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ABSTRACT

Graph Anomaly Detection (GAD) has surfaced as a significant field of research,
predominantly due to its substantial influence in production environments. Al-
though existing approaches for node anomaly detection have shown effective-
ness, they have yet to fully address two major challenges: operating in set-
tings with limited supervision and managing class imbalance effectively. In re-
sponse to these challenges, we propose a novel model, CONSISGAD, which
is tailored for GAD in scenarios characterized by limited supervision and is
anchored in the principles of consistency training. Under limited supervision,
CONSISGAD effectively leverages the abundance of unlabeled data for consis-
tency training by incorporating a novel learnable data augmentation mechanism,
thereby introducing controlled noise into the dataset. Moreover, CONSISGAD
takes advantage of the variance in homophily distribution between normal and
anomalous nodes to craft a simplified GNN backbone, enhancing its capabil-
ity to distinguish effectively between these two classes. Comprehensive experi-
ments on several benchmark datasets validate the superior performance of CON-
SISGAD in comparison to state-of-the-art baselines. Our code is available at
https://github.com/Xtra-Computing/ConsisGAD.

1 INTRODUCTION

Graph Anomaly Detection (GAD) aims to identify abnormal instances or outliers, e.g., nodes, that
exhibit behaviors deviating from the norm (Ma et al., 2021). Given the pervasive occurrence of
anomalies and their potential negative impact on various applications, GAD has emerged as a promi-
nent research area (Liu et al., 2021b; Shi et al., 2022; Tang et al., 2022; Wang et al., 2023). Owing
to the prevalence of class imbalance characteristics (Liu et al., 2023) in GAD, these studies can pri-
marily be categorized into two main approaches: spatial-centric and spectral-centric. Spatial-centric
approaches are primarily centered around formulating models by closely analyzing the connecting
structure of nodes that require classification, such as dynamically selecting neighboring nodes of the
target node (Wang et al., 2019a; Cui et al., 2020; Dou et al., 2020; Liu et al., 2020; 2021a;b), thereby
effectively mitigating the impact of imbalanced class distributions. Spectral-centric approaches fo-
cus on crafting GNN frameworks equipped with proficient spectral filters (Zhu et al., 2020; Tang
et al., 2022; Gao et al., 2023a), to bolster their capacity for improved expressiveness, enabling them
to distinguish signals of varying frequencies during neighborhood aggregation.

While existing approaches have demonstrated effectiveness, they still fall short in addressing two
substantial challenges. Firstly, these methods frequently require extensive supervision during train-
ing, which poses a considerable challenge in scenarios with limited supervision available. Al-
though semi-supervised learning (Van Engelen & Hoos, 2020) offers a remedy by employing high-
confidence unlabeled nodes as pseudo-labeled instances, it facilitates label propagation predomi-
nantly to nodes showcasing prominent features associated with the labels. This focus inherently

∗Corresponding authors.

1

https://github.com/Xtra-Computing/ConsisGAD


Published as a conference paper at ICLR 2024

b

dc

a

!

(,

(-(.

(/(0

(,

(-(.

(/(0

Learnable
masking

High
Consistency
/Diversity

&(!

'&(!

Random dropping

Typical data augmentation
methods on graphs

Our learnable data
augmentation method

Δ"#

(a) Comparison of the augmentation methods.

0.0 0.2 0.4 0.6 0.8 1.0
Neighborhood Homophily

0

10

20

30

40

50

60

Pr
op

or
tio

n 
(%

)

Amazon

Anomalous
Normal 

0.0 0.2 0.4 0.6 0.8 1.0
Neighborhood Homophily

T-Finance

Anomalous
Normal 

(b) The distinction in homophily distribution.

Figure 1: The motivation of our proposed model.

results in the overlooking of a substantial portion of unlabeled instances that bear less distinctive
features, rendering label propagation to these instances particularly challenging. While consis-
tency training (Rasmus et al., 2015; Laine & Aila, 2017; Tarvainen & Valpola, 2017) emerges as
a promising solution by introducing noise to high-confidence unlabeled nodes—effectively trans-
forming them into less distinctive instances for further consistency-based regularization—its appli-
cation on graphs typically involves data augmentation through random sampling as the noise (You
et al., 2020; Wang et al., 2020; Zhu et al., 2021; Zhao et al., 2021), as shown in Figure 1(a)(Left).
This method introduces an inherent difficulty in calibrating the extent of data augmentation and may
result in either over-augmentation or under-augmentation (Bo et al., 2022).

Secondly, addressing class imbalance has seen numerous studies typically resorting to reweighting
or resampling techniques (Wang et al., 2019a; Cui et al., 2020; Dou et al., 2020; Liu et al., 2020;
2021a;b). They typically aim to dynamically select neighbors of the target node with a view to
reducing heterophily and, thereby, alleviating the impact of imbalanced class distributions. However,
the inherent uncertainty in predicting neighboring labels considerably influences the reweighting or
resampling procedure, often complicating the attainment of preferable homophily neighbors.

To address these challenges, we introduce a novel model, CONSISGAD, designed for Graph
Anomaly Detection under limited supervision, grounded in the principles of Consistency Training.

In the context of limited supervision, CONSISGAD harnesses the wealth of unlabeled data for con-
sistency training, through a novel learnable data augmentation mechanism to introduce controlled
noise into the dataset, as shown in Figure 1(a)(Right). In particular, we introduce two key met-
rics, namely, label consistency and distribution diversity to guide the learning of data augmentation.
These metrics assess the relationship between the original data and its augmented version: label con-
sistency emphasizes the retention of identical labels, whereas distribution diversity accentuates the
disparities in their representation distributions. This dual-metric approach yields a more appropriate
augmentation that shares the same label while exhibiting diverse distribution characteristics, thereby
facilitating the label propagating to an extensive space where the features are less distinctive.

To address the class imbalance issue, we argue that the homophily distribution serves as an effec-
tive pattern for distinguishing between normal and anomalous nodes. In Figure 1(b), we present
statistics on the homophily ratio of each node1 on two datasets, Amazon and T-Finance (for more
details please see Section 4.1). The x-axis represents the edge homophily score, while the y-axis il-
lustrates the proportion of target nodes within the corresponding group (e.g., anomalous or normal).
Specifically, normal nodes tend to predominantly associate with other normal neighbors, thereby
exhibiting a higher degree of homophily. In contrast, anomalous nodes are often surrounded by a
larger proportion of normal neighbors, resulting in lower homophily. This distinction in homophily
distribution motivates us to develop a GNN backbone by leveraging the homophily distribution in
the context of each target node to effectively discriminate between normal and anomalous nodes.

Additionally, we conduct extensive experiments on four benchmark datasets, alongside one real-
world dataset derived from a production environment. The ensuing results highlight the superiority
of our proposed CONSISGAD, as it exhibits enhanced performance in comparison to state-of-the-

1For each target node, we compute the ratio of homophilic edges—those connecting nodes of the same
class—to the total count of its neighboring edges.
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art approaches. Notably, our GNN model generally outperforms these leading approaches, thereby
affirming its efficacy.

2 PRELIMINARIES

A graph can be represented as G = {V,E,X}, where V is the set of nodes, E is the set of edges,
and X ∈ R|V |×dX is the feature matrix of nodes. Let xv ∈ RdX denotes the feature vector of node
v. Given a graph encoder g(·; θg) parameterized by θg (e.g., a GNN), we can embed each node v
into a low-dimensional representation hv ∈ Rd, as hv = g(v; θg).

Graph anomaly detection (GAD). GAD can be conceptualized as a binary classification task,
wherein the nodes2 are classified into one of two categories, namely, normal (the majority) and
anomalous (the minority) classes. Formally, given the representation of a node v, denoted as hv , a
predictor P (·; θp) can be utilized for making predictions, denoted as pv ∈ RK , as follows:

pv = P (hv; θp) = SOFTMAX(Wphv + bp), (1)

where θp = {Wp ∈ RK×d, bp ∈ RK} are learnable parameters, and K = 2 in our case of anomaly
detection. For a labeled node v, let yv ∈ RK denotes the one-hot label vector, where yv[k] = 1
if and only if node v belongs to class k. Typically, given the training set Vtr, the loss function is
formulated by applying cross-entropy loss to the predictions, as outlined below.

L = −
∑

v∈Vtr

∑K−1
k=0 yv[k] lnpv[k]. (2)

Consistency training. In the graph setting, consistency training (Wang et al., 2020) involves in-
troducing noise to high-quality unlabeled nodes to generate their augmentations. This allows for
the application of consistency-based regularization between the original and augmented versions,
thereby assisting in the training of the main model through the enhancement of label propagation.
Specifically, to identify high-quality nodes, a given unlabeled node v and its prediction pv ∈ RK

can be assessed using a threshold τ , based on their predicted scores. Formally, given the set of
unlabeled nodes Vun, the high-quality nodes can be defined as Vhq = {v | v ∈ Vun ∧ ∃pv[k] ≥ τ}.
For each high-quality node v ∈ Vhq , we can compute its one-hot predicted pseudo label vector ỹv ,
where ỹv[argmaxpv] = 1, and the other elements are zeros. In this scenario, consistency-based
regularization is enforced between the original and augmented nodes, as described below.

Lc = −
∑

v∈Vhq

∑K−1
k=0 ỹv[k] lnpv̂[k], (3)

where pv̂ represents the prediction of the augmented version v̂ as per Equation (1). By optimizing the
model w.r.t. the combined loss, denoted as L+Lc, the model benefits from supplementary guidance
provided by the consistency regularization, enhancing label propagation and overall performance.

