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Abstract

We investigate a novel integration of Causal
Bayesian Optimization (CBO, |Aglietti et al.
[2020]) and Multi-Fidelity Bayesian Optimization
(MFBO, [Poloczek et al.| [2017]) at the intersec-
tion of Causal Abstraction. MFBO enables cost-
effective exploration by pooling information from
fidelities with differing costs, while CBO intro-
duces structural assumptions through incorporating
causal knowledge—particularly Directed Acyclic
Graphs (DAGs) encoding intervention relation-
ships that can enhance multi-fidelity optimization.
This fusion, which we term Multi-Fidelity Abstrac-
tion Causal Bayesian Optimization (MFACBO), is
expected to improve decision-making efficiency
in resource-constrained settings, such as health-
care or physical simulation, by guiding both the
selection of intervention sets and fidelity levels.
At the core, we expect Causal Abstraction to for-
malize the relationship between CBO and MFBO,
where different fidelities are assumed to exist on
differing levels of abstraction. In return, MFACBO
emerges as a data-driven method to learn approxi-
mate causal abstraction mappings. We will evaluate
our approach through synthetic experiments and
real-world inspired scenarios using the recently
introduced Causal Chambers, with particular at-
tention to fidelity correlation modeling and acqui-
sition strategies. This work lays the foundation
for a framework that integrates causal reasoning
into fidelity-aware optimization, subsumed by the
theory of causal abstraction.

1 INTRODUCTION

Optimization of expensive to evaluate and complex func-
tions is a pressing issues across the sciences and industry

such as in healthcare, simulations, hyperparamter optimi-
sation and more. Consider the graph in Figure [I] which
describes a healthcare problem evaluating the influence of
statin drugs on the levels of prostate specific antigen (PSA).
The optimization goal is to minimize PSA by intervening
with optimal levels on each statin and aspirin. The remaining
variables, Age, BMI and Cancer, are measured but cannot
be intervened on. Especially in the healthcare setting patient
outcomes can be measured at different levels. For exam-
ple, a patient might be sent to the hospital for expensive
daily blood tests for PSA. This high-fidelity measurement
of the PSA outcome could be supplemented by low-fidelity
measurements using a smartwatch, which will only give
approximate measures of PSA, but at a much lower cost.
This low-fidelity measurement will be a coarsening of the
high-fidelity PSA, an approximate causal abstraction.

Statin

Figure 1: A common CBO example is the causal graph of
PSA levels by |Aglietti et al.| [2020], where shaded nodes
indicate variables that can be manipulated, and dotted nodes
represent non-manipulable variables. The target variable,
PSA, is shown as a thick shaded node.

In the remainder of this paper, we will start out with the
most simple possible DAG in Figure[2] where X can be seen
as the level of statin, Z as the level of aspirin and Y the
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outcome PSA. Our goal will be to find the right intervention
set and levels, such that the optimum is

X x:, = argmin

X, EP(X),x.€D(Xs) P ldoXem) Wisan (1)
where P(X) is all possible intervention sets, i.e. the power
set of X, and D(Xs = X xex,(D(X)) the domain of the
intervention of X, as defined in [Aglietti et al.||2020]]. Fur-
thermore, we also have access to one or more fidelities of the
outcome Yy,ign— fidelitys €-8- Yiow— fidelity» Often referred to
as information sources. It will become evident that there are
conceptual similarities between how we model differences
between fidelities and how we model differences between
causal abstractions. In the following sections we will

e Introduce the key ingredients of MFACBO:
Bayesian Optimization, Causal Bayesian Optimization,
Multi-fidelity Bayesian Optimization and Causal Ab-
straction

e Attempt a problem statement for MFACBO
* Suggest initial steps of a solution for MFACBO

* Characterize the abstraction-fidelity connection un-
derpinning MFACBO

* Present experimental design, both synthetic and real-
world, and their evaluation strategy

* Conclude with a discussion of next steps.

