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Abstract001

Large Vision-Language Models (LVLMs) have002
made significant progress in the field of video003
understanding recently. However, current004
benchmarks uniformly lean on text prompts for005
evaluation, which often necessitate complex006
referential language and fail to provide precise007
spatial and temporal references. This limita-008
tion diminishes the experience and efficiency of009
human-model interaction. To address this lim-010
itation, we propose the Video Visual Prompt011
Benchmark (V2P-Bench), a comprehensive012
benchmark specifically designed to evaluate013
LVLMs’ video understanding capabilities in014
multimodal human-model interaction scenar-015
ios. V2P-Bench includes 980 unique videos016
and 1,172 QA pairs, covering 5 main tasks and017
12 dimensions, facilitating instance-level fine-018
grained understanding aligned with human cog-019
nition. Benchmarking results reveal that even020
the most powerful models perform poorly on021
V2P-Bench (65.4% for GPT-4o and 67.9% for022
Gemini-1.5-Pro), significantly lower than the023
human experts’ 88.3%, highlighting the cur-024
rent shortcomings of LVLMs in understanding025
video visual prompts. We hope V2P-Bench will026
serve as a foundation for advancing multimodal027
human-model interaction and video understand-028
ing evaluation.029

1 Introduction030

In recent years, Large Vision-Language Models031

(LVLMs) have made significant progress in the032

field of video understanding, demonstrating pow-033

erful capabilities video captioning and question034

answering tasks, exemplified by recent Gemini-1.5-035

Pro (Team et al., 2024) and LLaVA-Video (Zhang036

et al., 2024). Correspondingly, numerous bench-037

marks have emerged to evaluate these models, cov-038

ering a diverse range of videos and tasks (Li et al.,039

2024c; Mangalam et al., 2023; Fu et al., 2024),040

thereby providing robust support for the assessment041

of LVLMs from various perspectives.042

However, most benchmarks utilize text prompts 043

for human-model interaction, which inevitably in- 044

troduces certain inherent limitations. As shown in 045

Figure 1, text prompts usually fail to provide pre- 046

cise spatial and temporal references, resulting in 047

difficulties when assessing the ability of LVLMs 048

to understand specific areas or moments in videos, 049

particularly in complex multi-object scenarios. For 050

users, a significant amount of referential language 051

is required to specify targets, which reduces the 052

efficiency of human-model interaction. For the 053

model, it first needs to comprehend the user’s ref- 054

erential language, making it prone to confusion at 055

this initial step. 056

In contrast, as a frontier approach to multimodal 057

human-model interaction, visual prompts offer a 058

simpler and more precise way, facilitating model 059

understanding and aligning more closely with hu- 060

man intuitive cognition. Some previous efforts 061

(Cai et al., 2024; Yang et al., 2023; Lin et al., 062

2024) conduct initial explorations in image visual 063

prompt areas, demonstrating the superiority of vi- 064

sual prompts over texts. However, existing stud- 065

ies lack research on video modality, limiting the 066

further development of multimodal human-model 067

interaction. 068

To bridge this gap, we propose V2P-Bench, a 069

comprehensive benchmark specifically designed 070

to evaluate the video understanding capabilities of 071

LVLMs in human-model interaction scenarios. As 072

illustrated in Figure 2, V2P-Bench encompasses 073

5 main tasks, 12 categories, 20 video types and 074

various types of visual prompts. Each query in- 075

cludes at least one visual prompt annotation, fo- 076

cusing on fine-grained spatial and temporal under- 077

standing consistent with human cognition, aiming 078

to comprehensively assess the video understanding 079

abilities of LVLMs. Furthermore, V2P-Bench con- 080

sists of 980 videos and 1,172 question-answer(QA) 081

pairs, with video durations ranging from 5 seconds 082

to 2 hours. All videos are meticulously curated by 083
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Figure 1: (a)(b) shows the comparisons of pure text prompting and visual prompting for video understanding. Simply
overlaying visual prompts on video frames can enhance the user experience in Human-Model Interaction(HMI)
while simultaneously reducing the difficulty for LVLMs to understand user intentions, particularly in complex
environments where referential ambiguity is prevalent. (c) shows an example of V2P-Bench. The ground-truth
answer is highlighted in green. Full video could be found at youtu.be/lDlA7cfNk8A.

human annotators to ensure high-quality QA pairs084

and accurate visual prompts.085

In our experiments, we first execute the blind-086

ing answering evaluation on V2P-Bench to demon-087

strate that our benchmark avoids extensive prior088

knowledge of modern LVLMs. Subsequently, we089

conduct a comprehensive evaluation on 16 LVLMs,090

including 4 closed-source models and 12 open-091

source models. Additionally, our assessment in-092

corporates scores from human experts. The eval-093

uation results indicate that even the advanced094

closed-source models perform poorly on our bench-095

mark (65.4% for GPT-4o (Hurst et al., 2024) and096

67.9% for Gemini-1.5-Pro (Team et al., 2024), sig-097

nificantly lower than the human experts’ score098

of 88.3%, revealing the current shortcomings of099

LVLMs in understanding video visual prompts. In100

a nutshell, our contributions are as follows:101

• V2P-Bench has been meticulously designed,102

comprising 12 categories covering a wide103

range of video types and diverse visual104

prompts. Collection and annotation process105

undergoes rigorous human validation, aiming106

to provide the community with a high-quality107

benchmark for multi-model human-model in-108

teraction.109

• We conduct extensive experiments and sum-110

marize our observations and insights, which111

demonstrate the current models’ shortcomings112

in understanding video visual prompts and in-113

teracting with human.114

• V2P-Bench pioneeringly applies visual 115

prompts in video understanding evaluation 116

for multimodal human-model interaction, 117

addressing critical limitations in existing 118

text-based evaluation frameworks. Through 119

V2P-Bench, We seek to advance the field 120

of video understanding evaluation and 121

establish a foundation for more intuitive 122

human-computer interaction. 123

2 Related Work 124

2.1 LVLMs for Video Understanding 125

The rapid development of image-based LVLMs 126

(Liu et al., 2024b, 2023, 2024a; Li et al., 2024a; 127

Chen et al., 2024a,e; Bai et al., 2023) has sig- 128

nificantly enhanced the potential of video under- 129

standing and question answering tasks, injecting 130

new vitality into the field of artificial intelligence. 131

VideoChat (Li et al., 2023b) and Video-ChatGPT 132

(Maaz et al., 2023) are preliminary attempts in 133

the realm of video understanding. Notable re- 134

cent works include CogVLM2-Video (Hong et al., 135

2024), InternVL2 (Chen et al., 2024e) and LLaVA- 136

Video (Zhang et al., 2024), which treat videos as 137

sequences of images and leverage the powerful im- 138

age comprehension capabilities to process video 139

modality. Furthermore, the high computational and 140

memory demands required for handling high frame 141

rates and long videos have spurred advancements in 142

video compression technologies. For instance, In- 143

ternVideo2 (Wang et al., 2024c) and Video-LLaMA 144
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Figure 2: (Left) Datasets and categories. Our dataset is derived from 12 datasets and contains 20 restructured
categories. (Right) Performance radar chart. We report the performance of different models on V2P-Bench by
dimension. SOTA for each dimension is given.

