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Abstract

The scaling of model and data sizes has reshaped the AI landscape, establishing1

finetuning pretrained models as the standard paradigm for solving downstream tasks.2

However, dominant finetuning methods typically rely on weight adaptation–thus3

often lacking interpretability– and depend on heuristically chosen hyperparameters.4

In this paper, we take a different perspective and shift the focus from weights5

to activation functions, viewing them through the lens of spline operators. We6

propose Curvature Tuning (CT), an interpretable and principled steering method7

that modulates a model’s decision boundary by injecting a single hyperparameter8

into its activation functions. Making this hyperparameter trainable gives rise9

to a novel and highly parameter-efficient finetuning method. This perspective10

complements current finetuning methods–whose effect lies primarily in feature11

adaptation–empirically improving both generalization and robustness.12

1 Introduction13

The scaling of model and data sizes has fueled a paradigm shift in machine learning: transition-14

ing from training task-specific models from scratch to finetuning pretrained foundation models to15

downstream applications. Full finetuning, the process of steering a pretrained model by adapting all16

its parameters to downstream datasets, was once the primary approach for transferring knowledge.17

While it effectively enhances generalization [1] and robustness [2], it is computationally expensive at18

large model scales. To mitigate this, parameter-efficient finetuning (PEFT) methods such as Serial19

Adapter [3] and LoRA [4] have been introduced, which finetune only a small subset of parameters.20

However, these approaches usually lack interpretability and principled design. For instance, they21

treat the model as a black box, making it unclear how the model is steered for downstream tasks.22

Typically, they rely on heuristic choices—such as LoRA’s rank, placement, and initialization—with23

minimal theoretical guidance. This leads to a natural question: how can we construct principled24

steering solutions addressing both efficiency and interpretability?25

This work answers the question by introducing a novel perspective. We observe that despite differ-26

ences in specific forms, existing finetuning methods all share a focus on adapting model weights.27

However, one critical model component has been largely overlooked: the activation functions (e.g.,28

ReLU), which are responsible for the model’s nonlinearity and, ultimately, its expressivity [5, 6].29

Contributions. Grounded in the spline interpretation of deep networks [7, 8], (1) we propose30

Curvature Tuning (CT), a steering method that provably modulates a model’s decision boundary31

curvature by injecting a single hyperparameter β into the activation function, as shown in Fig. 1.32

(2) Additionally, allowing β to be trained leads to a novel finetuning method. (3) CT is highly33

parameter-efficient: as a steering method, it introduces only one (hyper)parameter per network. As34

a finetuning method, Trainable CT still uses significantly fewer parameters than LoRA with rank one,35

requiring only 0.58% to 59.05% of the parameters used by LoRA in our experiments.36
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Figure 1: Illustration of Curvature Tuning (CT) on classification (top) and regression (bottom)
tasks. CT steers a pretrained model by replacing ReLUs with a β-parameterized activation function
and tuning β from 1 to 0, effectively modulating the model’s decision boundary curvature.

2 Background37

Finetuning refers to steering1 a pretrained model to improve its downstream performance. Initially,38

the common practice was to continue training all model parameters (full finetuning). However, with39

growing model scales, the practice has become increasingly costly, especially given the limited40

size of many downstream datasets, giving rise to parameter-efficient finetuning (PEFT). Additive41

PEFT adds trainable parameters to the pretrained model, adapting only these new parameters during42

finetuning. Examples include Serial Adapter [3], Prefix-tuning [9], (IA)3 [10] and RoAd [11].43

Selective PEFT identifies a subset of parameters for finetuning, as in U-Diff and S-Diff pruning44

[12]. Reparameterized PEFT decomposes pretrained weights into low-rank matrices, finetuning the45

low-rank components, which are converted back during inference; examples include LoRA [4] and46

DyLoRA [13]. Hybrid PEFT combines multiple PEFT approaches [14, 15]. While PEFT methods47

differ in the parameters they update, they all adapt model weights and operate on learned features—an48

approach that often relies on heuristic tuning. In contrast (Section 3), CT introduces only a single49

hyperparameter in the activation functions by modulating curvature, offering a more interpretable50

alternative that operates on the model’s underlying function space, without changing model weights.51

3 Curvature Tuning (CT): a provable method for model steering52

The spline formulation of deep networks We begin by briefly introducing relevant concepts in53

spline theory, which provide a mathematical framework for CT. A spline function is a continuous54

function s : RD → R defined piecewise by polynomials. An affine spline function is a special55

case where each piece is defined by an affine mapping. Such a function can be parameterized56

by three components: a matrix A ∈ RR×D representing the slopes of the affine mappings, a57

vector b ∈ RR representing the offsets, and a partition Ω ≜ {ω1, . . . , ωR} of the input space RD58

into R regions. For an input x ∈ RD, the affine spline function is defined as s[A,b,Ω](x) =59 ∑R
r=1

(
⟨Ar,·,x⟩+br

)
1{x∈ωr}, where the indicator function 1{x∈ωr} equals 1 if x belongs to region60

ωr and 0 otherwise. The key result underpinning our study is that many deep network layers—such61

as fully connected and convolutional, and convex piecewise-linear activations (e.g., ReLU, max62

pooling, or maxout)—can be exactly represented as max-affine spline functions [8] (further details in63

Section A), which are special affine splines that do not need explicit knowledge of Ω:64

s[A,b](x) = max
r=1...R

(⟨Ar,·,x⟩+ br) (1)

=

R∑
r=1

tr (⟨Ar,·,x⟩+ br) (2)

for one-hot encoded selection variable t ∈ {0, 1}R, with non-zero component tr∗ = 1, for65

r∗ = argmaxr=1,...,R (⟨Ar,·,x⟩+ br).66

1We use steering as a general term for model tuning, while finetuning for training-based parameter adaptation.
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In the following, we construct a model steering method operating on the activation functions, thereby67

changing their local curvature, without modifying the network’s weights. For each neural network68

layer interpretable as a max-affine spline operator (Eq. (1)), the method acts by smoothing the69

neuron’s nonlinearity. This can be done in two ways, as detailed below.70

1. Smoothing the spline region assignment process In Eq. (2), the affine transformation is selected71

in a hard manner, picking the region index maximizing the activation output. Alternatively, the72

variable t can be inferred via the following regularized (soft) region selection problem [16]:73

tβ = arg max
t∈∆R

[
β

R∑
r=1

tr · (⟨Ar,·,x⟩+ br) + (1− β)H(t)

]
, (3)

where H(t) denotes the Shannon entropy of the selection variable, and ∆R is the probability simplex.74

2. Smoothing the max computation Instead of soft region assignment, we can instead directly75

smooth the maximum function in Eq. (1), leading to the log-sum-exp operator (i.e. SoftPlus):76

(1− β) ln

[
R∑

r=1

exp

(
⟨Ar,·,x⟩+ br

1− β

)]
, (4)

where β → 1 recovers the original affine spline activation, e.g., ReLU.77

Implementation of CT By combining the soft parameterizations in Eq. 3 and 4, we introduce an78

expressive activation function, which we name CT Unit (CTU):79

φβ,c(x) = c · σ
(

βx

1− β

)
· x+ (1− c) · ln

[
1 + exp

(
x

1− β

)]
· (1− β), (5)

where β ∈ [0, 1] modulates the curvature, c ∈ [0, 1] is the mixing coefficient, and σ(·) denotes the80

sigmoid function. This is essentially a convex combination of reparameterized SiLU and SoftPlus:81

SiLU(x) = σ(ηx) · x, η =
β

1− β
; SoftPlus(x) =

1

γ
· ln [1 + exp (γx)] , γ =

1

1− β
. (6)

Sec. A expands upon the theoretical motivation of CTU, while Sec. C provides a theoretical interpre-82

tation of its shaping of curvature. Importantly, combining the two soft parameterizations yields an83

expressive activation function, encompassing activations such as ReLU, SiLU, SoftPlus, and GELU.84

Steering vs Trainable CT. We conclude by providing two implementations of CT differing in how85

