∈ [0, 1) (17)

Proof. We recall that, since ∀x ∈ R, φβ,c(x) is defined as the convex combination of the SiLU
activation function (c = 1) and the SoftPlus activation (c = 0), we can bound φ′

β,c(x) by the convex
combination of individual bounds obtained for the cases c = 0 and c = 1.

SoftPlus. If c = 0, then φ′
β,0(x) = σ

(
x

1−β

)
and 0 ≤ φ′

β,0(x) ≤ 1 ∀x, since the derivative is
defined as a sigmoid.

SiLU. If c = 1, φ′
β,1(x) = σ(bx) + bxσ(bx)(1− σ(bx)). The first term in the sum is bounded by

definition of sigmoid. For the second term, we note that σ(bx)(1 − σ(bx)) is also bounded, and
achieves it maximum at x = 0, for which 0 ≤ σ(bx)(1 − σ(bx)) ≤ 1

4 . Furthermore, in the limit
x → +∞, it holds φ′

β,1(x) → 1, while φ′
β,1(x) → 0 for x → −∞.

In the non-asympototic regime, σ(bx)(1 − σ(bx)) > 0, and so the maximum value of
bxσ(bx)(1− σ(bx)) also depends on bx. To bound φ′

β,c in this case, let us first consider x > 0. By
defining hb = maxbx≥0 bxσ(bx)(1− σ(bx)), then we finally obtain 0 ≤ φ′

β,1(x) ≤ 1 + hb.

For the case x < 0, by using the identity σ(x) = 1− σ(−x), we have that −hb ≤ φ′
β,1(x) ≤ 1. By

combining the results, we have

−hb ≤ φ′
β,1(x) ≤ 1 + hb ∀x ∈ R, β ∈ [0, 1) (18)

In conclusion, by convex combination of cases c = 0 and c = 1, Eq. (18) holds uniformly in x.
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We can now prove Theorem C.1. To do so, for fβ,c we have to show that

1. fβ,c is smooth in x, for x ∈ Ω

2. ∥fβ,c∥W 2,2(Ω) < ∞

for a network fβ,c obtained by replacing every ReLU φ with a CTU φβ,c, while keeping all learned
parameters W fixed.

Proof. We provide a proof for Ω = D = {xi}ni=1, under the common i.i.d. assumption on D.

To prove the first point, we observe that for β ∈ [0, 1), the CTU activation function is smooth, i.e.
φβ,c ∈ C∞(R), thus making the whole network fβ,c smooth.

We now consider the Sobolev semi-norm |fβ,c|W 2,2(Ω). Starting with the first-order gradient, by
recalling that CT replaces each occurrence of ReLU with the CTU activation function (Equation 5),
the input gradient of CT is given by

∇xfβ,c(x) = WL
1∏

ℓ=L−1

Dℓ
β,c(z

ℓ)W ℓ (19)

where Dℓ
β,c(z

ℓ) = diag(φ′
β,c(z

ℓ)) with φ′
β,c(z

ℓ)i := φ′
β,c(z

ℓ
i) according to Eq. (16).

To bound the Jacobian norm, we observe that

∥∇xfβ,c(x)∥ = ∥WL
1∏

ℓ=L−1

Dℓ
β,c(z

ℓ)W ℓ∥ (20)

≤ ∥WL∥
1∏

ℓ=L−1

∥Dℓ
β,c(z

ℓ)∥∥W ℓ∥ (21)

≤ ∥WL∥
1∏

ℓ=L−1

√
dℓ(1 + chb)∥W ℓ∥ < ∞ (Lemma C.2) (22)

independent of x, for W ℓ ∈ Rdℓ×dℓ−1 , with d0 := d.

We now bound the second order term. By recalling that, for every x ∈ Rd, the Hessian H(x) =
∇2

xfβ,c(x) is symmetric positive-definite, then for Ω = D it holds

∥∇2
xfβ,c∥2L2(D) =

1

n

n∑
i=1

∥H(xi)∥22 ≤ max
1≤i≤n

λ2
max(H(xi))dℓ < ∞ (23)

with λmax(H(xi)) denoting the largest singular value of H(xi).