3 THE PROPOSED MODEL: CONSISGAD

In this section, we present the proposed CONSISGAD for graph anomaly detection, with the overall
framework depicted in Figure 2. The CONSISGAD comprises two principal components: consis-
tency training and the training of the learnable data augmentation module. On one hand, given the
availability of both labeled and unlabeled data, we formulate consistency training by leveraging the
learnable data augmentation module to generate superior augmentations. On the other hand, with the
unlabeled nodes at our disposal, we optimize the learnable data augmentation module with respect
to the proposed consistency and diversity loss, aiming to adaptively produce ideal augmentations.

In the following part, we first introduce our backbone GNN model (Section 3.1), specifically de-
signed to effectively address the class imbalance issue inherent in anomaly detection. Following
this, we delve into the details of consistency training with learnable data augmentation (Section 3.2),
a mechanism instrumental in solving anomaly detection in the scenario with limited supervision.

2In this paper, we focus solely on the node-level graph anomaly detection.
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Figure 2: Overall framework of CONSISGAD.

3.1 HOMOPHILY-AWARE NEIGHBORHOOD AGGREGATION

As discussed in the Introduction, the significant difference in contextual homophily distribution be-
tween normal and anomalous nodes inspires the formulation of the GNN backbone. This backbone
capitalizes on the homophily distribution within the context of a node, thereby enhancing the capa-
bility to distinguish between normal and anomalous nodes to deal with the imbalance issue.

Specifically, for a node v and its neighborhood Nv , we first compute the homophily representation
between v and each of its neighbors. In other words, we determine the homophily representation
along each edge, to establish the groundwork for calculating the contextual homophily distribution,
which can be achieved by aggregating the edge-level homophily representation to finally serve as
the node representation. Formally, in the lth layer, this node representation hl

v can be expressed as

hl
v = AGGR

{
δ(hl−1

v ,hl−1
u ; θδ) : u ∈ Nv

}
. (4)

Here δ(·, ·; θδ) is a function parameterized by θδ to calculate the edge-level homophily representa-
tion, and we instantiate it as MLP(hl−1

v ||hl−1
u ). AGGR(·) is the aggregation function, such as sum

operator. In the following, we still use hv to denote the output embedding of node v for simplicity.

Analysis. Basically, the edge-level homophily representation can depict the homophily relation-
ship between the two terminal nodes of a given edge. Given the variability of homophily across
different edges, it becomes imperative to represent the contextual homophily representation from
the perspective of each individual edge. The aggregation of these edge-level homophily representa-
tions subsequently illustrates the overall contextual homophily distribution.

To assess its efficacy, we train the entire CONSISGAD and exclusively visualize the intermedi-
ate edge-level homophily representations via T-SNE, calculated by the function δ(·, ·; θδ), on two
datasets: Amazon and T-Finance. The visualization results are depicted in Figure 3. Specifically,
for the heterogeneous graph Amazon, there exist three types of relations, each of which is visual-
ized in a separate subfigure. It is important to note that four colors are used in each figure to rep-
resent the target-neighbor type, namely AN (Anomalous-Normal), NA (Normal-Anomalous), AA
(Anomalous-Anomalous), and NN (Normal-Normal). The visualizations reveal that the edge-level
homophily representation can adeptly mirror the type of edge homophily, thereby providing a solid
foundation for aggregation to represent the contextual homophily distribution of each node. Addi-
tionally, our experimental results, detailed in Section 4.2.1, demonstrate that our proposed backbone,
utilizing homophily-aware neighborhood aggregation, can attain performance that is comparable to,
or even surpasses, that of state-of-the-art approaches in the realm of graph anomaly detection.

3.2 CONSISTENCY TRAINING WITH LEARNABLE DATA AUGMENTATION

To improve the performance of graph anomaly detection under limited supervision, we incorporate
consistency training (Rasmus et al., 2015; Laine & Aila, 2017), which enables us to harness the
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Figure 3: Visualization of edge-level homophily distribution: subfigures (a), (b), and (c) depict the
three relations on Amazon, while (d) depicts T-Finance.

inherent information embedded within the graph. This is achieved through the use of data augmen-
tation for noise injection (Xie et al., 2020). Given the significant impact of data augmentation on
the effectiveness of model training, formulating advanced augmentation strategies is of paramount
importance. For example, in classification tasks, an ideal augmentation should preserve essential
information that enables the correct categorization of the augmented data, while simultaneously in-
troducing diverse elements not explicitly related to the class. This incorporation of diversity serves
to expand the representation space, thereby assisting in simulating less distinctive instances for label
propagation (Xie et al., 2020). In the subsequent section, we will first introduce the definitions of
the evaluation metrics, and further discuss the concept of learnable data augmentation.

3.2.1 LABEL CONSISTENCY AND DISTRIBUTION DIVERSITY

To synthesize the appropriate augmentations, we draw inspiration from (Bo et al., 2022) to design
two metrics, namely, label consistency and distribution diversity, to quantitatively evaluate the aug-
mentations. Given a noise injection method (e.g., data augmentation) ∆(·; θ∆), a noised version of
the unlabeled node v ∈ Vun can be defined as v̂ = ∆(v; ϵ, θ∆), where a small noise ϵ is injected.
Consequently, with the graph encoder g(·; θg), the representation and predicted label vector of the
synthetic node v̂ can be represented as hv̂ = g(v̂; θg) and ỹv̂ , respectively. In this case, the label
consistency between the original version v and its noised version v̂ can be formalized as

C(v, v̂) = I(ỹv = ỹv̂), (5)

where I(·) = 1 if the inside condition holds, otherwise I(·) = 0. On the other hand, the distribution
diversity between them can be formalized with their representations, as

D(v, v̂) = d(hv,hv̂), (6)

where d(·, ·) is a distance function defined on the vector space, e.g., Euclidean distance. Ideally, an
effective augmentation approach should synthesize augmented instances that maintain high consis-
tency with the original instances while involving as much diversity as possible.

While (Bo et al., 2022) also propose metrics for consistency and diversity, our definitions differ
from theirs in the following aspects: (1) Our metrics directly operate on the given data and its
augmentations, and do not require a validation set for their evaluation, a necessary component in
(Bo et al., 2022). (2) Our metrics can further guide the learnable data augmentation module to
synthesize preferable data augmentations, which will be discussed in Section 3.2.2. In contrast,
their approach only aims to select suitable augmentations from pre-defined candidates.

3.2.2 LEARNABLE DATA AUGMENTATION

Existing data augmentation techniques for graphs often rely on hand-crafted or random modifi-
cations to the original data, such as node dropping (Feng et al., 2020b), edge dropping (Rong
et al., 2020), feature masking (You et al., 2020), etc. As discussed in the Introduction, these ap-
proaches have difficulty in calibrating the extent of data augmentation and can lead to over- or
under-augmentations, hindering label propagation within the label space on the graph. To generate
ideal augmentations, a promising strategy is to make the process learnable, using the raw instance
as well as the evaluation metrics including label consistency and distribution diversity.

To achieve this, we employ perturbations on the intermediate states as a means of introducing noise
to the data. This approach is a straightforward method for adding noise to hidden tensors and has
been demonstrated to be as effective as other augmentation strategies on graphs (Xia et al., 2022).

5
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Initially, we refine the definition of high-quality nodes Vhq (defined in Section 2), in the context of
the anomaly detection setting. Due to the class imbalance issue, normal and anomalous nodes tend to
have distinct confidence levels in their prediction scores. Therefore, we assign a separate threshold
for each class, specifically, Vhq = {v | v ∈ Vun ∧ pv[0] ≥ τn} ∪ {v | v ∈ Vun ∧ pv[1] ≥ τa},
where τn and τa represent the thresholds for the normal and anomalous classes3, respectively. In
Appendix E.6, we present a detailed evaluation of the quality of selected high-quality nodes.

Subsequently, given the representation of a high-quality node v ∈ Vhq—denoted as hv—we intro-
duce a learnable data augmentation module to synthesize the augmented version of its representa-
tion, denoted as ĥv , through learnable masking, strategically preserving the dimensions exhibiting
high consistency and diversity while omitting the others. Formally, ĥv can be expressed as:

ĥv = ∆lm(hv; θ∆lm
), (7)

where ∆lm(·; θ∆lm
), parameterized by θ∆lm

, represents the learnable masking module, generating
the augmented representation for an input node. To effectively select the appropriate dimensions for
preservation and masking, given the input vector hv , we utilize the attention mechanism to calculate
the weight for each dimension of hv , subsequently sharpening the weights into zeros and ones based
on a predefined masking rate. Formally, function ∆lm(·; θ∆lm

) can be instantiated as:

ĥv = ∆lm(hv; θ∆lm
) = SHARPEN(ATTEN(hv); ξ)⊙ hv. (8)

Here, ATTEN(h) denotes the attention function, taking the representation to be augmented as in-
put and outputting a vector of the same dimension, indicating the importance of each dimension.
A simplified version of this attention module can be represented as ATTEN(h) = Wh + b, with
W ∈ Rd×d and b ∈ Rd being the weight matrix and bias vector, respectively. SHARPEN(h; ξ)
is a function designed to retain the dimensions with the highest values in h as ones and the
rest as zeros, by constraining the proportion of zeros with ratio ξ. For instance, given vector
a = [0.1, 0.4, 0.2, 0.3] and ξ = 0.5, SHARPEN(a; ξ) = [0, 1, 0, 1]. It is noteworthy that in our
implementation this sharpen function does not truncate gradients, ensuring uninterrupted backprop-
agation and facilitating end-to-end model training. The pseudocode for the sharpen function is
provided in the Appendix A.