CTU is applied. The first, denoted CT, replaces all ReLUs in the network with CTUs using fixed86

c = 0.5 and a shared β ∈ [0, 1]. This version is highly parameter-efficient—introducing only a single87

hyperparameter—and does not require backpropagation, making it suitable as a steering method. The88

second, named Trainable CT, also replaces all ReLUs with CTUs but assigns each output neuron its89

own trainable pair (β, c), optimized via backpropagation. This version serves as a finetuning method:90

while it introduces additional parameters, the increase is modest compared to methods like LoRA.91

4 Enhancing Model Generalization and Robustness with CT92

Improving generalization on downstream datasets. We evaluate the effectiveness of CT and93

Trainable CT in improving model generalization across a variety of downstream datasets. Specifically,94

we transfer ImageNet-pretrained ResNet-18/50/152 models to 12 downstream datasets (details in95

Section B.1). For comparison, we consider two baselines: (i) linear probing on the pretrained96

backbone, and (ii) finetuning the backbone with LoRA (rank r = 1, scale α = 1) while training the97

linear head (experimental details in Section B.1 and Section B.2).98

Results in Table 1 and Table 3 show that CT improves generalization compared to linear probing,99

with average relative gains of 1.97%/1.16%/0.02% on ResNet-18/50/152. Trainable CT achieves the100

highest performance across all methods, with average relative improvements on ResNet-18/50/152 of101

6.75%/8.59%/8.34% over linear probing; 4.62%/7.14%/8.51% over CT; and 10.20%/4.64%/1.70%102

over LoRA. Importantly, Trainable CT achieves better performance than LoRA with far fewer103

parameters. On ResNet-18/50/152, the number of trainable parameters (excluding the classifier) is104

only 11.05%/57.20%/59.09% of that required by LoRA, even when LoRA is set to its lowest rank105
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Table 1: Accuracy (%) of ImageNet-pretrained ResNet-18/50 when transferred to 12 downstream
datasets. Inside the parentheses are number of trainable parameters (excluding the linear classifier).

ResNet-18 ResNet-50

Dataset Frozen CT LoRA Train CT Frozen CT LoRA Train CT
(0) (1) (35923) (3968) (0) (1) (79443) (45440)

Arabic Characters 81.91 87.65 93.37 93.76 80.65 83.66 94.21 95.67
Arabic Digits 97.93 98.77 99.08 99.03 98.33 98.37 99.08 99.16
Beans 87.76 90.36 93.23 94.01 89.58 91.93 94.79 95.57
CUB-200 62.84 63.18 54.83 64.30 65.23 64.62 66.17 71.03
DTD 62.80 62.66 54.36 63.62 67.34 66.91 64.70 65.07
FashionMNIST 88.63 88.70 91.65 91.07 90.05 90.34 92.19 92.78
FGVC-Aircraft 36.80 38.68 29.19 46.44 38.03 41.16 41.99 55.70
Flowers102 80.86 81.97 67.53 86.55 84.00 83.84 82.58 87.62
Food101 61.41 62.27 64.40 66.04 68.06 68.02 71.42 73.60
DermaMNIST 74.83 75.05 74.21 77.66 75.94 75.89 75.73 78.02
OCTMNIST 65.03 67.27 74.27 69.53 67.53 68.00 75.90 74.13
PathMNIST 86.77 87.51 87.62 87.17 90.08 90.26 85.43 87.33

Average 73.96 75.34 73.64 78.26 76.24 76.92 78.68 81.31

(r = 1), underscoring the parameter efficiency of CT. Additional experiments demonstrating the106

effectiveness of Trainable CT on transformers is provided in Section B.3.107

Improving robustness to adversarial and corrupted data. To conclude, we demonstrate that108

CT can enhance model robustness without any adversarial training. We evaluate robustness of109

ResNet-18/50/152 on CIFAR-10/100 and ImageNet using the ℓ2/ℓ∞/corruption benchmarks from110

RobustBench [17]. Here, when applying CT, we replace all ReLU activations in the backbone with111

CTUs and perform a grid search over β ∈ [0.7, 1] with a step size of 0.01, reporting the value112

that yields the best performance on each benchmark. For experimental details, see Section B.4.113

As summarized in Table 2, CT is particularly effective against ℓ∞ attacks, achieving large relative114

improvements of 44.01%/1032.64%/1494.46% for ResNet-18/50/152. We also show that Trainable115

CT can also enhance the model’s ℓ∞ robustness without adversarial training in Section B.5.116

Table 2: Robust accuracy (%) of ImageNet-pretrained ResNets under ℓ2/ℓ∞ attacks and corruptions.
ℓ2 ℓ∞ Corruption

Model Dataset Base CT β Base CT β Base CT β

ResNet18
CIFAR10 53.67 53.67 1.00 11.17 14.93 0.90 77.73 77.73 1.00

CIFAR100 24.30 25.50 0.92 4.47 6.90 0.92 51.81 51.95 0.94
ImageNet 23.37 23.37 1.00 0.00 7.00 0.89 33.11 33.32 0.92

Average 33.78 34.18 0.97 5.21 9.61 0.90 54.22 54.33 0.95

ResNet50
CIFAR10 55.10 56.53 0.97 10.10 12.08 0.90 77.26 77.26 1.00

CIFAR100 23.83 25.80 0.96 4.43 7.90 0.93 53.91 53.93 0.98
ImageNet 31.90 31.90 1.00 0.30 9.30 0.93 39.64 39.64 1.00

Average 36.94 38.08 0.98 4.94 10.68 0.94 56.94 56.94 0.99

ResNet152
CIFAR10 56.27 56.27 1.00 11.47 15.00 0.99 78.82 78.83 0.99

CIFAR100 27.90 28.23 0.98 5.40 7.70 0.99 56.12 56.12 1.00
ImageNet 42.50 42.50 1.00 0.30 13.53 0.97 45.47 45.47 0.99

Average 42.22 42.33 0.99 5.72 12.08 0.98 60.14 60.14 0.99

5 Conclusion117

This paper proposes Curvature Tuning (CT), an interpretable and principled model steering method118

that provably modulates a model’s decision boundary via a single parameter injected into its activation119

functions, without changing the model weights. We apply CT in two forms: as a steering method with120

fixed parameters (CT) and as a finetuning method with learnable ones (Trainable CT). Both improve121

generalization and enhance robustness, with Trainable CT approaching LoRA’s performance.122
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Appendix195

The remainder of the paper collects additional experimental validation and theoretical derivations196

supporting our main results. The appendix is organized as follows.197

1. Section A briefly connects several deep network architectures to affine spline operators.198

2. Section B details our experimental setup.199

3. Section C provides theoretical intuition behind CT.200

4. Section D provides pseudocode for CT as well as Trainable CT.201

5. Section E provides pseudocode for LoRA, describing how the method was applied through-202

out our experiments (Section 4).203

A Spline Theory204

The spline theory of deep learning establishes that a large class of deep network (DN) layers can be205

modeled as Max Affine Spline Operators (MASOs). More precisely:206

Theorem A.1. (Propositions 1-4 in Balestriero and Baraniuk [8]) Any DN layer comprising a207

linear operator (e.g., fully connected or convolutional layer) followed by a convex and piecewise208

affine non-linear operator (e.g., ReLU, leaky-ReLU, absolute value activation, max/average/channel209

pooling, maxout; with or without skip connections) is a MASO.210

Consequently, a deep network (e.g., MLP, CNN, RNN, ResNet) composed of such linear operators211

and convex, piecewise affine non-linear operators is a composition of MASOs. However, it is212

important to note that the network as a whole is not a MASO but an Affine Spline Operator (ASO). In213

other words, conditioned on the input, such deep networks are equivalent to an affine transformation,214

but globally, the transformation is not convex.215

Smoothing nonlinearity by smoothing the region assigning process. For completeness, we note216

that Eq. (3) can be written in close form as:217

tβr =
exp

(
β(⟨Ar,·,x⟩+br)

