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ABSTRACT

Offline reinforcement learning (RL) aims to optimize policies under pre-collected
data, without requiring any further interactions with the environment. Derived
from imitation learning, Behavior cloning (BC) is extensively utilized in offline
RL for its simplicity and effectiveness. Although BC inherently avoids out-of-
distribution deviations, it lacks the ability to discern between high and low-quality
data, potentially leading to sub-optimal performance when facing with poor-quality
data. Current offline RL algorithms attempt to enhance BC by incorporating value
estimation, yet often struggle to effectively balance these two critical components,
specifically the alignment between the behavior policy and the pre-trained value
estimations under in-sample offline data. To address this challenge, we propose
the Value-aligned Behavior Cloning via Bi-level Optimization (VACO), a novel
bi-level framework that seamlessly integrates an inner loop for weighted super-
vised behavior cloning (BC) with an outer loop dedicated to value alignment. In
this framework, the inner loop employs a meta-scoring network to evaluate and
appropriately weight each training sample, while the outer loop maximizes value
estimation for alignment with controlled noise to facilitate limited exploration.
This bi-level structure allows VACO to identify the optimal weighted BC policy,
ultimately maximizing the expected estimated return conditioned on the learned
value function. We conduct a comprehensive evaluation of VACO across a variety
of continuous control benchmarks in offline RL, where it consistently achieves
superior performance compared to existing state-of-the-art methods.

1 INTRODUCTION

Over the past decade, reinforcement learning (RL) has made remarkable advancements and exerted
significant influence in domains such as robotics control (33), dynamic programming (49), and rec-
ommendation systems (6). However, in real-world scenarios where interactions are either extremely
challenging or prohibitively costly, traditional online RL faces considerable limitations and may
often prove impractical. As a result, offline RL has emerged as a promising alternative, attracting
growing attention and active research. Unlike online RL, which actively collects trajectory samples
through direct interaction with the environment, offline RL is restricted to deriving policies from a
static, pre-collected dataset (30), without any further interactions with the environment. Interestingly,
the primary advantage of offline RL, its independence from environment interactions, also poses
its most significant challenge. Due to the limited and potentially sub-optimal nature of offline data
samples, offline RL confront two severe challenges: 1) out-of-distribution (OOD) issues and 2) value
alignment issues. Both of these issues fundamentally stem from inadequate sampling of the state and
action spaces in offline datasets.

As illustrated in Fig.1, we provide a schematic diagram to intuitively depict the two critical challenges
in offline reinforcement learning. Fig.1(a) presents the learned value-action curve for a given state,
where the blue dots represent actions collected from the offline dataset, which we refer to as the
*in-sample domain*. The adjacent red area, representing actions that have not been collected, is

∗Corresponding author

1



Published as a conference paper at ICLR 2025

Figure 1: Illustration of the two challenges in offline RL: (a) value overestimation in OOD issues and
(b) sub-optimal policy extraction in value alignment issues.

termed the *out-of-distribution (OOD) domain*. Empirically, the values of actions in the OOD
domain tend to be overestimated, while the action values within the in-sample domain are more
confident and closer to their true values. Fig.1(b) further refines the in-sample domain. During the
behavior policy learning process, the inadequacy of action space often causes the behavior policy to
converge on sub-optimal actions within the in-sample domain (e.g., A−), which actually do not align
with the optimal actions suggested by the value estimations (e.g., A∗). This misalignment can lead to
sub-optimal policy performance.

To avoid above challenge, behavior cloning (BC (37)) is initially employed in offline RL settings.
BC utilizes supervised learning to directly learn from the in-sample data, effectively avoiding OOD
challenge. However, BC lacks the capability to discern between high-quality and low-quality data,
which typically results in competitive performance only with expert offline datasets and leads to
failure within poor/sub-optimal offline datasets. To circumvent this limitation, recent offline RL
approaches have begun incorporating certain auxiliary information (e.g., value function) into BC,
guiding it towards differentiated learning. These methods can be well categorized into following
primary types: (1) explicit regularization constraints (13; 27), which involve heuristic regularization
terms like KL divergence or expectile regression to directly constrain the behavior policy; (2) implicit
regularization constraints (22; 55), which leverage generative models such as VAEs (9; 29) and
diffusion models (19; 44) to enforce constraints on the behavior policy within latent action space; and
(3) return-conditioned supervised learning (5; 23), which utilizes decision transformer to directly
model dynamic programming process in a conditioned supervised learning manner. Although the
aforementioned methods have achieved notable performance, they often struggle to balance the OOD
challenge and value alignment issue concurrently.

Our contribution. In this paper, inspired by recent advancements in meta-learning (34; 41; 21; 52)),
we introduce the Value-aligned Behavior Cloning via Bi-level Optimization (VACO), a novel bi-level
offline RL framework to balance the OOD and alignment challenges. This framework integrates
a simple multi-layer perception (meta-scoring network) to assign differential importance weights
to various state-action sample pairs. In this way, the conventional BC loss function is transformed
into a weighted summation of individual sample losses, enabling differentiated learning for varying
quality samples. Such learning manner is intuitive and closely mirrors human behavior learning
processes. In detail, the internal loop of VACO executes weighted supervised behavior cloning with
the assigned scores of in-sample data; and the external loop of VACO maximizes value estimation
for value alignment and introduces controlled noise to enable limited exploration. Such bi-level
configuration allows VACO to identify the optimal weighted BC policy, ultimately maximizing
the expected estimated return conditioned on the learned value function without numerous hyper-
parameters or complicated secondary components, such as generative models and transformer. It
is worth mentioning that the meta-scoring network utilized in VACO is operational solely during
the training phase and can be deactivated during testing, ensuring that the inference speed of the
algorithm remains unaffected.

We evaluated the proposed VACO on the D4RL benchmark dataset (11) for continuous control tasks.
The results indicate that our model achieves state-of-the-art (SOTA) performance, surpassing the
above three categories of offline reinforcement learning algorithms, through a simple integration
of BC (37) with DPG (42) algorithm in bi-level manner. Such achievement provides new insights
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on the potential of bi-level optimization in offline RL, and further ablation studies underscore the
effectiveness of our proposed meta-scoring network.

2 RELATED WORK

In recent years, offline RL has emerged as a pivotal solution for real-world scenarios, particularly in
domains such as autonomous driving (43), dynamic programming (49), and robotics control (33).
Offline RL is inherently limited by insufficient data and the lack of interaction with the environment,
leading to two major challenges: 1) the OOD problem and 2) the value alignment issue. Traditional
offline methods (e.g., BC (37) and TD3 (14)) often focus on one specific aspect. More recent strategies
(15; 54; 24; 47; 56) seek to integrate these approaches for performance boosting. Depending on the
integration manner, these approaches can generally be classified into three categories:

Explicit Regularization directly incorporates BC as a regularization within value estimation. For
instance, TD3+BC (13) directly combines the loss function of BC and TD3, with hyperparameters
fine-tuning the balance between them. BRAC+ (53) integrates BC into the value and policy update
processes by KL divergence (18) to provide regularization and constraint. IQL (27) employs expected
regression to perform in-sample value estimation, subsequently guiding BC across various state-action
pairs using advantage-weighted regression (AWR) (36). This category of methods typically designs a
divergence measure to ensure that the learned policies closely with the dataset’s sampling policy to
some extent.

