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ABSTRACT

Combinatorial optimization (CO) problems are classical and crucial in many
fields, with many NP-complete (NPC) examples being reducible to one another,
revealing an underlying connection between them. Existing methods, however,
primarily focus on task-specific models trained on individual datasets, limiting
the quality of learned representations and the transferability to other CO problems.
Given the reducibility among these problems, a natural idea is to abstract a higher-
level representation that captures the essence shared across different problems, en-
abling knowledge transfer and mutual enhancement. In this paper, we propose a
novel paradigm CORAL that treats each CO problem type as a distinct modality
and unifies them by transforming all instances into representations of the funda-
mental Boolean satisfiability (SAT) problem. Our approach aims to capture the un-
derlying commonalities across multiple problem types via cross-modal contrastive
learning with supervision, thereby enhancing representation learning. Extensive
experiments on seven graph decision problems (GDPs) demonstrate the effective-
ness of CORAL, showing that our approach significantly improves the quality
and generalizability of the learned representations. Furthermore, we showcase the
utility of the pre-trained unified SAT representations on related tasks, including
satisfying assignment prediction and unsat core variable prediction, highlighting
the potential of CORAL as a unified pre-training paradigm for CO problems.

1 INTRODUCTION

Combinatorial optimization (CO) is a pivotal area of study in both theoretical computer science
and a wide range of applied fields, owing to its broad applicability in solving complex real-world
problems, including logistics (Sbihi & Eglese, 2010), network design (Vesselinova et al., 2020),
scheduling (Hwang & Cheng, 2001), and finance (Pekeč & Rothkopf, 2003). CO problems are
inherently challenging due to their discrete and non-convex nature, which often leads to NP-hard
complexity (Karp, 2010), with many instances requiring worst-case exponential time to solve. In
response to these challenges, machine learning (ML) approaches have recently emerged in the CO
domain (Bengio et al., 2021; Gasse et al., 2022), offering the potential to reduce solving times by
exploiting common patterns and structures in CO instances.

Most existing ML-based approaches for CO primarily emphasize improving problem-specific rep-
resentation learning to enhance task performance. While these methods can achieve high accuracy
on particular tasks, the representations they learn are typically tailored to specific instances, making
them non-transferable across different datasets or problem domains. Consequently, individual mod-
els must be trained for each dataset and task, limiting the potential for broader generalization and
scalability. This fragmentation hinders the development of more generalizable CO models that can
efficiently solve a wide range of problem types using a unified framework, as in the vision or lan-
guage field (Khan et al., 2022; Min et al., 2023). Moreover, the inherent connections among many
CO problems offer a compelling opportunity for unification. Since numerous NPC problems can be
reduced to one another, they share a common underlying structure that can potentially be exploited
for more efficient representations. The connections suggest that instead of learning problem-specific
representations, a higher-level, abstract representation could be developed to capture the essence
shared across different CO problems. Such a unified representation would not only enable knowl-
edge transfer between problem domains but also facilitate mutual enhancement, as insights gained
from one problem could benefit the solution of others.
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In this paper, we aim to develop the general and high-level representations across CO problems to fa-
cilitate various tasks, with a particular focus on graph decision problems (GDPs), which encapsulate
the core challenges of CO. Notably, from the 21 NP-complete problems identified by Karp (2010),
10 are GDPs, highlighting their fundamental importance. To achieve our objective, it is significant to
effectively incorporate and synthesize features from multiple problem types. Therefore, we leverage
contrastive learning, a technique widely employed for modality alignment in vision-language pre-
trained models (Du et al., 2022). However, applying contrastive learning to CO problems presents a
significant challenge due to the inherent differences between CO problems, rendering direct appli-
cation impractical. In response, we propose a sophisticated and unified training paradigm, CORAL,
that enables effective contrastive learning across graph CO problems. Specifically, to align with the
multi-modal training perspective, we conceptualize each GDP type as a distinct problem modality.
To bridge the gaps among GDP types, we introduce the Boolean satisfiability (SAT) problem as a
unified intermediary modality. The SAT modality is used to construct strong correspondence with
other GDP types through instance transformation, thereby establishing connections among GDPs.
In the training phase, instances from each GDP type are concurrently contrasted with the corre-
sponding SAT instances, thereby fusing features across problem modalities. The contrastive-based
training enables each model to learn high-level representations from multiple problem types, serving
as a pre-training phase. The trained models are finally fine-tuned on specific datasets and tasks.

Extensive experiments are conducted to evaluate the effectiveness of the CORAL paradigm. First,
we assess the performance of the models on standard tasks adopted during the pre-training phase,
including GDP solving and satisfiability prediction, to demonstrate the superiority of the represen-
tations learned through CORAL. Subsequently, we evaluate the generalizability of the models by
testing them on larger-scale instances, where experimental results indicate that the models trained
using the CORAL paradigm exhibit significantly enhanced generalization capabilities. Addition-
ally, to further highlight the practical applications of CORAL, we examine the performance of the
pre-trained SAT models on related SAT-based tasks across both seen and unseen datasets during the
pre-training phase. The main contributions of the paper are as follows.

1) We propose CORAL, a novel training paradigm designed to learn high-level representations
across multiple CO problems. To the best of our knowledge, it is the first framework to leverage
unified representations across different problem types.

2) We introduce SAT as an intermediate, unified modality to bridge diverse CO problems, enabling
the effective learning of shared characteristics across different problem types.