1−β

)
∑R

i=1 exp
(

β(⟨Ai,·,x⟩+bi)
1−β

) for r = 1, . . . , R. (7)

Using Eq. (3) and a ReLU activation function, switching from β = 1 to β = 0.5 is provably equivalent218

to replacing ReLU with the Sigmoid Linear Unit (SiLU). In the limit as β → 0, the activation function219

becomes linear—thus making the entire input-output mapping of the network linear as well.220

Smoothing nonlinearity by smoothing the max operation Instead of relying on a soft region221

assignment, we can instead directly smooth the maximum function. It is already well known that222

smoothing the maximum operator leads to the log-sum-exp operator (i.e. SoftPlus). Hence, the223

mapping from Eq. (1) in close form becomes224

(1− β) ln

[
R∑

r=1

exp

(
⟨Ar,·,x⟩+ br

1− β

)]
, (8)

where we parameterized the mapping so that its behavior is akin to Eq. (3), a value of β → 1 recovers225

the original affine spline activation, e.g., ReLU.226

CTU: Combining smoothing strategies Building on the MASO interpretation, curvature tuning227

proposes to smoothen non-linearities (e.g. ReLU) of a DN as a novel form of model steering, that228

avoids retraining or fine-tuning the learned layers. By recalling Section 3, when smoothing is229

performed by applying Eq. (3) or Eq. (4) to a DN layer (interpreted as a MASO), the layer’s output230

is statistically biased by either a negative or a positive factor, respectively. In order to counter the231

bias without retraining, a convex combination of the two equations is used, as shown in Fig. 2 for232

different values of β.233
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Figure 2: Visualization of non-linearity smoothing through region assignment smoothing, max
smoothing, and their combination. The combined approach mitigates the opposing biases intro-
duced by the individual methods.

B Supplementary experimental details234

This section provides additional experimental setup details and results, organized to correspond with235

the subsections in Section 4.236

All experiments were conducted using 8 RTX 3090 GPUs and one L40 GPU, with runs performed237

under random seeds 42, 43, and 44.238

B.1 Improving generalization on downstream datasets with CT239

The downstream datasets we use include Arabic Characters [18], Arabic Digits [19], Beans [20], CUB-240

200-2011 [21], DTD [22], FashionMNIST [23], FGVC-Aircraft [24], Flowers102 [25], Food101 [26],241

and three subsets from MedMNIST-PathMNIST, OCTMNIST, and DermaMNIST [27]. For each of242

the 12 downstream datasets, we split the data into training, validation, and test sets. If a dataset does243

not include a validation set, we hold out 20% of the training data using stratified sampling. Otherwise,244

we use the original validation split provided.245

To apply CT, we replace all ReLUs in the backbone with CTUs, freeze the backbone weights, and246

train a new linear classifier on the penultimate layer. The optimal β is selected via grid search over247

β ∈ [0.7, 1] with a step size of 0.01. The linear classifiers are trained for 20 epochs using the Adam248

optimizer with a learning rate of 10−3, employing linear warm-up during the first epoch and decaying249

the learning rate by a factor of 10 after epoch 10. The linear probing baseline follows the same250

training configuration.251

For both CT and linear probing, models are trained on the training split of each downstream dataset,252

with the checkpoint achieving the highest validation accuracy selected for evaluation on the test set.253

Additional results are provided as follows:254

• Table 3: mean accuracy over three runs of ImageNet-pretrained ResNet-152 when transferred255

to 12 downstream datasets, comparing linear probing with and without CT.256

• Table 4: average optimal β values for CT across three runs.257

• Fig. 3: example validation accuracy vs. β curves over three runs for CT.258

As shown in Table 4, the average optimal β values for CT across datasets are 0.84 for ResNet-18,259

0.94 for ResNet-50, and 0.96 for ResNet-152. These values are consistently close to 1, suggesting the260

search range can be narrowed for efficiency. The upward trend with model size indicates that larger261

models require less curvature adjustment, which is intuitive as deeper networks can approximate262

complex curvature more effectively. Example accuracy curves in Fig. 3 show that accuracy varies263

smoothly with β and typically peaks in the middle of the search range.264
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Table 3: Mean accuracy (%) over three runs of ImageNet-pretrained ResNet-152 when transferred
to 12 downstream datasets. The second row under each method indicates the number of trainable
parameters (excluding the linear classifier). CT outperforms linear probing on the frozen backbone,
and Trainable CT surpasses LoRA (rank 1).

Dataset Frozen CT LoRA Train CT
(0) (1) (243283) (143744)

Arabic Characters 79.86 79.21 95.96 96.47
Arab Digits 98.07 98.15 99.15 99.10
Beans 87.50 87.50 93.75 96.35
CUB-200 67.68 68.15 70.59 73.04
DTD 66.97 66.99 66.63 63.39
FashionMNIST 90.44 90.51 92.77 93.39
FGVC-aircraft 38.74 38.51 48.84 58.16
Flowers102 82.98 83.28 84.40 83.43
Food101 71.11 71.13 74.66 76.08
DermaMNIST 75.68 76.23 76.91 77.94
OCTMNIST 69.27 69.10 76.43 75.17
PathMNIST 89.91 89.82 84.94 83.60

Average 76.52 76.55 80.42 81.34

Table 4: Mean β of CT over three runs of ImageNet-pretrained ResNet-18/50/152 and Imagenette-
pretrained Swin-T/S when transferred to 12 downstream datasets. The learned β values are
consistently high (ranging from 0.84 to 0.96 across models), and tend to be larger for larger
models.

Dataset ResNet-18 ResNet-50 ResNet-152 Swin-T Swin-S

Arabic Characters 0.77 0.89 0.96 0.92 0.97
Arabic Digits 0.75 0.93 0.95 0.86 0.96
Beans 0.76 0.94 0.97 0.94 0.98
CUB-200 0.91 0.93 0.94 0.97 0.87
DTD 0.88 0.98 0.98 0.96 0.95
FashionMNIST 0.92 0.95 0.96 0.89 0.98
FGVC-Aircraft 0.82 0.90 0.95 0.93 0.97
Flowers102 0.84 0.96 0.95 0.99 0.97
Food101 0.87 0.98 0.99 0.97 0.99
DermaMNIST 0.94 0.95 0.95 0.93 0.89
OCTMNIST 0.80 0.94 0.98 0.88 0.95
PathMNIST 0.83 0.96 0.92 0.90 0.94

Average 0.84 0.94 0.96 0.93 0.95
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(a) ResNet-18 on Arabic Characters
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(b) ResNet-50 on FGVC-Aircraft
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(c) ResNet-152 on DermaMNIST

Figure 3: Validation accuracy (%) of CT during the β search, averaged over three runs. The accuracy
curve varies smoothly and typically peaks in the middle of the β range.
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B.2 Trainable CT is comparable to LoRA265

To apply Trainable CT, we replace all ReLUs in the backbone with CTUs, freeze the backbone266

weights, and train a new linear classifier on the penultimate layer. All β parameters are initialized to267

0.8 and all c parameters to 0.5, and these are jointly trained with the linear head.268

And LoRA is applied to all convolutional and linear layers in the backbone. We provide the269

implementation details for it in Section E.270

Both Trainable CT and LoRA are trained for 20 epochs using the Adam optimizer. To ensure proper271

convergence, we use different learning rates: for Trainable CT, a learning rate of 10−1 is applied272

to the (β, c) parameters and 10−3 to the linear classifier; for LoRA, a learning rate of 10−4 is used273

for both the adapter parameters and the classifier. As before, we apply linear warm-up during the274

first epoch and decay the learning rate by a factor of 10 after epoch 10. For both methods, models275

are trained on the training set of each downstream dataset, selected based on the highest validation276

accuracy, and evaluated on the test set.277

Additional results are provided as follows:278

• Table 3: mean accuracy over three runs of ImageNet-pretrained ResNet-152 when transferred279

to 12 downstream datasets, comparing LoRA and Trainable CT.280

• Tables 5 and 6: mean and standard deviation of the learned β and c values for Trainable CT281

across three runs.282

• Figs. 4 and 5: example distributions of β and c values in Trainable CT, illustrating commonly283

and uncommonly observed patterns.284

Table 5: Distribution of β values in Trainable CT, computed over all β parameters across all three
runs of ImageNet-pretrained ResNet-18/50/152 and Imagenette-pretrained Swin-T/S when transferred
to 12 downstream datasets. The mean and standard deviation of β are similar across models
(means between 0.69–0.77, stds between 0.31–0.37), suggesting consistent tuning behavior at
the model level, while the relatively large standard deviations indicate substantial variation of
β within each network.