To facilitate learnable augmentation, the augmented representations are subsequently used to com-
pute the consistency and diversity loss, adhering to the strategies outlined in Equations (5) and
(6). Formally, for a high-quality node v ∈ Vhq , we initially compute the predictions pv in accor-
dance with Equation (1), as well as the pseudo label vector ỹv , where ỹv[argmaxpv] = 1. Con-
versely, for the augmented representation ĥv , we also calculate the prediction w.r.t. Equation (1) as
p̂v = P (ĥv; θp). Subsequently, both the original and the augmented predictions are leveraged to
formulate the consistency and diversity loss, namely, L∆c and L∆d, as follows:

L∆c = −
∑

v∈Vhq

∑K−1
k=0 ỹv[k] ln p̂v[k], L∆d = −

∑
v∈Vhq

d(hv, ĥv). (9)

Finally, we combine the two losses with a weight factor α, i.e., αL∆c + L∆d, to guide the training
of the learnable data augmentation, as shown in Figure 2(b). Specifically, the training of this module
is guided by this fused consistency and diversity loss, rather than the consistency training loss. This
is because an ideal augmentation should maintain high consistency and diversity with the original
version (shown in Figure 2(b)), which is unrelated to the consistency training loss in Figure 2(a).
Only the synthesized augmentations can subsequently serve as input for the consistency training.

It is imperative to note that although L∆c (Equation (9)) and Lc (Equation (3)) exhibit similar forms,
their objectives are different: L∆c aims to optimize the learnable data augmentation module to
synthesize the ideal augmentations, whereas Lc is utilized for consistency training in conjunction
with the main objective L (see Equation (2)). To elucidate this distinction further, we will elaborate
on the training paradigm in the subsequent section.

3.3 TRAINING PARADIGM

As depicted in Figure 2, CONSISGAD incorporates two main components: (a) consistency training,
and (b) training of the learnable data augmentation module. Consistency training is centered on

3We assume the first and second dimensions correspond to the normal and anomalous classes, respectively.
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refining the GNN model to generate enhanced representations, with parameters of GNN being ex-
clusively optimized through this process. In contrast, the training of the learnable data augmentation
module is directed towards synthesizing optimal augmentations, instrumental for the consistency
training. Therefore, the optimization of this module is solely driven by the consistency and diversity
loss. Consequently, these two components—consistency training and the training of the learnable
data augmentation module—are trained iteratively, with one component being optimized while the
other remains fixed. Specifically, the optimization of the learnable data augmentation contributes to
the training of the GNN model by providing optimal augmentations. Simultaneously, a proficiently
trained GNN encoder, based on consistency training, lays the groundwork for generating superior
augmentations. The training procedure and its complexity analysis are detailed in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on four benchmark GAD datasets, namely Amazon (McAuley
& Leskovec, 2013), YeclpChi (Rayana & Akoglu, 2015), T-Finance (Tang et al., 2022), and T-Social
(Tang et al., 2022), as summarized in Table 3. Additionally, we perform experiments on an industrial
graph from Grab, a leading superapp in Southeast Asia. Detailed descriptions are in Appendix B.

Baselines. We employ state-of-the-art approaches from two main categories for comparison. (1)
Generic GNN models, including MLP (Rosenblatt, 1958), GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019), and GATv2
(Brody et al., 2022); and (2) GAD approaches, including CARE-GNN (Dou et al., 2020), Graph-
Consis (Liu et al., 2020), PC-GNN (Liu et al., 2021b), BWGNN (Tang et al., 2022), H2-FDetector
(Shi et al., 2022), GHRN (Gao et al., 2023a), GDN (Gao et al., 2023b), and GAGA (Wang et al.,
2023). Additionally, we also assess our proposed GNN backbone as presented in Section 3.1, deploy
it in the same training paradigm as that of generic GNN models, and refer it as CONSISGAD(GNN).
For detailed descriptions of these baselines, please kindly refer to Appendix C.

Experimental setup. In our major experiments, we focus on settings with limited supervision.
Depending on the dataset size, we set the training ratio to 1% for Amazon, YelpChi, T-Finance, and
Industrial graph, and 0.01% for T-Social. In all scenarios, the remaining data is split in a 1:2 ratio
for validation and testing, while all data is utilized as unlabeled for consistency training. We adopt
AUROC, AUPRC, and Macro F1, to assess model performance. The average score and standard
deviation across five independent runs are reported. More details of the settings are in Appendix D.

4.2 PERFORMANCE EVALUATION AND ANALYSIS

4.2.1 GRAPH ANOMALY DETECTION

With limited supervision. We present the performance comparison on four benchmark datasets
with a 1% training ratio in Table 1 (Amazon and YelpChi) and Table 2 (T-Finance and T-Social),
and the comparision on industrial data in Appendix E.1. Our proposed CONSISGAD demonstrates
superior performance in most cases, underscoring its efficacy in graph anomaly detection. The only
deviation is observed in the Amazon dataset, where BWGNN(homo) registers the highest Macro F1,
and CONSISGAD closely follows as the runner-up. This discrepancy may stem from BWGNN’s re-
liance on Macro F1 to select its optimal models, potentially neglecting the other two metrics where
CONSISGAD excels. Notably, our proposed GNN backbone, CONSISGAD(GNN), surpasses all
baselines on YelpChi, T-Finance, and T-Social datasets, as indicated in blue, and maintains com-
petitive performance on the Amazon dataset. This underscores the ability of our backbone GNN to
capture the homophily distribution within the context of each node for anomaly detection. Further-
more, the full model CONSISGAD consistently outperforms CONSISGAD(GNN), highlighting the
effectiveness of consistency training coupled with learnable data augmentation.

In addition, we observe that models explicitly designed for GAD generally outperform classic GNN
models across the datasets. Specifically, spectral-based models like BWGNN and GHRN tend to
exhibit superior performance. In the Amazon dataset, node feature-oriented methods such as MLP
and GDN yield promising results. This might be attributed to node features playing a more pivotal
role than connections in representing nodes on this specific dataset.
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Methods Amazon YelpChi
AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

MLP 92.39±0.72 79.37±1.83 87.53±1.61 72.18±0.39 31.09±0.52 61.61±0.33

GCN 87.34±0.59 48.06±2.73 70.94±2.43 54.65±0.53 17.07±0.44 35.59±10.27

GraphSAGE 90.12±0.48 73.17±4.65 84.25±2.26 73.70±0.52 34.57±0.78 63.33±0.51

GAT 80.74±3.64 45.46±11.09 63.45±12.82 70.14±1.91 28.90±1.98 61.22±1.32

GIN 84.35±0.75 39.96±2.00 71.20±1.37 56.98±0.82 18.34±0.64 53.58±0.41

GATv2 85.39±3.19 62.74±15.12 76.20±13.69 72.83±0.75 31.87±1.47 62.23±0.56

CARE-GNN 89.68±0.76 50.56±3.96 75.74±0.50 72.11±1.23 31.09±1.71 61.62±0.87

GraphConsis 64.23±13.83 21.38±10.37 55.35±8.09 78.91±0.88 38.40±2.63 64.96±2.54

PC-GNN 91.18±0.66 77.92±1.49 85.25±2.09 75.17±0.44 36.60±0.91 64.23±0.47

BWGNN(homo) 88.56±0.87 79.26±1.11 90.48±0.98 72.15±0.59 30.93±1.48 61.24±0.39

BWGNN(hetero) 84.64±1.31 64.00±7.00 80.41±4.29 77.62±2.37 39.87±1.79 66.54±0.73

H2-FDetector 83.81±2.57 49.37±4.46 72.46±4.01 72.38±1.13 32.37±3.25 63.97±0.66

GHRN(homo) 88.35±2.03 74.50±4.57 86.35±2.60 72.03±0.90 30.76±1.24 61.32±0.37

GHRN(hetero) 84.40±2.77 60.84±9.80 78.81±4.45 75.33±1.44 34.53±2.83 63.62±1.41

GDN 92.16±0.12 81.87±0.17 89.75±0.05 75.92±0.51 38.04±0.83 64.81±0.25

GAGA 82.61±6.87 56.59±6.60 76.85±8.08 71.61±2.13 31.96±3.37 61.81±1.69

CONSISGAD(GNN) 92.01±0.71 78.49±0.40 85.53±0.51 80.95±0.36 43.25±0.31 67.62±0.31

CONSISGAD 93.91±0.58 83.33±0.34 90.03±0.53 83.36±0.53 47.33±0.58 69.72±0.30

Table 1: Comparison (%) on Amazon and YelpChi, with the best bolded and runner-up underlined.

