
  

 

Abstract— Characterizing coordinated brain dynamics 

present in high-density neural recordings is critical for 

understanding the neurophysiology of healthy and pathological 

brain states and to develop principled strategies for therapeutic 

interventions. In this research, we propose a new modeling 

framework called State Space Global Coherence (SSGC), which 

allows us to estimate neural synchrony across distributed brain 

activity with fine temporal resolution. In this modeling 

framework, the cross-spectral matrix of neural activity at a 

specific frequency is defined as a function of a dynamical state 

variable representing a measure of Global Coherence (GC); we 

then combine filter-smoother and Expectation-Maximization 

(EM) algorithms to estimate GC and the model parameters. We 

demonstrate a SSGC analysis in a 64-channel EEG recording of 

a human subject under general anesthesia and compare the 

modeling result with empirical measures of GC. We show that 

SSGC not only attains a finer time resolution but also provides 

more accurate estimation of GC. 

I. INTRODUCTION 

Synchronization of neural activity in specialized brain 

areas underlies a variety of brain functions linked to perceptual 

and cognitive tasks [1]. Abnormal synchronization of neural 

activity is associated with a variety of neurological disorders 

including schizophrenia, autism, epilepsy, and Parkinson’s 

disease [2]. These discoveries highlight the importance of 

developing reliable techniques capable of characterizing the 

spatiotemporal dynamics of neural activity across multiple 

brain areas. 

Coherence-based analyses including paired and global 

measures are widely utilized to characterize synchronized 

neural activity between brain areas [3],[4]. Paired-coherence 

analysis, which is a more established technique, provides a 

measure of synchrony across two brain nodes, and its 

utilization to study neural synchrony across a larger set of 

brain areas typically involves using pairwise coherence 

estimates to construct networks of associated brain activity. 

Evaluating uncertainty in features of such networks from 

pairwise measures is challenging [5]. Global Coherence (GC), 

which is a more recent technique adopted for neural data 

analysis, provides a measure of overall synchrony across 

multiple brain areas. GC is defined by the ratio of the largest 

eigenvalue to the sum of all of the eigenvalues of the cross-

spectral matrix at a given frequency and time window; under 

this definition, GC variation over multiple time windows 

reflects how the cross-spectral matrix eigenvalues – as well as 

its basis vectors – change over time. GC provides a low-

dimensional representation – or, a summary statistic – of the 
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degree and spatial structure of synchrony of multiple channels 

of data and thus it can provide a better picture of the extent of 

neural synchrony across multiple brain areas. GC has been 

applied to neural data recorded during sleep-wake cycles, 

epilepsy, and anesthesia, and has opened doors to better 

understand the neural activity mechanisms across brain areas 

under different brain states [4],[6],[7]. However, there is 

significant computational challenge in estimating GC when 

the dimension of the neural recording or the number of 

channels grows. GC calculation requires robust and accurate 

estimation of the cross-spectral matrix; otherwise, GC 

estimated can become significantly biased. GC estimation uses 

the sample cross-spectral matrix, typically computed using the 

FFTs across channels over consecutive and non-overlapping 

time intervals. When the number of channels – or brain areas 

– grows, a larger number of independent samples is required 

for accurate cross-spectral matrix estimation, and this limits 

the temporal resolution of the GC estimate. When GC is 

dynamic, this leads to estimates that change slowly, even when 

the true underlying dynamics include rapid transitions, 

limiting their use in some applications such as closed-loop 

experiments. In this work, we propose a new modeling 

framework using a state-space model called State-Space 

Global Coherence (SSGC). In SSGC, the signal noise 

covariance matrix is defined as a function of a set of latent state 

variables, and thus it allows correlated changes across 

multivariate time-series data to be captured over time.  