Dataset ResNet-18 ResNet-50 ResNet-152 Swin-T Swin-S

Arabic Characters 0.72 ± 0.34 0.65 ± 0.41 0.68 ± 0.39 0.73 ± 0.35 0.76 ± 0.33
Arabic Digits 0.70 ± 0.43 0.62 ± 0.48 0.62 ± 0.47 0.65 ± 0.42 0.64 ± 0.43
Beans 0.72 ± 0.26 0.76 ± 0.23 0.77 ± 0.19 0.79 ± 0.24 0.83 ± 0.23
CUB-200 0.81 ± 0.17 0.76 ± 0.29 0.79 ± 0.29 0.82 ± 0.27 0.83 ± 0.28
DTD 0.78 ± 0.19 0.77 ± 0.25 0.79 ± 0.24 0.87 ± 0.17 0.88 ± 0.19
FashionMNIST 0.72 ± 0.41 0.65 ± 0.46 0.63 ± 0.46 0.67 ± 0.42 0.66 ± 0.43
FGVC-Aircraft 0.75 ± 0.23 0.70 ± 0.33 0.74 ± 0.32 0.81 ± 0.25 0.82 ± 0.27
Flowers102 0.75 ± 0.16 0.75 ± 0.21 0.79 ± 0.17 0.81 ± 0.22 0.84 ± 0.22
Food101 0.80 ± 0.30 0.71 ± 0.43 0.76 ± 0.40 0.78 ± 0.36 0.74 ± 0.40
DermaMNIST 0.74 ± 0.34 0.70 ± 0.39 0.70 ± 0.37 0.76 ± 0.32 0.77 ± 0.32
OCTMNIST 0.67 ± 0.45 0.62 ± 0.48 0.63 ± 0.47 0.76 ± 0.37 0.64 ± 0.45
PathMNIST 0.69 ± 0.43 0.65 ± 0.47 0.61 ± 0.48 0.78 ± 0.36 0.70 ± 0.43

Average 0.74 ± 0.31 0.69 ± 0.37 0.71 ± 0.35 0.77 ± 0.31 0.76 ± 0.33

For Trainable CT, to better understand how it behaves during training, we analyze the distributions285

of learned β and c values (as shown in Appendix Tables 5 and 6). We observe a high degree of286

within-model variation, with standard deviations ranging from 0.31 to 0.38, while the means remain287

remarkably stable across architectures: 0.69 to 0.74 for β and 0.57 to 0.59 for c. These mean values288

are close to those used in CT, though the learned β values tend to be smaller than the optimal shared289

β found in CT (0.84 to 0.96), while the learned c values are larger than the fixed c = 0.5.290

We further visualize the distributions of the learned β and c values of Trainable CT in Appendix291

Figs. 4 and 5. In most datasets, as shown in Appendix Fig. 4 (OCTMNIST), both β and c exhibit292

a sharp U-shaped distribution—concentrating near 0 and 1 with a flat middle. This suggests that293

Trainable CT leverages its parameter flexibility to assign values at the extremes, producing an effective294
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Table 6: Distribution of c values in Trainable CT, computed over all c parameters across all three runs
of ImageNet-pretrained ResNet-18/50/152 and Imagenette-pretrained Swin-T/S when transferred to
12 downstream datasets. The three ResNet models exhibit similar distributions (means around
0.57–0.59, stds around 0.36–0.38), while the two Swin models also show comparable statistics
with higher means (0.67–0.70), and similar stds (0.35-0.37). All models display substantial
within-network variation, and the higher average c in Swin models may reflect insufficient
pretraining relative to the ResNets.

Dataset ResNet-18 ResNet-50 ResNet-152 Swin-T Swin-S

Arabic Characters 0.63 ± 0.39 0.61 ± 0.39 0.57 ± 0.37 0.66 ± 0.41 0.70 ± 0.38
Arabic Digits 0.59 ± 0.43 0.57 ± 0.42 0.55 ± 0.41 0.63 ± 0.45 0.71 ± 0.43
Beans 0.61 ± 0.29 0.54 ± 0.25 0.53 ± 0.23 0.67 ± 0.26 0.69 ± 0.24
CUB-200 0.60 ± 0.37 0.63 ± 0.37 0.60 ± 0.34 0.70 ± 0.33 0.70 ± 0.33
DTD 0.59 ± 0.31 0.60 ± 0.32 0.57 ± 0.30 0.68 ± 0.25 0.74 ± 0.24
FashionMNIST 0.55 ± 0.44 0.60 ± 0.42 0.56 ± 0.42 0.62 ± 0.46 0.69 ± 0.43
FGVC-Aircraft 0.61 ± 0.36 0.63 ± 0.37 0.58 ± 0.35 0.71 ± 0.33 0.68 ± 0.33
Flowers102 0.58 ± 0.26 0.54 ± 0.26 0.54 ± 0.23 0.65 ± 0.29 0.66 ± 0.25
Food101 0.46 ± 0.47 0.63 ± 0.44 0.60 ± 0.43 0.72 ± 0.42 0.76 ± 0.39
DermaMNIST 0.58 ± 0.38 0.59 ± 0.37 0.57 ± 0.36 0.66 ± 0.36 0.71 ± 0.33
OCTMNIST 0.55 ± 0.45 0.60 ± 0.42 0.57 ± 0.42 0.58 ± 0.47 0.65 ± 0.45
PathMNIST 0.51 ± 0.45 0.58 ± 0.43 0.57 ± 0.42 0.71 ± 0.42 0.76 ± 0.40

Average 0.57 ± 0.38 0.59 ± 0.37 0.57 ± 0.36 0.67 ± 0.37 0.70 ± 0.35
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Figure 4: Common distributions of β (top) and c (bottom) in Trainable CT across ResNet-18/50/152,
averaged over three runs (OCTMNIST shown as a representative dataset). Both β and c consistently
exhibit sharp U-shaped distributions that appear similar across all models.
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Figure 5: Uncommon distributions of β (top) and c (bottom) in Trainable CT across ResNet-
18/50/152, averaged over three runs (DTD shown as an example dataset). While the overall shape is
dataset-specific, the distributions of both β and c remain consistent across models.

average close to the manually chosen settings in CT, rather than concentrating around the mean values295

themselves.2 In a few datasets, we observe deviations from this trend, as exemplified in Appendix296

Fig. 5 (DTD). Nonetheless, a consistent pattern is that for any given dataset, the distributions remain297

visually similar across all models.298

B.3 CT shows promise on transformers and emerging architectures299

In this subsection, we investigate the effectiveness of Trainable CT on transformer architectures.300

Unlike ResNets, transformers incorporate attention layers and typically use non-piecewise-affine301

activation functions (e.g., SiLU, GELU), which fall outside the max-affine spline framework and thus302

weaken theoretical guarantees. Nevertheless, we validate their effectiveness empirically.303

We consider Swin-T/S [28], whose activation function is GELU. Since GELU can be closely approxi-304

mated by a CTU with β = 0.6403 and c = 1, we initialize all CTU parameters in Trainable CT with305

these values. We compare against both the linear probing baseline and LoRA (rank r = 1, scale306

α = 1), where LoRA is applied to all QKV projection layers.307

For fairness, we cross-validate the learning rate for each method. Specifically, for Trainable CT, we308

test initial learning rates of 10−1, 10−2, and 10−3 for the (β, c) parameters. For the linear probing309

baseline, we use 10−2, 10−3, and 10−4, and for LoRA, 10−3, 10−4, and 10−5. We report the best310

performance achieved for each method across these choices.311

The results in Table 7 show that Trainable CT yields average relative improvements of 0.61% and312

1.76% over the frozen baseline on Swin-T and Swin-S, respectively, but trails LoRA by 3.45% and313

4.61%. Notably, Trainable CT achieves this competitive performance with only 0.71% and 0.58% as314

many trainable parameters as LoRA on Swin-T and Swin-S, a much smaller ratio than in the ResNet315

experiments. Importantly, since Trainable CT operates orthogonally to other PEFT methods such as316

LoRA, the goal is not to demonstrate that CT surpasses them, but rather that it can be combined with317

them to further enhance performance. Thus, even though Trainable CT underperforms LoRA in this318

setting, the results highlight its potential on transformer models.319

2This behavior may in part be influenced by the sigmoid-based parameterization used in our implementation
of Trainable CT to constrain β and c during training.
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Table 7: Accuracy (%) of Imagenet-pretrained Swin-T/S when transferred to 12 downstream datasets.
The second row under each method indicates the number of trainable parameters (excluding the linear
classifier). Trainable CT outperforms linear probing but underperforms LoRA.