(Zhang et al., 2023) utilize QFormer (Li et al.,145

2023a) for efficient video feature extraction, while146

PLLaVA (Xu et al., 2024) reduces computational147

load through adaptive pooling. Despite promising148

results, current video LLMs primarily rely on text149

prompts and still face challenges in fine-grained150

spatial and temporal understanding when given vi-151

sual prompts as input.152

2.2 Video Understanding Benchmarks153

Traditional video understanding benchmarks, such154

as MSRVTT-QA (Xu et al., 2017), ActivityNet-155

QA (Yu et al., 2019), and NExT-QA (Xiao et al.,156

2021), focus on basic action recognition and video157

question answering, lack of sufficient detail and158

narrative to perform a fine-grained evaluation on159

LVLMs. Recently, more benchmarks have been160

proposed. MMBench (Liu et al., 2024c), SEED-161

Bench (Li et al., 2024b), and MVBench (Li et al.,162

2024c) mainly concentrate on short video clips for163

evaluation. EgoSchema (Mangalam et al., 2023)164

and MovieQA (Tapaswi et al., 2016) provide in-165

sights into narrative and thematic understanding.166

LongVideoBench (Wu et al., 2024), Video-MME167

(Fu et al., 2024), and LVBench (Wang et al., 2024b)168

offer longer videos and a broader variety of tasks.169

Additionally, recent works like INST-IT (Peng170

et al., 2024) and VideoRefer (Yuan et al., 2024)171

have introduced instance-level video question an-172

swering benchmarks. However, constrained by in-173

sufficiently robust and comprehensive, they still fail174

to adequately simulate real-world interactions. To175

address this limitation, we introduce V2P-Bench, 176

allowing for a comprehensive evaluation of LVLMs 177

that simulates multimodal human-model interac- 178

tion in realistic settings. 179

2.3 Visual Prompt as a User-Friendly Solution 180

Compared to text prompts, visual prompts offer a 181

simple and effective means of facilitating interac- 182

tion between users and models. Visual prompts 183

have been widely utilized in image understanding. 184

ViP-LLaVA (Cai et al., 2024) enhances the abil- 185

ity of LVLMs to comprehend local image regions 186

by overlaying arbitrary visual prompts on images. 187

Draw-and-Understand (Lin et al., 2024) employs 188

a two-stage training approach to improve perfor- 189

mance in pixel-level tasks. Set-of-Mark (Yang 190

et al., 2023) introduces a novel visual prompting 191

method to enhance the performance of LVLMs in 192

visual localization tasks. However, research on 193

visual prompts in the context of video remains lim- 194

ited. INST-IT (Peng et al., 2024) introduces instruc- 195

tion tuning with visual prompts to enhance instance- 196

level understanding in LVLMs. VideoRefer Suite 197

(Yuan et al., 2024) creates a large instance-level 198

video instruction dataset to assist LVLMs in under- 199

standing spatiotemporal information in videos. 200

3 V2P Bench 201

Table 1 compares the key difference of V2P-Bench 202

with previous benchmarks. The first two blocks list 203

traditional pure text video understanding bench- 204

marks, which primarily understand videos at a 205
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Figure 3: Distribution of QA dimensions and video
durations. V2P-Bench encompasses 5 main tasks, 12
dimensions and covers a wide range of video lengths,
enabling an comprehensive assessment of LVLMs.

Figure 4: Various visual prompt types. We don’t con-
sider mask as it would significantly obscure the features
of the target, even with a small alpha value (e.g. 0.2).