The state space modeling framework has been successfully 

applied in multiple neuroscience data analysis problems 

including decoding arm movement using neural activity of 

distributed brain activity across motor areas or decoding a rat’s 

movement trajectory given ensemble spiking activity from 

hippocampus [8],[9]. The SSGC modeling framework 

proposed here inherits many properties of these previously 

developed frameworks; however, it incorporates new 

techniques that address the challenges of estimating dynamic 

rhythmic associations globally. In SSGC, we hypothesize that 

the temporal changes in the cross-spectral matrix arise in 

response to dynamical latent variables, and estimating these 

variables at each time helps to better capture coordinated 

activity present across multiple channels. We propose an 

iterative estimation procedure for the cross-spectral matrix, 

which allows us to estimate GC instant by instant, even as the 

number of observed signals or neural recordings grows large. 

For SSGC; we develop a filter-smoother solution for the latent 

state process and use the EM algorithm to identify the model 

parameters [8]. The SSGC framework provides a scalable 
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platform to characterize the causal relationship between 

different brain states and its distributed neural activity; it can 

be also expanded to study how stimulation factors – or, a 

combination of physiological and external mechanisms – will 

be represented in the brain synchronous activity. 

In the Methods section, we describe the SSGC modeling 

framework and derive the GC and model parameter estimation 

algorithms. In the Application section, we illustrate GC and 

parameter estimation in 64-channel EEG recordings from a 

human subject undergoing anesthesia induction. We finally 

discuss further properties of the framework and additional 

applications. 

II. METHODS 

A. State Space Global Coherence  

Let 𝐶𝑘
𝑓
 represent an estimate of the cross-spectral matrix of 

𝑀 data channels at frequency f and time interval k. 𝐶𝑘
𝑓
 is a 

Hermitian semi-definite matrix whose 𝑖𝑗𝑡ℎ  element is given by 

𝐶𝑘
𝑓(𝑖, 𝑗) =< �̃�𝑖,𝑘(𝑓)�̃�𝑗,𝑘

∗ (𝑓) > (1) 

where �̃�𝑖,𝑘(𝑓) and �̃�𝑗,𝑘(𝑓) are spectral estimates of 𝑖𝑡ℎ and 𝑗𝑡ℎ 

channels for the time points [(𝑘 − 1)𝑁    𝑘𝑁], 𝑁 is the length 
of the window over which the spectrum is estimated, and 

�̃�𝑗,𝑘
∗ (𝑓) is the complex conjugate of �̃�𝑗,𝑘(𝑓). 

The GC measure of the time series at time interval 𝑘 and 
frequency 𝑓 is defined by 

𝑔𝑘
𝑓

=  𝜆1,𝑘
𝑓 ∑ 𝜆𝑚,𝑘

𝑓𝑀
𝑚=1⁄     (2) 

where 𝜆𝑚,𝑘
𝑓

 is the 𝑚𝑡ℎ largest eigenvalue of 𝐶𝑘
𝑓

. 

Estimation of 𝐶𝑘
𝑓
 requires multiple, independent estimates 

of the cross-spectrum across data channels – typically obtained 
either by computing FFTs across non-overlapping time 
intervals, using multiple orthogonal data tapers, or some 
combination of these [10]. As the number of time series – or 
signal channels – grow, more independent samples are 
required to provide precise estimates of the cross-spectral 
matrix, and this causes GC estimation to lose its temporal 
resolution. Using SSGC, we build parametric models for the 
dynamics of the cross-spectral matrix, which allows us to 
retain fine temporal resolution by optimally combining 
information across consecutive time intervals. We assume that 

𝐶𝑘
𝑓
 is a function of a dynamical latent variable, 𝑥𝑘

𝑓
, which 

carries information about rhythmic associations across time 
intervals. 

We assume that 𝑥𝑘
𝑓
 is a first-order Markov process defined 

by a random walk model  

𝑥𝑘+1
𝑓

= 𝑥𝑘
𝑓

+ 𝑣𝑘
𝑓

,   𝑣𝑘
𝑓

~𝑁(0, 𝜎𝑣,𝑓
2 ),    𝑥0

𝑓
~𝑁(𝜇0,𝑓 , 𝜎0,𝑓

2 ) (3) 

where, 𝑥𝑘
𝑓
 represents the latent variable at time interval 𝑘 and 

frequency f, 𝑣𝑘
𝑓
 represents the process noise, and 𝜎𝑣,𝑓

2 , 𝜇0,𝑓, and 

𝜎0,𝑓
2  are model parameters. 