3) We conduct extensive experiments on various problems and examine the efficacy of the pre-
trained representations on new tasks and datasets, illustrating the potential of CORAL as a robust
and unified pre-training paradigm.

2 RELATED WORK

Graph Learning for CO. The application of machine learning to graph-based CO problems has
a rich history, with recent research demonstrating substantial advancements in this domain (Khalil
et al., 2017; Bengio et al., 2021; Mazyavkina et al., 2021). Most ML-based approaches for CO
follow a two-stage framework: (1) Graph representation learning, where graph instances are em-
bedded into low-dimensional vector spaces (Hamilton et al., 2017b; Cai et al., 2018; Chen et al.,
2020a); and (2) The utilization of these learned representations to solve CO problems (Joshi et al.,
2019; Prates et al., 2019; Sato et al., 2019). Our CORAL paradigm focuses on enhancing the first
stage by proposing a more general training approach. While previous work has largely focused on
designing network architectures (Kipf & Welling, 2016; Hamilton et al., 2017a; Veličković et al.,
2017), our approach emphasizes the development of a training paradigm that leverages information
from multiple problem types. By incorporating a contrastive learning-based strategy, CORAL aims
to learn high-level, transferable representations that can be effectively applied across various CO
problems, promoting a more unified and generalizable framework for graph-based CO tasks.

Graph Contrastive Learning. Current graph contrastive learning frameworks primarily rely on
graph augmentations, which can be broadly categorized into two types: (1) structural perturba-
tions, such as node dropping, edge sampling, and graph diffusion (Duan et al., 2022; Huang et al.,
2023); and (2) feature perturbations, such as adding noise to node features (Hassani & Khasahmadi,
2020). These augmentation strategies have demonstrated effectiveness across a range of tasks, from
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graph-level representations (Hassani & Khasahmadi, 2020; You et al., 2020) to node-level represen-
tations (Wan et al., 2021; Tong et al., 2021). Our CORAL paradigm moves beyond traditional graph
augmentations by contrasting graph instances across multiple problem types. Instead of solely rely-
ing on structural and feature perturbations, CORAL leverages the inherent characteristics of different
CO problems, enabling the model to capture higher-level characteristics.

Solving SAT with ML Approaches. ML-based SAT solvers can be broadly classified into two
categories (Holden et al., 2021; Guo et al., 2023; Li et al., 2023): standalone neural solvers and
neural-guided solvers. Standalone neural solvers directly address SAT instances (Bünz & Lamm,
2017; Selsam et al., 2019; Cameron et al., 2020; Shi et al., 2023). In contrast, neural-guided solvers
focus on enhancing the search heuristics of classical SAT solvers (Zhang et al., 2020; Li & Si, 2022).
Our CORAL paradigm leverages information from original graph problems to learn more robust and
generalizable representations, thereby also improving SAT solving performance.

3 METHODOLOGY

In this section, we present details of our contrastive Combinatorial Optimization Representation
Alignment and Learning (CORAL) paradigm. We start by introducing the preliminary background
on representations of graph decision problems and SAT in Sec. 3.1. Then, we elaborate on our
approach to aligning multiple problem types in Sec. 3.2. Finally, we introduce the overall pipeline
and model implementation of our CORAL, as well as some important training details in Sec. 3.3.

3.1 PRELIMINARY

3.1.1 GRAPH DECISION PROBLEM

The graph decision problem (GDP) is a fundamental computational challenge in graph theory and
combinatorial optimization, where the goal is to determine the existence of specific properties within
a given graph. These properties can vary widely, from identifying whether a graph contains a partic-
ular substructure, such as a clique or cycle, to assessing whether it meets conditions like connectivity
or planarity. Graph decision problems are typically formulated as yes/no questions, making them
essential in complexity theory, especially in the context of NP-complete problems.

ML-based models can be effectively utilized to address GDPs. In such models, the objective is to
learn a representation of a specific GDP type and use it to predict decisions based on the input graph.
These representations can be understood as mappings that translate the structural properties of the
input graphs into corresponding decisions, thereby capturing the underlying patterns required for
decision-making in GDPs.

3.1.2 SAT PROBLEM

A Boolean formula in propositional logic consists of Boolean variables connected by logical oper-
ators “and” (∧), “or” (∨), and “not” (¬). A literal, denoted as li, is defined as either a variable or
its negation, and a clause cj is represented as a disjunction of n literals,

∨n
i=1 li. A Boolean for-

mula is in Conjunctive Normal Form (CNF) if it is expressed as a conjunction of clauses
∧m

j=1 cj .
Given a CNF formula, the Boolean Satisfiability Problem (SAT) aims to determine whether there
exists an assignment π of Boolean values to its variables under which the formula evaluates to true.
If such an assignment π exists, the formula is called satisfiable, where π is called a satisfying as-
signment; otherwise, it is unsatisfiable. Identifying a satisfying assignment for a Boolean formula
proves its satisfiability, and serves as a crucial step in solving practical instances in various applied
domains. On the other hand, for an unsatisfiable formula, a minimal subset of clauses whose con-
junction remains unsatisfiable is referred to as the unsat core. This subset captures the essential
structure responsible for the unsatisfiability. The variables involved in this unsat core are termed
unsat core variables. Identifying the unsat core variables is important for understanding the funda-
mental sources of unsatisfiability, and plays a critical role in optimization processes.