holistic level and lack instance-level comprehen-206

sion. Instance-level understanding is crucial as it207

focuses on the specific elements of greatest interest208

to us, requiring a more nuanced understanding and209

consistency.210

As shown in the third block, although INST-IT211

Bench (Peng et al., 2024) and VideoRefer BenchQ212

(Yuan et al., 2024) use visual prompts for question-213

answering, their benchmarks are completely de-214

rived from VIS datasets (Yang et al., 2019; Pont-215

Tuset et al., 2017; Ding et al., 2023), which is in-216

sufficiently robust and comprehensive, resulting in:217

1) Shorter video durations( 14.2s and 13.8s); 2)218

Single continuous shots; 3) Limited video sources,219

primarily comprising natural scenes; 4) Objects of220

interest may not be suitable for question-answering.221

To address this limitation, we propose V2P-Bench,222

a comprehensive benchmark specifically designed223

to evaluate the video understanding capabilities of224

LVLMs in human-model interaction scenarios.225

3.1 Task Definition 226

To facilitate fine-grained evaluation of LVLMs 227

from various perspectives, we categorize the ques- 228

tions according to dimensions. Our dimension de- 229

sign strives to ensure both comprehensiveness and 230

orthogonality, and ultimately includes five main 231

tasks and 12 dimensions. Definitions for tasks and 232

dimensions are as follows: 233

• Perception is a fundamental task that tests 234

whether a model can understand visual prompts. 235

This task includes: 1) Object Attribute (OA); 2) 236

Human Attribute (HA); 3) Object Direction (OD); 237

4) Feature Mapping (FM). 238

• Temporal focuses on understanding and pro- 239

cessing the chronological order of events in the 240

video. This task includes: 1) Forward Temporal 241

(FT); 2) Reverse Temporal (RT); 3) Action Se- 242

quence (AS). 243

• Reasoning is an extension of the percep- 244

tion task, requiring logical inference and judgment 245

based on given information to derive new conclu- 246

sions or answers. This task includes: 1) Causal 247

Relationship (CR); 2) Plot Understanding (PU); 3) 248

Counterfactual Inference (CI). 249

• Spatial focuses on the spatial relationships of 250

the visual prompt targets. Using visual prompts to 251

indicate spatial positions directly avoids the ambi- 252

guity and referential difficulties often encountered 253

with text-based prompts, making interactions be- 254

tween users and models more intuitive. This task 255

includes Spatial Relationship (SR). 256

• Counting focuses on the model’s accurate 257

identification and counting of the number of objects 258

or events in the video. The model’s objective is 259

to perform effective quantity assessment based on 260

the given visual prompt target. This task includes 261

General Counting (GC). 262

Detailed elaborations and examples of each di- 263

mension are provided in Appendix A and B. 264

3.2 Dataset Construction 265

The construction process consists of three steps: 266

video collection, QA and visual prompt annotation, 267

post processing. Details of each step are as follows. 268

3.2.1 Video Collection 269

To create our dataset, we start from existing video 270

benchmarks, as they already have a wide distribu- 271

tion of durations and diverse video types. We care- 272

fully select 12 benchmarks to construct our dataset. 273

We follow Video-MME (Fu et al., 2024) and cate- 274

gorize the video durations into short, medium, and 275
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Table 1: Comparison of different datasets. Answer Type indicates whether the QA pair is open-ended(OE) or
multiple-choice(MC). Multi Level represents whether the videos cover multiple duration levels. Open Domain
indicates whether the video source is diversified. Visual Prompt represents whether the video contains visual
prompt annotations.

Benchmarks Videos Samples Tasks Avg duration Annotation Answer Type Multi Level Open Domain Visual Prompt

MSVD-QA(Xu et al., 2017) 504 13157 1 9.8s Auto OE ✗ ✗ ✗

MSRVTT-QA(Xu et al., 2017) 2990 72821 1 15.2s Auto OE ✗ ✗ ✗

ActivityNet-QA(Yu et al., 2019) 800 8000 3 111.4s Manual OE ✗ ✗ ✗

NExT-QA(Xiao et al., 2021) 1000 8564 3 39.5s Manual MC ✗ ✗ ✗

Perception Test(Patraucean et al., 2024) 11600 44000 4 23.0s Auto&Manual MC ✗ ✗ ✗