The observation process at each time interval, 𝑌𝑘
𝑓
, is a vector 

of spectral estimates from each of the 𝑀 data channels at 
frequency 𝑓. While many spectral estimators are possible, 
including multitaper method estimates, here, we focus on a 

single FFT estimate. We assume that the observation process 
has a complex multivariate normal distribution defined by [11] 

𝑌𝑘
𝑓

= 𝜇 + 𝑊𝑘      𝑊𝑘~𝑁(0, 𝑄𝑘
𝑓

) (4) 

where, the mean of the observation vector, μ, is stationary and 

the observation noise process is defined by a time-varying 

complex covariance matrix, 𝑄𝑘
𝑓

. We define an observation 

model to express 𝑄𝑘
𝑓

 as a function of the state variable, 𝑥𝑘
𝑓
. To 

simplify the notation, from now on, we will drop the 𝑓 

superscript from both the state transition and observation 

processes; the whole framework is described for the specific 

frequency 𝑓. 

The Hermitian cross-spectral matrix can be decomposed 
into an orthonormal basis of eigenvectors and a diagonal 
matrix consisting of its eigenvalues [3]. Thus, we let 

𝑄𝑘(𝑥𝑘) = 𝐿𝑘(𝑥𝑘)𝐷𝑘(𝑥𝑘)𝐿𝑘
𝐻(𝑥𝑘) 

     𝐿𝑘(𝑥𝑘)𝐿𝑘
𝐻(𝑥𝑘) = 𝐼 (5) 

where, 𝐷𝑘 and 𝐿𝑘 can be functions of time and 𝑥𝑘. Superscript 
𝐻 represents the conjugate transpose operation. 

Our preliminary data analyses – using EEG data recorded 
across multiple different experiments – suggest that 𝐿𝑘 is often 
relatively stationary; the eigenvectors of the cross spectral 
matrix do not change substantially from window to window. 
Instead, changes in the cross-spectral matrix are mainly 
reflected in the matrix eigenvalues – 𝐷𝑘’s diagonal elements. 
As a result, we propose the following parametric model for the 
observation covariance matrix  

𝑄𝑘(𝑥𝑘) = 𝐿𝐷𝑘𝐿𝐻                  𝐿𝐿𝐻 = 𝐼 (6.a) 

𝐷𝑘,𝑚 = 𝑒𝑎𝑚+𝑏𝑚 𝑥𝑘               𝑚 = 1, ⋯ , 𝑀 (6.b) 

where, 𝐿 consists of the orthogonal bases of the covariance 
matrix. The eigenvalues, contained in the diagonal elements of 
𝐷𝑘, are set to be an exponential function of 𝑥𝑘, ensuring that 
𝑄𝑘 remains positive definite as the state process evolves. 

Equations (3), (4), and (6) define the SSGC state transition 
and observation processes. In the next section, we explain how 
to estimate the distribution of the state variable GC at each 
time step from the observed data using these equations. 

B. State and GC Estimation  

Assume to start that the model parameters are known or 
well-estimated; our goal is to estimate the distribution of 𝑥𝑘  at 
time 𝑘, given either the set of observations up to the current 
time, 𝑌1:𝑘, or through the entire experiment, 𝑌1:𝐾. 𝑝(𝑥𝑘|𝑌1…𝑘) 
is called the filter distribution and 𝑝(𝑥𝑘|𝑌1…𝐾) the smoother 
distribution [12]. We then use the filter and smoother 
distributions for  𝑥𝑘 to calculate the GC distributions at each 
time interval.  