Graph representations play an important role in analyzing SAT formula, with four primary
forms (Biere et al., 2009) commonly used: the literal-clause graph (LCG), literal-incidence graph
(LIG), variable-clause graph (VCG), and variable-incidence graph (VIG). The LCG is a bipartite
graph consisting of two types of nodes—literals and clauses—where an edge between a literal and
a clause signifies the occurrence of that literal in the clause. The LIG, in contrast, consists solely of
literal nodes, with edges representing the co-occurrence of two literals within the same clause. The
VCG and VIG are derived from the LCG and LIG by merging each literal with its negation.
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3.2 MODAL ALIGNMENT

We aim to enhance the learned representations of graph instances across a diverse range of GDPs
by incorporating and synthesizing information from multiple GDP types. Specifically, we concep-
tualize each GDP type as a distinct problem modality. By adopting this multi-modal perspective, we
explore the potential for cross-modal information-passing schemes.

Matching

CNF Formula

 p  cnf  10  34 
 -1  -2  -3   0 
  1  -3   0 
 -2 -3   0 
...

SAT GraphGraph Decision Problem

K-clique  p  cnf  25  66 
  1   2   0 
 -1   3   0 
  2  -3  0 
...

K-color  p  cnf  20  51 
  1   2   3   0 
 -1  -2   0 
  2   3   0 
...

Figure 1: Transformation process from various GDP
instances to the unified LCG representation of SAT.

However, significant challenges arise due
to the inherent disparities and structural
gaps between different GDP types, of-
ten exhibiting varying graph topologies
and problem characteristics. These dif-
ferences make direct information transfer
across modalities impractical and poten-
tially detrimental to the integrity of the
representations.

To address the challenges, we propose in-
troducing SAT as a unified intermediary
modality. The core concept involves trans-
forming each GDP instance into its cor-
responding CNF formula, effectively con-
verting it into a SAT instance. Once transformed, we construct a SAT-based graph representation for
each instance, ensuring that all GDP instances, regardless of their original modalities, are standard-
ized into an equivalent SAT graph representation. This transformation allows for uniform modeling
across disparate problem types. Fig. 1 clarifies our approach to modal transformation.

After this transformation, we leverage contrastive learning to align the different modalities. Specif-
ically, each GDP instance and its corresponding SAT instance form a positive pair, while SAT in-
stances derived from other GDP instances within the same GDP type serve as negative samples. The
SAT modality, in turn, aligns with all other modalities.

This approach facilitates effective cross-modal information transfer between GDP modalities in an
indirect manner. By utilizing SAT as an intermediary modality, we preserve the distinct characteris-
tics of each problem type while promoting coherent information fusion across modalities.

3.3 CORAL PARADIGM

3.3.1 OVERVIEW

In this section, we provide a detailed introduction to CORAL. Fig. 2 exhibits an overview.

Consider a scenario involving n types of GDPs, denoted as P1,P2, . . . ,Pn, along with n corre-
sponding graph sets G1,G2, . . . ,Gn. For simplicity, assume that each graph set Gi contains m
graphs, i.e., Gi = {G1

i ,G2
i , . . . ,Gm

i }, for i = 1, 2, . . . , n. The objective is to solve problem Pi on
graphs in Gi. In total, there are m × n instances, denoted by Iji = (Pi,Gj), where i = 1, 2, . . . , n
and j = 1, 2, . . . ,m.

We first transform each of the m×n GDP instances into CNF, thereby generating their corresponding
SAT graphs, i.e., (Pi,Gj) → Bj

i , where Bj
i is the constructed (bipartite) SAT graph.

Then, we develop n distinct graph models, M1, . . . ,Mn, each for one GDP type, and one unified
SAT model Msat to address the problem space. Both the graph models and the SAT model are
structured around two key components: the Representation Extractor and the Output Module.
The Representation Extractor is responsible for learning and extracting representations from the
input graph instances, whether derived from GDP or SAT transformations. The Output Module
then utilizes these learned representations to produce task-specific outputs, thereby enabling the
resolution of the given problem.

In the training phase, we simultaneously train the n+1 models corresponding to the n GDP modal-
ities and the SAT modality. The supervision is derived from two parts: the decision loss and the
contrastive loss. The decision loss is applied independently to each model, guiding it to effectively
learn the feature representations of the respective instances and capture the unique characteristics of
its assigned modality. Meanwhile, the contrastive loss is employed to facilitate feature fusion and
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Matching
SAT Graph

Graph Decision Problem

K-clique

K-color

SAT
Representation 

Extractor

SAT Output
Module

Representation 
Extractor

Representation 
Extractor

Output Module

Output Module

Representation 
Extractor

Output Module

SAT Model

Graph Model

Data Flow

Loss Flow

Figure 2: Overview of our CORAL paradigm. Given instances from multiple GDP types and their
corresponding SAT graphs, a graph model is trained for each GDP type alongside a SAT model.
Each model is composed of a Representation Extractor and an Output Module. The input graphs
are processed by the Representation Extractor to generate instance-level representations, which are
subsequently fed into the Output Module to produce the final decisions for each instance. The
decision loss is applied individually to each model, while the contrastive loss is applied to each
graph model. All contrastive losses are applied to the SAT model.

message passing across the different modalities, enabling the models to leverage complementary
information from multiple modalities.