MLVU(Zhou et al., 2024) 1334 2593 9 ˜12min Auto&Manual OE&MC ✓ ✓ ✗

VCGBench-Diverse(Maaz et al., 2024) 877 4354 6 217.0s Auto&Manual OE ✗ ✓ ✗

MVBench(Li et al., 2024c) 3641 4000 20 16.0s Auto MC ✗ ✓ ✗

HourVideo(Chandrasegaran et al., 2024) 500 12976 18 45.7min Auto&Manual MC ✗ ✗ ✗

LVBench(Wang et al., 2024b) 103 1549 6 68.4min Manual MC ✗ ✓ ✗

EgoSchema(Mangalam et al., 2023) 5063 5063 1 180.0s Auto MC ✗ ✗ ✗

Video-MME(Fu et al., 2024) 900 2700 12 17.0min Manual MC ✓ ✓ ✗

INST-IT Bench(Peng et al., 2024) 206 1000 1 14.2s Auto&Manual OE&MC ✗ ✗ ✓

VideoRefer BenchQ(Yuan et al., 2024) 198 1000 5 13.8s Manual MC ✗ ✗ ✓

V2P-Bench(ours) 980 1172 12 19.0min Manual MC ✓ ✓ ✓

long videos. Additionally, we reclassify all the276

videos, resulting in 20 video categories, as shown277

in Figure 2(left). Our final dataset covers multiple278

video domains while maintaining a relative balance279

in video lengths.280

3.2.2 QA and Visual Prompt Annotation281

After completing the collection process, we con-282

duct the annotation of QA pairs and visual prompts283

to evaluate the capabilities of LVLMs in video un-284

derstanding with visual prompts. The annotation285

work is carried out by researchers proficient in En-286

glish. To ensure data quality, we provide thorough287

training for the annotators and conduct pilot anno-288

tations to assess their annotation capabilities.289

While annotating the QA pairs, annotators are290

also required to perform visual prompt annotations.291

To align with real-world distributions, we adopt292

a fully manual approach for annotating the video293

frames. We follow ViP-LLaVA (Cai et al., 2024)294

and predefined various types of visual prompts as295

follows: rectangle, mask contour, ellipse, triangle,296

scribble, point, arrow and SoM, just as shown in297

Figure 4. Additionally, annotators are allowed to298

exercise their creativity by using any type of vi-299

sual prompts, not limited to the predefined types300

mentioned earlier.301

3.2.3 Post Processing302

To ensure the quality of the dataset, we conduct a303

rigorous review of the annotated data after comple-304

tion, including both rule-based and manual review305

processes.306

Blind LLMs Filtering. Inspired by MMStar (Chen307

et al., 2024b), we perform plain text filtering on308

the QA pairs to ensure that questions could only be309

answered correctly by viewing the videos. Specif- 310

ically, we provide only the pure text QA pairs to 311

the most powerful closed-source models GPT-4o 312

(Hurst et al., 2024) and Gemini-1.5-pro (Team et al., 313

2024). We set the sampling temperature to 0.2 314

and conduct two rounds of inference, then exclude 315

samples for which both rounds provided correct 316

answers. 317

Visual Prompt Filtering. Secondly, we conduct 318

visual prompt filtering on the QA pairs to exclude 319

those questions that could be answered correctly 320

without viewing the visual prompts. Specifically, 321

we provide averaged 8 frames sampled from the 322

video and the QA pairs to GPT-4o (Hurst et al., 323

2024), without visual prompt frames. We maintain 324

the sampling temperature at 0.2 and perform two 325

rounds of inference, excluding samples for which 326

both rounds yielded correct answers. 327

Manual and Rule-based Review. After the pre- 328

vious two steps, we perform a rule-based check 329

and manual review of the remaining data. We ex- 330

clude samples where the length disparity between 331

different options was too significant. Addition- 332

ally, we shuffle the order of multiple-choice op- 333

tions to ensure a uniform distribution of answer 334

choices, thereby eliminating potential biases of dif- 335

ferent models toward specific options. The final 336

balanced proportions of the four options are 28.0%, 337

23.9%, 25.0% and 23.1%. Through this rigorous 338

dataset construction process, we strive to provide 339

a high-quality, diverse, and balanced dataset that 340

will benefit researchers in the field of multimodal 341

human-model interaction. 342

5



3.3 Benchmark Statistics343

In Table 1, we have already presented the main344

characteristics of V2P-Bench. Overall, the pro-345

posed V2P-Bench defines 5 main tasks and 12 di-346

mensions, encompassing 980 unique videos and347

1,172 QA pairs sourced from 12 existing video348

datasets, covering 20 video categories. The aver-349

age duration of the videos is 19.0 minutes, which350

represents a wide range of video lengths, differing351

from most benchmarks. The format of the QA pairs352

is multiple-choice with 4 options. Below we intro-353

duce a more detailed analysis of our benchmark:354

• Wide distribution of durations. Figure355

3(down) shows the detailed duration distributions356

on V2P-Bench. We follow Video-MME (Fu et al.,357

2024) in categorizing video lengths into short (< 3358

minutes), medium (3-30 minutes), and long videos359

(30-120 minutes), with respective proportions of360

46.8%, 22.0%, and 31.2%.361

• Diverse video types and comprehensive362

tasks. Figure 2(left) shows various datasets and363

categories on V2P-Bench. We select videos from364

12 existing video benchmarks, resulting in a total365

of 20 reorganized categories. Figure 3(up) shows366

the detailed distribution of each dimension.367

• Diverse Targets and Visual Prompts. Figure368

4 shows various targets and visual prompts on V2P-369

Bench, benefiting from diverse video sources.370

• Comprehensive Shot Types. V2P-Bench371

includes both continuous and transition videos, the372

latter of which significantly increases the difficulty373

of reference, implying that the model must perform374

temporal and spatial grounding in different scenes.375

4 Experiments376

4.1 Experiment Setup377

Evaluation Models. We evaluate the performance378

of 12 open-source models that support multi-image379

or video input. The model list is shown in the380

third block of Table 2. We sample a fixed num-381

ber of frames from the original videos at regular382

intervals to accommodate the context length of383

the models. Specifically, we sample 16 frames384

for LLaVA-NeXT (Liu et al., 2024a), PLLaVA385

(Xu et al., 2024), ShareGPT4Video (Chen et al.,386

2024c), MiniCPM-V 2.6 (Yao et al., 2024), In-387

ternVL2 (Chen et al., 2024e), InternVL2.5 (Chen388

et al., 2024d) and Qwen2-VL (Wang et al., 2024a),389

32 frames for VideoLLaMA2 (Cheng et al., 2024),390

64 frames for LLaVA-OneVision (Li et al., 2024a),391

mPLUG-Owl3 (Ye et al., 2024), LLaVA-Video392

(Zhang et al., 2024) and LLaVA-NeXT-INST-IT 393

(Peng et al., 2024). All models are evaluated on 394

8 V100 GPUs. Additionally, we conduct exten- 395

sive evaluations on 4 closed-source models: GPT- 396

4o (Hurst et al., 2024), GPT-4o-mini (Hurst et al., 397

2024), Gemini-1.5-Pro (Team et al., 2024), and 398

Gemini-1.5-Flash (Team et al., 2024). For GPT 399

models, we average 64 frames from the original 400

videos; for Gemini-1.5 models, the raw videos were 401

uploaded directly. 402

Human and Blind Answering. For human eval- 403

uations, we divide all the questions equally and 404

assign them to three human experts. To prevent 405

any data leakage, we ensure that the human experts 406

participating in the test have never been involved 407

in the annotation process. Furthermore, consider- 408

ing that LLMs possess extensive prior knowledge, 409

enabling them to answer certain questions without 410

analyzing the video, We report the performance of 411

4 models: GPT-4o (Hurst et al., 2024), Gemini-1.5- 412

Pro (Team et al., 2024), Qwen2-VL (Wang et al., 413

2024a), and InternVL2.5 (Chen et al., 2024d) on 414

the blind answering task. 415

4.2 Results on V2P-Bench 416

Overall Results. Table 2 and Table 3 presents 417

the evaluation results on V2P-Bench across dimen- 418

sions and durations, including human performance, 419

blind answering task and 16 models, illustrating 420

the performance of LVLMs in understanding video 421

visual prompts. 422

As shown in the top of Table 2, human experts 423

reach 88.3%, reporting the upper limit of human 424

performance on V2P-Bench. For the blind an- 425

swering task, results are shown in the first block 426

of Figure 2. GPT-4o and Gemini-1.5-Pro reach 427

20.7% and 13.7%, respectively, as they decline to 428

answer 38.9% and 66.7% of the questions,which 429

indicates that our benchmark necessitates access to 430

video content for effective performance. Qwen2- 431

VL and InternVL2.5, adhere strictly to the instruc- 432

tions, even though they could not answer the ques- 433

tions solely through pure text. Consequently, they 434

achieve 30.8% and 27.9%, respectively. 435

During the evaluation process, we observe that 436

certain models (Cheng et al., 2024; Chen et al., 437

2024c) cannot generate only options, even when 438

provided with carefully designed prompts. Vide- 439

oLLaMA2 tends to repeat the entire set of options, 440

while ShareGPT4Video consistently begins with 441

"Answer:". We specifically account for these out- 442

put characteristics in our analysis of these models. 443
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Table 2: Evaluation results on V2P-Bench across dimensions. We report results for 12 open-source models, 4
closed-source models, 4 blind LLMs and human performance on V2P-Bench across dimensions. Gemini-1.5-Pro
achieve optimal performance at 67.9%, remaining a significant gap to human performance. The best results are
bold and the second-best are underlined.