Implicit Regularization posits that constraints should be moderately stringent, often executed within
a latent space to subtly constrain policies. Key contributions in this area include MOPO (51), which
introduces model-based concept into offline settings by incorporating penalty rewards to limit the
learning process; PLAS (55), which uses a CVAE (2) to model policies within the action latent
space, thus implicitly restricting learning to the support range of the in-sample dataset; and EDP (22),
which utilizes diffusion models for implicit action estimation. These methods (20) typically employ
generative models to encode state and action into latent space, thereby constraining learned policies.

Return-conditioned Supervised Learning represents a novel paradigm in offline RL that conditions
the policy not only on the current state but also on expected future returns. This can be viewed as
a variant of conditional BC. For instance, DT (5) introduced the use of decision transformers and
return-to-go to achieve supervised modeling of offline trajectories;DS4 (8) innovates by replacing the
time-invariant state-space layers with transformer, thereby facilitating efficient dynamic modeling.
DC (23) emphasizes the importance of local attention in Markov processes and implements an
innovative approach by substituting attention mechanisms with convolution.

Bi-level Optimization in Offline RL. Bi-level optimization is committed to optimizing another set
of parameters other than target network parameters, which describes higher-level elements related to
training neural networks(52; 21). In offline RL domain, the most relevant work to us is (56) and we
differ in motivation and upper-lower functions as follows: (1)Motivation: we introduce the bi-level
optimization framework, aiming to balance the OOD and value alignment problems,while (56) mainly
focuses on the distributional shift issue. (2)Upper-lower functions: Different motivations lead to
different upper and lower functions. We first introduce a meta-scoring network in the upper function
to assign adaptive weights and mainly focus on the behavior policy updating in the lower function.
Differently, (56) adopts the behavior policy updating in the upper function and mainly focuses on the
Q value approximation in the lower function.

In our work, we explore the integration of BC and value estimation through a bi-level optimization
framework, introducing a novel training methodology for offline RL to balance OOD and value
alignment challenges concurrently. Although our proposed framework, VACO, is grounded in BC and
DPG value estimation loss, it should better be regarded as a flexible framework capable of bridging
supervised behavior policies with value estimation loss. With tailored modifications, this framework
can be properly applied to the aforementioned three kinds of methods.

3 PRELIMINARIES

Behavior cloning. BC is an approach within imitation learning that trains policies to emulate
expert behaviors by directly mapping observed states to corresponding actions. Typically, BC (37)
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employs supervised learning models to approximate the policy demonstrated by the expert, effectively
replicating the expert’s decision-making process. Recently, behavioral cloning has gained popularity
in offline RL due to its simplicity and straightforward application; however, its efficacy is heavily
dependent on the quality and comprehensiveness of the demonstration data.

Offline reinforcement learning setting. In RL setting, the dynamic system is described in terms of
a Markov decision process (MDP) setting, which is represented as a tupleM = {S,A, r,P, ρ, γ},
where S and A are the state and action space, r(s, a) is a scalar reward function, P is the transition
dynamics, ρ is the initial state distribution, and γ ∈ (0, 1) is a discount factor. The objective of RL is
to learn a policy π(a|s) with parameters ϕ by maximizing the expected cumulative discounted return
Eπ[

∑∞
t=0 γ

tr(st, at)], which is typically approximated by a value function Q(s, a) with parameters
θ. For actor-critic based methods (26; 17) in a continuous action space, the parameters θ is typically
updated by minimizing the squared Bellman error with an experience replay dataset D and a target
function:

JQ(θ) = E(s,a,r,s′)∼D[Qθ(s, a)− r − γQθ̄(s
′, πϕ(s

′))]2 (1)

where Qθ̄ denotes a target Q-function, which is a delayed copy of the current Q-function Qθ. Then,
the policy πϕ can be updated following the deterministic policy gradient (DPG (42)) theorem:

Jπ(ϕ) = Es∼D[−Qθ(s, πϕ(s))] (2)

In offline RL setting, the learning policy is constrained on a pre-collected datasetD(s, a, s′, r) without
further interaction with the environment during the learning process. Meanwhile, the dataset D is
generated by a unknown behavior policy πβ . Directly applying standard RL methods in the offline
setting suffers from severe OOD problem in value and alignment issue in policy. To avoid above
challenges, a widely used offline RL framework (48; 7) adopt the following behavior regularization
scheme which regularizes the divergence between the learned policy πϕ and the unknown behavior
policy πβ of the dataset D:

π = argmin
π

Es∼D[−Qθ(s, πϕ(s)) +D(πϕ(·|s)||πβ(·|s))] (3)

where D(·||·) is some divergence measures, which can have either an explicit or implicit form, to
constrain how “closeness” of the learned policy πϕ and the unknown behavior policy πβ .

4 METHOD: VALUE-ALIGNED BEHAVIOR CLONING WITH BI-LEVEL
OPTIMIZATION

In this section, we first discuss the motivation for balancing OOD and alignment problem. Subse-
quently, we introduce how to transform the behavior cloning supervised loss function into a weighted
behavior cloning supervised loss function. Finally, we describe how to correctly guide the proposed
weighted supervised loss through bi-level optimization manner, thereby effectively balance the OOD
issue and the alignment problem.

4.1 MOTIVATION FOR BALANCING OOD AND ALIGNMENT PROBLEM

In offline reinforcement learning (RL) settings, two classic approaches—behavior cloning (e.g., BC
(37)) and value estimation (e.g., TD3 (14))—are commonly employed to address the OOD and value
alignment challenges, respectively. The objective function of behavior cloning (see Eq.4) effectively
mitigates OOD issues but suffers significantly from value misalignment. In contrast, the objective
function of value estimation (see Eq.2) adeptly resolves alignment issues but is highly susceptible
to OOD challenges. These phenomena are evident in our experimental results, as shown in Fig.2:
behavior cloning consistently demonstrates stable performance across different datasets but tends
to under-perform, while value estimation achieves superior results in specific datasets but displays
extreme instability, sometimes resulting in “zero” performance in others. In offline RL, these dual
challenges—OOD and value misalignment—significantly impact model performance, and it is crucial
to strike an appropriate balance between them.
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Figure 2: Normalized result comparisons on various Hopper and Walker2D datasets across TD3, BC,
TD3+BC, EDP and VACO. Our method achieves superior performance.