Swin-T Swin-S

Dataset Frozen LoRA Train CT Frozen LoRA Train CT
(0) (74832) (532) (0) (148560) (868)

Arabic Characters 83.27 93.57 86.10 83.78 94.58 86.76
Arabic Digits 98.24 99.12 98.39 98.32 99.18 98.39
Beans 89.84 95.31 92.19 92.97 92.97 92.19
CUB-200 73.65 77.60 74.23 72.61 79.98 73.42
DTD 71.17 70.32 71.86 70.16 70.48 72.82
FashionMNIST 89.75 92.95 90.25 89.85 93.45 89.96
FGVC-Aircraft 47.61 47.16 47.73 44.52 52.42 45.09
Flowers102 86.88 90.57 85.41 83.28 90.29 85.04
Food101 77.05 83.23 78.97 77.72 85.50 79.60
DermaMNIST 76.51 77.11 75.76 76.66 77.41 77.41
OCTMNIST 69.10 76.70 67.30 67.00 77.00 69.70
PathMNIST 90.65 92.56 91.84 89.89 92.60 92.08

Average 79.48 83.02 80.00 78.90 83.82 80.21

B.4 Improving robustness on adversarial and corrupted data with CT320

Due to computational constraints, we evaluate each benchmark using 1,000 samples. For adversarial321

evaluations, we follow the official RobustBench settings: ε2 = 0.5 for ℓ2 attacks and ε∞ = 8
255 for322

ℓ∞ attacks.323

B.5 Improving ℓ∞ robustness with Trainable CT324

In Section 4, we showed that CT can significantly improve ℓ∞ robustness by adjusting the curvature325

of the model’s decision boundary, without relying on labeled data or explicit loss functions. Since326

Trainable CT also directly modulates decision boundary curvature, it is expected to yield similar327

effects. In this subsection, we demonstrate that Trainable CT can indeed improve ℓ∞ robustness as a328

natural byproduct of standard finetuning, even without explicitly targeting adversarial robustness.329

To evaluate this, we extend the RobustBench benchmark to Trainable CT and LoRA. Specifically, we330

transfer ImageNet-pretrained ResNet-18/50/152 models to CIFAR-10/100 using the same setup as in331

Section 4—linear probing, Trainable CT, and LoRA—and then assess ℓ∞ robustness under attack332

using RobustBench.333

Table 8: Robust accuracy (%) of ImageNet-pretrained ResNet-18/50/152 transferred to CIFAR-
10/100 under ℓ∞ attack. Trainable CT substantially enhances ℓ∞ robustness as a byproduct of
finetuning, whereas LoRA provides limited or even negative gains.

Model Dataset Frozen LoRA Train CT

ResNet18
CIFAR10 0.30 0.70 1.57

CIFAR100 0.03 0.07 0.17
Average 0.17 0.38 0.87

ResNet50
CIFAR10 0.20 0.33 2.43

CIFAR100 0.00 0.03 0.07
Average 0.10 0.18 1.25

ResNet152
CIFAR10 0.43 0.20 5.10

CIFAR100 0.17 0.00 0.00
Average 0.30 0.10 2.55
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As shown in Appendix Table 8, Trainable CT achieves average relative improvements of 420.00%,334

1150.00%, and 750.00% over linear probing on ResNet-18/50/152, respectively. In stark contrast,335

LoRA provides only marginal robustness gains (130.00%, 83.33%) and even degrades performance336

sometimes (–66.67%). These results indicate that, even without explicit adversarial training, Trainable337

CT substantially enhances ℓ∞ robustness by directly modulating decision boundary curvature. LoRA,338

by contrast, leaves activation nonlinearities unchanged and thus offers limited or even negative339

robustness benefits. This empirical finding underscores the practical advantage of Trainable CT: by340

shaping decision boundary curvature, it yields direct gains in adversarial robustness without relying341

on adversarial objectives.342
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C Theoretical Intuition343

This section provides theoretical intuition behind Curvature Tuning. Section C.1 casts CT as a344

projection over a space of smooth functions, while Section C.2 provides a toy example illustrating345

how CT can improve approximation of a target function of non-vanishing curvature, upon an ideal346

baseline ReLU network.347

C.1 CT Operates as a Projection348

At its core, Curvature Tuning operates by modulating the non-linearity of the activation functions of349

a trained model, providing a novel approach to model steering. In order to formalize the effect of CT,350

the following briefly introduces the notion of spaces of smooth functions.351

Sobolev spaces Let f : Rd → R be a function and Ω ⊆ Rd be a bounded domain. For 1 ≤ p < ∞,352

define Lp(Ω) as the space of functions f : Ω → R such that the Lp norm is finite, i.e.353

∥f∥Lp(Ω) :=

(∫
Ω

|f(x)|pdx
) 1

p

< ∞ (9)

Let α = (α1, . . . , αd) denote a multi-index, with |α| :=
∑d

i αi, and αi ∈ N,∀i = 1, . . . , d. Let354

q ∈ N∗. For |α| > 0, define the Sobolev semi-norm355

|f |W q,p(Ω) :=

∑
|α|≤q

∥Dαf∥pLp(Ω)

 1
p

(10)

with Dαf := ∂|α|f

∂x
α1
1 ...∂x

αd
d

denoting |α|-th order partial derivatives of f . Define the Sobolev norm356

∥f∥W q,p(Ω) :=
(
∥f∥pLp(Ω) + |f |pW q,p(Ω)

) 1
p

(11)

and the Sobolev space W q,p(Ω) := {f : Ω → R s.t. ∥f∥pLp(Ω) + |f |pW q,p(Ω) < ∞}.357

For a finite set D = {xi}ni=1, the Sobolev semi-norm becomes358

|f |W q,p(D) :=

∑
|α|≤q

1

n

n∑
i=1

∥Dαf(xi)∥pp

 1
p

(12)

Finally, for x ∈ Rd, let ∥x∥p denote the p-norm, corresponding to the Euclidean norm for p = 2.359

Curvature Tuning acts as a Sobolev Projection To characterize Curvature Tuning, we are inter-360

ested in the space W 2,2(Ω), equipped with the Sobolev semi-norm361

|f |2W 2,2(Ω) = ∥∇xf∥2L2(Ω) + ∥∇2
xf∥2L2(Ω) (13)

We begin by considering the Sobolev semi-norm of a ReLU network (equivalent to the case of Eq. (5)362

with β → 1). For each x ∈ Rd, the gradient of a ReLU network363

f(x) =
(
WL ◦ φ ◦ . . . ◦ φ ◦W 1

)
(x) (14)

with φ(z) := max(0, z), for z ∈ R, is given by364

∇xf(x) = WL
1∏

ℓ=L−1

Dℓ(x)W ℓ (15)

where Dℓ(x) is a diagonal matrix with Dℓ
ii(x) = 1{zℓ

i>0}, with zℓi = W ℓ
i z

ℓ−1 + bℓ
i denoting the365

pre-activation of the ℓ-th layer, for ℓ = 1, . . . , L, with z0 := x.366

We make the following observations:367
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O1 Since ReLU networks are differentiable a. e., the gradients ∇xf(x) are bounded in norm by368

the network’s Lipschitz constant, which can be defined as C = supx∈Ω ∥∇xf(x)∥2. Hence,369

for Ω = D, the Lipschitz constant provides an upper bound on the first-order term of the370