Importantly, since a ReLU network f has vanishing curvature a.e., then for 0 ≤ β < 1, we have
∥∇2

xf(x)∥ ≤ ∥∇2
xfβ,c(x)∥.

Lastly, we note that, whenever Ω is a finite discrete set D, fβ,c is measurable, ensuring that
∥fβ,c∥W 2,2(Ω) < ∞, concluding the proof.

Theorem C.1 shows that CT operates by projecting a ReLU network f to a smooth function fβ,c in
a restricted Sobolev space. Crucially, fβ,c enjoys bounded gradients (and so is well behaved), and
non-vanishing local-curvature for 0 < β < 1, making it locally more expressive than the affine spline
f , for fixed W.

Furthermore, for fixed (β, c), CT indeed operates as a projection, since replacing every ReLU with
φβ,c is idempotent. Importantly, while for the original ReLU network f ∈ W 2,2(Ω) the derivatives
Dαf are understood in a weak-sense, for c ∈ [0, 1] and β ∈ [0, 1), fβ,c belongs to a Sobolev space
W 2,2

str (Ω) ⊂ W 2,2(Ω) of smooth functions, whereby the derivative Dαfβ,c are understood in the
strong (i.e. classical) sense.

We leave for future work extending our result to Train CT, which is associated with a non-convex
optimization problem of finding optimal (β, c) for every neuron in the network. An additional
important direction is to more closely compare ∥∇xf∥ and ∥∇xfβ,c∥, which may reveal more
precise Lipschitz behaviour for CT, potentially better guiding the search for β and c.
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CT provably controls decision boundary curvature To conclude this section, we observe how
varying β modulates the curvature of the whole model function f and, in turn, of the model’s decision
boundaries. We begin by noting that for a deep network f : Rd → Rk, the decision boundary
between any class i and j is given by {x ∈ Rd : g(x) := fi(x)−fj(x) = 0}, for any i, j = 1, . . . , k
with i ̸= j. Particularly, g is itself a deep network, sharing the same parameters as f up until the
penultimate layer, after which the parameter is the vector WL

i −WL
j and bias bL

i − bL
j . Importantly,

when varying β while keeping all model parameters fixed, the Jacobian ∇xg(x) and the Hessian
∇2

xg(x) are respectively given by the gradients and Hessian of zL−1(x) – corresponding to the
post-activation output of the L − 1-th layer – weighted by WL

i − WL
j . Hence, modulating the

non-linearity of activation functions via β directly controls the curvature of both model function and
its decision boundaries. 3

Particularly, for c = 1 (Eq. (5)), as β → 0, the activation becomes linear. Since modern DNs (e.g.
MLP, CNN, RNN) are composed of activation functions interleaved with affine layers, it follows
directly that the entire input-output mapping becomes affine when β → 0. In this setting, the curvature
of the mapping—defined as the norm of its Hessian—becomes zero. As a result, transitioning from
the original DN mapping (β = 1) to the linear setting effectively modulates the network decision
boundary curvature, reducing it continuously to zero in the limit. For c < 1, the model retains
non-vanishing local curvature, while the mapping becomes smooth.

C.2 Toy Example

We conclude the discussion by providing the full derivation for the motivating example in Section 3.

Consider a binary classification problem in R2, whereby one is given two classes
{x ∈ R2 : ∥x∥2 ≤ 1

2} and {x ∈ R2 : 3
2 ≤ ∥x∥2 ≤ 2}. The decision boundary maximizing the mar-

gin between the two classes is given by S1 = {x ∈ R2 : ∥x∥ = 1}.

For a ReLU network f : R2 → R, the maximum margin boundary is recovered by assigning
f(x) = 0 ∀x ∈ S1, for which σ(f(x)) = 0.5. To measure the approximation error e, the boundary
is parameterized by γ(t) = (cos 2πt, sin 2πt), for t ∈ [0, 1].