Current offline RL algorithms (13; 53) attempt to balance the OOD issue and the alignment problem
by using a mixed policy learning objective function, as represented in Eq.3, with notable success.
However, the straightforward combination of behavior cloning (26) and deterministic policy gradient
(DPG) (42) objective functions (e.g., TD3+BC (13)) can still lead to sub-optimal performance in
some certain scenarios, as illustrated in Fig.2. To address this gap, we propose a novel bi-level
optimization framework. In this framework, a weighted behavior cloning algorithm is employed
in the inner loop for policy extraction, while a value estimation algorithm is adopted in the outer
loop for value alignment. Additionally, we introduce a meta-scoring network to facilitate an indirect
fusion between behavior cloning and value estimation. In the following sections, we will describe the
bi-level framework in detail.

4.2 WEIGHTED BEHAVIOR CLONING

We start with behavior cloning. In conventional behavior cloning training, a batch of state-action
pairs (s, a) is sampled from the dataset D and fed to the policy network πϕ. The policy network πϕ

employs a supervised learning approach, utilizing simple L2 loss function to optimize the learning
process. The objective function JBC can be expressed as follows:

JBC(ϕ) = E(s,a)∼D[πϕ(s)− a]2 (4)

Above additive loss JBC implies that different state-action pairs are treated equally in training,
although they are actually worse action choices. For a more reasonable loss design, the weights of
different training pairs should be properly evaluated and exploited. Therefore, we introduce a more
intuitive behavior cloning loss Jw

BC by a meta-scoring network w(s, a,Qθ(s, a)) with parameters α:

Jw
BC(ϕ) = E(s,a)∼D{wα(s, a,Qθ(s, a)) · [πϕ(s)− a]2} (5)

We emphasize here that evaluating individual state-action pairs is extremely challenging, particularly
because most sample trajectories in offline reinforcement learning are sub-optimal. This complexity
arises from the inherent nature of the collected data, which does not always represent the optimal
policy but rather a mixture of various policy executions, often leading to less than ideal decisions
being captured in the dataset. Accordingly, rather than a heuristic manner, we opt to adopt the
parameterized meta-scoring mechanism that can automatically assess the importance of each training
pair through a learnable neural network wα with (s, a,Qθ(s, a)) as input.

4.3 BI-LEVEL OPTIMIZATION FRAMEWORK

While the aforementioned parameterized weighting concept is simple, it yields a highly under-
determined and non-convex objective function coupled with two unknown neural networks. Without
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extra constraints, the direct minimization of Jw
BC can easily lead to a trival solution. In this case, the

meta-scoring neural network wα may intend to assign (near) zero weights to all sample pairs and
hence totally mute the functions of the policy network (see the multiplications between the weight
term and behavior cloning loss term in Eq.5). To avoid such trivial solution, extra constraints or
guiding information should be imposed to restrict the feasibility of the learned policy. In this work,
aiming to balance the OOD problem and value alignment issue concurrently, we consider enforcing
the feasibility of the learned policy by maximizing the value estimation function in Eq.2, thereby
meanwhile achieving value alignment. With this objective, the whole learning process is subject to the
following bi-level optimization with a controllable Gaussian noise N(0, σ) for limited exploration:

min
α

Jπ(ϕ) := Es∼D[−Qθ(s, πϕ(s+N(0, σ)))]

s.t. ϕ∗(α) = argmin
ϕ

Jw
BC(ϕ) := E(s,a)∼D{wα(s, a,Qθ(s, a)) · [πϕ(s)− a]2}

(6)

The above bi-level optimization is composed of the internal loop in the constraint and the external
loop in the objective function. The internal loop minimizes the empirical squared error of the
offline in-sample dataset under guidance of the different weights provided by the external loop. The
external loop maximizes the value estimation of the learned policy to tune the parameter space of the
meta-scoring network for better value alignment. Through such a bi-level optimization framework,
we achieve policy extraction from weighted behavior cloning in the internal loop to avoid out-of-
distribution challenges and maintain value alignment from value estimation maximization in the
external loop, respectively.

In practice, we opt not to incorporate the learning of the value network Qθ within our bi-level
optimization framework, as detailed in Eq.6. Consistent with practices in IQL (27), in offline
RL, the learning of the value network often remains uncorrelated with the iterative updates of the
policy network πϕ. As a result, value estimation can be independently executed prior to policy
extraction. As delineated in Algorithm 1, to maintain the stability of training for the meta-scoring
network, we structured the training process into two distinct phases: the initial phase focuses on value
network evaluation following the TD learning of (27), and the subsequent phase engages in bi-level
optimization for achieving value-aligned behavior cloning. Although integrating value network
learning into the bi-level optimization is feasible, further details on this integration are provided in
the Appendix J. Additionally, we incorporated controlled, progressively decreasing noise in the outer
loop to facilitate limited exploration during the early stages of training.

To implement our VACO framework, we alternate between the internal loop and external loop
optimization. The parameter ϕ is only involved in the internal loop and can be easily updated with
typical gradient descending approaches, where the η1 denotes the learning rate of policy model:

ϕt ← ϕt−1 − η1∇ϕJ
w
BC(ϕ) (7)

The major difficulty of the VACO optimization stems from the external loop to learn parameter α for
the meta-scoring neural network. As witnessed in Eq.6, α is coupled into ϕ and its gradient can be
derived by applying the chain rule and assuming ∂ϕt−1

∂α ≈ 01:

∇αJπ(ϕ) =
∂Jπ(ϕ)
∂ϕt
· ∂ϕt

∂α

= ∂Jπ(ϕ)
∂ϕt
· ∂(ϕt−1−∇ϕJ

w
BC(ϕt−1))

∂α

≈ −∂Jπ(ϕ)
∂ϕt
· ∂

2Jw
BC(ϕt−1))

∂ϕt−1∂α

= −∂Jπ(ϕ)
∂ϕt
· ∂[πϕt−1

(s)−a]2

∂ϕt−1
· ∂wα(s,a,Qθ(s,a))

∂α

(8)

The above equation is an approximate solution for external loop updating. Thus, we get the update
rule of α,

1More details can be found in Appendix C
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αt ← αt−1 + η2
∂Jπ(ϕ)

∂ϕt
· ∂

2Jw
BC(ϕt−1))

∂ϕt−1∂α
(9)

According to the updating rules based on Eq.7 and Eq.9, we alternately optimize two sets of parameters
as in Algorithm 1.