Method Size OA HA OD FM CR PU CI FT RT AS SR GC Avg
Human Performance - 92.2 91.7 84.8 89.5 85.7 83.2 91.9 87.4 84.1 75.4 92.0 95.8 88.3
Pure Text as Input
GPT-4o(Hurst et al., 2024) - 20.2 19.4 17.4 14.0 17.9 32.1 21.6 23.5 15.9 19.3 16.0 17.9 20.7
Gemini-1.5-pro(Team et al., 2024) - 10.1 14.6 2.2 3.5 24.1 13.9 29.7 16.0 20.5 12.3 14.0 5.3 13.7
Qwen2-VL(Wang et al., 2024a) 7B 26.4 31.8 31.5 28.1 33.9 32.9 28.4 33.6 39.8 24.6 25.0 27.4 30.8
InternVL2.5(Chen et al., 2024d) 8B 30.2 26.9 21.7 21.1 30.4 32.9 27.0 29.4 27.2 22.8 24.0 27.4 27.9
Closed-source Models
GPT-4o(Hurst et al., 2024) - 76.6 68.9 41.3 60.8 67.0 73.3 67.6 68.1 70.5 50.0 54.0 48.4 65.4
GPT-4o-Mini(Hurst et al., 2024) - 68.8 61.0 30.4 49.0 65.1 63.6 32.4 48.3 56.8 41.1 62.0 45.3 56.3
Gemini-1.5-Pro(Team et al., 2024) - 70.9 74.8 34.8 58.8 80.7 76.8 48.6 70.4 70.5 46.4 70.0 51.6 67.9
Gemini-1.5-Flash(Team et al., 2024) - 61.2 64.4 28.3 52.6 72.3 64.2 37.8 58.0 54.5 35.1 56.0 52.1 57.3
General Open-source Models
LLaVA-NeXT(Liu et al., 2024a) 7B 56.6 55.6 34.8 52.5 43.0 48.6 31.6 42.6 42.2 28.1 42.0 30.5 46.0
LLaVA-NeXT-INST-IT(Peng et al., 2024) 7B 57.4 58.4 26.1 42.4 43.0 49.2 31.6 49.2 42.2 26.3 42.0 27.4 46.3
PLLaVA(Xu et al., 2024) 7B 45.7 48.2 21.7 45.6 39.3 54.9 24.3 47.1 45.5 28.1 40.0 28.4 43.0
LLaVA-OV(Li et al., 2024a) 7B 59.7 54.5 32.6 36.8 46.4 59.0 35.1 53.8 59.1 36.8 50.0 32.6 49.9
VideoLLaMA2(Cheng et al., 2024) 7B 47.3 45.8 26.1 45.6 41.1 52.0 35.1 44.5 50.0 29.8 44.0 32.6 43.4
ShareGPT4Video(Chen et al., 2024c) 8B 40.3 43.1 21.7 45.6 40.2 45.7 51.4 43.7 40.9 24.6 46.0 30.5 40.6
mPLUG-Owl3(Ye et al., 2024) 7B 57.4 59.7 39.1 43.9 60.7 58.4 27.0 61.3 75.0 38.6 50.0 37.9 54.3
LLaVA-Video(Zhang et al., 2024) 7B 64.3 54.9 32.6 56.1 50.0 59.5 48.6 47.9 54.5 49.1 52.0 36.8 52.6
MiniCPM-V 2.6(Yao et al., 2024) 8B 50.4 51.8 17.4 49.1 53.6 61.8 37.8 49.6 50.0 31.6 48.0 27.4 48.0
InternVL2(Chen et al., 2024e) 8B 48.1 47.8 23.9 35.1 42.9 51.4 59.5 42.0 36.4 28.1 46.0 24.2 42.7
InternVL2.5(Chen et al., 2024d) 8B 50.4 48.2 26.1 57.9 37.5 47.4 51.4 40.3 38.6 36.8 30.0 31.6 43.2
Qwen2-VL(Wang et al., 2024a) 7B 49.6 54.9 32.6 47.4 58.0 57.2 70.3 54.6 52.3 28.1 48.0 32.6 50.7

Table 3: Evaluation results on V2P-Bench across
durations. The best results are bold and the second-
best are underlined.

Method Size Short Medium Long Avg
Human Performance - 91.6 87.3 84.0 88.3
Pure Text as Input
GPT-4o(Hurst et al., 2024) - 18.2 31.6 18.1 20.7
Gemini-1.5-pro(Team et al., 2024) - 12.0 19.6 12.7 13.7
Qwen2-VL(Wang et al., 2024a) 7B 31.5 38.6 24.7 30.8
InternVL2.5(Chen et al., 2024d) 8B 26.0 35.6 26.2 27.9
Closed Models
GPT-4o(Hurst et al., 2024) - 67.3 70.8 59.3 65.4
GPT-4o-mini(Hurst et al., 2024) - 56.2 65.3 51.1 56.3
Gemini-1.5-pro(Team et al., 2024) - 65.3 82.3 64.1 67.9
Gemini-1.5-Flash(Team et al., 2024) - 55.1 69.8 52.4 57.3
General Open Models
LLaVA-NeXT(Liu et al., 2024a) 7B 47.0 47.1 43.8 46.0
LLaVA-NeXT-INST-IT(Peng et al., 2024) 7B 48.6 51.1 39.5 46.3
PLLaVA(Xu et al., 2024) 7B 43.8 48.9 38.1 43.0
LLaVA-OV(Li et al., 2024a) 7B 51.6 57.3 42.7 49.9
VideoLLaMA2(Cheng et al., 2024) 7B 46.8 48.9 34.8 43.4
ShareGPT4Video(Chen et al., 2024c) 8B 45.4 41.8 32.4 40.6
mPLUG-Owl3(Ye et al., 2024) 7B 56.1 65.8 44.3 54.3
LLaVA-Video(Zhang et al., 2024) 7B 57.5 59.1 40.8 52.6
MiniCPM-V 2.6(Yao et al., 2024) 8B 47.5 56.9 43.5 48.0
InternVL2(Chen et al., 2024e) 8B 44.0 50.2 36.2 42.7
InternVL2.5(Chen et al., 2024d) 8B 46.2 43.1 38.4 43.2
Qwen2-VL(Wang et al., 2024a) 7B 53.3 54.6 44.0 50.7

Below we summarize our key findings as follows:444

Expert models demonstrate mediocre perfor-445

mance. LLaVA-NeXT-INST-IT fine-tunes on a446

visual prompt dataset derived from LLaVA-NeXT.447

However, it achieves only a marginal improvement448

of 0.3% over LLaVA-NeXT’s 46.0%, suggesting449

that the fine-tuning process is nearly ineffective.450

We attribute this to the model’s inadequate robust-451

ness and comprehensiveness in video sources, as452

well as its reliance on a single type of visual prompt453

(SoM only), which constrains the model’s general-454

ization capabilities.455

Even the most powerful closed-source models 456

perform poorly on our benchmark. In the evalua- 457

tion results, closed-source models GPT-4o (Hurst 458

et al., 2024) and Gemini-1.5-Pro (Team et al., 2024) 459

achieve only 65.4% and 67.0%, respectively, re- 460

maining a significant gap compared to human ex- 461

perts, which stand at 88.3%. 462

Some powerful LVLMs struggle on our bench- 463

mark. Some of the state-of-the-art LVLMs, such 464

as the InternVL series, perform poorly on our V2P- 465

Bench, with InternVL2 (Chen et al., 2024e) and 466

InternVL2.5 (Chen et al., 2024d) achieving only 467

42.7% and 43.2%, respectively. We speculate that 468

this may be due to the InternVL series not being 469

trained on datasets relevant to visual prompts or 470

their inability to adapt to the data organization for- 471

mat that grounds temporal and spatial cues from 472

visual prompt frames to the original video. 473

General models can comprehend visual 474

prompts without prior training. Excluding closed- 475

source models, all open-source models, except 476

for LLaVA-NeXT-INST-IT, have not undergone 477

specialized training for visual prompts. How- 478

ever, experimental results indicate that they per- 479

form reasonably well on V2P-Bench, suggest- 480

ing that general video understanding capabili- 481

ties can be partially transferred to understanding 482

video visual prompts. The strongest open-source 483
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model mPLUG-Owl3 achieves 54.3%, slightly be-484