Using Bayes rule, the filter distribution can be written as 
p(xk| Y1…k) ∝ L(Yk; xk)p(xk|Y1…k−1 )  (7) 
, where L(Yk; xk) is the likelihood of the observed data as a 
function of the state, p(xk|Y1…k−1 ) is called the one-step 
prediction density, and we have neglected a normalizing 
constant that does not depend on the state. The one-step 
prediction is computed using the Chapman–Kolmogorov 
equation [12] defined by 
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𝑝(𝑥𝑘|𝑌1…𝑘−1) = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1) 𝑝(𝑥𝑘−1|𝑌1…𝑘−1)𝑑𝑥𝑘 (8) 

where, 𝑝(𝑥𝑘|𝑥𝑘−1) is the state transition probability defined 
by equation (3), and 𝑝(𝑥𝑘−1|𝑌1…𝑘−1) is the filter distribution 
computed from the previous time step. For low dimensional 
state processes, this integral can be calculated numerically, for 
example by using a simple Riemann sum [13]. Note that at the 
time step 0, 𝑝(𝑥0) is determined by Equation (3). 

Unlike standard state-space models, for which the state 
determines the expected values of the observations, here the 
state controls their covariance structure. Therefore, the state 
appears in the likelihood term in Equation (7) within the 
covariance matrix,  

𝐿(𝑌𝑗; 𝑥𝑗) =
𝑒

−(𝑌𝑗−𝜇)∗𝑄𝑗(𝑥𝑗)−1(𝑌𝑗−𝜇)

det (𝜋𝑄𝑗(𝑥𝑗))
   (9) 

where, 𝜇 is the observation mean vector defined in equation 
(4) and 𝑄𝑗(𝑥𝑗) is the cross-spectral matrix for the value of 𝑥𝑗. 

Combining equations (7)-(9), we obtain an iterative expression 
for the filter density, which allows us to update the estimate 
from the prior time step by incorporating the state transition 
and observation models.  

Similarly, the smoother distribution can be computed by 

applying Bayes’ rule and the Chapman-Kolmogorov 

equation: 

𝑝(𝑥𝑘−1|𝑌1…𝐾) = 

𝑝(𝑥𝑘−1|𝑌1…𝑘−1) ∫
𝑝(𝑥𝑘|𝑥𝑘−1 )𝑝(𝑥𝑘|𝑌1…𝐾)

𝑝(𝑥𝑘|𝑌1…𝑘−1 )
𝑑𝑥𝑘 (10)  

where, 𝑝(𝑥𝑘−1|𝑌1…𝑘−1) and 𝑝(𝑥𝑘|𝑌1…𝑘−1 ) are the filter and 

one-step prediction distributions respectively from equation 

(8), 𝑝(𝑥𝑘|𝑥𝑘−1) is the state transition probability defined by 

equation (3), and 𝑝(𝑥𝑘|𝑌1…𝐾) is the smoothing distribution 

from the next time step. This equation is computed 

iteratively, starting at the final time point 𝑘 = 𝐾, stepping 

down to 𝑘 = 1. Note that the filter and smoother distribution 

for time 𝑘 = 𝐾 are the same. Equation (10) provides the 

update rule for fixed-interval smoothing [12]. For low 

dimensional state processes, it can also be calculated 

numerically, for example by using Reimann summation [12].  

C. Model Parameter Estimation  

In the previous section we assumed that the model 
parameters were known or well estimated. One component of 
the parameter set includes those associates with the state 
transition process, which consist of its noise process variance, 
𝜎𝑣

2, and its initial value distribution parameters, (𝜇𝑜, 𝜎0
2). The 

other set of the model parameters are those associated with the 
observation process, which include the observation mean – 𝜇, 
the orthonormal basis vectors – 𝐿, and parameter set 𝑎 and 𝑏 – 
note, 𝑎 and 𝑏 are vectors of length 𝑀. To estimate these model 
parameters, we use an EM algorithm. The EM algorithm and 
its variants, including sequential Monte Carlo EM [13,15], are 
established solutions for estimating the parameters of state-
space models – here, any subset of 𝜽 = {𝜇𝑜, 𝜎0

2, 𝜎𝑣
2, 𝜇, 𝐿, 𝑎, 𝑏}. 