1.1 BAYESIAN OPTIMIZATION

Bayesian Optimization is a probabilistic, model-based op-
timization technique particularly well-suited for optimiz-
ing objective functions that are expensive to evaluate or
black-box in nature. It operates by constructing a surro-
gate model—typically a Gaussian Process (GP) (Williams
and Rasmussen|[2006])—to approximate the true objective
function, capturing both mean predictions and uncertainty.
An acquisition function, such as Expected Improvement,
Upper Confidence Bound, or Probability of Improvement,
guides the selection of query points by balancing exploration
and exploitation (Frazier| [2018]]). Bayesian Optimization
has demonstrated strong performance in domains such as
hyperparameter tuning for machine learning models and au-
tomated experiment design due to its sample efficiency and
principled handling of uncertainty (Brochu et al.|[2010]).

In vanilla Bayesian Optimization, no structural knowledge
about the variables is used such that the graphical represen-
tation reduces to the DAG shown in Figure[2]

1.2 CAUSAL BAYESIAN OPTIMIZATION

In Causal Bayesian Optimization (CBO), we incorporate
knowledge about the causal relationships of optimization

Figure 2: BO Example Graph

variables. For example, we might have evidence that X is a
parent of Z, and does not influence the outcome Y directly,
but only through a mediating variable Z. This leaves us with
four possible interventions sets

{0.{x},{2},{X, 2}}

where () indicates the observational state of the system, i.e.
with no interventions. This is described in Figure [3] and
extensively discussed in [Aglietti et al.l 2020].
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Figure 3: CBO Example graph

1.3 MULTI-FIDELITY BAYESIAN OPTIMIZATION

Multi-fidelity Bayesian Optimization (MFBO) extends tradi-
tional Bayesian Optimization to settings where evaluations
of the objective function are available at multiple levels of
cost and accuracy (i.e., fidelities). By leveraging cheaper,
lower-fidelity approximations—such as coarser simulations,
reduced training epochs, or subsampled datasets—MFBO
can significantly reduce the overall optimization cost while
maintaining accuracy. The core idea is for example to model
the correlations between fidelities using techniques like
multi-output Gaussian Processes (Kennedy and O’Hagan
[2000])), enabling informed decisions about which fidelity
to query at each iteration. Acquisition functions are adapted
to account for both information gain and query cost. MFBO
has been successfully applied in engineering design, hyper-
parameter tuning, and scientific experiments where high-
fidelity evaluations are prohibitively expensive.

In this paper, we will follow the approach of multi-
information source BO by [Poloczek et al.|[2017]]. Here, we
assume that there is access to M information sources, possi-
bly biased and/or noisy, indexed by [ € [M]y. We can query
any IS [ at design point x yielding i.i.d measurements with
mean f (I, z) and finite variance \;(z), independent condi-
tional on f (I, x). These can also be referred to as auxililary



tasks, while the primary task is considered to be function g.
Therefore,

f(0,2) = g(x)

The bias of each IS is then f(I,x) — g(x) = §;. Each IS is
also associated with a cost function ¢;(z) : D — R. We
assume both \;(z) and ¢;(x) to be known, e.g. as provided
by domain experts.

1.4 CAUSAL ABSTRACTION

Causal abstraction concerns the study of causal systems at
different levels of abstraction, from the fundamental micro-
“atomistic’ to the macro-’coarsened’. [Beckers et al.|[2019]
attempt a formal formulation of approximate causal abstrac-
tion, assuming that abstract models will capture only ever
capture the underlying fundamental system in an approxi-
mate way, as exemplified in Figure 4]

First, we very briefly revisit the notation of approximate
causal abstraction as introduced by Beckers et al.| [2019].
A signature S is a tuple (U, V,R) where U is a set of ex-
ogenous variables, V is a set of endogenous variables and
‘R is a function that associates the range to every variable
X, e U UV, i.e. anon-empty set of possible values of X;.
A signature S is the basis for a causal model M which is
a pair (S, F), where F defines a function for each X, i.e.
a structural equation F'y, that maps all possible values of
Uand V to X, i.e. Fx, maps therange R(U UV — X;) to
R(X;).