Then, the error is expressed by the line integral e =
∫
γ
|f |dx =

∫ 1

0
|f(γ(t))|∥γ′(t)∥dt. Since f

expresses an Affine Spline Operator, and each linear region in Ω is convex, then the integral along
γ can be broken down into the integral along the intersection of γ with the spline partition Ω, i.e.
Ωγ := Ω ∩ S1. Importantly, this allows to pull back the affine spline breakpoints from Ωγ to [0, 1],
so that 0 ≤ t1 ≤ . . . ≤ tr′ = 1, where r′ = |Ωγ |. Then,

e =

∫ 1

0

|f(γ(t))|∥γ′(t)∥dt (24)

= 2π

r′−1∑
k=1

∫ tk+1

tk

|Ak,·γ(t) + bk|dt (25)

= 2π

r′−1∑
k=1

∫ tk+1

tk

(−1)z (Ak,·γ(t) + bk) dt (26)

with z := 1{Ak,·γ(t)+bk<0}. Then,

e = 2π

r′−1∑
k=1

∫ tk+1

tk

(−1)z (Ak,1 cos 2πt+Ak,2 sin 2πt+ bk) dt (27)

= 2π

r′−1∑
k=1

∫ tk+1

tk

(−1)z
(
Ak,1

sin 2π

2π
−Ak,2

cos 2π

2π
+ bkt

)tk+1

tk

(28)

(29)

3In this paper, unless specified, we will thus refer interchangeably to the curvature of a DN mapping and that
of its decision boundaries, whenever modulating non-linearities via CT.
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which evaluates to

e =

r′−1∑
k=1

(−1)z

(
2πbk(tk+1 − tk)+

+Ak,1

(
2 sin

tk+1 − tk
2

cos
tk+1 − tk

2

)
−Ak,2

(
2 sin

tk+1 + tk
2

sin
tk − tk+1

2

)) (30)

from which clearly e → 0 ⇐⇒ tk+1 → tk ∀k.

Hence, assuming the ReLU network considered attained optimal approximation error e > 0, reducing
the error further requires increasing the number of breakpoints of the ASO, in turn requiring a degree
of retraining (either through PEFT or training from scratch). With this view, Curvature Tuning opens
an additional avenue for model adaptation: steering the model’s decision boundaries by modulating
the non-linearity of the activation function, allowing to tune a model towards optimality without
expensive retraining. To this end, it is important to note that modulating decision boundaries is
orthogonal to feature adaptation and finetuning, since it allows to change the shape of decision
boundaries while keeping the model parameter W fixed.
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D Curvature Tuning (CT) implementation

The following code provides the Python implementation for CT and Trainable CT:

• CTU & TrainableCTU: classes that define the CTU module used in CT and Trainable CT,
respectively.

• replace_module & replace_module_dynamic: functions that apply the appropriate
module replacement to integrate CT or Trainable CT into a model.

import torch
from torch import nn
import torch.nn.functional as F

class CTU(nn.Module):
"""
CTU for CT.
"""
def __init__(self , shared_raw_beta , shared_raw_coeff , threshold
=20):

super().__init__ ()
self.threshold = threshold
self._raw_beta = shared_raw_beta
self._raw_coeff = shared_raw_coeff
self._raw_beta.requires_grad = False
self._raw_coeff.requires_grad = False

@property
def beta(self):

return torch.sigmoid(self._raw_beta)

@property
def coeff(self):

return torch.sigmoid(self._raw_coeff)

def forward(self , x):
beta = torch.sigmoid(self._raw_beta)
coeff = torch.sigmoid(self._raw_coeff)
one_minus_beta = 1 - beta + 1e-6
x_scaled = x / one_minus_beta

return (coeff * torch.sigmoid(beta * x_scaled) * x +
(1 - coeff) * F.softplus(x_scaled , threshold=self.
threshold) * one_minus_beta)
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class TrainableCTU(nn.Module):
"""
CTU for Trainable CT.
"""
def __init__(self , num_input_dims , out_channels , raw_beta =1.386 ,
raw_coeff =0.0, threshold =20):

super().__init__ ()
self.threshold = threshold

# Decide channel dim based on input shape
if num_input_dims == 2 or num_input_dims == 3: # (B, C) or (B
, L, D)

channel_dim = -1
elif num_input_dims == 4: # (B, C, H, W)

channel_dim = 1
else:

raise NotImplementedError(f"Unsupported input dimension {
num_input_dims}")

param_shape = [1] * num_input_dims
param_shape[channel_dim] = out_channels

# Init beta
self._raw_beta = nn.Parameter(torch.full(param_shape , float(
raw_beta)))

# Init coeff
self._raw_coeff = nn.Parameter(torch.full(param_shape , float(
raw_coeff)))

@property
def beta(self):

return torch.sigmoid(self._raw_beta)