hind GPT-4o-Mini and Gemini-1.5-Flash; while485

the weakest model ShareGPT4Video also attains486

40.6%, which is 15.6% higher than the baseline of487

random guessing.488

Some dimensions are quite challenging. V2P-489

Bench requires models to not only understand490

visual prompts but to make reasoned judgments491

based on the video and accompanying questions.492

The results indicate that models underperform493

in specific areas, such as Object Direction, Gen-494

eral Counting, and Action Sequence, with optimal495

scores of only 41.3%, 52.1%, and 50.0%, respec-496

tively. These tasks are relatively abstract and place497

high demands on the models. Additionally, sev-498

eral open-source models achieve performance lev-499

els that approach or even surpass those of closed-500

source models, highlighting the considerable po-501

tential of open-source approaches.502

Performance on short videos is unexpectedly503

poor. In Table 3, we categorize all videos into504

short, medium, and long durations and report the505

models’ performance across different lengths. We506

observe that all closed-source models and some507

open-source models perform worse on short than508

on medium-length videos. This can be attributed to509

the fact that over half of the videos in short videos510

originates from Perception Test (Patraucean et al.,511

2024), MVBench (Li et al., 2024c), and TVBench512

(Cores et al., 2024), which feature numerous chal-513

lenging abstract questions related to sequences and514

frequencies. Long videos generally exhibit a con-515

sistent trend, with all models showing lower perfor-516

mance on long videos compared to both short and517

medium-length videos.518

4.3 Extra Findings519

Due to the specificity of visual prompt frames, we520

conduct an extra experiment on different data for-521

mats, as there is currently no research on it. Based522

on the different positions of the visual prompt523

frames, data can be organized as Retrieval and524

Needle. Retrieval refers to the sequential input of525

the original video, questions, and visual prompt526

frames; while Needle refers to embedding the vi-527

sual prompt frames into the video. We annotate528

265 timestamped data entries, and replace the vi-529

sual prompt frames with their nearest neighbor-530

ing frames based on the timestamps during pre-531

processing process, thus ensuring the presence of532

the visual prompt frames.533

We conduct evaluations on GPT-4o and Gemini-534

Figure 5: Results on two data formats. Retrieval refers
to the sequential input of the original video, questions,
and visual prompt frames; Needle refers to embedding
the visual prompt frames into the video.

1.5-Pro. As shown in Figure 5, both models exhibit 535

slightly better performance in the Retrieval format 536

compared to Needle format. Considering model 537

performance and convenience of dataset release 538

process, we opt for Retrieval format to construct 539

V2P-Bench. 540

5 Conclusion 541

In this study, we introduce V2P-Bench, a com- 542

prehensive benchmark to evaluate the video un- 543

derstanding capabilities of LVLMs utilizing vi- 544

sual prompts in human-model interaction scenarios. 545

Our dataset defines 5 main tasks and 12 dimen- 546

sions, contains 980 unique videos, 1172 QA pairs, 547

covering 20 video categories and a diverse range of 548

videos. We conduct extensive experiments on V2P- 549

Bench with 16 models, including 4 closed-source 550

models and 12 open-source models. The experi- 551

mental results indicate that even the most power- 552

ful model Gemini-1.5-Pro achieves only 67.9%, in 553

stark contrast to the 88.3% demonstrated by human 554

experts, highlighting a significant disparity. We aim 555

to establish the V2P-Bench to advance the develop- 556

ment of LVLMs in the field of video understanding 557

and multimodal human-model interaction. 558
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Limitations559

Although our V2P-Bench comprehensively evalu-560

ates the capabilities of LVLMs in video-language561

understanding with visual prompts for multimodal562

human-model interaction, it only focuses on vi-563

sual and textual inputs, lacking audio input, and564

supports evaluations only on offline videos, which565

leaves a gap compared to the ultimate form of566

multimodal human-model interaction in real world.567

We plan to develop a fully multimodal real-time568

human-model interaction benchmark in the future.569

References570

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,571
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,572
and Jingren Zhou. 2023. Qwen-vl: A frontier large573
vision-language model with versatile abilities. arXiv574
preprint arXiv:2308.12966.575

Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gre-576
gory P Meyer, Yuning Chai, Dennis Park, and577
Yong Jae Lee. 2024. Vip-llava: Making large multi-578
modal models understand arbitrary visual prompts.579
In Proceedings of the IEEE/CVF Conference on Com-580
puter Vision and Pattern Recognition, pages 12914–581
12923.582

Keshigeyan Chandrasegaran, Agrim Gupta, Lea M583
Hadzic, Taran Kota, Jimming He, Cristóbal Eyza-584
guirre, Zane Durante, Manling Li, Jiajun Wu, and585
Li Fei-Fei. 2024. Hourvideo: 1-hour video-language586
understanding. arXiv preprint arXiv:2411.04998.587

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Con-588
ghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.589
2024a. Sharegpt4v: Improving large multi-modal590
models with better captions. In European Confer-591
ence on Computer Vision, pages 370–387. Springer.592

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang593
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,594
Yu Qiao, Dahua Lin, et al. 2024b. Are we on the595
right way for evaluating large vision-language mod-596
els? arXiv preprint arXiv:2403.20330.597

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan598
Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,599
Bin Lin, Zhenyu Tang, et al. 2024c. Sharegpt4video:600
Improving video understanding and generation with601
better captions. arXiv preprint arXiv:2406.04325.602

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,603
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye,604
Hao Tian, Zhaoyang Liu, et al. 2024d. Expanding605
performance boundaries of open-source multimodal606
models with model, data, and test-time scaling. arXiv607
preprint arXiv:2412.05271.608

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo609
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,610