3.3.2 MODEL ARCHITECTURE

In this section, we illustrate the utilized model architecture, encompassing both the graph and the
SAT models. Please refer to Appendix B for more details.

Graph Model. Each graph model is designed to address a specific type of GDP, and all models
maintain a consistent architecture. To illustrate this, we focus on problem Pn and its corresponding
graph model Mn. The graph model Mn takes graphs in the set Gn as input and processes them
through the Representation Extractor. The input graph primarily consists of edge information, which
is often a critical aspect of GDPs. For the initial vertex features, we introduce a d-dimensional
embedding for all vertices, represented as h(0)

n .

For the Representation Extractor, we adopt the vanilla Graph Convolutional Network (GCN) (Kipf
& Welling, 2016), which is widely used as a backbone for node embeddings in graph-based tasks.
Assume there are k layers, the embedding extraction at the i-th layer of the network is expressed as:

H(i)
n = ReLU(D̃− 1

2 ÃD̃− 1
2H(i−1)

n W(i−1)
n ), i = 1, 2, . . . , k, (1)

where H denotes the node embedding matrix, with each row corresponding to a node embedding.
The matrix Ã = A + I is the adjacency matrix augmented with self-loops through the identity
matrix I. D̃ii =

∑
j Ãij is the degree matrix, and W is the learnable weight matrix. Following the

extraction of node features, we apply average pooling to the node embedding matrix H
(k)
n to aggre-

gate the node-level information into a single representation for the entire graph instance, denoted as
rn. This aggregation is computed as follows:

rn =

∑
v∈V h

(k)
n,v

|V|
, (2)

where V represents the set of vertices in the input graph, |V| denotes the total number of vertices, and
h
(k)
n,v is the extracted embedding for node v. rn serves as the instance-level feature representation,

and is subsequently fed into the Output Module, which is implemented as an MLP to produce the
final decision for the instance.

SAT Model. Apart from the graph models, the SAT model Msat processes the constructed SAT
graphs via its own Representation Extractor. For illustration, we consider the LCG representation.
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For the initial node features, we define two distinct d-dimensional embeddings: h
(0)
l for all literal

nodes and h
(0)
c for all clause nodes.

The architecture of the Representation Extractor is inspired by NeuroSAT (Selsam et al., 2019). For
notational clarity, we assume that the extractor consists of k layers, with both literal and clause node
embeddings being iteratively aggregated and updated at each layer. At the i-th layer, the updates for
the literal and clause node embeddings are formulated as follows:

h
(i)
l = LayerNormLSTM

(
SUM
c∈N (l)

(
MLP

(
hi−1
c

))
,h

(i−1)
l ,h

(i−1)
¬l

)
, (3)

h(i)
c = LayerNormLSTM

(
SUM
l∈N (c)

(
MLP

(
hi−1
l

))
,h(i−1)

c

)
, (4)

where l and c represent an arbitrary literal node and clause node, respectively, N (·) refers to the
set of neighboring nodes. The summation operator (SUM) serves as the aggregation function, while
LayerNormLSTM (Ba, 2016) is employed as the update function.

Similar to the graph models, the instance-level representation rsat derives by averaging the literal
node embeddings after the k-th layer. The instance-level representation, along with the literal-level
embeddings, is passed to the Output Module, which is also implemented as an MLP, to generate the
final task-specific decisions or predictions.

3.3.3 LOSS FUNCTION

In CORAL paradigm, model training is guided by two key loss functions: the decision loss and the
contrastive loss. These losses play a critical role in optimizing the model’s performance, with the
decision loss focusing on task-specific predictions, while the contrastive loss facilitates cross-modal
representation alignment and feature fusion.

The Decision Loss. The decision loss Ldec is defined as a binary cross-entropy loss, which can be
computed by:

Ldec =
∑

i∈Batch

{
−dgt

i log(dout
i )− (1− dgt

i ) log(1− dout
i )

}
, (5)

where dout denotes the output decision of the models, and dgt refers to the ground truth label for
satisfiability. For each model, the decision loss is independently computed and applied.

The Contrastive Loss. Inspired by Chen et al. (2020b), we define the contrastive loss Lcon to
facilitate the alignment between the GDP and SAT modalities. Taking Pn and the SAT modality as
an example, the contrastive loss is formulated as follows:

Lcon,n =

N∑
i=1

{
− log

exp(sim(r̂in, r̂
i
sat)/τ)∑N

j=1 Ij ̸=i exp(sim(r̂in, r̂
j
sat)/τ)

− log
exp(sim(r̂in, r̂

i
sat)/τ)∑N

j=1 Ij ̸=i exp(sim(r̂jn, r̂isat)/τ)

}
(6)

where N represents the number of instance pairs in a batch, r̂in denotes the normalized representa-
tion of the i-th instance in the Pn modality, and r̂isat denotes the normalized representation of the
corresponding instance in the SAT modality, derived from the i-th instance of the Pn modality. The
parameter τ is the temperature scalar, and I is an indicator function. The function sim(·, ·) measures

the cosine similarity between two representations, defined as sim(ri, rj) =
r⊤i rj

∥ri∥∥rj∥ .

Each GDP modality is trained using the contrastive loss with the SAT modality, allowing indepen-
dent optimization for each GDP model. In parallel, the SAT model is optimized using the average
contrastive losses computed across all GDP modalities, ensuring effective alignment.