Sobolev semi-norm in Equation 13.371

O2 Finally, we observe that since ReLU networks express piece-wise affine functions, the372

Hessian norm vanishes a.e. (i.e. wherever the Hessian is well defined), providing a bound on373

the second-order term of Equation 13.374

Equipped with the above observations, in the following we characterize CT.375

Theorem C.1. Let f : Rd → R denote a ReLU network, with model parameter W collecting all376

weights and biases. For c ∈ [0, 1] and fixed β ∈ [0, 1), replacing every instance of ReLU with377

a CTU (Equation 5) with hyperparameters β, c is equivalent to projecting f to a smooth function378

fβ,c ∈ W 2,2(Ω) in the Sobolev space W 2,2(Ω), with bounded Sobolev semi-norm.379

Particularly, it holds ∥∇2
xf(x)∥L2(Ω) ≤ ∥∇2

xfβ,c(x)∥L2(Ω), from which fβ,a enjoys higher local380

expressivity (non-vanishing curvature), while retaining the same model parameter W.381

Before proving Theorem C.1, we state the following Lemma, bounding the derivative of a CTU.382

Lemma C.2. Let φβ,c(x) be defined according to Eq. (5), for β ∈ [0, 1) and c ∈ [0, 1]. Then383

φ′
β,c(x) = c (σ(bx) + bxσ(bx)(1− σ(bx))) + (1− c)σ

(
bx

β

)
(16)

where b := β
1−β and σ(x) = exp x

1+exp x is the sigmoid activation.384

Furthermore, ∃ hb ∈ R+ such that385

−chb ≤ φ′
β,c(x) ≤ 1 + chb ∀x ∈ R, β ∈ [0, 1) (17)

Proof. We recall that, since ∀x ∈ R, φβ,c(x) is defined as the convex combination of the SiLU386

activation function (c = 1) and the SoftPlus activation (c = 0), we can bound φ′
β,c(x) by the convex387

combination of individual bounds obtained for the cases c = 0 and c = 1.388

SoftPlus. If c = 0, then φ′
β,0(x) = σ

(
x

1−β

)
and 0 ≤ φ′

β,0(x) ≤ 1 ∀x, since the derivative is389

defined as a sigmoid.390

SiLU. If c = 1, φ′
β,1(x) = σ(bx) + bxσ(bx)(1− σ(bx)). The first term in the sum is bounded by391

definition of sigmoid. For the second term, we note that σ(bx)(1 − σ(bx)) is also bounded, and392

achieves it maximum at x = 0, for which 0 ≤ σ(bx)(1 − σ(bx)) ≤ 1
4 . Furthermore, in the limit393

x → +∞, it holds φ′
β,1(x) → 1, while φ′

β,1(x) → 0 for x → −∞.394

In the non-asympototic regime, σ(bx)(1 − σ(bx)) > 0, and so the maximum value of395

bxσ(bx)(1− σ(bx)) also depends on bx. To bound φ′
β,c in this case, let us first consider x > 0. By396

defining hb = maxbx≥0 bxσ(bx)(1− σ(bx)), then we finally obtain 0 ≤ φ′
β,1(x) ≤ 1 + hb.397

For the case x < 0, by using the identity σ(x) = 1− σ(−x), we have that −hb ≤ φ′
β,1(x) ≤ 1. By398

combining the results, we have399

−hb ≤ φ′
β,1(x) ≤ 1 + hb ∀x ∈ R, β ∈ [0, 1) (18)

In conclusion, by convex combination of cases c = 0 and c = 1, Eq. (18) holds uniformly in x.400

We can now prove Theorem C.1. To do so, for fβ,c we have to show that401

1. fβ,c is smooth in x, for x ∈ Ω402

2. ∥fβ,c∥W 2,2(Ω) < ∞403

for a network fβ,c obtained by replacing every ReLU φ with a CTU φβ,c, while keeping all learned404

parameters W fixed.405
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Proof. We provide a proof for Ω = D = {xi}ni=1, under the common i.i.d. assumption on D.406

To prove the first point, we observe that for β ∈ [0, 1), the CTU activation function is smooth, i.e.407

φβ,c ∈ C∞(R), thus making the whole network fβ,c smooth.408

We now consider the Sobolev semi-norm |fβ,c|W 2,2(Ω). Starting with the first-order gradient, by409

recalling that CT replaces each occurrence of ReLU with the CTU activation function (Equation 5),410

the input gradient of CT is given by411

∇xfβ,c(x) = WL
1∏

ℓ=L−1

Dℓ
β,c(z

ℓ)W ℓ (19)

where Dℓ
β,c(z

ℓ) = diag(φ′
β,c(z

ℓ)) with φ′
β,c(z

ℓ)i := φ′
β,c(z

ℓ
i) according to Eq. (16).412

To bound the Jacobian norm, we observe that413

∥∇xfβ,c(x)∥ = ∥WL
1∏

ℓ=L−1

Dℓ
β,c(z

ℓ)W ℓ∥ (20)

≤ ∥WL∥
1∏

ℓ=L−1

∥Dℓ
β,c(z

ℓ)∥∥W ℓ∥ (21)

≤ ∥WL∥
1∏

ℓ=L−1

√
dℓ(1 + chb)∥W ℓ∥ < ∞ (Lemma C.2) (22)

independent of x, for W ℓ ∈ Rdℓ×dℓ−1 , with d0 := d.414

We now bound the second order term. By recalling that, for every x ∈ Rd, the Hessian H(x) =415

∇2
xfβ,c(x) is symmetric positive-definite, then for Ω = D it holds416

∥∇2
xfβ,c∥2L2(D) =

1

n

n∑
i=1

∥H(xi)∥22 ≤ max
1≤i≤n

λ2
max(H(xi))dℓ < ∞ (23)

with λmax(H(xi)) denoting the largest singular value of H(xi).417

Importantly, since a ReLU network f has vanishing curvature a.e., then for 0 ≤ β < 1, we have

∥∇2
xf(x)∥ ≤ ∥∇2

xfβ,c(x)∥.

Lastly, we note that, whenever Ω is a finite discrete set D, fβ,c is measurable, ensuring that418

∥fβ,c∥W 2,2(Ω) < ∞, concluding the proof.419

Theorem C.1 shows that CT operates by projecting a ReLU network f to a smooth function fβ,c in420

a restricted Sobolev space. Crucially, fβ,c enjoys bounded gradients (and so is well behaved), and421

non-vanishing local-curvature for 0 < β < 1, making it locally more expressive than the affine spline422

f , for fixed W.423

Furthermore, for fixed (β, c), CT indeed operates as a projection, since replacing every ReLU with424

φβ,c is idempotent. Importantly, while for the original ReLU network f ∈ W 2,2(Ω) the derivatives425

Dαf are understood in a weak-sense, for c ∈ [0, 1] and β ∈ [0, 1), fβ,c belongs to a Sobolev space426

W 2,2
str (Ω) ⊂ W 2,2(Ω) of smooth functions, whereby the derivative Dαfβ,c are understood in the427

strong (i.e. classical) sense.428

We leave for future work extending our result to Train CT, which is associated with a non-convex429

optimization problem of finding optimal (β, c) for every neuron in the network. An additional430

important direction is to more closely compare ∥∇xf∥ and ∥∇xfβ,c∥, which may reveal more431

precise Lipschitz behaviour for CT, potentially better guiding the search for β and c.432