Xizhou Zhu, Lewei Lu, et al. 2024e. Internvl: Scal- 611
ing up vision foundation models and aligning for 612
generic visual-linguistic tasks. In Proceedings of 613
the IEEE/CVF Conference on Computer Vision and 614
Pattern Recognition, pages 24185–24198. 615

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin 616
Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang, 617
Ziyang Luo, Deli Zhao, et al. 2024. Videollama 618
2: Advancing spatial-temporal modeling and au- 619
dio understanding in video-llms. arXiv preprint 620
arXiv:2406.07476. 621

Daniel Cores, Michael Dorkenwald, Manuel Mucientes, 622
Cees GM Snoek, and Yuki M Asano. 2024. Tvbench: 623
Redesigning video-language evaluation. arXiv 624
preprint arXiv:2410.07752. 625

Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, 626
and Chen Change Loy. 2023. Mevis: A large-scale 627
benchmark for video segmentation with motion ex- 628
pressions. In Proceedings of the IEEE/CVF Interna- 629
tional Conference on Computer Vision, pages 2694– 630
2703. 631

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, 632
Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu 633
Zhou, Yunhang Shen, Mengdan Zhang, et al. 2024. 634
Video-mme: The first-ever comprehensive evaluation 635
benchmark of multi-modal llms in video analysis. 636
arXiv preprint arXiv:2405.21075. 637

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, 638
Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang, 639
Junhui Ji, Zhao Xue, et al. 2024. Cogvlm2: Visual 640
language models for image and video understanding. 641
arXiv preprint arXiv:2408.16500. 642

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 643
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 644
trow, Akila Welihinda, Alan Hayes, Alec Radford, 645
et al. 2024. Gpt-4o system card. arXiv preprint 646
arXiv:2410.21276. 647

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, 648
Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan 649
Zhang, Yanwei Li, Ziwei Liu, et al. 2024a. Llava- 650
onevision: Easy visual task transfer. arXiv preprint 651
arXiv:2408.03326. 652

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui 653
Wang, Ruimao Zhang, and Ying Shan. 2024b. Seed- 654
bench: Benchmarking multimodal large language 655
models. In Proceedings of the IEEE/CVF Conference 656
on Computer Vision and Pattern Recognition, pages 657
13299–13308. 658

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 659
2023a. Blip-2: Bootstrapping language-image pre- 660
training with frozen image encoders and large lan- 661
guage models. In International conference on ma- 662
chine learning, pages 19730–19742. PMLR. 663

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wen- 664
hai Wang, Ping Luo, Yali Wang, Limin Wang, and 665
Yu Qiao. 2023b. Videochat: Chat-centric video un- 666
derstanding. arXiv preprint arXiv:2305.06355. 667

9



Kunchang Li, Yali Wang, Yinan He, Yizhuo Li,668
Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,669
Ping Luo, et al. 2024c. Mvbench: A comprehensive670
multi-modal video understanding benchmark. In Pro-671
ceedings of the IEEE/CVF Conference on Computer672
Vision and Pattern Recognition, pages 22195–22206.673

Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao,674
Bocheng Zou, Yulin Luo, Siyuan Huang, Shang-675
hang Zhang, and Hongsheng Li. 2024. Draw-and-676
understand: Leveraging visual prompts to enable677
mllms to comprehend what you want. arXiv preprint678
arXiv:2403.20271.679

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae680
Lee. 2023. Improved baselines with visual instruc-681
tion tuning. arXiv preprint arXiv:2310.03744.682

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan683
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-684
next: Improved reasoning, ocr, and world knowledge.685

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae686
Lee. 2024b. Visual instruction tuning. Advances in687
neural information processing systems, 36.688

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,689
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi690
Wang, Conghui He, Ziwei Liu, et al. 2024c. Mm-691
bench: Is your multi-modal model an all-around692
player? In European conference on computer vi-693
sion, pages 216–233. Springer.694

Muhammad Maaz, Hanoona Rasheed, Salman Khan,695
and Fahad Khan. 2024. Videogpt+: Integrating im-696
age and video encoders for enhanced video under-697
standing. arXiv preprint arXiv:2406.09418.698

Muhammad Maaz, Hanoona Rasheed, Salman Khan,699
and Fahad Shahbaz Khan. 2023. Video-chatgpt:700
Towards detailed video understanding via large701
vision and language models. arXiv preprint702
arXiv:2306.05424.703

Karttikeya Mangalam, Raiymbek Akshulakov, and Ji-704
tendra Malik. 2023. Egoschema: A diagnostic bench-705
mark for very long-form video language understand-706
ing. Advances in Neural Information Processing707
Systems, 36:46212–46244.708

Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria709
Recasens, Larisa Markeeva, Dylan Banarse, Skanda710
Koppula, Mateusz Malinowski, Yi Yang, Carl Do-711
ersch, et al. 2024. Perception test: A diagnostic712
benchmark for multimodal video models. Advances713
in Neural Information Processing Systems, 36.714

Wujian Peng, Lingchen Meng, Yitong Chen, Yiweng715
Xie, Yang Liu, Tao Gui, Hang Xu, Xipeng Qiu, Zux-716
uan Wu, and Yu-Gang Jiang. 2024. Inst-it: Boost-717
ing multimodal instance understanding via explicit718
visual prompt instruction tuning. arXiv preprint719
arXiv:2412.03565.720

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo 721
Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. 722
2017. The 2017 davis challenge on video object 723
segmentation. arXiv preprint arXiv:1704.00675. 724

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, 725
Antonio Torralba, Raquel Urtasun, and Sanja Fidler. 726
2016. Movieqa: Understanding stories in movies 727
through question-answering. In Proceedings of the 728
IEEE conference on computer vision and pattern 729
recognition, pages 4631–4640. 730

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan 731
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, 732
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 733
2024. Gemini 1.5: Unlocking multimodal under- 734
standing across millions of tokens of context. arXiv 735
preprint arXiv:2403.05530. 736

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 737
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 738
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei 739
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, 740
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024a. 741
Qwen2-vl: Enhancing vision-language model’s per- 742
ception of the world at any resolution. arXiv preprint 743
arXiv:2409.12191. 744

Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, 745
Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang, 746
Bin Xu, Yuxiao Dong, et al. 2024b. Lvbench: An 747
extreme long video understanding benchmark. arXiv 748
preprint arXiv:2406.08035. 749