Central to this is the formulation of an abstraction function
T : Rr(Ve) — Ry (V) that maps endogenous states of
the low-level model M7, to the endogenous states of Mz,
where

My = (U, Ve, Re), Fe. Ir) @
MH = ((UH’VH)RH)7‘FH)IH)

as defined in [Beckers et al., 2019]. For the PSA examples
introduced earlier in Figure[] the abstraction models might
be defined as follows, where aspirin and statin are approxi-
mate by statin-drugs, and PSA is measured via skin instead
of blood:

My =

(U, (statin, aspirin, PS Apivod), Rz), (91, fL), L)

My =

= ((U, (statin — drugs, PSAskin), Ru), (91, f1), Txn)
3)
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Figure 4: This climate example is apapted from |(Chalupka
et al.|[2016] by Beckers et al.| [2019], where a high-level
causal model of the El Nifio phenomenon is derived from
low-level (high-dimensional) measurements of wind W and
sea surface temperature 7'. Here, U represents an unmea-
sured confounder, and 7 denotes the mapping between the
two models.
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1.5 STRUCTURAL LEARNING, CAUSAL
DISCOVERY & CAUSAL ENTROPY
OPTIMISATION

In this paper, we will assume that the causal graph is known,
either via expert knowledge or data-driven methods. CBO
has been extended to also learn the structure of the graph
as discussed in [Mamaghan et al., 2024, Branchini et al.}
2022, |[Lorch et al.| 2021}, [Tigas et al.l [2023]], but due to
the increased model complexity require much more data
while also being numerically more instable. Notably, [Zhang
et al.l [2023]] have already described a first step towards
leveraging multiple fidelities for learning DAGs. We leave a
formulation that simultaneously learns the graphs as a future
step. It’s also worth mentioning work that attempts to learn
abstraction maps, as we will introduce later, with out the
knowledge of the causal graph, as dicussed in [Felekis et al.
[2024].

The work closest to our paper tackles the problem of
"Causally Abstracted Multi-armed Bandits" [Zennaro et al.,
2024] with their point of departure not rooted in Bayesian
optimization as in [Aglietti et al., 2020]], but the bandit liter-
ature which first tackles causal problems in [Lattimore et al.,
2016].

2 PROBLEM STATEMENT

As a starting point for MFACBO, we consider the integra-
tion of CBO and MFBO, as described in the DAG of Figure
[l Here, we assume that a low-fidelity outcome measure-
ment Y}, is a causal descendant of a high-fidelity outcome
Yhign- In the problem setting of MFBO, we would expect
a ¢ difference between these two information sources, of-
ten referred to as *'model discrepancy’. In terms of causal



abstraction, we consider Y}, to be a coarsening Y},;4y, that
is cheaper to inquire, and, easily confused, Y}, is a higher
abstraction of the base causal model Yy,;4p,.

Figure 5: MFACBO setup where the low-fidelity is a direct
consequence of the high-fidelity outcome.
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Figure 6: MFACBO DAG where the low-fidelity is both a
causal consequence of the intervention variables and the
high-fidelity outcome.

There are also other possible DAGs for MFACBO, such as
show in Figure[/| where we consider the possibility of low
and high fidelity interventions for X and Z.

Figure 7: MFACBO graph where there are also differing
fidelities of intervention variables. It is unclear which DAG
representation is most adequate to model fidelity-levels of
this kind, and whether there should be edges between level
outcomes and/or interventions.

Related to that is also the possibility to treat each
possible intervention set as its individual fidelity, e.g.
such that for {(), { X}, {Z},{X, Z}} there exists fidelities
1Sy,1Sx,157,15x 7.

Finally, there is also a connection to recent work on func-
tional networks and Bayesian optimization as discussed by
Astudillo and Frazier|[2021]]. This case is shown in Figure @]
and a possible extension with soft interventions on M could
be derived from [Massidda et al., [2023]].

3 SOLUTION

As a first step, we will approach the integration of CBO
and MFBO assuming the DAG structure shown in Figure
[6] i.e. we assume that there is a high-fidelity causal process
ISy = f(0,z) = g(x) = Yhign(x) that is expensive to in-
tervene on and/or measure, and a low-fidelity causal process
1S, = f(1,z) = g(z) — 61(x) = Yiow(x) that is cheap,
but approximate, and costs cp(x) =5 ¢1(z) = 1.