It uses a recursive update rule to estimate the maximum 
likelihood solution [15]. The EM algorithm has two steps: 
1) Expectation step, which finds the expectation of the log-
likelihood evaluated using the current estimate for the model 

parameters. This expectation for the SSGC model is defined 
by  

𝐻(𝑥𝑘 , 𝑌𝑘;  𝜽, 𝑘 = 0 ⋯ 𝐾) = E[log ∏ 𝐿(𝑥𝑘 , 𝑌𝑘;  𝜽)𝐾
𝑘=0 ]  

−
1

2
log 𝜎0

2 −
E[𝑥𝑜

2]+𝑚𝑜
2−2𝑚𝑜E[𝑥𝑜]

2𝜎0
2   

−
𝐾

2
log 𝜎𝑣

2 − ∑
E[𝑥𝑘

2] +  E[𝑥𝑘−1
2]−2E[𝑥𝑘𝑥𝑘−1]

2𝜎𝑣
2

𝐾
𝑘=1   

− ∑ (𝑌𝑘 − 𝜇)𝐻E[𝑄𝑘(𝑥𝑘)−1](𝑌𝑘 − 𝜇)𝐾
𝑘=1   

− ∑ log E[det (𝑄𝑘(𝑥𝑘))]𝐾
𝑘=1 + 𝑍 (11) 

where, each expectation of is taken over a single state variable 
𝑥𝑘, or over at most the joint distribution of two states, 𝑥𝑘 and 
𝑥𝑘−1, given all of the observations. 𝑍 includes all extra terms 
not linked to 𝑥𝑘 or model parameters.  
2) Maximization step, which estimates a new set of parameters 
that maximize the expected log-likelihood function calculated 
in the expectation step. The parameter update rule is defined 
by 

 𝜽𝑡 = arg max
𝜽

𝐻(𝑥𝑘 , 𝑌𝑘;  𝜽𝒕−𝟏, 𝑘 = 0 ⋯ 𝐾) (12) 

where, 𝑡 denotes the present iteration step and 𝜽𝒕−𝟏 is the 
model parameter estimate from previous iteration, 𝑡 − 1. 

The EM algorithm calls the expectation and maximization 
steps iteratively until they convergence to a local maximum 
[15]. Here, we use a numerical approach combined with 
Taylor expansions to compute each of the expectations in 
equation (11). In the Appendix section, we provide a detailed 
derivation of the solution for parameters 𝑎 and 𝑏; for brevity, 
we have excluded the analogous mathematical derivations 
developed for updating the other model parameters.  

III. APPLICATION 

In this section, we demonstrate the application of the SSGC 
framework to estimate GC as a function of 64-lead EEG 
recordings from a subject undergoing anesthesia induction. 
The length of experiment is 35 minutes, during which, the 
subject received a computer-controlled infusion of the 
anesthetic propofol at time 15 minutes. The subject remained 
under anesthesia through the remainder of the experiment. 
Scalp EEG was recorded with 64-leads at a sampling rate of 
250 Hz. A surface Laplacian reference was used [4]. Figure 
1.a and 1.b show spectrogram estimates of the EEG data for 
two contact electrodes. The oscillatory activity around the 
alpha-band substantially increases after the 15-minute mark, 
when propofol is injected. In contrast, oscillatory activity in 
higher frequencies including the beta-band are less affected by 
the propofol injection. 