3.3.4 TRAINING DETAILS

We adopt a warm start strategy to ensure the models learn robust representations. During the initial
training phase, only the decision loss is utilized, while the contrastive loss is temporarily disabled.
This phase allows the models to focus on learning meaningful task-specific representations based
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solely on the decision outcomes. Our insight is to provide a stable foundation for representation
learning before introducing the more complex cross-modal alignment enforced by contrastive loss.

After the warm start phase, we introduce the contrastive loss alongside the decision loss. To balance
the influence of these two losses, we introduce a parameter β, which controls the relative weight of
the decision loss during the joint training phase.

It is important to note that CORAL serves solely as a pre-training framework. While it enables the
learning of robust and transferable representations, fine-tuning is required for optimal performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the broad applicability of our approach, we select seven GDPs: k-Clique, k-
Dominating Set (k-Domset), k-Vertex Cover (k-Vercov), k-Coloring (k-Color), k-Independent Set
(k-Indset), Perfect Matching (Matching), and Graph Automorphism (Automorph). For each prob-
lem, we randomly generate graph instances that adhere to a distribution specific to the problem. To
ensure a comprehensive and rigorous evaluation, we create datasets with varying levels of difficulty,
categorized as easy, medium, and hard, based on the size and distribution of the generated graphs.
For each easy and medium dataset, we generate 160,000 instances for training, 20,000 instances
for validation, and 20,000 instances for testing. For each hard dataset, we only produce 20,000
instances for testing to evaluate the generalizability of models. Additionally, we ensure an equal
distribution of labels, with 50% of instances labeled as satisfiable (1) and 50% as unsatisfiable (0)
across the training, validation, and test sets. The graph instances were transformed into CNF using
generators from CNFGen (Lauria et al., 2017). Moreover, we synthetically generate instances of two
pseudo-industrial SAT problems, employing the Community Attachment (CA) model (Giráldez-Cru
& Levy, 2015) and the Popularity-Similarity (PS) model (Giráldez-Cru & Levy, 2017), and two ran-
dom SAT problems, utilizing the SR generator in NeuroSAT (Selsam et al., 2019) and the 3-SAT
generator in CNFGen (Lauria et al., 2017), to demonstrate the effectiveness of the learned represen-
tations on unseen datasets, thereby proving that the representations are high-level. Please refer to
Appendix A for more details about the datasets.

Tasks. We evaluate the performance of our graph models on the GDP solving task, focusing on
their ability to accurately determine the solution for each specific problem type. For the SAT model,
we assess its effectiveness on the satisfiability prediction task. Moreover, we further evaluate the
SAT model on two essential tasks critical to SAT solving: satisfying assignment prediction and
unsat core variable prediction. Satisfying assignment prediction requires the model to determine
a specific variable assignment that satisfies the given SAT instance, while unsat core variable predic-
tion involves identifying the minimal subset of variables that contribute to the unsatisfiability of the
instance. These tasks are crucial for evaluating the generalizability of the learned representations.

Baselines. For a fair comparison, we establish baselines for both the graph and SAT models. The
baseline for our graph models consists of models with the same architecture as our proposed ap-
proach but trained in a conventional manner, without leveraging the contrastive learning framework.
Each graph model is trained independently on its respective dataset using standard supervised learn-
ing. Similarly, the baseline for our SAT model adopts the same architecture as in our proposed
method but is trained simultaneously on seven GDP datasets in a traditional manner, without cross-
modal contrastive alignment.

4.2 GRAPH MODEL PERFORMANCE

4.2.1 GDP SOLVING

We evaluate the accuracy of the graph models in solving seven GDPs. The baseline model, denoted
as Graph Model, follows the architecture outlined in Sec. 3.3.2 and is trained independently on each
of the seven GDP datasets using conventional supervised learning. Our proposed approach, denoted
as Graph Model+Contrast, employs the same architecture as the baseline model but initializes
model parameters with a pre-trained checkpoint from CORAL, trained on the seven GDP datasets,
and is then fine-tuned individually on the seven GDP datasets.
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Table 1: GDP solving accuracy of the graph models trained on identical distribution. The ‘Overall’
column represents the average accuracy across all datasets.

Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Easy
Graph Model 0.770 0.585 0.603 0.861 0.627 0.712 0.636 0.685
Graph Model+Contrast 0.793 0.620 0.673 0.902 0.675 0.717 0.654 0.719

Medium
Graph Model 0.632 0.622 0.599 0.796 0.611 0.706 0.633 0.657
Graph Model+Contrast 0.713 0.646 0.633 0.822 0.640 0.728 0.657 0.691

Table 1 presents the results, showing the performance of both models trained and evaluated on
datasets with identical distributions, including the easy and medium datasets. Our approach con-
sistently outperforms the baseline model across multiple GDP tasks, indicating that leveraging the
pre-trained representations from CORAL significantly enhances the models’ ability to solve vari-
ous GDPs. Furthermore, it supports our motivation that the high-level representations learned by
CORAL enable mutual enhancement, where insights and patterns learned from one problem type
can be transferred to and improve the solution of others.

4.2.2 GENERALIZATION ON HARD DATASETS

To assess the generalization capabilities of the graph models, we evaluate their performance on the
hard datasets, which consist of problem instances with increased scale and complexity. The model
names and training configurations are consistent with those described in Sec. 4.2.1.