Methods T-Finance T-Social
AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

MLP 92.17±0.64 52.79±5.41 82.33±0.54 66.95±0.71 6.00±0.33 54.09±0.61

GCN 89.29±0.19 53.94±3.22 77.16±1.20 83.30±1.60 23.79±2.43 65.16±0.92

GraphSAGE 89.42±1.36 49.08±6.34 77.62±1.87 71.45±2.24 8.73±0.91 56.47±0.64

GAT 87.40±4.41 45.60±14.62 75.49±5.63 73.46±3.32 13.47±2.83 61.98±2.06

GIN 81.29±1.66 21.66±3.98 65.38±3.05 78.70±2.19 16.24±5.53 61.62±5.93

GATv2 73.25±10.00 18.70±15.26 63.16±9.02 79.89±4.80 16.74±2.10 62.99±1.34

CARE-GNN 91.45±0.40 72.27±1.09 83.68±0.78 - OOM - - OOM - - OOM -
GraphConsis 92.61±0.47 70.70±1.85 85.37±0.48 - OOM - - OOM - - OOM -
PC-GNN 91.74±0.85 74.77±0.98 86.97±0.24 64.68±0.64 4.30±0.09 49.66±0.12

BWGNN 93.08±1.57 77.79±3.87 86.97±1.51 84.40±3.01 49.96±3.75 76.37±1.82

H2-FDetector - OOM - - OOM - - OOM - - OOM - - OOM - - OOM -
GHRN 91.93±0.93 65.94±4.38 80.05±4.43 84.20±3.91 37.04±11.02 71.25±4.32

GDN 88.75±1.79 54.27±4.31 76.62±3.90 67.69±1.49 7.51±0.79 55.76±0.82

GAGA 92.36±1.45 64.34±6.01 81.10±2.60 78.92±1.26 23.72±4.81 65.58±3.30

CONSISGAD(GNN) 94.72±0.11 83.92±0.15 89.73±0.38 93.54±0.35 53.40±1.28 76.45±1.06

CONSISGAD 95.33±0.30 86.63±0.44 90.97±0.63 94.31±0.20 58.38±2.10 78.08±0.54

Table 2: Comparison (%) on T-Finance and T-Social, with the best bolded and runner-up underlined.
Here, “- OOM -” means the Out Of GPU Memory issue when running the model.

Under varying supervision. We extend our comparison to include varying supervision levels,
specifically 1%, 3%, 5%, 10%, and 40%, focusing on two datasets and the most competitive base-
lines: BWGNN, GHRN, GDN, and GAGA. For Amazon and YelpChi, we employ the homo and
heter versions of BWGNN and GHRN, respectively, owing to their superior performance in previous
experiments. The AUPRC metric results are depicted in Figure 4. We observe that CONSISGAD
surpasses its competitors at training ratios up to 10%, showcasing its efficacy in graph anomaly
detection under limited supervision. This is attributed to the robust GNN backbone and the con-
sistency training with learnable data augmentation. A comparison between CONSISGAD and our
backbone reveals that the performance gap narrows with an increase in training data. This aligns
with expectations, as the availability of more labeled data tends to diminish the impact of consis-
tency training and learnable data augmentation. For results related to the other two metrics, kindly
refer to Appendix E.2, which also shows similar trends.

4.2.2 MODEL ANALYSIS

Ablation study: influence of label consistency and distribution diversity. To examine the con-
tributions of label consistency and distribution diversity to the training of CONSISGAD, we con-
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Figure 5: Ablation study.

ducted an ablation study, omitting each element while keeping the rest of the model intact. The
results, focusing on the AUPRC metric, are depicted in Figure 5, with similar patterns observed for
the other metrics available in Appendix E.3. A performance decline is noted upon the removal of
either component, underscoring their synergistic impact on augmentation quality and, consequently,
the consistency training process. Predominantly, label consistency emerges as more crucial, adher-
ing to the fundamental principle of preserving label consistency in data augmentation.

Additional analysis. Due to space constraints, additional analyses are relegated to the Appendix.
Included are comparisons with traditional stochastic graph augmentation methods (Appendix E.4),
an exploration of our method’s adaptability across various GNN architectures (Appendix E.5), an ex-
amination of our model’s sensitivity to hyper-parameters (Appendix E.7), and a study on the impact
of exact labels on consistency training (Appendix E.9). Furthermore, we analyze the performance
of CONSISGAD(GNN) in generic multi-class node classification tasks in Appendix E.8.

5 RELATED WORK

Graph Anomaly Detection. Research on GAD can be broadly categorized into spatial-centric and
spectral-centric methods. Spatial-centric techniques primarily address the class imbalance issue by
segregating the neighbors into homophilous and heterophilous sub-groups and employing distinct
message-passing strategies for each (Dou et al., 2020; Liu et al., 2020; 2021b; Dong et al., 2022;
Huang et al., 2022; Shi et al., 2022; Wang et al., 2023; Zhuo et al., 2024), or other angles (Zhang
et al., 2021; Li et al., 2022; Qin et al., 2022; Gao et al., 2023b). On the other hand, spectral-
centric methods arise from the observation that the class imbalance leads to high-frequency signals
in the graph spectral domain, often utilizing band-pass spectral filters to identify these anomalous
signals (Tang et al., 2022; Gao et al., 2023a). However, these methods often overlook scenarios with
limited supervision, assuming abundant supervision is available. Furthermore, a majority of existing
works opt to mitigate the heterophily issue rather than harness neighborhood homophily to enhance
predictions.

Consistency training. Consistency training (Bachman et al., 2014) enforces the stability of model
outputs with regard to perturbed inputs. Various extensions have been proposed to exploit unlabeled
data in fields like vision (Miyato et al., 2018; Berthelot et al., 2019; 2020; Xie et al., 2020; Sohn
et al., 2020; Berthelot et al., 2022), language (Liang et al., 2018; Clark et al., 2018), or graph (Deng
et al., 2019; Feng et al., 2019; Wang et al., 2020; Feng et al., 2020a; Verma et al., 2021). However, we
are the first one to utilize consistency training for graph anomaly detection with limited supervision.

Data augmentation on graphs. We delegate to Appendix F the discussion of our method within
the literature of data augmentation on graphs, with a further comparison between existing automatic
data augmentation techniques with our own.

6 CONCLUSIONS

This paper tackles graph anomaly detection under limited supervision by introducing CONSISGAD.
Specifically, our model leverages unlabeled data for consistency training and proposes a learnable
data augmentation module for improved noise injection. Furthermore, we exploit the disparity in
homophily distribution between normal and anomalous classes to build a tailored GNN backbone.
Experiments demonstrate the superior performance of CONSISGAD over state-of-the-art methods.
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APPENDIX

A ADDITIONAL DETAILS OF TRAINING PARADIGM

We provide the pseudocode for training CONSISGAD in Algorithm 1. In Lines 2-3, we sample a
batch of training nodes and a batch of unlabeled nodes for processing. In Lines 4-10, we construct
a set of high-quality nodes from the unlabeled batch, and attach pesudo-labels to high-quality un-
labeled nodes. In Lines 11-15, we train the learnable data augmentation based on the combination
of label consistency and distribution diversity losses, during which the parameters of the graph en-
coder and predictor are frozen. In Lines 16-21, we train the graph encoder and the predictor with
the combination of cross-entropy loss on labeled data and consistency training loss on high-quality
unlabeled data, during which the parameters of the learnable augmentation are fixed.

Algorithm 1 The Training Paradigm of CONSISGAD
Input: A graph G = {V,E,X}, set of labeled nodes Vtr, set of unlabeled nodes Vun, graph

encoder g(·; θg), predictor P (·; θp), learnable augmentation module ∆lm(·; θ∆lm
), labeled batch

size B, unlabeled batch size µB, anomalous threshold τa, normal threshold τn, weight of the label
consistency loss α.

Output: θg and θp.
1: while not converged do
2: Sample a batch of labeled nodes Xtr ⊆ Vtr, with size B;
3: Sample a batch of unlabeled nodes Xun ⊆ Vun, with size µB;
4: Initialize the set of high-quality nodes Xhq ← ∅;
5: for v ∈ Xun do
6: hv ← g(v; θg); ▷ Calculate the embeddings.
7: pv ← P (hv; θp); ▷ Equation (1), conduct the prediction.
8: if pv[0] ≥ τn or pv[1] ≥ τa then
9: ỹv[argmaxpv]← 1; ▷ Assign pesudo-label.

10: Xhq ← Xhq ∪ v; ▷ Add to high-quality set.
11: for v ∈ Xhq do
12: ĥv ← ∆lm(hv; θ∆lm

); ▷ Equation (7), augmentation on high-quality nodes.
13: p̂v ← P (ĥv; θp); ▷ Equation (1), prediction.
14: L∆c ← −

∑
v∈Xhq

∑1
k=0 ỹv[k] ln p̂v[k], L∆d ← −

∑
v∈Xhq

d(hv, ĥv); ▷ Equation (9)
15: Optimize αL∆c + L∆d while freezing θg and θp;
16: for v ∈ Xtr do
17: hv ← g(v; θg); ▷ Calculate the embeddings.
18: pv ← P (hv; θp); ▷ Equation (1), prediction.
19: L ← −

∑
v∈Xtr

∑1
k=0 yv[k] lnpv[k]; ▷ Equation (2), cross-entropy loss on labeled nodes.

20: Lc ← −
∑

v∈Xhq

∑1
k=0 ỹv[k] ln p̂v[k]; ▷ Equation (3), consistency loss.

21: Optimize L+ Lc while freezing θ∆lm
;

22: return θg and θp.

We provide the pseudocode for the sharpening function in Algorithm 2. In Line 1, we initialize
an empty output vector with the same shape as the input vector for storing intermediate results. In
Lines 3-4, we mask previously computed elements in the output vector. In Lines 5-6, we integrate
the mask with the input vector, followed by a SoftMax operation to sharpen the result. In Line 7, we
update the output vector and enter the next iteration. Finally, we return the output vector.

Complexity analysis. As illustrated in Algorithm 1, our model is composed of two primary com-
ponents: consistency training and the training of the learnable data augmentation module. These
components operate iteratively in each iteration of the process. This approach potentially incurs a
higher computational cost compared to the standard training procedures of graph neural networks.
In this part, we provide a complexity analysis and analyze the possibility of using it on large graphs.