We utilize the SSGC model to estimate GC and the 
underlying state variable for frequencies of 12 and 25 Hz. The 
observations include tapered FFT measurements from 20 
channels calculated using a 256-point FFT at frequencies 12 
Hz and 25 Hz. This is equal to an update time of 1 second for 
each GC estimate. Here, we assume all SSGC model 
parameters except for 𝑎 and 𝑏 are known. For the state 
transition process, we assume 𝜎𝑣

2 is equal to 0.001. We also 
assume 𝑥0 is zero with a large variance: 𝜎0

2 ≫ 1; this setting 
corresponds to a relatively flat prior over 𝑥0. At each 
frequency, we use the empirical GC estimator introduced in 
[3],[4] over the whole experiment to find 𝜇, 𝐿, and an initial 
setting for 𝑎 and 𝑏. 𝜇 corresponds to the mean of FFT 
measurements per channel. We use cross-spectral matrix  
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estimate and its singular value decomposition to find 𝐿 and 
set the initial values of 𝑎 and 𝑏. We assume the initial values 
for all the elements of 𝑏 elemnts are 1, and each element of 𝑎 
can be initialized by 
𝑎𝑚 = log(𝜆𝑚)           𝑚 = 1, … , 𝑀 (14) 

where, 𝜆𝑚 is the 𝑚𝑡ℎ largest eigenvalue of the empirical cross-
spectral matrix SVD decomposition. We assume that 𝑥0 is 
zero. With this initialization, we use the EM algorithm to 
estimate 𝑎 and 𝑏; we also the Bayes filter and smoother 
defined in equations (8)-(10) to estimate 𝑥𝑘 and 𝐺𝐶 at both 
frequencies. 

Figure 1.c shows the GC estimates computed using 
discrete sliding windows. Here, we use 256-point tapered FFT 
measurements over 8 non-overlapping time windows to 
estimate the cross spectral matrix and GC. The GC is measured 
using a sliding window of 256 points which corresponds to 1 
second of the time domain signals. For 12 Hz, GC begins to 
increase around the 15-minute mark in response to the 
propofol injection. However, using this sliding window 
approach, this transition occurs slowly and the estimates are 
noisy. For 25 Hz, there is no noticeable change in GC.  

Figure 1.d and 1.e show the distribution of estimated GC 
smoother distribution using the SSGC approach at these two 
frequencies. The GC estimate for 12 Hz now rises rapidly at 
the 15 minute mark. This represents a sudden and clearly 
significant change in the distribution of 12 Hz rhythmic 
activity in response to Propofol. After this point, the GC 
estimate gradually decays for the rest of the experiment. For 
25 Hz, The SSGC estimate still remains relatively constant. In 

addition to detecting changes in GC more rapidly, another 
advantage of the SSGC methodology is to provide a 
distribution of GC, which allows us to easily make statements 
about the uncertainty or statistical significance of our 
estimates. 

We can also utilize SSGC to study changes in the spatial 
distribution of neural oscillations across different brain 
regions. Figure 2.a shows the initial and estimated values for 
parameter 𝑎 at 12 Hz respectively. Figure 2.b shows the initial 
and estimated values for 𝑏. Figure 2.c and 2.d show the 
eigenvectors corresponding to the first and second largest 
eigenvalues of cross-spectral matrix for 12 Hz, projected back 
onto the brain. The fact that the 𝑏 parameter is dominated by 
its first component suggests that the rapid rise in 𝑥𝑘 following 
Propofol infusion corresponds to increased alpha 
synchronization across the brain areas highlighted by the 
largest eigenvalue. This sort of analysis provides a better 
understanding of how widespread neural oscillations 
propagate over time.  

IV. CONCLUSION  

Here, we proposed a new modeling framework to estimate 
global coherence robustly and with fine temporal resolution 
and a robust estimation. We demonstrated its application in a 
64-channel EEG analysis of anesthesia induction. This is an 
important approach as it extends common coherence measures 
beyond pairs of signals. The proposed framework can be 
applied to other modalities of neural data, including fMRI, 
ECoG, and depth electrode recordings. It also has potential 
application to closed-loop experiments relying on a global 
measure of the brain synchrony.  

APPENDIX  

In this section, we derive the solution that is used for 
estimating the 𝑎 and 𝑏 parameters under the EM algorithm 
(12). Here, we assume all other model parameters except 𝑎 and 
𝑏 are known or well estimated.  