Table 2: GDP solving accuracy of the graph models on the hard datasets. The terms ‘Easy’ and
‘Medium’ in parentheses indicate the difficulty level of the datasets used for training. The ‘Overall’
column represents the average accuracy across all datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Graph Model (Easy) 0.545 0.500 0.500 0.546 0.505 0.664 0.631 0.556
Graph Model+Contrast (Easy) 0.571 0.501 0.500 0.605 0.503 0.679 0.636 0.571
Graph Model (Medium) 0.571 0.562 0.500 0.637 0.531 0.683 0.632 0.588
Graph Model+Contrast (Medium) 0.578 0.565 0.577 0.676 0.565 0.700 0.653 0.616

Table 2 presents the results of graph models trained on the easy and medium datasets, and tested on
the hard datasets. The results clearly show that models leveraging the pre-trained representations
from CORAL exhibit improved performance across most GDP tasks, indicating that CORAL not
only enhances task-specific performance but also provides robust generalization to more challenging
and previously unseen problem instances. The consistent improvements highlight the ability of
CORAL to capture and leverage the inherent connections among different CO problems to learn
representations that transcend individual problem types.

4.3 SAT MODEL PERFORMANCE

4.3.1 SATISFIABILITY PREDICTION

Satisfiability Prediction Accuracy. We assess the satisfiability prediction accuracy of the SAT
model using instances transformed from seven distinct GDPs. The baseline model, referred to as
the SAT Model, adheres to the architecture described in Sec. 3.3.2 and is trained concurrently
on instances derived from all seven GDPs. This training strategy capitalizes on the relatively
coherent graph representations of the SAT instances. Our proposed approach, denoted as SAT
Model+Contrast, employs the same architecture as the baseline model, but the model parame-
ters are initialized with a pre-trained checkpoint from CORAL, trained on the seven GDP datasets.
The model is then fine-tuned on the instances transformed from all seven GDPs simultaneously.

Table 3: Satisfiability prediction accuracy of the SAT models. The ‘Overall’ column represents the
average accuracy across all datasets.

Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Easy
SAT Model 0.959 0.991 0.998 0.974 0.954 0.995 0.999 0.981
SAT Model+Contrast 0.989 0.996 0.999 0.988 0.989 0.999 0.999 0.994

Medium
SAT Model 0.876 0.987 0.991 0.817 0.887 0.997 0.988 0.935
SAT Model+Contrast 0.923 0.991 0.996 0.946 0.930 0.999 0.999 0.969
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Table 3 shows the results, where our approach consistently outperforms the baseline model on most
datasets, with particularly notable improvements on more challenging datasets. The results demon-
strate the effectiveness of leveraging the inherent connections between different CO problems. By
drawing on the common underlying characteristics among different problem types, our approach
enhances the performance of the SAT model, showcasing the advantages of cross-domain learning.

Generalization Performance. We evaluate the generalization capabilities of the SAT models on
instances transformed from hard GDP datasets, with the results presented in Table 4. Our proposed
approach consistently outperforms the baseline model across most datasets, underscoring the robust-
ness and transferability of the representations learned through CORAL, and its ability to generalize
across complex, unseen problem instances.

Table 4: Satisfiability prediction accuracy of the SAT models on the hard datasets. The terms ‘Easy’
and ‘Medium’ in parentheses indicate the difficulty level of the datasets used for training. The
‘Overall’ column represents the average accuracy across all datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

SAT Model (Easy) 0.475 0.505 0.500 0.588 0.473 0.995 0.729 0.609
SAT Model+Contrast (Easy) 0.662 0.506 0.500 0.600 0.665 0.998 0.790 0.674
SAT Model (Medium) 0.692 0.964 0.852 0.679 0.694 0.996 0.990 0.838
SAT Model+Contrast (Medium) 0.827 0.972 0.936 0.745 0.836 0.997 0.991 0.901

4.3.2 OTHER SAT-BASED TASKS

We further evaluate the SAT model on the satisfying assignment prediction task and the unsat
core variable prediction task. To assess performance, we compare three different approaches by
tracking the accuracy over training iterations. For our proposed approach, referred to as SAT
Model+Contrast, we initialize the model using a pre-trained checkpoint obtained from CORAL,
trained on the seven GDP datasets, and subsequently fine-tune it on individual datasets. For compar-
ison, we include two baseline models: SAT Model, which is initialized with a pre-trained checkpoint
trained in a conventional manner on the seven GDP datasets, and Un-Pretrained SAT Model, which
is trained from scratch. The results are shown in Fig. 3.

On the datasets encountered during pre-training, both our approach and the pre-trained baseline
significantly outperform the un-pretrained baseline. However, our approach demonstrates supe-
rior performance by achieving faster convergence and attaining a higher final accuracy. On the
unseen datasets, our approach still outperforms the baseline models, whereas the pre-trained and
un-pretrained baselines exhibit comparable performance. These results highlight the effectiveness
of the CORAL paradigm, which not only improves convergence rates but also enhances the model’s
ability to generalize to previously unseen datasets, thereby demonstrating the strength of leveraging
contrastive learning across multiple problem types. Please refer to Appendix D for more results.

The above results collectively validate the efficacy of CORAL, demonstrating its capacity to enhance
both in-domain performance and cross-domain generalization.