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yi- 750
nan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Zun 751
Wang, Yansong Shi, et al. 2024c. Internvideo2: Scal- 752
ing foundation models for multimodal video under- 753
standing. In European Conference on Computer Vi- 754
sion, pages 396–416. Springer. 755

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. 756
2024. Longvideobench: A benchmark for long- 757
context interleaved video-language understanding. 758
arXiv preprint arXiv:2407.15754. 759

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng 760
Chua. 2021. Next-qa: Next phase of question- 761
answering to explaining temporal actions. In Pro- 762
ceedings of the IEEE/CVF conference on computer 763
vision and pattern recognition, pages 9777–9786. 764

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang 765
Zhang, Xiangnan He, and Yueting Zhuang. 2017. 766
Video question answering via gradually refined atten- 767
tion over appearance and motion. In Proceedings of 768
the 25th ACM international conference on Multime- 769
dia, pages 1645–1653. 770

Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, 771
See Kiong Ng, and Jiashi Feng. 2024. Pllava: 772
Parameter-free llava extension from images to 773
videos for video dense captioning. arXiv preprint 774
arXiv:2404.16994. 775

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou,776
Chunyuan Li, and Jianfeng Gao. 2023. Set-777
of-mark prompting unleashes extraordinary visual778
grounding in gpt-4v, 2023. URL http://arxiv.779
org/abs/2310.11441.780

Linjie Yang, Yuchen Fan, and Ning Xu. 2019. Video781
instance segmentation. In Proceedings of the782
IEEE/CVF international conference on computer vi-783
sion, pages 5188–5197.784

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang,785
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,786
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v:787
A gpt-4v level mllm on your phone. arXiv preprint788
arXiv:2408.01800.789

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming790
Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou.791
2024. mplug-owl3: Towards long image-sequence792
understanding in multi-modal large language models.793
arXiv preprint arXiv:2408.04840.794

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-795
ing Zhuang, and Dacheng Tao. 2019. Activitynet-qa:796
A dataset for understanding complex web videos via797
question answering. In Proceedings of the AAAI Con-798
ference on Artificial Intelligence, volume 33, pages799
9127–9134.800

Yuqian Yuan, Hang Zhang, Wentong Li, Zesen Cheng,801
Boqiang Zhang, Long Li, Xin Li, Deli Zhao, Wen-802
qiao Zhang, Yueting Zhuang, et al. 2024. Videorefer803
suite: Advancing spatial-temporal object understand-804
ing with video llm. arXiv preprint arXiv:2501.00599.805

Hang Zhang, Xin Li, and Lidong Bing. 2023. Video-806
llama: An instruction-tuned audio-visual language807
model for video understanding. arXiv preprint808
arXiv:2306.02858.809

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun810
Ma, Ziwei Liu, and Chunyuan Li. 2024. Video in-811
struction tuning with synthetic data. arXiv preprint812
arXiv:2410.02713.813

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao,814
Xi Yang, Yongping Xiong, Bo Zhang, Tiejun Huang,815
and Zheng Liu. 2024. Mlvu: A comprehensive816
benchmark for multi-task long video understanding.817
arXiv preprint arXiv:2406.04264.818

A Elaboration on Dimensions 819

Table 4 presents detailed information on the five 820

main tasks and twelve dimensions of V2P-Bench. 821

B Examples of V2P-Bench 822

We show some examples of V2P-Bench from Fig- 823

ure 6 to Figure 12. The ground-truth answer is 824

highlighted in green. 825
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Table 4: Our proposed 5 main tasks and 12 dimensions with explanation.

Perception

Object Attribute This dimension evaluates the model’s ability to perceive the visual and motion attributes
of objects indicated by visual prompts, such as color, shape, position, and movement.

Human Attribute This dimension evaluates the model’s ability to recognize the actions and attributes
of individuals indicated by visual prompts, such as their activities, clothing, and
appearance.

Object Direction This dimension examines the model’s ability to perceive and interpret the motion
trajectory of objects pointed by visual prompts, with a particular focus on movement
direction.

Feature Mapping This dimension examines the model’s capability to extract distinctive features of objects
indicated by visual prompts and consistently track them across the entire video.

Reasoning

Causal Relationship This dimension assesses the model’s ability to perceive the causal relationships between
actions and events, identifying the underlying intentions of actions and the causes of
subsequent events. The visual prompt points to the action executor.

Plot Understanding This dimension examines the model’s ability to analyze narrative progression and
logically infer subsequent developments based on the given plot. The visual prompt
executes the protagonist of the plot.

Counterfactual Inference This dimension evaluates the model’s ability to reason under hypothetical scenarios
that deviate from the actual video content, with visual prompts guiding the deviation,
assessing its capacity to infer potential outcomes based on counterfactual assumptions.

Temporal

Forward Temporal This dimension assesses the model’s ability to accurately locate the visual prompt and
track subsequent events that follow the natural chronological order of the video.

Reverse Temporal This dimension evaluates the model’s capacity to comprehend the temporal structure
of the video by identifying events that precede the visual prompt, demonstrating an
understanding of temporal precedence.

Action Sequence This dimension evaluates the model’s ability to grasp the overall temporal flow of the
video, particularly in understanding and reasoning about the temporal dynamics of
multiple action sequences of individuals or objects, as indicated by visual prompts.

Spatial

Spatial Relationship This dimension assesses the model’s ability to discern and comprehend the spatial
relationships between instances highlighted by visual prompts within the video scene.

Counting

General Counting This dimension evaluates the model’s ability to perceive and accurately count repeated
actions or objects within the video, as indicated by visual prompts, testing its capacity
for detailed content understanding and comprehensive scene analysis.

12



Figure 6: Examples of V2P-Bench in Object Attribute dimension.

Figure 7: Examples of V2P-Bench in Human Attribute dimension.

Figure 8: Examples of V2P-Bench in Object Direction dimension.

Figure 9: Examples of V2P-Bench in Feature Mapping dimension.
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Figure 10: Examples of V2P-Bench in Causal Relationship dimension.

Figure 11: Examples of V2P-Bench in Plot Understanding dimension.

Figure 12: Examples of V2P-Bench in Counterfactual Inference dimension.

Figure 13: Examples of V2P-Bench in Forward Temporal dimension.
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Figure 14: Examples of V2P-Bench in Reverse Temporal dimension.

Figure 15: Examples of V2P-Bench in Action Sequence dimension.

Figure 16: Examples of V2P-Bench in Spatial Relationship dimension.

Figure 17: Examples of V2P-Bench in General Counting dimension.
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