Figure 8: Functional networks Bayesian optimization con-
siders intermediate outcomes which in our case we could
consider Y}, to be, including a (soft)-intervention variable
M governing the relationship of the high and low fidelity.

3.1 MODEL DEFINITION

For each intervention set in the minimal intervention sets,
e.g. {0,{X},{Z},{X, Z}} for Figure 5| we will continue
with the MISO model design as introduced before in
[Poloczek et al.l 2017]]: We define our surrogate model for
fasa:

* Gaussian process prior on f
* with mean functions p : [M] x D — R

* and covariance kernels X : ([M] x D)? — R

To model the information source discrepancies, we assume
that for each [ > 0 a function §; : D +— R was drawn
from a separate GP, §; ~ GP(u;, ;) where the primary
task 6o = 0. This generative model 6; models the bias
f(l,z) — g(x) for all IS {. Therefore,

fx) = f(0,2) + di(x)

Furthermore, g ~ GP (o, X0), and also:

p(l,z) = E[f(l,2)] = Elg(x)] + E[éi(x)] = po(z)

X((z), (m,2") =
= Cox(g(x) + di(x), g(2") + dpm(a”))
=Yo(z,2") + 1 m x Ty, 2’

')
x')

“4)

~

3.2 ACQUISITION FUNCTIONS

In MISO (Poloczek et al.[[2017]) both the design z € D and
information source [ € [M] are selected at the beginning of
each round. For each IS, the value of information at design
point x is the expected gain in quality of the best design
given all samples measured so far. This gain is normalized
using the cost function ¢;(z), yielding which IS [ should be



sampled at what design point x. If costs are identical, this
means we would query the true objective g(x) at every turn.
This can be formalized into the follow acquisition function:

MKG™(1,z) =
mazy epp"t(0,2') = mazy cpp™ (0,33’)| 5)
a(z)

1D = [ (V=1 = g

El

In CBO (Aglietti et al.[[2020]) the acquisition function is
defined for each intervention set. The expected improvement
(ED) is:

ET*(z) = Epy,)[max(ys — y*)]/Co(x) (6)

As a next step in future work, we will combine these acqui-
sition functions, such that they inform and predict the next
best query for maximal gain, in regard to which fidelity 1.5;
to query over which intervention set.

4 THE ABSTRACTION-FIDELITY
CONNECTION

Through the above exposition, it becomes evident that there
is a conceptual connection between multi-fidelity optimiza-
tion incorporating causal knowledge and recent work in
causal abstraction [Beckers et al., [2019]]. We identify the
parallels in Table

MFBO per [[Poloczek et al., 2017]] models the model dis-
crepancy between fidelities, s.t. §;(z) = f(l,z) — f(0, z).
Once learned from data, we can access approximations of
lower and higher fidelities via shifts of J;(x). Similarly, in
causal abstraction we define 7 as a function to map between
abstraction levels. To avoid confusion it is important to note
that in MFBO high-fidelity information sources are consid-
ered to be the most precise and therefore most costly to
query, whereas in causal abstraction high-level models are
considered to be approximation, and therefore are equivalent
to low-fidelities and cheaper to query.

Furthermore, MFBO is not necessarily restricted to prob-
lems with a ranking of information sources, but also allows
for problems where relationships of information sources
aren’t necessarily ranked. [Beckers et al.,[2019] also intro-
duce distance measures to quantify the approximation loss
of abstract models from their low-level underpinnings. Such
a measure, d,, might be conceptually closer to MFBO’s ¢,
than the abstraction function 7, which will be part of further
inquiry.

Example

A brief worked out example is shown in Table [2] where
we take the synthetic test function of Equation [9)and show

the difference between the low and high abstraction level.
Formally, this model or fidelity discrepancy equates to

(51 = sin(2ZH) = d(ISO,Isl) = d(ML,MH) =

)

=\VOx (Xp, —Xu)2+0x(Z, —Zy)+1x (Y, —Yg)
(®)

where we use the most simple definition of approximate
causal abstraction distance, i.e. weighted squared distance,
and only focus on the difference of outcomes Y.