At the outset, we focus on analyzing the complexity of our backbone GNN model, as outlined
in Equation (4). This model is a critical component in Algorithm 1 for calculating node em-
beddings. Considering a target node v, in the first GNN layer, the function δ(·, ·; θδ) is im-
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Algorithm 2 Sharpen Function
Input Input vector h, drop ratio ξ, dimension of the input vector d, sharpening temperature t,

small value to avoid logarithm of zero ϵ.
Output Output vector ĥ.

1: Initialize ĥ← 0 ▷ Construct an empty vector with the same shape as the input.
2: for all i ∈ {1, . . . , ⌊ξd⌋} do
3: m← (1− ĥ)
4: m̂← log(m+ ϵ) ▷ Mask Top-(i-1) elements.
5: y ← (−h+ m̂)/t
6: ŷ ← SoftMax(y) ▷ Integrate the mask with the input and sharpen the result.
7: ĥ← ĥ+ ŷ ·m ▷ Update the output vector
8: return 1− ĥ

plemented as MLP(hl−1
v ||hl−1

u ). A typical example of this MLP is σ(Wδ(h
l−1
v ||hl−1

u ) + bδ).
The computational complexity in this first layer is O(2ddX + N̄d + 2d), where dX represents
the dimension of the input feature vector, d the intermediate dimension of the embeddings, and
N̄ the average node degree. Each subsequent layer contributes an additional complexity of
O(2d2 + N̄d+ 2d). Given L total GNN layers, the overall complexity of the GNN backbone sums
up to O(2ddX + N̄d+ 2d+ (L− 1)(2d2 + N̄d+ 2d)) = O(2ddX + 2Ld2 + 2Ld+LN̄d− 2d2).

In every iteration of Algorithm 1, we sample a batch of labeled and unlabeled nodes for subsequent
computations. These batches are of sizes B (for labeled nodes) and µB (for unlabeled nodes),
respectively. We can split the whole process into three steps as follows.

• We begin by selecting high-quality nodes from the sampled batch of unlabeled nodes. In Line
6, the GNN backbone introduces a complexity of O(2ddX + 2Ld2 + 2Ld + LN̄d − 2d2), as
previously analyzed. The prediction step in Line 7 has a complexity of O(Kd+2K), where K is
the number of classes. Lines 8-10 involve checking the high-quality nodes with a complexity of
K. Overall, for a batch size of B, Lines 5-10 collectively result in a complexity of O(µB(2ddX +
2Ld2 + 2Ld+ LN̄d− 2d2 +Kd+ 3K)).

• Each high-quality node is augmented and predicted, forming the basis for the consistency and
diversity loss calculations. For Line 12, the complexity of the Sharpen function in Algorithm 2
involves O(8⌊ξd⌋d+d) across its steps. Consequently, Line 12 in Algorithm 1 incurs a complexity
of O(8⌊ξd⌋d+ d2 +3d). Line 13, similar to Line 7, involves a complexity of O(Kd+2K). Line
14 includes forming both the consistency and diversity losses, with complexities of O(µBK2)
and O(2µBd), respectively. Summing up, Lines 11-14 entail a complexity of O(µB(8⌊ξd⌋d +
d2 + 3d+Kd+ 2K) + µBK2 + 2µBd).

• The consistency training involves complexity calculations similar to the earlier sections. Lines 17
and 18, as previously analyzed, involve a complexity of O(2ddX +2Ld2 +2Ld+LN̄d− 2d2 +
Kd + 2K). Lines 19 and 20, pertaining to the loss calculations, have complexities of O(BK2)
and O(µBK2), respectively. Thus, the total complexity for Lines 16-20 over B iterations is
O(B(2ddX + 2Ld2 + 2Ld+ LN̄d− 2d2 +Kd+ 2K) +BK2 + µBK2).

In each iteration of Algorithm 1, we aggregate the complexities from the previous sections to derive
the overall complexity. This can be expressed as O(2B(µ + 1)ddX + B(2µL + 2L − µ − 2)d2 +
(2µBL+µBLN̄+µBK+8µB⌊ξd⌋+5µB+KµB+2BL+BLN̄+BK)d+5µBK+2µBK2+
2BK +BK2).

Particularly in our anomaly detection scenario, where typically K = 2 due to the binary classifi-
cation nature, and L generally ranges from 1 to 3 as the number of GNN layers, the complexity of
our model is predominantly influenced by the feature dimension dX , the hidden dimension d, and
the average node degree N̄ . This indicates that with appropriately set hyper-parameters, our model
shows promising potential for application on large-scale graphs.
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B DESCRIPTIONS OF DATASETS

The datasets are summarized in Table 3. The Amazon dataset (McAuley & Leskovec, 2013) aims to
detect fraudsters paid to give fake reviews for products under the Musical Instruments category on
Amazon.com. It includes three types of edges: U-P-U (users reviewing at least one same product),
U-S-U (users having at least one same star rating within one week), U-V-U (users with top-5%
mutual review TF-IDF similarities). The YelpChi dataset (Rayana & Akoglu, 2015) aims to identify
anomalous hotel and restaurant reviews on Yelp.com. It contains three types of edges: R-U-R
(reviews posted by the same user), R-S-R (reviews with the same star rating on the same product),
R-T-R (reviews posted in the same month on the same product). The T-Finance dataset (Tang et al.,
2022) aims to find anomalous accounts in a transaction network, including fraud, money laundering,
and online gambling. The T-Social dataset (Tang et al., 2022) aims to catch abnormal users in a
social network. Finally, the Industrial graph, sourced from Grab Holdings Inc., depicts a transaction
graph in a real-world setting, capturing online transactions within a leading super app. To maintain
anonymity, we omit the explicit details of the graph. However, it roughly comprises over a million
nodes and tens of millions of edges.

Please note that limited supervision has been assessed in several state-of-the-art baselines, as indi-
cated in (Tang et al., 2022). To ensure a fair comparison, we have employed the same data split as
they did.

C DESCRIPTIONS OF THE BASELINES

In this section, we will introduce baselines used in more details, their hyper-parameter settings, and
their implementation specifics.

C.1 GENERIC GNN MODELS

MLP (multi-layer perceptron (Rosenblatt, 1958)): A multi-layer perceptron network with one
hidden layer and ReLU activation.

GCN (Graph Convolutional Network (Kipf & Welling, 2017)): A graph neural network that
performs graph spectral convolution via a localized first-order approximation of spectral filters.

GraphSAGE (Graph Sample and AggregatE (Hamilton et al., 2017)): A graph neural network
that samples and aggregates neighboring features to generate node embeddings. It also proposes
three ways of aggregation: mean, LSTM, and pooling. In the experiments, the mean aggregator is
used.

GAT (Graph Attention Networks (Veličković et al., 2018)): A graph neural network that applies
the attention mechanism to the neighborhood aggregation process. The number of attention heads is
set to 2 in the experiments.

GATv2 (Graph Attention Networks v2 (Brody et al., 2022)): GAT v2 improves GAT with a
modified attention mechanism, which allows dynamic attention. The number of attention heads is
set to 2 in our experiments.

GIN (Graph Isomorphism Network (Xu et al., 2019)): A graph neural network that generalizes
the Weisfeiler-Lehman (WL) graph isomorphism test. In our experiments, the sum operation is
used to aggregate neighboring features, and an MLP is deployed to update node embeddings. The
deployed MLP consists of one hidden layer and ReLU activation.

The MLP is implemented via PyTorch (Paszke et al., 2019). For graph neural network models, we
use the official implementation provided by DGL (Wang et al., 2019b).

C.2 GAD MODELS

In this subsection, we will introduce the graph anomaly detection models employed in our experi-
ments.
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# Nodes # Edges # Features Anomaly Train:Valid:Test

Amazon 11,944 4,398,392 25 6.87% 1%:33%:66%
YelpChi 45,954 3,846,979 32 14.53% 1%:33%:66%
T-Finance 39,357 21,222,543 10 4.58% 1%:33%:66%
T-Social 5,781,065 73,105,508 10 3.01% 0.01%:33.33%:66.66%
Industrial graph ∼1M ∼10M 17 < 0.6% 1%:33%:66%

Table 3: Statistical summary of the datasets used in our experiment.

CARE-GNN (CAmouflage-REsistant Graph Neural Network (Dou et al., 2020))4: This ap-
proach employs a neural classifier to estimate similarity between a node and its neighbors, and
filters out dissimilar neighbors for a central node. The optimal filtering threshold is found through
reinforcement learning. It also proposes a relation-aware neighbor aggregator to deal with different
relation types in the graph.

GraphConsis ((Liu et al., 2020))5: This approach identifies three inconsistency issues in graph
anomaly detection tasks, namely, context, feature, and relation inconsistencies. To deal with the
context inconsistency, this work assigns each node a learnable context embedding to capture its
local structure. To handle the feature inconsistency, this work filters neighbors based on estimated
consistency scores from a neural classifier. To counter the relation inconsistency, this work trains an
embedding for each relation and uses a self-attention mechanism to aggregate neighbors.

PC-GNN (Pick and Choose Graph Neural Network (Liu et al., 2021b))6: This approach adopts
a label-balanced sampler to pick nodes and edges for training, where the sampling probability is
inversely proportional to the label frequency. In addition, it proposes a neighborhood sampler that
over-samples the neighborhood of fraud nodes and under-samples the neighborhood of normal ones.