4.4 EXPERIMENTS ON MORE BACKBONES

We conduct experiments on more backbones to show the consistent effectiveness of CORAL. We
consider LCG and VCG modeling for the SAT graphs. We also employ alternative backbones,
including GCN for the SAT model and GraphSAGE (Hamilton et al., 2017a) for the graph models.
Table 5 shows the results, where our approaches consistently outperform the baselines. In particular,
when employing the GraphSAGE backbone, our approach achieves a remarkable improvement over
the baseline. Please refer to Appendix B for more details on model backbones.

5 CONCLUSION AND OUTLOOK

In this paper, we introduce CORAL, a novel paradigm designed to promote learning representation
for CO problems via contrastive learning across different problem types. By focusing on graph de-
cision problems and leveraging the inherent connections, CORAL effectively captures the shared
structural characteristics across different problem types. We perform extensive experiments on mul-
tiple datasets and tasks. The results indicate that our approach shows not only improved task-specific
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(a) Assign on 3-SAT. (b) Assign on CA. (c) Assign on k-Vercov. (d) Assign on k-Indset.

(e) Core Var on SR. (f) Core Var on PS. (g) Core Var on k-Color. (h) Core Var on Matching.

Figure 3: Model performance w.r.t. training iterations on SAT-based tasks across various datasets.
The top four graphs display the results for the satisfying assignment prediction task (Assign), while
the bottom four graphs present the results for the unsat core variable prediction task (Core Var). The
left four graphs depict the model’s performance on unseen datasets, whereas the right four graphs
illustrate the performance on datasets encountered during the pre-training phase.

Table 5: Experimental results across various model backbones. The table presents the GDP-solving
accuracy for the graph models and the satisfiability prediction accuracy for the SAT models. ‘SAT
Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model backbone.

SAT Back. Graph Back. Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+GCN GCN

Easy
Graph Model 0.770 0.585 0.603 0.861 0.627 0.712 0.636 0.685
Graph Model+Contrast 0.793 0.611 0.650 0.896 0.677 0.711 0.646 0.712

Medium
Graph Model 0.632 0.622 0.599 0.796 0.611 0.706 0.633 0.657
Graph Model+Contrast 0.715 0.654 0.634 0.817 0.640 0.723 0.644 0.690

Easy
SAT Model 0.763 0.790 0.890 0.868 0.780 0.801 0.616 0.787
SAT Model+Contrast 0.827 0.932 0.953 0.937 0.820 0.967 0.689 0.875

Medium
SAT Model 0.724 0.652 0.836 0.858 0.721 0.835 0.668 0.756
SAT Model+Contrast 0.752 0.953 0.979 0.887 0.748 0.994 0.784 0.871

VCG+GCN GCN

Easy
Graph Model 0.770 0.585 0.603 0.861 0.627 0.712 0.636 0.685
Graph Model+Contrast 0.780 0.606 0.629 0.888 0.663 0.711 0.642 0.703

Medium
Graph Model 0.632 0.622 0.599 0.796 0.611 0.706 0.633 0.657
Graph Model+Contrast 0.708 0.642 0.630 0.804 0.621 0.718 0.640 0.680

Easy
SAT Model 0.511 0.840 0.919 0.828 0.491 0.813 0.568 0.710
SAT Model+Contrast 0.809 0.959 0.993 0.947 0.795 0.993 0.744 0.891

Medium
SAT Model 0.669 0.946 0.950 0.860 0.677 0.988 0.642 0.819
SAT Model+Contrast 0.748 0.988 0.995 0.898 0.745 0.994 0.734 0.872

LCG+NeuroSAT GraphSAGE

Easy
Graph Model 0.579 0.500 0.507 0.618 0.522 0.582 0.538 0.549
Graph Model+Contrast 0.797 0.632 0.708 0.933 0.753 0.710 0.639 0.739

Medium
Graph Model 0.528 0.565 0.560 0.552 0.500 0.582 0.548 0.548
Graph Model+Contrast 0.728 0.641 0.667 0.859 0.701 0.717 0.648 0.709

Easy
SAT Model 0.959 0.991 0.998 0.974 0.954 0.995 0.999 0.981
SAT Model+Contrast 0.990 0.996 0.999 0.988 0.991 0.999 0.999 0.995

Medium
SAT Model 0.876 0.987 0.991 0.817 0.887 0.997 0.988 0.935
SAT Model+Contrast 0.925 0.991 0.996 0.953 0.935 0.999 0.997 0.971

performance but also robust generalization capabilities to more complex and unseen instances and
problems, underscoring the potential of CORAL as a unified pre-training paradigm for CO research.

Our future work will focus on addressing the current limitations. First, we aim to explore unsuper-
vised learning approaches to minimize dependence on labeled data, thereby enhancing applicability
and scalability in data-sparse scenarios. Additionally, we will focus on developing more generalized
unifying approaches to bridge various CO problems, making the learning process more accessible
and applicable across a broader range of problem domains.
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ETHICS STATEMENT

This work adheres to ethical standards in research and does not involve any direct human subjects,
nor does it present any privacy or security concerns. The datasets used in this study are syntheti-
cally generated without involving sensitive or personally identifiable information. All experiments
and methodologies were conducted in compliance with legal regulations and established research
integrity practices. There are no known conflicts of interest, sponsorship influences, or concerns re-
lated to discrimination, bias, or fairness in our approach. Additionally, the research does not produce
any harmful insights or applications, and efforts have been made to ensure that the work promotes
the advancement of combinatorial optimization without negative societal impact.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of the results presented in this paper. The ar-
chitectural details of our models, including the graph models and SAT models, are described in
Sec. 3.3.2. We show more details in Appendix B. The loss functions are illustrated in Sec. 3.3.3 and
Appendix C. Furthermore, the datasets used for experiments are detailed in the Appendix A, with all
relevant settings provided to ensure consistency across experiments. Important training parameters
are shown in Appendix D. We will release our source code once the paper is accepted.
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APPENDIX

A MORE DETAILS ON DATASETS

In this section, we supplement more details on the utilized datasets in our main paper, including the
parameters of GDP instances and the statistics of SAT instances.