Algorithm 1: Value-aligned Behavior Cloning via Bi-level Optimization (VACO)
Input: Fixed offline dataset D, value network Qθ, policy network πϕ, meta-scoring network wα,

update steps for value phase K1, update steps for bi-level phase K2

1 // Value Training Phase
2 for update step k = 1...K1 do
3 Sample a minibatch sample pairs (s, a, r, a′) from D
4 Update value θ according to IQL’s(27) TD learning
5 end
6 // Bi-level Optimization Phase
7 for update step k = 1...K2 do
8 Sample a minibatch sample pairs (s, a, r, a′) from D
9 Fix meta-scoring α and update policy ϕ according to Eq.7

10 Fix policy ϕ and update meta-scoring α according to Eq.9
11 end

5 EXPERIMENTS

5.1 SETTING

D4RL. We utilize the MuJoCo and AntMaze domain tasks from the D4RL (11) benchmark for
evaluation. Mujoco domain includes a variety of continuous locomotion tasks with dense rewards.
Within this domain, we perform experiments in three environments: halfcheetah, hopper, and
walker2d. For each environment, we investigate four different v2 datasets, each representing a distinct
data quality level: medium, medium-replay, medium-expert, and expert. Consequently, the MuJoCo
domain provides an excellent platform for assessing the effects of diverse datasets derived from
policies at varying proficiency levels.

Baselines. We consider baselines including four different domain to provide a thorough compar-
ison. (1) Classic methods: BC(37), TD3(14), and CQL(28) ; (2) Explicit regularization methods:
TD3+BC(13), IQL(27), PRDC(40), TD7(12) and A2PO(38); (3) Implicit regularization methods:
MOPO(51), PLAS(55), and EDP(22); (4) Return-conditioned methods: DT(5), DS4(8), and DC(23);
Other methods: SAC-RND(35).

Setup. We implement our VACO framework by combining the official implementation of (13) and
(5). Specifically, value network, policy network and meta-scoring network are all 3-layer MLP. All
hidden dimensions of the network are set to 256. Relu (1) activation is performed after each hidden
layer. As for training, we adopt Adam optimizer (25) with a learning rate of 3e-5 for meta-scoring
network and with a learning rate of 3e-4 for value and policy network. All experiments are conducted
on single NVIDIA RTX 3090 GPU.

More detailed experimental setting of D4RL dataset, baselines and hyperparameter setting, are all
available in Appendix A.

5.2 PERFORMANCE ON MUJOCO DOMAIN

Tab.1 presents the performance outcomes for various algorithms, including other baselines and our
VACO model, in offline settings using the D4RL-Mujoco datasets. All scores are normalized, with a
value of 100 indicating the performance level of an expert policy, as described by (11).

As shown, we observe the following: (1) Our VACO surpasses the various methods across almost
all tasks and varying quality datasets. (2) Some methods exhibit performance deficiencies in certain
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Table 1: Averaged normalized scores on MuJoCo locomotion tasks for D4RL dataset. We evaluate
10 times averaged over 5 random seeds, ± standard deviation. The dataset names are abbreviated
as follows: ‘medium’ to ‘m’, ‘medium-replay’ to ‘m-r’, ‘medium-expert’ to ‘m-e’, ‘expert’ to ‘e’.
The first segment of the table contains classic offline methods, the second segment for explicit
regularization methods, the third segment for implicit regularization methods and the fourth segment
for return-conditioned decision transformer methods. Our model outperforms various offline RL
algorithms on almost all tasks. We mark the best results in bold and the second best with an underline
for easy comparison. * denotes averaged scores without ‘expert’ dataset.

Dataset: Hopper HalfCheetah Walker2D
average average*

Method m m-r m-e e m m-r m-e e m m-r m-e e
TD3+BC 59.3 60.9 98.0 109.6 48.3 44.6 90.7 93.4 83.7 81.8 110.1 110.0 82.53 75.27

IQL 66.2 94.7 91.5 108.8 47.4 44.2 86.7 95.0 78.3 73.8 109.6 109.4 83.78 76.93
CQL 61.9 86.3 96.9 106.5 46.9 45.3 95.0 97.3 79.5 76.8 109.1 109.3 84.20 77.52

explicit regularization manner methods:
PRDC 100.3 100.1 109.2 - 63.5 55.0 94.5 - 85.2 92.0 111.2 - - 90.11
TD7 76.1 91.1 108.2 - 58.0 53.8 104.6 - 91.1 89.7 111.8 - - 87.16

A2PO 80.3 101.6 107.4 - 47.1 44.7 95.6 - 84.9 82.8 112.1 - - 84.07
implicit regularization manner methods:

MOPO 26.5 92.5 51.7 16.2 40.2 54.0 57.9 1.4 14.0 42.7 55.0 0.1 37.68 48.28
PLAS 32.9 27.9 111.0 - 39.3 43.9 96.6 - 44.6 30.2 89.6 - - 57.33
EDP 81.9 101.0 97.4 - 52.1 49.4 95.5 - 6.9 94.9 110.2 - - 85.48

return-conditioned manner methods:
DT 67.6 82.7 107.6 106.3 42.6 36.6 86.8 92.4 74.0 66.6 108.1 107.6 81.58 74.73
DS4 89.5 87.7 110.5 109.3 47.3 43.8 94.8 89.1 81.4 80.3 109.6 105.7 87.42 82.77
DC 92.5 94.2 110.4 110.5 43.0 41.3 93.0 87.5 79.2 76.6 109.6 107.8 87.13 82.2

Ours

VACO
97.2 102.3 112.6 114.0 60.2 51.4 98.3 100.6 88.8 92.4 114.5 112.9 95.43 90.86
±4.2 ±7.1 ±2.2 ±4.5 ±2.4 ±1.2 ±7.2 ±1.5 ±1.8 ±4.9 ±0.3 ±0.6 - -

tasks or at specific data levels, whereas VACO consistently achieves competitive performance across
the board. For example, MOPO(51) fails on each expert datasets and EDP(22) gets a large decrease
on Walker2D medium dataset(11).

5.3 PERFORMANCE ON ANTMAZE DOMAIN

Tab.2 presents the performance outcomes of various algorithms on the AntMaze tasks, which primarily
test the model’s trajectory stitching capability. As shown, our VACO algorithm achieved the highest
average score and demonstrated competitive performance across tasks of varying difficulty levels.
In contrast, TD3+BC(13) and PLAS(55) failed to perform well on the larger-scale tasks, while
SAC-RND(35) and EDP(22) showed significant drops in performance compared to our method on
the medium-play and large-play datasets, respectively.

Table 2: Averaged normalized scores on AntMaze tasks. We evaluate 100 times averaged over 5
random seeds, ± standard deviation. Our model outperforms various methods on the average score of
all tasks. We mark the best results in bold and the second best with an underline for easy comparison.

Task name BC TD3+BC IQL CQL PLAS SAC-RND EDP VACO(ours)
antmaze-umaze 65.0 66.3 83.3 74.0 70.7 97.0 94.2 96.4 ±0.6

antmaze-umaze-diverse 55.0 53.8 70.6 84.0 45.3 66.0 79.0 83.4 ±9.4
antmaze-medium-play 0.0 26.5 64.6 61.2 16.0 38.5 81.8 82.8 ±3.8

antmaze-medium-diverse 0.0 25.9 61.7 53.7 0.7 74.7 82.3 80.8 ±8.7
antmaze-large-play 0.0 0.0 42.5 15.8 0.7 43.9 42.3 63.8 ±14.8

antmaze-large-diverse 0.0 0.0 27.6 14.9 0.3 45.7 60.6 53.2 ±17.4
Average 20.0 28.7 58.3 50.6 22.3 60.9 73.4 76.7
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Figure 3: Percent difference of the performance of a comparison among our approach and other
heuristic weighting strategy. HC=HalfCheetah, Hop=Hopper, W=Walker, m = medium, mr = medium-
replay, me = medium-expert, e = expert. As expected, our model obtains superior results.