In the E-step, we calculate the expectation of the log-
likelihood with respect to 𝑥𝑘 ,  𝑘 = 1 … 𝐾. To calculate the 
expectation, we first need to calculate the determinant of 𝑄𝑘 as 

 

 

 

  
 

Figure 2 Estimates of 𝑎 and b parameters and two largest eignevectors 

over the scalp at freqeuncy 12 Hz a. The initial and estimated values of  𝑎 

after 10 iteraions b. The initial and estimated values for 𝑏 c. The 
eigenvector corresponding to the largenst eigenvalue over the scalp  d. 

The eigencvtor corresponding to the second largest eigenvalue  

 

 

 

 

 

Figure 1  Sample power sepctrum of EEG recording, SSGC and 
empirical GC result at frequecies 12 and 25 Hz a. Mutlitaper 

spectrogram of channel 5 b.  Multitaper spectrogram of channel 18. c. 
Emperical GC estimates at 12Hz (purple) and 25Hz (blue) d. GC 
smoother distribution  using SSGC for 12 Hz e.  GC smoothing 

distribution  using SSGC for 25 Hz 
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a function of 𝑥𝑘. The determinant of a matrix is equal to the 
product of its eigenvalues;  

det (𝑄𝑘(𝑥𝑘)) = ∏ exp (𝑎𝑚 + 𝑏𝑚 𝑥𝑘)𝑀
𝑚=1  (A.1.a) 

log(det (𝑄𝑘(𝑥𝑘))) =  ∑ 𝑎𝑚  + 𝑏𝑚  𝑥𝑘
𝑀
𝑚=1  (A.1.b) 

Using equation (A.1.a), the expectation of log-likelihood 
function can be written as 

𝐻(𝑥𝑘 , 𝑌𝑘;  𝜽, 𝑘 = 0 ⋯ 𝐾) =  

− ∑ (𝑌𝑘 − 𝜇)𝐻𝐿 E[𝐷𝑘(𝑥𝑘)−1] 𝐿𝐻(𝑌𝑘 − 𝜇)𝐾
𝑘=1   

+∑ ∑ 𝑎𝑚  + 𝑏𝑚  E[𝑥𝑘]𝑀
𝑚=1

𝐾
𝑘=1 + 𝑈  (A.2) 

where, 𝑈 includes all terms of the expectation not linked to 𝑎 
and 𝑏. To complete the expectation, we need to calculate the 
expectation of 𝐷𝑘(𝑥𝑘)−1. Given 𝐷𝑘(𝑥𝑘) is a diagonal matrix, 
its expectation is 

E[𝐷(𝑥𝑘)−1]=[
𝑒−𝑎1E[𝑒−𝑏1𝑥𝑘] ⋯ 0

⋮ ⋱ ⋮
0 … 𝑒−𝑎𝑀E[𝑒−𝑏𝑀𝑥𝑘]

](A.3)

 (A.3) 

To simplify the parameter update rule, we consider the 
following change of variables  

𝐶𝑘 =  (𝑌𝑘 − 𝜇)∗𝐿 = [𝑐1,𝑘  … 𝑐𝑀,𝑘] (A.4.a) 

𝐶𝑘
∗ =  𝐿𝐻(𝑌𝑘 − 𝜇) = [

𝑐1,𝑘
∗ 

⋮
𝑐𝑀,𝑘

∗
] (A.4.b) 

Now, we can write equation (A.2) by 

 𝐻(𝑥𝑘 , 𝑌𝑘;  𝜽, 𝑘 = 0 ⋯ 𝐾) =    

− ∑ ∑ 𝑐𝑚,𝑘𝑐𝑚,𝑘
∗  𝑒−𝑎𝑚  E[𝑒−𝑏𝑚𝑥𝑘] + 𝑎𝑚  + 𝑏𝑚 E[𝑥𝑘]𝑀

𝑚=1
𝐾
𝑘=1 ` 

= − ∑ ∑ |𝑐𝑚,𝑘|
2

 𝑒−𝑎𝑚  E[𝑒−𝑏𝑚𝑥𝑘] + 𝑎𝑚  + 𝑏𝑚 E[𝑥𝑘]𝑀
𝑚=1

𝐾
𝑘=1

      (A.5) 

Note that, 𝐿 is an orthonormal matrix, and thus 𝑐𝑚,𝑖𝑐𝑚,𝑗
∗ =

0 for any 𝑖 ≠ 𝑗.  