BWGNN (Beta Wavelet Graph Neural Network (Tang et al., 2022))7: This approach finds that
anomaly can cause energy shift from the low-frequency part to the high-frequency part in the graph
spectral domain. It leverages the Beta kernel to create band-pass filters with spatial and spectral
locality for anomaly detection. For multi-relation graphs, BWGNN provides two options, namely
homo and hetero. The BWGNN(homo) converts the mutli-relation graph into a single graph for con-
volution, while the BWGNN (hetero) applies convolution to each relation separately and aggregates
output from each relation via maximum pooling.

H2-FDetector (Graph Neural Network-based Fraud Detector with Homophilic and Het-
erophilic Interactions (Shi et al., 2022))8: This approach detects homophilic and heterophilic edges
via an auxiliary neural classifier, which is trained with an additional loss function. It adopts a differ-
ent aggregation strategy for detected heterophilic edges where the opposites of node embeddings are
used. Additionally, it averages embeddings in each class and uses the averaged embedding as the
class prototype. Node representations are required to be close to their corresponding class prototype.

GHRN (Graph Heterophily Resistant Network (Gao et al., 2023a))9: This approach theoretically
proves that identifying heterophilic edges in the spatial domain is equivalent to extracting high-
frequency signals in the spectral domain. It proposes to remove heterophilic edges based on graph
spectral theory and to use the new graph for model training. As GHRN adopts BWGNN as its
backbone, GHRN(homo) and GHRN(hetero) follow the same definition as BWGNN(homo) and
BWGNN(hetero), respectively.

GDN (Graph Decomposition Network (Gao et al., 2023b))10: This approach partitions node rep-
resentations into class features and surrounding features. For class features, it applies class con-
straints to ensure that nodes within the same class have similar class features. For surrounding fea-

4https://github.com/YingtongDou/CARE-GNN
5https://github.com/safe-graph/DGFraud-TF2
6https://github.com/PonderLY/PC-GNN
7https://github.com/squareRoot3/Rethinking-Anomaly-Detection
8https://github.com/shifengzhao/H2-FDetector
9https://github.com/blacksingular/GHRN

10https://github.com/blacksingular/wsdm$ $GDN
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tures, it applies connectivity constraints to ensure that neighboring nodes have similar surrounding
features.

GAGA (Group AGgregation enhanced TrAnsformer (Wang et al., 2023))11: This approach ex-
plicitly uses partially observed labels to partition neighbors into three groups: normal, fraud, and
unknown nodes. Each group of nodes is treated differently during processing. It augments node
features with trainable hop, relation, and group embeddings, and uses a transformer encoder to
transform node features.

D DETAILED EXPERIMENTAL SETTINGS

D.1 DETAILS OF EVALUATION METRICS

We employ 3 metrics to systematically evaluate model performance. Following common settings
in previous works (Dou et al., 2020; Tang et al., 2022), we select the Area Under the Receiver
Operating Characteristic Curve (AUROC) as one of our metric. However, as indicated in (Davis &
Goadrich, 2006), the AUC score sometimes gives an overly optimistic view of a model if the dataset
has a highly skewed label distribution. To get a more thorough view of model performance, we pick
another two metrics for evaluation: Area Under the Prevision Recall Curve (AUPRC) and F1-Macro,
the unweighted mean of per-class F1-scores. To compute F1-Macro, we apply the threshold-moving
strategy (Collell et al., 2018) to all baselines, which adjusts the classification threshold to achieve
the best score in validation and directly uses the adjusted threshold in test. All metrics are in the
range from 0 to 1, and a higher score indicates a better model performance.

D.2 HYPER-PARAMETER SETTINGS

Hyper-parameter settings of baselines. For the GAD baselines, we utilize the public code repos-
itories provided by the authors, adhering to the default hyper-parameters specified in the original
papers or the repositories. This ensures the integrity of our comparative analysis, as these parame-
ters have been meticulously fine-tuned on the benchmark datasets by the authors to achieve optimal
performance.

In particular, for CARE-GNN, the RL action step size is set as 0.02 and the similarity loss weight
is set as 2. For GraphConsis, the number of layers is set as 2 while the sample numbers for the first
and second layers are set to 10 and 5, respectively. For BWGNN, the order of the kernel function is
set to 2 for Amazon, YelpChi, and T-Finance, and to 5 for T-Social. Two versions of the BWGNN
are considered, namely the homo and hetero versions. For H2-FDetecto, the two hyper-parameters
γ1 and γ2 are both set to 1.2 for YelpChi, T-Finance, and T-Social, while in Amazon, γ1 and γ2 are
set to 0.4 and 1.4, respectively. For GHRN, the deleting ratio is set to 0.015 for Amazon, T-Finance,
and T-Social, and to 0.1 for YelpChi. For GDN, the top-K feature is set to 10 for all datasets. For
GAGA, the number of hops and the number of heads in the transformer model are set to 2 and 4,
respectively, for all datasets.

Hyper-parameter settings of our CONSISGAD. For generic GNN baselines and our model, we
set the dimension of hidden features as 64, number of layers as 1, the activation function as SeLU
(Klambauer et al., 2017), and the number of epochs to be 100. Mini-batch training is adopted with a
training batch size set to 32 for the Amazon dataset and to 128 for the others. Model parameters are
optimized with the Adam optimizer (Kingma & Ba, 2015) where the learning rate is set to be 0.001
and weight decay to be 0.00001. When evaluating generic GNN models on multi-relation graphs,
such as Amazon and YelpChi, we convert the graphs to corresponding single-relation graphs by
merging multiple relation graphs together.

There are multiple important hyper-parameters in CONSISGAD, including the ratio of the unlabeled
batch size to training batch size µ12, anomalous threshold τa, normal threshold τn, weight of the
label consistency loss α, distribution distance function D(·, ·), and the drop ratio ξ in the sharpening
function. Here we report the specific hyper-parameter values in each dataset in Table 4.

11https://github.com/Orion-wyc/GAGA
12In general, the unlabeled batch size is usually several times larger than the training batch size. Thus, this

ratio represents this multiple.
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Methods Amazon YelpChi T-Finance T-Social

µ 4 4 5 5
τa 88 85 82 88
τn 97 91 95 95
α 1.0 0.5 5.0 0.5

D(·, ·) euc. cos. euc. euc.
ξ 0.3 0.1 0.2 0.1

Table 4: Hyper-parameter settings for CONSISGAD. Here, for space efficiency, we use euc. to stand
for euclidean distance and cos. for cosine distance.

Methods Industrial Graph
AUROC AUPRC Macro F1

MLP 99.35±0.11 39.35±3.09 75.83±0.16

GCN 82.70±0.11 8.38±0.64 62.58±0.55

GraphSAGE 99.64±0.02 62.44±0.51 83.18±0.10

GAT 85.94±0.77 12.83±1.67 65.31±0.98

GIN 94.74±0.33 44.53±1.91 73.78±0.68

GATv2 88.85±0.35 14.50±0.65 65.94±0.50

CARE-GNN 99.56±0.02 43.74±1.18 73.27±1.16

BWGNN(homo) 98.46±0.50 62.37±2.75 80.80±0.60

GHRN 99.45±0.08 35.60±6.08 69.37±0.27

GDN 99.72±0.01 63.78±0.20 79.55±0.10

GAGA 99.75±0.01 65.19±0.79 82.37±0.99

CONSISGAD(GNN) 99.74±0.01 67.26±0.49 82.73±0.33

CONSISGAD 99.77±0.02 69.06±0.63 83.10±0.35

Table 5: Comparison (%) on Industrial Graph, with the best bolded and runner-up underlined.

D.3 DATASETS

The data splitting is based on the stratified sampling in Scikit-learn (Pedregosa et al., 2011), which
keeps a consistent anomaly ratio in all sets.

D.4 EXPERIMENTAL ENVIRONMENT

All the experiments are conducted on a server running Ubuntu 22.04.2 with 3.10GHz Intel Xeon
Gold 6346 CPU, 1024GB RAM, and 8 NVIDIA Tesla A100 GPUs with 80GB of memory each.
CONSISGAD is implemented based on Python 3.7.15, PyTorch 1.13.1, and DGL 1.1.0.

E ADDITIONAL EXPERIMENTS

E.1 GRAPH ANOMALY DETECTION ON INDUSTRIAL GRAPH

Table 5 presents the experimental results obtained from the Industrial Graph, which is derived from a
production environment. It is evident that CONSISGAD consistently achieves optimal performance
across all three metrics, aligning with the observations made in our main paper. It is noteworthy
that, given the pronounced imbalance characteristics inherent to real-world production settings, the
AUROC is exceptionally high for all evaluated methods.

E.2 PERFORMANCE UNDER VARYING SUPERVISION

Figure 6 and Figure 7 illustrate the performance of the model under varying levels of supervision,
as measured by the AUROC and Macro F1 metrics, respectively. The observations align with the
discussion presented in the main paper.
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Figure 6: Experiments under varied supervision in terms of the AUROC metric.
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Figure 7: Experiments under varied supervision in terms of the Macro F1 metric.

E.3 INFLUENCE OF LABEL CONSISTENCY AND DISTRIBUTION DIVERSITY

Figure 8(a) and Figure 8(b) visualize the contributions of the label consistency and distribution
diversity to CONSISGAD, in terms of AUROC and Macro F1 scores, respectively. We can achieve
a similar conclusion as discussed in Section 4.2.2.