CT provably controls decision boundary curvature To conclude this section, we observe how433

varying β modulates the curvature of the whole model function f and, in turn, of the model’s decision434

boundaries. We begin by noting that for a deep network f : Rd → Rk, the decision boundary435

between any class i and j is given by {x ∈ Rd : g(x) := fi(x)−fj(x) = 0}, for any i, j = 1, . . . , k436
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with i ̸= j. Particularly, g is itself a deep network, sharing the same parameters as f up until the437

penultimate layer, after which the parameter is the vector WL
i −WL

j and bias bL
i − bL

j . Importantly,438

when varying β while keeping all model parameters fixed, the Jacobian ∇xg(x) and the Hessian439

∇2
xg(x) are respectively given by the gradients and Hessian of zL−1(x) – corresponding to the440

post-activation output of the L − 1-th layer – weighted by WL
i − WL

j . Hence, modulating the441

non-linearity of activation functions via β directly controls the curvature of both model function and442

its decision boundaries. 3443

Particularly, for c = 1 (Eq. (5)), as β → 0, the activation becomes linear. Since modern DNs (e.g.444

MLP, CNN, RNN) are composed of activation functions interleaved with affine layers, it follows445

directly that the entire input-output mapping becomes affine when β → 0. In this setting, the curvature446

of the mapping—defined as the norm of its Hessian—becomes zero. As a result, transitioning from447

the original DN mapping (β = 1) to the linear setting effectively modulates the network decision448

boundary curvature, reducing it continuously to zero in the limit. For c < 1, the model retains449

non-vanishing local curvature, while the mapping becomes smooth.450

C.2 Toy Example451

We conclude the discussion by providing the full derivation for the motivating example in Section 3.452

Consider a binary classification problem in R2, whereby one is given two classes453

{x ∈ R2 : ∥x∥2 ≤ 1
2} and {x ∈ R2 : 3

2 ≤ ∥x∥2 ≤ 2}. The decision boundary maximizing the mar-454

gin between the two classes is given by S1 = {x ∈ R2 : ∥x∥ = 1}.455

For a ReLU network f : R2 → R, the maximum margin boundary is recovered by assigning456

f(x) = 0 ∀x ∈ S1, for which σ(f(x)) = 0.5. To measure the approximation error e, the boundary457

is parameterized by γ(t) = (cos 2πt, sin 2πt), for t ∈ [0, 1].458

Then, the error is expressed by the line integral e =
∫
γ
|f |dx =

∫ 1

0
|f(γ(t))|∥γ′(t)∥dt. Since f459

expresses an Affine Spline Operator, and each linear region in Ω is convex, then the integral along460

γ can be broken down into the integral along the intersection of γ with the spline partition Ω, i.e.461

Ωγ := Ω ∩ S1. Importantly, this allows to pull back the affine spline breakpoints from Ωγ to [0, 1],462

so that 0 ≤ t1 ≤ . . . ≤ tr′ = 1, where r′ = |Ωγ |. Then,463

e =

∫ 1

0

|f(γ(t))|∥γ′(t)∥dt (24)

= 2π

r′−1∑
k=1

∫ tk+1

tk

|Ak,·γ(t) + bk|dt (25)

= 2π

r′−1∑
k=1

∫ tk+1

tk

(−1)z (Ak,·γ(t) + bk) dt (26)

with z := 1{Ak,·γ(t)+bk<0}. Then,464

e = 2π

r′−1∑
k=1

∫ tk+1

tk

(−1)z (Ak,1 cos 2πt+Ak,2 sin 2πt+ bk) dt (27)

= 2π

r′−1∑
k=1

∫ tk+1

tk

(−1)z
(
Ak,1

sin 2π

2π
−Ak,2

cos 2π

2π
+ bkt

)tk+1

tk

(28)

(29)

3In this paper, unless specified, we will thus refer interchangeably to the curvature of a DN mapping and that
of its decision boundaries, whenever modulating non-linearities via CT.
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which evaluates to465

e =

r′−1∑
k=1

(−1)z

(
2πbk(tk+1 − tk)+

+Ak,1

(
2 sin

tk+1 − tk
2

cos
tk+1 − tk

2

)
−Ak,2

(
2 sin

tk+1 + tk
2

sin
tk − tk+1

2

)) (30)

from which clearly e → 0 ⇐⇒ tk+1 → tk ∀k.466

Hence, assuming the ReLU network considered attained optimal approximation error e > 0, reducing467

the error further requires increasing the number of breakpoints of the ASO, in turn requiring a degree468

of retraining (either through PEFT or training from scratch). With this view, Curvature Tuning opens469

an additional avenue for model adaptation: steering the model’s decision boundaries by modulating470

the non-linearity of the activation function, allowing to tune a model towards optimality without471

expensive retraining. To this end, it is important to note that modulating decision boundaries is472

orthogonal to feature adaptation and finetuning, since it allows to change the shape of decision473

boundaries while keeping the model parameter W fixed.474
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D Curvature Tuning (CT) implementation475

The following code provides the Python implementation for CT and Trainable CT:476

• CTU & TrainableCTU: classes that define the CTU module used in CT and Trainable CT,477

respectively.478

• replace_module & replace_module_dynamic: functions that apply the appropriate479

module replacement to integrate CT or Trainable CT into a model.480

481
import torch482

from torch import nn483

import torch.nn.functional as F484

485

486

class CTU(nn.Module):487

"""488

CTU for CT.489

"""490

def __init__(self , shared_raw_beta , shared_raw_coeff , threshold491

=20):492

super().__init__ ()493

self.threshold = threshold494

self._raw_beta = shared_raw_beta495

self._raw_coeff = shared_raw_coeff496

self._raw_beta.requires_grad = False497

self._raw_coeff.requires_grad = False498

499

@property500

def beta(self):501

return torch.sigmoid(self._raw_beta)502

503

@property504

def coeff(self):505

return torch.sigmoid(self._raw_coeff)506

507

def forward(self , x):508

beta = torch.sigmoid(self._raw_beta)509

coeff = torch.sigmoid(self._raw_coeff)510

one_minus_beta = 1 - beta + 1e-6511

x_scaled = x / one_minus_beta512

513

return (coeff * torch.sigmoid(beta * x_scaled) * x +514

(1 - coeff) * F.softplus(x_scaled , threshold=self.515

threshold) * one_minus_beta)516517

518
class TrainableCTU(nn.Module):519

"""520

CTU for Trainable CT.521

"""522

def __init__(self , num_input_dims , out_channels , raw_beta =1.386 ,523

raw_coeff =0.0, threshold =20):524

super().__init__ ()525

self.threshold = threshold526

527

# Decide channel dim based on input shape528

if num_input_dims == 2 or num_input_dims == 3: # (B, C) or (B529

, L, D)530

channel_dim = -1531

elif num_input_dims == 4: # (B, C, H, W)532

channel_dim = 1533

else:534

raise NotImplementedError(f"Unsupported input dimension {535

num_input_dims}")536
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537

param_shape = [1] * num_input_dims538

param_shape[channel_dim] = out_channels539

540

# Init beta541

self._raw_beta = nn.Parameter(torch.full(param_shape , float(542

raw_beta)))543

544

# Init coeff545

self._raw_coeff = nn.Parameter(torch.full(param_shape , float(546

raw_coeff)))547

548

@property549

def beta(self):550

return torch.sigmoid(self._raw_beta)551

552

@property553

def coeff(self):554

return torch.sigmoid(self._raw_coeff)555

556

def forward(self , x):557

beta = torch.sigmoid(self._raw_beta)558

coeff = torch.sigmoid(self._raw_coeff)559

one_minus_beta = 1 - beta + 1e-63560

x_scaled = x / one_minus_beta561

562

return (coeff * torch.sigmoid(beta * x_scaled) * x +563

(1 - coeff) * F.softplus(x_scaled , threshold=self.564

threshold) * one_minus_beta)565566

567
def replace_module(model , old_module=nn.ReLU , new_module=CTU , ** kwargs568