To find the update rule for 𝑎 and 𝑏, we compute the 
derivatives of 𝐻(∙) with respect to 𝑎 and 𝑏. The derivative with 
respect to 𝑎𝑚 is straightforward; however, to get the derivative 
with respect to 𝑏𝑚, we need to calculate the derivative of 

E[𝑒−𝑏𝑚𝑥𝑘]. To address this, we use a second order Taylor 

expansion of 𝑒−𝑏𝑚𝑥𝑘  around a known point, 𝑏𝑚,0. The 

expectation of this Taylor expansion up to order 2 is 

E[𝑒−𝑏𝑚𝑥𝑘] ≅ 𝑒0,𝑘 − 𝑒1,𝑘(𝑏𝑚 − 𝑏𝑚,0) +
1

2
𝑒2,𝑘(𝑏𝑚 − 𝑏𝑚,0)

2
 

 (A.6.a) 

𝑒0,𝑘 =  E[𝑒−𝑏𝑚,0 𝑥𝑘] (A.6.b) 

𝑒1,𝑘 =  E[𝑥𝑘𝑒−𝑏𝑚,0 𝑥𝑘] (A.6.c) 

𝑒2,𝑘 =  E[𝑥𝑘
2 𝑒−𝑏𝑚,0 𝑥𝑘] (A.6.c) 

Using equations (A.5) and (A.6), we can calculate the 
derivative with respect to 𝑎 and 𝑏. The derivative of 𝐻(∙)  with 
respect to 𝑎𝑚 is  

∂𝐻 ∂𝑎𝑚⁄ = 𝑒−𝑎𝑚 ∑ |𝑐𝑚,𝑘|
2

  E[𝑒−𝑏𝑚𝑥𝑘] − 𝐾𝐾
𝑘=1  (A.7) 

By setting this term to zero, we can find the update rule for 
𝑎𝑚 𝑚 = 1, ⋯ , 𝑀 

𝑎𝑚 = log (∑ |𝑐𝑚,𝑘|
2

  E[𝑒−𝑏𝑚𝑥𝑘]𝐾
𝑘=1 𝐾⁄ ) (A.8) 

Note that the update for 𝑎𝑚 is a function of 𝑏𝑚. The 
derivative of 𝐻(∙)  with respect to 𝑏𝑚 is 

∂𝐻 ∂𝑏𝑚⁄ = − ∑  E[𝑥𝑘]𝐾
𝑘=1   

− ∑ |𝑐𝑚,𝑘|
2

 𝑒−𝑎𝑚  (−𝑒1,𝑘 + 𝑒2,𝑘(𝑏𝑚 − 𝑏𝑚,0))𝐾
𝑘=1  (A.9) 

By setting this term to zero, we can find the update rule for 
𝑏𝑚 𝑚 = 1, ⋯ , 𝑀 

𝑏𝑚 = 𝑏𝑚,0 + 
(𝐾𝑒𝑎𝑚E[𝑥𝑘]+ ∑ |𝑐𝑚,𝑘|

2
𝑒1,𝑘

𝐾
𝑘=1 )

(∑ |𝑐𝑚,𝑘|
2

  𝑒2,𝑘
𝐾
𝑘=1 )

 (A.10) 

Note that the update rule for  𝑏𝑚 is also a function of 𝑎𝑚 

and 𝑏𝑚,0. We set 𝑏𝑚,0 to be the estimate of 𝑏𝑚 from the 

previous EM step, and we then use a recursive update of 𝑎𝑚 
and 𝑏𝑚 using equations (A.8) and (A.10). We check how much 
𝑎𝑚 and 𝑏𝑚 changes over iterations and stop if their changes 
drop below a preset small threshold. 
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