5.4 COMPARISON WITH OTHER HEURISTIC WEIGHTING STRATEGY

In our work, we introduce a meta-scoring neural network to generate meta weights for weighted
behavior learning. One may naturally wonder: can we adopt heuristic weighting strategies, assigning
greater weights to samples with larger value estimation, as more efficient alternative? To answer
above question, we compare VACO with two heuristic weighting strategies: 1) using the reciprocal
of value as weight (13) and 2) using advantage-weight regression (36) as weight. As shown in
Fig.3, the two heuristic weighting strategies can boost performance of BC in some situations, but the
improvement is far less than VACO on almost all datasets. The reason behind this may be that the
heuristic approaches are difficult to achieve alignment between the learned policy and value.

Figure 4: Percent difference of the performance of the ablations of our approach, compared to the
full algorithm. HC=HalfCheetah, Hop=Hopper, W=Walker, m = medium, mr = medium-replay, me =
medium-expert, e = expert.

5.5 ABLATION STUDY ABOUT THE NOISE AND DIFFERENT INPUTS OF META-SCORING
NETWORK

To verify the effectiveness of proposed component, we conduct ablation studies on the inputs of
meta-scoring network and the controllable noise. In practice, we sequentially remove the value and
state from the inputs, and compare the performance with our original VACO configuration. As shown
in Fig.4(a) and (b), removing the two parts of input results in a severe performance drop, especially
on medium and medium-replay datasets. This demonstrates the significance of the information within
current input for sample weight determination. As shown in Fig.4(c), the gradual reduced noise can
boost model performance to some extent, especially in halfcheetah environment, in where limited
exploration is encouraged.

6 CONCLUSION

We present VACO, a novel bi-level framework to balance OOD problem and value alignment issue
concurrently for offline reinforcement learning. The framework comprises of two workflow loop: the
internal loop for weighted behavior cloning and the external loop for policy-value alignment. In detail,
VACO additionally introduces a meta-scoring network for assigning different importance weights
to in-sample offline data. Extensive experiments demonstrate that our proposed VACO achieves
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state-of-the-art performance on a variety of continuous control tasks on the D4RL benchmark and the
related ablation studies also verify the effectiveness of our method.
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A ADDITIONAL EXPERIMENTAL SETTINGS

A.1 DETAILS OF D4RL

In our study, we utilize two types of environments in D4RL2: Gym Mujoco and Antmaze to conduct
our experiments.

A.1.1 GYM MUJOCO

We focus on three primary environments in Gym Mujoco: Hopper, Half-Cheetah, and Walker2d,
as shown in Fig 5. These environments are well-suited for testing the robustness and efficacy of
reinforcement learning algorithms across a spectrum of data quality levels, each derived from different
policies. We adopt the v2 datasets ,each reflecting four distinct types: "medium", "medium-replay",
"expert", and "medium-expert", reflecting varying degrees of policy optimization and performance.

Figure 5: Visulization of (a) Hopper, (b) Walker2d and (c) Half-Cheetah.

Medium. Each "medium" dataset is generated by training a policy using the Soft Actor-Critic algo-
rithm. The training process is halted prematurely—specifically, once the policy reaches approximately
one-third the performance of an expert policy. This early stopping ensures that the policy is only
partially trained, simulating a suboptimal policy performance.

Medium-replay. The "medium-replay" datasets consist of all samples stored in the replay buffer
during the training phase of the medium policies. This dataset captures a wide array of experiences,
both successful and suboptimal, encountered by the policy as it progressed towards its medium-level
performance cap.

Expert. The "expert" datasets are comprised solely of data derived from a fully trained policy, where
the performance is considered to be optimal or near-optimal. These samples provide a benchmark of
high-performance behavior in each environment.

Medium-expert. The "medium-expert" datasets are constructed by mixing equal parts of samples
from expert demonstrations with those from the medium datasets. This mixture offers a unique
blend of high-quality and average-quality samples, useful for assessing the algorithm’s capability to
generalize across different levels of policy proficiency.

A.1.2 ANTMAZE

The AntMaze domain is a navigation environment that replaces the simple 2D ball from Maze2D
with a more complex 8-DoF "Ant" quadruped robot. Data is collected by training a goal-reaching
policy, combined with the same high-level waypoint generator from Maze2D. This generator provides
subgoals that guide the Ant robot towards the final goal. The terms “umaze,” “medium,” and “large”
refer to different map sizes, as shown in Fig 6.

Specifically, 1) in the "antmaze-umaze" setting, the Ant is tasked with reaching a specific goal from a
fixed start location. 2)In the "diverse" datasets, the Ant is directed to a random goal from a random
start location. 3) In the "play" datasets, the Ant is guided to specific, hand-picked locations within the

2D4RL dataset is available at https://github.com/berkeley-rll/d4rl
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Figure 6: Visualization of the Antmaze environment, with “umaze,” “medium,” and “large” from left
to right.

maze (which are not necessarily the evaluation goal), starting from a different set of hand-picked start
locations.

A.1.3 FRANKA KITCHEN

The Franka Kitchen (16) domain involves controlling a 9-DoF Franka robot in a kitchen environ-
ment, as shown in Fig 7, with common household items like a microwave, kettle, overhead light,
cabinets, and an oven. The goal of each task is to interact with these items to achieve a desired
goal configuration. The "complete" dataset consists of the robot successfully performing all tasks in
sequence, making it straightforward for imitation learning methods. In contrast, the "partial" and
"mixed" datasets contain undirected data, where the robot performs subtasks unrelated to the goal
configuration. In the "partial" dataset, a portion of the data guarantees successful task completion,
allowing imitation learning agents to learn from the right subsets selectively. The "mixed" dataset
contains no full task completions, requiring RL agents to piece together relevant sub-trajectories to
solve the tasks.

Figure 7: Visualization of the Franka Kitchen environment

A.1.4 ADROIT

The Adroit domain (39), as shown in Fig 8, involves controlling a 24-DoF Shadow Hand robot to
perform four tasks: hammering a nail, opening a door, twirling a pen, and picking up a ball. In the
D4RL benchmark, the Adroit domain includes three types of data: human (25 trajectories), expert
(large RL policy data), and cloned (data from an imitation policy mixed with demonstrations). The
human dataset is designed to test the impact of small amounts of human demonstration data, the
expert dataset evaluates the performance with large amounts of expert data, and the cloned dataset
simulates a scenario where a small amount of additional data is collected by an imitation policy
trained on demonstrations. The domain is challenging due to sparse rewards, high-dimensional tasks,
and a narrow expert data distribution, making it a benchmark for evaluating offline RL approaches in
realistic, manipulation settings.
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Figure 8: Visualization of the Adroit environment: (a) picking up a ball to a given place; (b) twirling
a pen; (c) opening a door; (d) hammering a nail; (e) 24 degree of freedom ADROIT hand.