@property
def coeff(self):

return torch.sigmoid(self._raw_coeff)

def forward(self , x):
beta = torch.sigmoid(self._raw_beta)
coeff = torch.sigmoid(self._raw_coeff)
one_minus_beta = 1 - beta + 1e-63
x_scaled = x / one_minus_beta

return (coeff * torch.sigmoid(beta * x_scaled) * x +
(1 - coeff) * F.softplus(x_scaled , threshold=self.
threshold) * one_minus_beta)
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def replace_module(model , old_module=nn.ReLU , new_module=CTU , ** kwargs
):

"""
Replace all instances of old_module in the model with new_module.
"""
device = next(model.parameters (), torch.tensor ([])).device #
Handle models with no parameters

# Replace modules
for name , module in model.named_modules ():

if isinstance(module , old_module):
ct = new_module (** kwargs).to(device)

# Replace module in the model
names = name.split(".")
parent = model
for n in names [:-1]:

if n.isdigit ():
parent = parent[int(n)] # for Sequential/
ModuleList

else:
parent = getattr(parent , n)

last_name = names[-1]
if last_name.isdigit ():

parent[int(last_name)] = ct # for Sequential/
ModuleList

else:
setattr(parent , last_name , ct)

return model

21



def replace_module_dynamic(model , input_shape , old_module=nn.ReLU ,
new_module=TrainableCTU , ** kwargs):

"""
Replace all instances of old_module in the model with new_module
that’s dynamically created based on the number of output channels.
"""
device = next(model.parameters (), torch.tensor ([])).device
dummy_input = torch.randn(* input_shape).to(device)

module_metadata = {} # name -> (num_input_dims , out_channels)
hooks = []

def make_hook(name):
def hook(module , input , output):

num_input_dims = input [0]. dim()
if num_input_dims in (2, 3): # (B, C) or (B, L, D)

out_channels = output.shape [-1]
elif num_input_dims == 4: # (B, C, H, W)

out_channels = output.shape [1]
else:

raise NotImplementedError(f"Unsupported output shape {
output.shape} in {name}")

module_metadata[name] = (num_input_dims , out_channels)

return hook

# Register hooks to all modules of the target type
for name , module in model.named_modules ():

if isinstance(module , old_module):
hooks.append(module.register_forward_hook(make_hook(name))
)

# Run dummy forward pass
model(dummy_input)

# Clean up hooks
for hook in hooks:

hook.remove ()

# Replace modules
for name , module in model.named_modules ():

if isinstance(module , old_module) and name in module_metadata:
num_input_dims , out_channels = module_metadata[name]
ct = new_module(num_input_dims=num_input_dims ,
out_channels=out_channels , ** kwargs).to(device)

# Replace module in the model
names = name.split(".")
parent = model
for n in names [:-1]:

if n.isdigit ():
parent = parent[int(n)] # for Sequential/
ModuleList

else:
parent = getattr(parent , n)

last_name = names[-1]
if last_name.isdigit ():

parent[int(last_name)] = ct # for Sequential/
ModuleList

else:
setattr(parent , last_name , ct)

return model
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E LoRA Implementation

The following code provides the Python implementation of LoRA used in Section 4:

• LoRALinear & LoRAConv2d: classes that define LoRA-enhanced versions of the Linear
and Conv2d modules.