S EXPERIMENTS

5.1 SYNTHETIC EXPERIMENTS

We will run experiments on the toy example introduced by
Aglietti et al.[[2020] in their seminal CBO paper, i.e. using
the DAG in Figure[6] We will extend its associated structural
equations loosely based on the MFBO example in Poloczek
et al.|[2017] such that:

X = €x
Z =exp(—X) + ez
Z €))
Yhigh = cos(Z) — e:L'p(fQ—O) +ez
Yiow = }/}Ligh + SZTL(2Z)

Experiments will be run to determine the influence of dif-
ferent acquisition functions and surrogate models, and their
influence on convergence performance such as cumulative
regret, also in the context of CBO. We choose random de-
sign generation as a baseline strategy to outperform, also
comparing against off-the-shelf algorithms such as single
fidelity BO, CBO, MFBO. Finally, we run MFACBO, which
we hypothesize should outperform both CBO and MFBO
individually as it has access to both differing fidelities as
well as the causal graph, suggesting information theoretic
advantage.

5.2 REAL-WORLD EXPERIMENTS

Synthetic experiments have several limitations in terms of
assessing real-world performance of Bayesian Optimization.
Therefore, we will also run experiments on the recently in-
troduced Causal Chambers (CC, Gamella et al.|[2025])). The
CC:s are built upon physical mechanisms where the under-
lying causal DAG is well known and studied, allowing us
to measure close-to ground truth data. We will focus on the



Abstraction MFBO
Entities | High and low levels My, My, High and low fidelities 1.5y, I.S;
Distance dmaz(MlvMZ) = maxX(-mGI,uGR(u){dv(Ml(uvX < x)vMQ(qu < l’))} 51(7:) = f(l,$) — f(07$)

Table 1: Causal Abstraction and Multi-fidelity Bayesian Optimization in terms of their different entities of study and distance

between those entities.

IS X, | Z Y,

0(Low) | ex, | exp(—Xg)+ez,

cos(Zr) — exp(—5&) + ey,

1 (High) | ex,, | exp(—Xu) +e€z,

cos(Zp) — exp(— ) + eyy + sin(22y)

Table 2: Comparison table showcasing the model discrepancy (underlined) in the structural equations from the low fidelity
to high fidelity information source (i.e. the abstraction error from the low model to the high abstract model). Formally, this

discrepancy is defined as 6, = sin(2Zy).

wind tunnel experiment, shown in Figure[9] where have con-
trol over the resolution of the sensors, representing differing
levels of fidelity, as seen in Figure[TT] The wind tunnel can
be described via a DAG shown in Figure[I0] where have par-
ent variables such as fan load (L;,,, L.y:) and their causal
children, air pressure (IE’dw, Pup). As we do in the synthetic
experiments, we choose random as a baseline to outperform,
and compare against off-the-shelf algorithms such as single
fidelity BO, CBO, MFBO. Then, we run MFACBO, which
we hypothesize should outperform both CBO and MFBO
individually as it has access to both different levels of in-
formation sources via the sensor resolutions, as well as the
causal graph. Its information theoretic advantage should
help it outperform both CBO and MFBO individually.
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Figure 9: The wind tunnel CC is a real-world simulation of
air pressure differences regulated by fan speed and pressure
valves, see |Gamella et al.|[2025]]

6 DISCUSSION

In this workshop paper, we have introduced initial ideas
for the description of a new method called MFACBO, that
integrates both causal graphical knowledge via CBO as
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Figure 10: This DAG represents the control and measure-
ment variables, and will be assumed to be true for the bench-
marking of MFACBO.
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Figure 11: Causal Chambers allow for differing fidelities by
varying the resolution of its sensors, as in their Figure § (a).

well as fidelity pooling via MFBO. We state possible model
choices and acquisition functions with key steps still open



to be explored. We also state our experimental strategy, both
synthetic using established examples, as well as real-world
facilitated via causal chambers. Most importantly, we ex-
pect significant conceptual overlap of CBO and MFBO to
be characterized via recent work in causal abstraction. Here,
the exact connection of causal abstraction and multi-fidelity
modeling will be found at the intersection of model discrep-
ancy ¢;, causal abstraction mapping 7 and approximation
error distance d,, see Table In return, MFACBO emerges
as a method for data-driven learning of abstraction mappings
T in optimisation settings.
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