):569

"""570

Replace all instances of old_module in the model with new_module.571

"""572

device = next(model.parameters (), torch.tensor ([])).device #573

Handle models with no parameters574

575

# Replace modules576

for name , module in model.named_modules ():577

if isinstance(module , old_module):578

ct = new_module (** kwargs).to(device)579

580

# Replace module in the model581

names = name.split(".")582

parent = model583

for n in names [:-1]:584

if n.isdigit ():585

parent = parent[int(n)] # for Sequential/586

ModuleList587

else:588

parent = getattr(parent , n)589

590

last_name = names[-1]591

if last_name.isdigit ():592

parent[int(last_name)] = ct # for Sequential/593

ModuleList594

else:595

setattr(parent , last_name , ct)596

597

return model598599

600
def replace_module_dynamic(model , input_shape , old_module=nn.ReLU ,601

new_module=TrainableCTU , ** kwargs):602
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"""603

Replace all instances of old_module in the model with new_module604

that’s dynamically created based on the number of output channels.605

"""606

device = next(model.parameters (), torch.tensor ([])).device607

dummy_input = torch.randn(* input_shape).to(device)608

609

module_metadata = {} # name -> (num_input_dims , out_channels)610

hooks = []611

612

def make_hook(name):613

def hook(module , input , output):614

num_input_dims = input [0]. dim()615

if num_input_dims in (2, 3): # (B, C) or (B, L, D)616

out_channels = output.shape [-1]617

elif num_input_dims == 4: # (B, C, H, W)618

out_channels = output.shape [1]619

else:620

raise NotImplementedError(f"Unsupported output shape {621

output.shape} in {name}")622

module_metadata[name] = (num_input_dims , out_channels)623

624

return hook625

626

# Register hooks to all modules of the target type627

for name , module in model.named_modules ():628

if isinstance(module , old_module):629

hooks.append(module.register_forward_hook(make_hook(name))630

)631

632

# Run dummy forward pass633

model(dummy_input)634

635

# Clean up hooks636

for hook in hooks:637

hook.remove ()638

639

# Replace modules640

for name , module in model.named_modules ():641

if isinstance(module , old_module) and name in module_metadata:642

num_input_dims , out_channels = module_metadata[name]643

ct = new_module(num_input_dims=num_input_dims ,644

out_channels=out_channels , ** kwargs).to(device)645

646

# Replace module in the model647

names = name.split(".")648

parent = model649

for n in names [:-1]:650

if n.isdigit ():651

parent = parent[int(n)] # for Sequential/652

ModuleList653

else:654

parent = getattr(parent , n)655

656

last_name = names[-1]657

if last_name.isdigit ():658

parent[int(last_name)] = ct # for Sequential/659

ModuleList660

else:661

setattr(parent , last_name , ct)662

663

return model664665
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E LoRA Implementation666

The following code provides the Python implementation of LoRA used in Section 4:667

• LoRALinear & LoRAConv2d: classes that define LoRA-enhanced versions of the Linear668

and Conv2d modules.669

• get_lora_model: a function that replaces all Linear and Conv2d modules in a model670

with their corresponding LoRA versions.671

672
import torch673

from torch import nn as nn674

from torch.nn import functional as F675

676

677

class LoRALinear(nn.Module):678

"""679

A Linear layer that applies LoRA to a frozen , pretrained Linear.680

"""681

682

def __init__(self , original_layer: nn.Linear , r: int = 4, alpha:683

float = 1.0):684

super().__init__ ()685

self.in_features = original_layer.in_features686

self.out_features = original_layer.out_features687

self.r = r688

self.alpha = alpha689

690

# Freeze the original layer ’s parameters691

self.weight = nn.Parameter(original_layer.weight.data ,692

requires_grad=False)693

if original_layer.bias is not None:694

self.bias = nn.Parameter(original_layer.bias.data ,695

requires_grad=False)696

else:697

self.bias = None698

699

# LoRA parameters B and A700

# B: [out_features , r]701

# A: [r, in_features]702

self.B = nn.Parameter(torch.zeros((self.out_features , r)))703

self.A = nn.Parameter(torch.zeros((r, self.in_features)))704

705

# Initialize LoRA weights706

nn.init.kaiming_uniform_(self.B, a=5 ** 0.5)707

nn.init.zeros_(self.A)708

709

def forward(self , x):710

# Normal forward with the frozen weight711

result = F.linear(x, self.weight , self.bias)712

713

# LoRA path: B @ A714

# shape of BA = [out_features , in_features]715

# Then F.linear with BA716

lora_update = F.linear(x, (self.alpha / self.r) * (self.B @717

self.A))718

719

return result + lora_update720721

722
class LoRAConv2d(nn.Module):723

"""724

A Conv2d layer that applies LoRA to a frozen , pretrained Conv2d.725

"""726

727
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def __init__(self , original_layer: nn.Conv2d , r: int = 4, alpha:728

float = 1.0):729

super().__init__ ()730

731

self.out_channels = original_layer.out_channels732

self.in_channels = original_layer.in_channels733

self.kernel_size = original_layer.kernel_size734

self.stride = original_layer.stride735

self.padding = original_layer.padding736

self.dilation = original_layer.dilation737

self.groups = original_layer.groups738

self.bias_available = (original_layer.bias is not None)739

740

self.r = r741

self.alpha = alpha742

743

# Freeze original parameters744

self.weight = nn.Parameter(original_layer.weight.data ,745

requires_grad=False)746

if self.bias_available:747

self.bias = nn.Parameter(original_layer.bias.data ,748

requires_grad=False)749

else:750

self.bias = None751

752

# Flattened shape for weight is [out_channels , in_channels *753

k_h * k_w]754

k_h , k_w = self.kernel_size755

fan_in = self.in_channels * k_h * k_w # Flattened input dim756

757

# Define LoRA parameters: B and A758

# B: [out_channels , r]759

# A: [r, fan_in]760

self.B = nn.Parameter(torch.zeros((self.out_channels , r)))761

self.A = nn.Parameter(torch.zeros((r, fan_in)))762

763

# Initialize LoRA weights764

nn.init.kaiming_uniform_(self.B, a=5 ** 0.5)765

nn.init.zeros_(self.A)766

767

def forward(self , x):768

# Standard (frozen) convolution769

result = F.conv2d(770

x,771

self.weight ,772

bias=self.bias ,773

stride=self.stride ,774

padding=self.padding ,775

dilation=self.dilation ,776

groups=self.groups777

)778

779

# Compute LoRA update780

# 1) Flatten conv kernel in the same manner as above781

# 2) Multiply B and A -> shape [out_channels , in_channels *782

k_h * k_w]783

# 3) Reshape it back to [out_channels , in_channels , k_h , k_w]784

BA = self.B @ self.A # shape [out_channels , fan_in]785

786

# Reshape to conv kernel787

k_h , k_w = self.kernel_size788

lora_weight = BA.view(789

self.out_channels ,790

self.in_channels ,791

k_h ,792
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k_w793

) * (self.alpha / self.r)794

795

# Perform conv2d with the LoRA weight (no extra bias term for796

LoRA)797

lora_update = F.conv2d(798

x,799

lora_weight ,800

bias=None ,801

stride=self.stride ,802

padding=self.padding ,803

dilation=self.dilation ,804

groups=self.groups805

)806

807

return result + lora_update808809

810
def get_lora_model(model: nn.Module , r: int = 4, alpha: float = 1.0):811

"""812

Recursively replace all Conv2d and Linear modules in model with813

LoRA -enabled versions. Freezes original weights and adds LoRA814

parameters.815

"""816

for name , child in list(model.named_children ()):817

# If child is a Conv2d , replace it with LoRAConv2d818

if isinstance(child , nn.Conv2d):819

lora_module = LoRAConv2d(child , r=r, alpha=alpha)820

setattr(model , name , lora_module)821

822

# If child is a Linear , replace it with LoRALinear823

elif isinstance(child , nn.Linear):824

lora_module = LoRALinear(child , r=r, alpha=alpha)825

setattr(model , name , lora_module)826

827

else:828

# Recursively traverse children829

get_lora_model(child , r=r, alpha=alpha)830

831

return model832833
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