E.4 COMPARISON WITH OTHER GRAPH AUGMENTATION TECHNIQUES

In this section, we benchmark our learnable data augmentation against several stochastic augmen-
tation methods. Specifically, we substitute our augmentation module with widely-recognized tech-
niques in the consistency training framework, including DropNode (Feng et al., 2020a), DropEdge
(Rong et al., 2020), and Dropout (Srivastava et al., 2014). We apply Dropout to both input features,
denoted as DropInput, and intermediate features, referred to as DropHidden. It is noteworthy that
DropHidden serves as a non-learnable analogue to our augmentation module. For a fair comparison,
we determine the optimal drop rate for each method within the interval of (0, 0.5], with a step size
of 0.1. The outcomes, depicted in Figure 9 through the three metrics, underscore the preeminence of
our proposed learnable data augmentation over the traditional stochastic alternatives. A salient ob-
servation is that among conventional augmentation methods, employing DropHidden and DropEdge
in consistency training usually yield more substantial and stable performance improvements across
all datasets. This empirical insight substantiates our decision to integrate learnable data augmenta-
tion at intermediate states and suggests the potential exploration of applying such augmentation to
graph topology (Xia et al., 2022). We also list the optimal drop rate in Table 6.

E.5 FLEXIBILITY WITH OTHER GNN MODELS

We investigate how traditional GNN models perform when equipped with consistency training and
learnable data augmentation. We pick two representative GNN models, namely GCN and Graph-
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Figure 8: Influence of Label Consistency and Distribution Diversity. Subfigure (a) depicts the result
on the AUROC metric. Subfigure (b) depicts the result on the Macro F1 metric.
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Figure 9: Comparison between the learnable augmentation and traditional stochastic augmentation.
Subfigure (a) depicts the result on the AUPRC metric. Subfigure (b) depicts the result on the AUROC
metric. Subfigure (c) depicts the result on the Macro F1 metric.

SAGE, and replace our backbone model with them. As indicated in Tables 7, GNN model trained
with consistency training and learnable data augmentation consistently outperforms its counterpart
across all metrics, which showcases the flexibility of CONSISGAD to facilitate the training of vari-
ous base GNN architectures.
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Methods Amazon YelpChi T-Finance T-Social

CONSISGAD(DropInput) 0.1 0.1 0.1 0.4
CONSISGAD(DropNode) 0.2 0.1 0.1 0.5
CONSISGAD(DropEdge) 0.2 0.1 0.1 0.3
CONSISGAD(DropHidden) 0.3 0.1 0.2 0.1

Table 6: The optimal drop rate for each augmentation technique in each dataset.

Methods Amazon YelpChi T-Finance
AUROC AUPRC Macro F1 AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

GCN 87.34±0.59 48.06±2.73 70.94±2.43 54.65±0.53 17.07±0.44 35.59±10.27 89.29±0.19 53.94±3.22 77.16±1.20

w CONSISGAD 87.72±0.42 48.42±1.56 73.88±1.42 54.96±0.54 17.40±0.55 43.06±7.40 89.28±0.22 57.41±2.05 78.19±0.84

GraphSAGE 90.12±0.48 73.17±4.65 84.25±2.26 73.70±0.52 34.57±0.78 63.33±0.51 89.42±1.36 49.08±6.34 77.62±1.87

w CONSISGAD 91.94±0.38 79.61±1.69 88.78±0.61 73.82±0.47 34.88±0.58 63.41±0.2 91.23±0.80 56.85±3.28 80.90±1.01

Table 7: The performance (%) of traditional GNN models when equipped with CONSISGAD.

E.6 ANALYSIS OF THE QUALITY OF HIGH-QUALITY NODES

In this subsection, we examine the performance of high-quality nodes. We visualize Macro F1
scores of high-quality nodes at each epoch during training and compare these with scores from the
test set. Figure 10 depicts the dynamic of Macro F1 scores for both high-quality and test nodes. Our
findings reveal that the high-quality nodes consistently exhibit higher Macro F1 scores compared to
test nodes. Specifically, the average performance on high-quality nodes surpasses that on test nodes
by margins of 1.01%, 0.83%, 0.71%, and 0.64% on the Amazon, YelpChi, T-Finance, and T-Social
datasets, respectively. Generally, both high-quality nodes and test nodes show a gradual increase
in performance, with the former driving the improvement of the latter. An exception lies in the T-
Social dataset, on which the performance fluctuates a bit. The underlying reason might be that the
batch size and training data size are relatively small compared to the size of the whole dataset, which
causes fluctuation of the performance. This outcome highlights the superior quality of high-quality
nodes and validates the effectiveness of our selection criteria for consistency training.

E.7 ANALYSIS OF HYPER-PARAMETER SENSITIVITY

Weight of the label consistency loss α. Figure 11 illustrates the effect of different label consis-
tency weights α on model performance. We experiment with a range of α values: {0.1, 0.2, 0.5,
1.0, 2.0, 5.0, 10.0}, and measure the corresponding model performance. Our result indicates that an
α value of around 1.0 yields optimal performance for the Amazon and YelpChi datasets, whereas
a value of around 5.0 is preferable for the T-Finance dataset. Overall, model performance remains
stable with a moderate α value. If α is set to a excessively high value, the performance will be
greatly impaired. This is likely due to the diminished diversity in generated augmentations, which
is crucial for effective consistency training.

Drop ratio ξ. Figure 12 depicts the impact of various drop ratios ξ on model performance. In
this analysis, We test drop ratios ξ in the range of {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. The result reveals
that maintaining ξ within 0.1 to 0.3 is a foolproof decision for all datasets. If ξ is set too small,
CONSISGAD degrades to the backbone model and cannot leverage abundant information encoded
in unlabeled data for training. Conversely, a higher ξ risks losing important information, making it
hard for the model to discern valuable patterns.

Normal threshold τn and anomalous threshold τa. Figure 13 and Figure 14 illustrate how the
model behaves under different normal thresholds τn and anomalous thresholds τa, respectively. We
experiment with normal thresholds τn set at {89, 91, 93, 95, 97, 99} and anomalous thresholds τa at
{79, 92, 85, 88, 91}. Overall, the result suggests that our model, CONSISGAD, exhibits robustness
against the range of tested thresholds. This resilience likely stems from the adaptability of our
learnable augmentation module, which can dynamically adjust to varying threshold values during
training.
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Figure 10: Dynamic of Macro F1 scores on high-quality nodes and test nodes. The X-axis denotes
epochs during training and Y-axis the corresponding Macro F1 score. The orange lines represents
the high-quality nodes, while the blue lines represent the test nodes. Subfigre(a)-(d) depict the result
on Amazon, YelpChi, T-Finance, and T-Social, respectively.
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Figure 11: The performance of CONSISGAD with varied weights of the label consistency loss α in
terms of AUROC (Subfigure a), AUPRC (Subfigure b), and Macro F1 (Subfigure c). Blue, orange,
and green lines depict results on Amazon, YelpChi, and T-Finance, respectively.

E.8 PERFORMANCE OF THE BACKBONE GNN MODEL ON MORE GRAPHS.

In this subsection, we examine the performance of our backbone GNN model on generic multi-class
node classification tasks with diverse homophily ratios. We follow the experimental procedure of a
recent work, the Feature Selection Graph Neural Network (FSGNN) (Maurya et al., 2022), and use
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Figure 12: The performance of CONSISGAD with varied drop ratios ξ in terms of AUROC (Sub-
figure a), AUPRC (Subfigure b), and Macro F1 (Subfigure c). Blue, orange, and green lines depict
results on Amazon, YelpChi, and T-Finance, respectively.
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Figure 13: The performance of CONSISGAD with varied normal thresholds τn in terms of AUROC
(Subfigure a), AUPRC (Subfigure b), and Macro F1 (Subfigure c). Blue, orange, and green lines
depict results on Amazon, YelpChi, and T-Finance, respectively.

their public repository 13 for experimentation. The experiment consists of three homophily graphs
and six heterophily graphs, with a homophily ratio ranging from 0.11 to 0.81. For each dataset,
we compute the average accuracy across ten publicly available data splits for evaluation, which are
widely adopted by researchers in the community (Pei et al., 2020; Zhu et al., 2020; Maurya et al.,
2022). For our GNN backbone model, we set the number of layers to be two and keep the remaining
architecture untouched. For each dataset, we carry out a lightweight fine-tuning on the learning
rate and weight decay. Specifically, we pick the best learning rate from {0.1, 0.01, 0.001} and
weight decay from {0.01, 0.001, 0.0001} based on the validation performance. Table 8 summarizes
dataset statistics and corresponding results, where the performance of other baselines are taken from
(Maurya et al., 2022).

Note that our proposed GNN backbone, CONSISGAD(GNN), is based the difference of contex-
tual homophily distribution between normal and anomalous nodes. Such a phenomenon is com-
monly seen in the graph anomaly detection task (i.e., the imbalanced binary classification task)
where normal nodes have high homophily distribution while anomalous nodes have low homophily
distribution. This prominent distribution discrepancy lays down the foundation of our GNN back-
bone. When it comes to multi-class node classification tasks, the homophily-aware neighborhood
aggregation (Equation (4)) in the GNN backbone will model the label distribution within a node’s
neighborhood. If this neighborhood label distribution exhibits distinguishable patterns for different
classes, we would expect our backbone model to function well. From Table 8, we observe that our
GNN backbone model performs comparably to existing baselines in the three homophily graphs.

13https://github.com/sunilkmaurya/FSGNN/tree/main
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Figure 14: The performance of CONSISGAD with varied anomalous thresholds τa in terms of
AUROC (Subfigure a), AUPRC (Subfigure b), and Macro F1 (Subfigure c). Blue, orange, and green
lines depict results on Amazon, YelpChi, and T-Finance, respectively.