A.1.5 V-D4RL

V-D4RL (32) is an offline reinforcement learning dataset based on the D4RL format, designed for
vision-based high-dimensional observations. As shown in Fig 9, it includes three tasks from the
DMControl Suite: walker-walk, where a planar walker aims to stay upright and maintain a target
velocity; cheetah-run, where a biped agent is rewarded for its forward velocity; and humanoid-walk,
a challenging task with a 21-jointed humanoid aiming for a target velocity. For each task, we use two
levels of data: medium, collected from a medium-performance policy, and expert, collected from a
high-performance expert policy.

Figure 9: Visualization of the V-D4RL environment.

A.2 BASELINE DETAILS

We consider baselines including following different domain to provide a thorough comparison.
(1) Classic methods: Behavior Cloning (37), TD3 (14), and CQL (28); (2) Explicit regularization
methods: TD3+BC (13), IQL (27), PRDC(40), TD7(12) and A2PO(38); (3) Implicit regularization
methods: MOPO (51), PLAS (55), and EDP (22); (4) Return-conditioned methods: DT (5), DS4 (8),
and DC (23). We obtain baseline performance scores for CQL, TD3+BC and IQL from (27), for DT,
DS4 and DC from (23), for BRAC+ from (53), for MOPO from (51), for PLAS from (55), for EDP
from (22). For TD3, BC and methods lacking results in expert dataset, we reproduce the results using
the code provided by the respective authors.

As for the additional Adroit tasks, we add RORL(50) as new baseline. As for Kitchen tasks, we add
RvS-G(10) as new baseline.

TD7(12) enhances TD3(14) for offline RL with the State-Action Learned Embeddings (SALE) mech-
anism, capturing state-action dynamics for better predictions and generalization. It also incorporates
a behavior cloning term to maintain policy alignment with the dataset distribution, ensuring stable
offline training. SAC-RND(35) extends Soft Actor-Critic (SAC) with Random Network Distillation
(RND) to penalize out-of-distribution actions, reducing reliance on ensemble-based methods for
efficiency. It uses Feature-wise Linear Modulation (FiLM) to enhance conservatism, ensuring stable
offline learning without direct environment interactions. A2PO(38) resolves constraint conflicts
in offline RL by using a Conditional Variational Auto-Encoder (CVAE) to disentangle behavior
policies based on advantage values. This approach enables prioritization of high-advantage actions
while preserving policy diversity, leading to improved advantage estimation and performance on
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diverse datasets. PRDC(40) addresses value overestimation in offline RL by regularizing policies
to align with the nearest state-action pair in the dataset. This softer point-to-set constraint balances
generalization and conservatism, reducing overestimation and improving performance across tasks.

A.3 IMPLEMENTATION DETAILS OF VACO

We implement VACO by combining the official DT code (https://github.com/kzl/decision-
transformer), TD3+BC code (https://github.com/sfujim/TD3_BC) and IQL code
(https://github.com/ikostrikov/implicit_q_learning).

B RUNNING TIME COMPARED WITH OTHER METHODS

Tab.3 presents a comparison of the total runtime of our method against other approaches. We evaluate
thest methods using the PyTorch library on a single NVIDIA RTX 3090 GPU for 1e6 update steps.
Compared to IQL(27), our method is 1.7 times slower; while compared to DT(5), our method is 2.6
times faster. It is worth mentioning that the meta-scoring network introduced in our framework can
be removed during the testing phase, which has no impact on the forward inference time of the policy
model.

Table 3: Total running time compared with other methods.

Methods BC TD3+BC IQL DT DC VACO
total running time 1.3h 3.2h 3.4h 14.9h 12.6h 5.8h

scores on locomotion tasks 64.57 82.53 83.78 81.58 87.13 95.43

C CLARIFICATION ABOUT ∂ϕt−1

∂α
≈ 0

Following recent methods(3; 46; 21) in meta-learning, we make the Markov assumption, under which
we assume ∂ϕt−1

∂α ≈ 0. This approximation is widely used in the field of bi-level optimization(4; 31)
and is referred to as the "one-step differentiation." Under this assumption, at step t, given ϕt−1 we
do not consider about the specific values of α from previous steps that led to ϕt−1. Intuitively, this
assumption suggests that αt−1 has already been updated with respect to ϕt−1, so the effect of α on
ϕt−1 is likely minimal.(46)

Of course, more accurate gradients can be obtained by iteratively applying the update formula
for ϕ (Eq.7) over multiple steps, known as "K-step differentiation" in bi-level optimization domain.
However, it is evident that achieving more precise gradients comes at the cost of significantly increased
complexity, both in terms of implementation difficulty and computational/memory overhead. More
recent work(4) has demonstrated that the one-step differentiation (i.e., assuming ∂ϕt−1

∂α ≈ 0) agrees to
an upper bound on the error between the one-step differentiation gradient and the theoretical gradient.
For more details, see Corollary 4 in (4). Additionally, in extensive experiments, (4) showed that the
one-step differentiation achieves an error of order 10−12 in logistic regression problem.

Building on the theoretical and practical foundations established by these prior works, we believe
that ∂ϕt−1

∂α ≈ 0 is valid. This assumption allows for significant simplification and acceleration of
computation, within an acceptable range of gradient error. As stated in (46), *"Our use of the Markov
assumption is based on its use and empirical success in previous work on bi-level optimization, such
as Hyper Gradient Descent(3) and many others. Of course, this is a simplifying assumption, but we
believe that our empirical results show that the proposed method is useful nonetheless. Relaxing
this assumption would be an interesting avenue for future work. However at the same time how to
do so without resulting in large increases in complexity is a challenge that would require additional
methodological advantages beyond the scope of the current work."*
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D ADDITIONAL EXPERIMENTS ON ADROIT AND KITCHEN DOMAIN

We further evaluated the proposed VACO method on the Adroit(39) and Kitchen(16) environments of
the D4RL benchmark. Tab.4 and Tab.5 present the experimental results on the Adroit and Kitchen
datasets, respectively (partial results adopted from (45), thanks for their awesome work). While
our method does not achieve the best performance on certain individual datasets, it consistently
demonstrates the best average performance across all datasets compared to other methods, which
highlights the competitiveness of our approach.

Table 4: Averaged normalized scores on Adroit tasks. We evaluate 10 times averaged over 3 random
seeds, ± standard deviation. Our model outperforms various methods on the average score of all
tasks. We mark the best results in bold and the second best with an underline for easy comparison.