• get_lora_model: a function that replaces all Linear and Conv2d modules in a model
with their corresponding LoRA versions.

import torch
from torch import nn as nn
from torch.nn import functional as F

class LoRALinear(nn.Module):
"""
A Linear layer that applies LoRA to a frozen , pretrained Linear.
"""

def __init__(self , original_layer: nn.Linear , r: int = 4, alpha:
float = 1.0):

super().__init__ ()
self.in_features = original_layer.in_features
self.out_features = original_layer.out_features
self.r = r
self.alpha = alpha

# Freeze the original layer ’s parameters
self.weight = nn.Parameter(original_layer.weight.data ,
requires_grad=False)
if original_layer.bias is not None:

self.bias = nn.Parameter(original_layer.bias.data ,
requires_grad=False)

else:
self.bias = None

# LoRA parameters B and A
# B: [out_features , r]
# A: [r, in_features]
self.B = nn.Parameter(torch.zeros((self.out_features , r)))
self.A = nn.Parameter(torch.zeros((r, self.in_features)))

# Initialize LoRA weights
nn.init.kaiming_uniform_(self.B, a=5 ** 0.5)
nn.init.zeros_(self.A)

def forward(self , x):
# Normal forward with the frozen weight
result = F.linear(x, self.weight , self.bias)

# LoRA path: B @ A
# shape of BA = [out_features , in_features]
# Then F.linear with BA
lora_update = F.linear(x, (self.alpha / self.r) * (self.B @
self.A))

return result + lora_update
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class LoRAConv2d(nn.Module):
"""
A Conv2d layer that applies LoRA to a frozen , pretrained Conv2d.
"""

def __init__(self , original_layer: nn.Conv2d , r: int = 4, alpha:
float = 1.0):

super().__init__ ()

self.out_channels = original_layer.out_channels
self.in_channels = original_layer.in_channels
self.kernel_size = original_layer.kernel_size
self.stride = original_layer.stride
self.padding = original_layer.padding
self.dilation = original_layer.dilation
self.groups = original_layer.groups
self.bias_available = (original_layer.bias is not None)

self.r = r
self.alpha = alpha

# Freeze original parameters
self.weight = nn.Parameter(original_layer.weight.data ,
requires_grad=False)
if self.bias_available:

self.bias = nn.Parameter(original_layer.bias.data ,
requires_grad=False)

else:
self.bias = None

# Flattened shape for weight is [out_channels , in_channels *
k_h * k_w]
k_h , k_w = self.kernel_size
fan_in = self.in_channels * k_h * k_w # Flattened input dim

# Define LoRA parameters: B and A
# B: [out_channels , r]
# A: [r, fan_in]
self.B = nn.Parameter(torch.zeros((self.out_channels , r)))
self.A = nn.Parameter(torch.zeros((r, fan_in)))

# Initialize LoRA weights
nn.init.kaiming_uniform_(self.B, a=5 ** 0.5)
nn.init.zeros_(self.A)

def forward(self , x):
# Standard (frozen) convolution
result = F.conv2d(

x,
self.weight ,
bias=self.bias ,
stride=self.stride ,
padding=self.padding ,
dilation=self.dilation ,
groups=self.groups

)

# Compute LoRA update
# 1) Flatten conv kernel in the same manner as above
# 2) Multiply B and A -> shape [out_channels , in_channels *
k_h * k_w]
# 3) Reshape it back to [out_channels , in_channels , k_h , k_w]
BA = self.B @ self.A # shape [out_channels , fan_in]
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# Reshape to conv kernel
k_h , k_w = self.kernel_size
lora_weight = BA.view(

self.out_channels ,
self.in_channels ,
k_h ,
k_w

) * (self.alpha / self.r)

# Perform conv2d with the LoRA weight (no extra bias term for
LoRA)
lora_update = F.conv2d(

x,
lora_weight ,
bias=None ,
stride=self.stride ,
padding=self.padding ,
dilation=self.dilation ,
groups=self.groups

)

return result + lora_update

def get_lora_model(model: nn.Module , r: int = 4, alpha: float = 1.0):
"""
Recursively replace all Conv2d and Linear modules in model with
LoRA -enabled versions. Freezes original weights and adds LoRA
parameters.
"""
for name , child in list(model.named_children ()):

# If child is a Conv2d , replace it with LoRAConv2d
if isinstance(child , nn.Conv2d):

lora_module = LoRAConv2d(child , r=r, alpha=alpha)
setattr(model , name , lora_module)

# If child is a Linear , replace it with LoRALinear
elif isinstance(child , nn.Linear):

lora_module = LoRALinear(child , r=r, alpha=alpha)
setattr(model , name , lora_module)

else:
# Recursively traverse children
get_lora_model(child , r=r, alpha=alpha)

return model
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