Cora Citeseer Pubmed Chameleon Wisconsin Texas Cornell Squirrel Actor Mean Acc.

Hom. ratio 0.81 0.74 0.80 0.23 0.21 0.11 0.30 0.22 0.22
# Nodes 2,708 3,327 19,717 2,277 251 183 183 5,201 7,600
# Edges 5,278 4,732 44,338 36,101 499 309 295 198,353 26,659
# Features 1,433 3,703 500 2,325 1,703 1,703 1,703 2,089 932
# Classes 7 6 3 5 5 5 5 5 5

GCN 87.28±1.26 76.68±1.64 87.38±0.66 59.82±2.58 59.80±6.99 59.46±5.25 57.03±4.67 36.89±1.34 30.26±0.79 61.62
GAT 82.68±1.80 75.46±1.72 84.68±0.44 54.69±1.95 55.29±8.71 58.38±4.45 58.92±3.32 30.62±2.11 26.28±1.73 58.55
GraphSAGE 86.90±1.04 76.04±1.30 88.45±0.50 58.73±1.68 81.18±5.56 82.43±6.14 75.95±5.01 41.61±0.74 34.23±0.99 69.50
Cheby+JK 85.49±1.27 74.98±1.18 89.07±0.30 63.79±2.27 82.55±4.57 78.38±6.37 74.59±7.87 45.03±1.73 35.14±1.37 69.89
MixHop 87.61±0.85 76.26±1.33 85.31±0.61 60.50±2.53 75.88±4.90 77.84±7.73 73.51±6.34 43.80±1.48 32.22±2.34 68.10
GEOM-GCN 85.27 77.99 90.05 60.90 64.12 67.57 60.81 38.14 31.63 64.05
GCNII 88.01±1.33 77.13±1.38 90.30±0.37 62.48±2.74 81.57±4.98 77.84±5.64 76.49±4.37 N/A N/A -
H2GCN-1 86.92±1.37 77.07±1.64 89.40±0.34 57.11±1.58 86.67±4.69 84.86±6.77 82.16±4.80 36.42±1.89 35.86±1.03 70.71
WRGAT 88.20±2.26 76.81±1.89 88.52±0.92 65.24±0.87 86.98±3.78 83.62±5.50 81.62±3.90 48.85±0.78 36.53±0.77 72.93
GPRGNN 88.49±0.95 77.08±1.63 88.99±0.40 66.47±2.47 85.88±3.70 86.49±4.83 81.89±6.17 49.03±1.28 36.04±0.96 73.37
FSGNN 88.23±1.17 77.40±1.93 89.78±0.38 78.95±0.86 88.43±3.22 87.57±4.86 87.84±6.19 74.10±1.89 35.75±0.96 78.67

CONSISGAD(GNN) 86.32±1.72 75.83±1.81 89.39±0.34 44.82±2.96 86.47±4.51 83.24±5.77 83.51±6.89 33.08±0.79 37.38±1.55 68.89

Table 8: Mean classification accuracy on generic multi-class node classification tasks with different
homophily ratios. Results of baseline models are taken from (Maurya et al., 2022). For FSGNN,
we list the performance of the best variant for each dataset. Best results are bolded and runner-up
underlined. Here, ”N/A” denotes non-reported results.

Our GNN backbone is built upon the Message-Passing Neural Network (MPNN) framework, which
allows handling homophily information naturally. For heterophily graphs, our backbone model
achieves good performance in the Wisconsin, Texas, and Cornell datasets, but faces challenges in
the Chameleon, Squirrel, and Actor datasets. Our further investigations in Figure 15 reveal that, in
Wisconsin, Texas, and Cornell, nodes of different classes have distinct label distribution among their
neighborhood, which allows our backbone model to distinguish different classes effectively. How-
ever, such distinct patterns are absent in Chameleon, Squirrel, and Actor, explaining the struggle of
our backbone model on these datasets. Notably, despite a low accuracy on the Actor dataset, our
model achieves a new state-of-the-art result, indicating its potential in handling heterophily graphs
in multi-class node classification tasks. Future work may explore integrating our GNN backbone
with other techniques to enhance performance on heterophily graphs.

E.9 INFLUENCE OF EXACT LABELS FOR CONSISTENCY TRAINING

In our current settings, both labeled and unlabeled data are used for consistency training, but la-
beled samples are treated as unlabeled, using their predicted labels instead of exact labels. In this
subsection, we investigate the effectiveness of using exact labels for labeled nodes during consis-
tency training. Our results, presented in Table 9 and Table 10, suggest that using exact labels in
consistency training does not markedly enhance performance across most datasets. This lack of im-
provement may stem from the fact that labeled data has already been utilized in the cross-entropy
loss, and their reuse in the consistency training does not contribute significantly to performance en-
hancement. Notably, a decrease in performance is observed in the T-Social dataset. We hypothesize
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Figure 15: Neighborhood label distribution for different classes of nodes. Each row represents node
class, while each column represents neighbor class. A darker color denotes a higher probability.
The difference between two rows depicts the difference of neighborhood label distribution between
corresponding classes. Rows in Subfigure (a)-(c) are distinguishable. Therefore, Subfigure (a)-(c)
represent the set of graphs where nodes of different classes have distinct label distribution among
their neighborhood, which are suitable to CONSISGAD(GNN). On the other hand, rows in Subfigure
(d)-(f) are less distinguishable, which poses challenges to our backbone model.

Methods Amazon YelpChi
AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

CONSISGAD 93.91±0.58 83.33±0.34 90.03±0.53 83.36±0.53 47.33±0.58 69.72±0.30

CONSISGAD (Exact Label) 93.82±0.55 83.16±0.46 89.88±0.30 82.91±0.36 47.23±0.98 69.44±0.29

Table 9: Model performance when using exact labels of labeled nodes in consistency training on
Amazon and YelpChi datasets.

Methods T-Finance T-Social
AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

CONSISGAD 95.33±0.30 86.63±0.44 90.97±0.63 94.31±0.20 58.38±2.10 78.08±0.54

CONSISGAD (Exact Label) 95.09±0.27 86.94±0.13 91.32±0.18 93.87±0.30 56.54±1.86 77.42±0.67

Table 10: Model performance when using exact labels of labeled nodes in consistency training on
T-Finance and T-Social datasets.

this could be attributed to the model overfitting to label noise, which could be mitigated by the usage
of predicted labels.
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F DISCUSSION OF DATA AUGMENTATION ON GRAPHS

F.1 DATA AUGMENTATION ON GRAPHS

Graph data augmentation techniques can be classified into four categories. Stochastic augmentation
randomly samples noise to node features and graph structures (Srivastava et al., 2014; Feng et al.,
2020a; Bo et al., 2022). Adversarial perturbation (Deng et al., 2019; Feng et al., 2019; Kong et al.,
2022) noises node features by calculating virtual adversarial perturbations. Generative-model based
augmentation employs generative models to generate artificial features for augmentation (Zhang
et al., 2019; Zhao et al., 2021; Liu et al., 2022). Interpolation-based augmentation utilizes the
MixUp-like (Zhang et al., 2018; Verma et al., 2019) methods to synthetize instances on graphs
(Verma et al., 2021; Wang et al., 2021). Nonetheless, these approaches fail to calibrate the extent of
data augmentation and suffer from over- or under-augmentation. In the realm of graph contrastive
learning, several automatic data augmentation approaches have been proposed to address these lim-
itations (You et al., 2021; Zhu et al., 2021), and we provide an in-depth comparison between our
learnable augmentation and these methods in Appendix F.2.

F.2 DETAILED COMPARISON WITH EXISTING AUTOMATIC DATA AUGMENTATION
TECHNIQUES

In the realm of graph contrastive learning, various automatic data augmentation methods, such as
JOAO (You et al., 2021) and GCA (Zhu et al., 2021), have been introduced. JOAO learns a sampling
distribution for augmentation pairs using a min-max optimization process, while GCA generates
augmented graphs by adaptively dropping edges and node features based on node centrality scores.
Our learnable augmentation module presents notable differences from these approaches, particularly
in terms of augmentation quality evaluation and learning objectives.

Augmentation quality evaluation. JOAO adopts an adversarial training strategy, prioritizing aug-
mentations that yield the greatest contrastive loss. This approach inherently aims to enhance the
distribution diversity of augmentations. However, it may inadvertently introduce excessive noise
due to overlooked label consistency, leading to suboptimal performance, as discussed in prior stud-
ies (Balaji et al., 2019; Tsipras et al., 2018). GCA assumes that a good augmentation should drop
unimportant edges and features while keeping important ones. The importance is measured through
node centrality scores. This method, while intuitive, does not necessarily guarantee high consistency
and diversity in augmentations. In contrast, our work does not rely on pre-defined node importance
metrics. Instead, we posit that effective augmentations should enhance a node’s diversity without
altering its label, maintaining high label consistency. To this end, we formulate differentiable dis-
tribution diversity and label consistency metrics to evaluate augmentation quality and to guide the
training of our augmentation module.

Learning objectives. The objective of JOAO is to select the optimal augmentation pair from a
predetermined pool, relying heavily on domain knowledge for pool construction and configuration.
The adaptive augmentation module in GCA remains fixed and non-learnable throughout the training
process. This is due to the static nature of node centrality scores, resulting in constant dropping
rates for edges and node features. Furthermore, it operates independently of the specific GNN
encoder employed. By contrast, our work introduces a novel learnable augmentation module through
learnable masking. This module is designed to synthesize custom augmentations for individual
nodes, updating continuously throughout training to adapt to the dataset and evolving GNN encoder.
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