Task Name BC BEAR TD3+BC IQL CQL SAC-RND RORL VACO(ours)
Pen-human 34.4 -1.0 81.8 ±14.9 81.5 ±17.5 37.5 5.6 ±5.8 33.7 ±7.6 106.0 ±11.4
Pen-cloned 56.9 26.5 61.4 ±19.3 77.2 ±17.7 39.2 2.5 ±6.1 35.7 ±3.1 98.3 ±15.8
Pen-expert 85.1 105.9 146.0 ±7.3 133.6 ±16.0 107.0 45.4 ±22.9 130.3 ±4.2 144.8 ±4.8

Door-human 0.5 -0.3 -0.1 ±0.0 3.1 ±2.0 9.9 0.0 ±0.1 3.78 ±0.7 6.1 ±3.8
Door-cloned -0.1 -0.1 0.1 ±0.6 0.8 ±1.0 0.4 0.2 ±0.8 -0.1 ±0.1 1.6 ±1.5
Door-expert 34.9 103.4 84.6 ±44.5 105.3 ±2.8 101.5 73.6 ±26.7 104.9 ±0.9 104.7 ±1.0

Hammer-human 1.5 0.3 0.4 ±0.4 2.5 ±1.9 4.4 -0.1 ±0.1 2.3 ±1.9 1.8 ±0.9
Hammer-cloned 0.8 0.3 0.8 ±0.7 1.1 ±0.5 2.1 0.1 ±0.4 1.7 ±0.5 2.5 ±1.9
Hammer-expert 125.6 127.3 117.0 ±30.9 129.6 ±0.5 86.7 24.8 ±39.4 132.2 ±0.7 127.0 ±0.4
Relocate-human 0.0 -0.3 -0.2 ±0.0 0.1 ±0.1 0.2 0.0 ±0.0 0.0 ±0.0 0.6 ±0.4
Relocate-cloned -0.1 -0.3 -0.1 ±0.1 0.2 ±0.4 -0.1 0.0 ±0.0 0.0 ±0.0 0.1 ±0.1
Relocate-expert 101.3 98.6 107.3 ±1.6 106.5 ±2.5 95.0 3.4 ±4.5 47.8 ±13.5 107.3 ±3.0

Average 36.7 38.4 49.9 53.4 40.3 12.9 41.0 58.4

Table 5: Averaged normalized scores on Kitchen tasks. We mark the best results in bold and the
second best with an underline for easy comparison.

Task Name BC BCQ BEAR CQL IQL RvS-G PLAS VACO(ours)
Kitchen-complete 65.0 9.1 0.0 43.8 62.5 50.2 38.1 60.0

Kitchen-partial 38.0 17.6 0.0 49.8 46.3 60.3 27.0 52.5
Kitchen-mixed 51.5 11.5 0.0 51.0 51.0 51.4 30.0 57.5

Average 51.5 12.7 0.0 48.2 53.3 54.0 31.7 56.7

E ADDITIONAL EXPERIMENTS ON V-D4RL DOMAIN

In addition to the D4RL dataset, we also conducted experiments on the V-D4RL(32) dataset. Similar
to D4RL(11), V-D4RL provides analogous problem settings and uses the same data collection process.
The key difference is that in V-D4RL, the agent’s state observations are replaced with image-based
representations of the environment. Following the protocol of the original V-D4RL work(32), we
present the corresponding experimental results in Tab.6. Compared to other methods, our proposed
approach achieves state-of-the-art or close-to-state-of-the-art performance on most tasks.

Table 6: Averaged normalized scores on V-D4RL tasks. We evaluate 10 times averaged over 3 random
seeds, ± standard deviation. We mark the best results in bold and the second best with an underline
for easy comparison.

Environment Dataset Offline DV2 DrQ+BC CQL BC LOMPO VACO(ours)

walker-walk
medium 34.1 ±19.7 46.8 ±2.3 14.8 ±16.1 40.9 ±3.1 43.4 ±11.1 53.8 ±1.8
expert 4.8 ±0.6 68.4 ±7.5 89.6 ±6.0 91.5 ±3.9 5.3 ±7.7 92.4 ±3.7

cheetah-run
medium 17.2 ±3.5 53.0 ±3.0 40.9 ±5.1 51.6 ±1.4 16.4 ±8.3 53.7 ±0.6
expert 10.9 ±3.2 34.5 ±8.3 61.5 ±4.3 67.4 ±6.8 14.0 ±3.8 75.8 ±6.5

humanoid-walk
medium 0.2 ±0.1 6.2 ±2.4 0.1 ±0.0 13.5 ±4.1 0.1 ±0.0 15.3 ±2.2
expert 0.2 ±0.1 2.7 ±0.9 1.6 ±0.5 6.1 ±3.7 0.1 ±0.0 4.3 ±0.8

Average 11.2 35.3 34.8 45.2 13.2 49.2
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F ANALYSIS ABOUT THE RELATIONSHIP BETWEEN META WEIGHT AND
Q-VALUE

To examine the relationship between the learned meta-weights and Q-values, we conducted exper-
iments on the Hopper medium-expert dataset, which comprises a combination of expert-level and
suboptimal trajectories. As depicted in Fig.14, the meta-weights produced by the meta-scoring
network are presented alongside the corresponding Q-value estimates for each state-action pair,
visualized through a scatter plot.

For a statistical assessment, we employed the Pearson correlation coefficient to quantify the linear
association between Q-values and meta-weights across all state-action pairs in the Hopper medium-
expert dataset. The computed correlation coefficient of 0.24 suggests a weak positive correlation,
indicating that the meta-scoring network exhibits a tendency to assign higher weights to actions
with greater Q-values, while lower weights are generally assigned to actions with smaller Q-values.
Nonetheless, the relatively low magnitude of the correlation coefficient reveals that this relationship
is not strictly proportional, with some instances deviating from this trend. This also indicates that
meta-score is not only affected by Q-value, but also related to state and action.

Figure 10: Visualization of the learned meta weights and corresponding Q-value estimation on
Hopper medium-expert dataset. The Pearson correlation coefficient indicates that there is a weak
positive correlation between the weights and Q-value.

19



Published as a conference paper at ICLR 2025

G ANALYSIS ABOUT THE RELATIONSHIP BETWEEN META WEIGHT AND
TRAJECTORY REWARDS

Figure 11: Visualization of the learned meta weights and corresponding trajectory total rewards on
Hopper medium-expert dataset. (a) A scatter plot showing the total trajectory reward versus the
average meta-weight of state-action pairs across the entire trajectory. The trajectories are divided into
three groups based on the total reward: 1) total reward below 500, 2) total reward between 500 and
3500, and 3) total reward above 3500, representing trajectories generated by "random," "medium,"
and "expert" policies, respectively. (b) A visualization of the mean and variance distributions of
meta-weights corresponding to the three trajectory groups categorized by total reward. The Pearson
correlation coefficient indicates that there is a strong positive correlation between the average meta
weights and trajectory total rewards.

Appendix F illustrates a weak positive correlation between meta-weights and Q-values, indicating
that higher Q-values do not necessarily correspond to higher meta-weights. To further explore the
intrinsic nature of the learned meta-weights, we conducted additional experiments on the Hopper
medium-expert dataset, focusing on the relationship between the average meta-weight of entire
trajectories and their corresponding total rewards.

Specifically, the Hopper medium-expert dataset consists of 3213 trajectories generated by various
policies, encompassing a total of 1,999,400 state-action pairs. The total trajectory rewards span
the range [315.87, 3759.08]. We categorized the trajectories into three groups based on their total
rewards: trajectories with rewards below 500 are considered to originate from "random" policies,
those between 500 and 3500 from "medium" policies, and those above 3500 from "expert" policies.

Fig.11(a) presents a scatter plot of the average meta-weight for each trajectory against its total reward.
In this visualization, blue points represent trajectories generated by random policies, orange points
correspond to medium policies, and red points indicate expert policies. To statistically quantify
the linear relationship between average meta-weights and total rewards, we computed the Pearson
correlation coefficient, which yielded a value of 0.954. This result demonstrates a strong positive
correlation between meta-weights and total rewards.

Fig.11(b) visualizes the mean and variance of the average meta-weights for trajectories across the
three policy groups. The results show a clear separation of meta-weights among trajectories generated
by different policy groups.

These findings suggest that meta-weights can effectively reflect the quality of the data: higher meta-
weights are associated with state-action pairs more likely generated by expert policies, whereas lower
meta-weights are linked to those generated by random policies. This is an exciting discovery, as it
provides novel insights into the functionality and interpretability of the meta-weights learned by the
meta-scoring network. This observation also aligns with the original design intent of the meta-scoring
network for distinguishing among various data quality.
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H ANALYSIS ABOUT THE TRAINING CURVES OF THE INNER AND OUTER LOOP

As shown in Fig.12, we present the training curves of the inner and outer loops on the Hopper expert
dataset. During training, the weighted actor loss in the inner loop decreases continuously, while the
Q maximization in the outer loop increases until it stabilizes. Notably, when the Q maximization in
the outer loop stabilizes, the weighted actor loss in the inner loop still tends to decrease.

This phenomenon aligns with the goal of our designed bi-level optimization framework, where we
aim to find an optimal weighted behavioral cloning policy. This policy not only aligns well with the
value function (i.e., maximizes Q) but also minimizes the distance to in-sample state-action pairs.
Therefore, the relationship between the inner and outer loops is more complementary rather than
adversarial.

Figure 12: Visualization of the inner loop and outer loop training curves. (a) illustrates the curve of
the weighted actor loss function in the inner loop with the number of updates; (b) depicts the curve of
Q maximization in the outer loop with the number of updates.
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I TOY EXAMPLE FOR THE ALIGNMENT OF VACO

Figure 13: (a) A schematic diagram of the toy example environment; (b) Visualization of the learned
Q-value function; (c) Alignment between different methods and the value function when the state
(height) is fixed at 2m; (d) Experimental results of various methods in the toy example environment.

To intuitively validate the performance improvements brought by alignment, we designed the toy
example environment shown in Fig.13(a). In this environment, a ball is projected with an initial speed
of 10 m/s from an initial height h and angle θ. To simplify the modeling, we only consider the effect
of gravity. The initial height h serves as the state input, the projection angle θ as the action, and the
final distance traveled by the ball when its height drops to zero as the reward.

For offline reinforcement learning training, we randomly sampled 500 points within the state height
range of [0, 10]. For each state, we further randomly sampled 4 points within the action angle range
of [0, π/2], resulting in a total of 2000 offline samples as the offline dataset. We trained BC, IQL,
and VACO on this dataset and tested these three methods at 100 equally spaced points within the
state height range of [0, 10]. Fig.13(d) presents the experimental results of BC, IQL, and VACO.
Comparatively, our method achieves superior performance.

In the experiments, IQL and VACO share the same value function, and Fig.13(b) visualizes the
learned value function. For an intuitive comparison, we plotted the cross-section when the state
height is fixed at 2m in Fig.13(c). The horizontal axis represents the action, while the vertical axis
represents the value function. The blue curve illustrates the relationship between actions and the
true rewards, and the orange curve represents the relationship between actions and the learned value
function. The green, red, and blue vertical lines represent the action outputs of IQL, VACO, and BC
at a state height of 2m, respectively. It can be observed that the action output by our method is closer
to the optimal point of the value curve, resulting in the highest corresponding reward.
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J MORE DISCUSSION OF VACO

min
α

Jπ(ϕ)

s.t. ϕ∗(α), θ∗ = argmin
ϕ,θ

Jw
BC(ϕ) + JQ(θ)

(10)

We can place the updates of the value network within the internal loop, allowing simultaneous
optimization of both the value and policy networks, as demonstrated in Eq.10. As mentioned in the
manuscript, since there is no intersection between the value network and either the policy network or
the meta-scoring network, introducing value network does not affect the optimization processes of
the latter two. The pseudo-code incorporating value updates is presented in Algorithm 2.

As illustrated in Eq.10, VACO can be considered a novel training framework for offline reinforcement
learning. In this framework, JQ(θ) can be substituted with appropriate value estimation loss function,
such as adopted in IQL (27) or CQL (28), and Jw

BC(ϕ) can be replaced with appropriate behavior
cloning-based policy extraction loss function, such as AWR (36). These substitutions indicate the
potential applicability of VACO in the field of offline reinforcement learning.

Algorithm 2: Value-aligned Behavior Cloning via Bi-level Optimization (VACO)
Input: Fixed offline dataset D, value network Qθ, policy network πϕ, meta-scoring network wα,

update steps K
1 for update step k = 1...K do
2 Sample a minibatch sample pairs (s, a, r, a′) from D
3 Update value θ according to IQL’s (27) TD learning
4 Fix meta-scoring α and update policy ϕ according to Eq.7
5 Fix policy ϕ and update meta-scoring α according to Eq.9
6 end
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Figure 14: Learning curves for MuJoCo tasks.
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Module Name Value

Value network Batch size 256

Learning rate 3e-4

Number of layers 3

Update steps 1e6

Hidden dim 256

Policy network Batch size 256

Learning rate 3e-4

Number of layers 3

Update steps 1e6

Hidden dim 256

Meta-scoring network Learning rate 3e-5

Number of layers 3

Hidden dim 256

Common Discount 0.99

Activation function ReLU

Optimizer Adam

Adam epsilon 1e-5

Weight decay 1e-6

σ of noise 1→ 0

Table 7: Main hyperparameters of VACO. All experiments were run on a single Nvidia RTX 3090
GPU with Python 3.7 and Torch 1.12.0. Refer to our sample code for full implementation details.
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