A.1 GDP INSTANCES

To ensure the generation of high-quality GDP instances that accurately capture the inherent charac-
teristics of each problem, we carefully select the graph distributions and parameters used for instance
generation. Some parameters refer to Li et al. (2023). Table 6 provides a detailed overview of the
specific GDP datasets employed in the main paper.

Table 6: Details of generated GDP datasets.

Dataset Description Parameters Notes

k-Clique

The k-Clique dataset consists of graph instances of the k-Clique
problem, which involves determining whether a given graph con-
tains a clique of size k. A clique is a subset of vertices in which
every pair of vertices is connected by an edge. The goal is to
identify whether such a fully connected subset of k vertices ex-
ists within the graph. Instances are built on randomly generated
Erdős-Rényi graphs. Parameters include number of vertices v,
edge probabilities p, and clique size k.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on Bollobás & Erdös
(1976), ensuring that the ex-
pected number of k-cliques
in the generated graph is
equal to 1.

k-Domset

The k-Domset dataset consists of graph instances of the k-
Dominating Set problem, which involves determining whether
a given graph contains a dominating set of size k. A dominating
set is a subset of vertices such that every vertex in the graph is
either in the subset or adjacent to at least one vertex in the subset.
The goal is to identify whether such a subset of k vertices exists
that can ‘dominate’ the entire graph, ensuring that all other ver-
tices are either in the subset or connected to it. Instances are built
on randomly generated Erdős-Rényi graphs. Parameters include
number of vertices v, edge probabilities p, and dominating set
size k.

General: p = 1−
(
1−

(
v
k

)−1/(v−k)
)1/k

,
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(2, 3),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on Wieland & God-
bole (2001), ensuring that
the expected number of k-
dominating sets in the gen-
erated graph is equal to 1.

k-Vercov

The k-Vercov dataset consists of graph instances of the k-Vertex
Cover problem, which involves determining whether a given
graph contains a vertex cover of size k. A vertex cover is a subset
of vertices such that every edge in the graph is incident to at least
one vertex in the subset. The goal is to identify whether a subset
of k vertices exists that can ‘cover’ all the edges in the graph,
ensuring that each edge is connected to at least one vertex in the
subset. Instances are built on randomly generated Erdős-Rényi
graphs. Parameters include number of vertices v, edge probabil-
ities p, and vertex set size k.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 5),
Medium dataset: v ∼ Uniform(10, 20), k ∼ Uniform(6, 8),
Hard dataset: v ∼ Uniform(15, 25), k ∼ Uniform(9, 10).

The parameter p is selected
based on the relationship
between k-Clique and k-
Vercov, ensuring that the ex-
pected size of the minimum
vertex cover in the generated
graph is k.

k-Color

The k-Color dataset consists of graph instances of the k-
Coloring problem, which involves determining whether a given
graph can be colored with k colors such that no two adjacent
vertices share the same color. A valid coloring assigns one of k
different colors to each vertex, ensuring that vertices connected
by an edge have different colors. The goal is to identify whether
such a coloring scheme exists for the graph using at most k
colors. Instances are built on randomly generated Erdős-Rényi
graphs. Parameters include number of vertices v, edge probabil-
ities p, and number of colors k.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on the relationship be-
tween k-Clique and k-Color,
ensuring that the expected
minimum number of colors
for the generated graph is k.

k-Indeset

The k-Indset dataset consists of graph instances of the k-
Independent Set problem, which involves determining whether
a given graph contains an independent set of size k. An indepen-
dent set is a subset of vertices in which no two vertices are adja-
cent, meaning there are no edges connecting any pair of vertices
in the subset. The goal is to identify whether such a subset of k
vertices exists within the graph, ensuring that the selected ver-
tices are mutually non-adjacent. Instances are built on randomly
generated Erdős-Rényi graphs. Parameters include number of
vertices v, edge probabilities p, and independent set size k.

General: p = 1−
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is se-
lected based on the rela-
tionship between k-Clique
and k-Indset, ensuring that
the expected number of k-
independent sets in the gen-
erated graph is equal to 1.

Matching

The Matching dataset consists of graph instances of the Perfect
Matching problem, which involves determining whether a given
graph contains a perfect matching. A perfect matching is a sub-
set of edges in which every vertex in the graph is incident to ex-
actly one edge in the subset. In other words, the graph’s vertices
can be paired off so that no vertex is left unpaired and no two
edges share a vertex. The goal is to identify whether such a per-
fect matching exists within the graph, ensuring that all vertices
are perfectly matched. Instances are built on randomly gener-
ated Erdős-Rényi graphs. Parameters include number of vertices
v and edge probabilities p.

General: p = ln(v)/v,
Easy dataset: v ∼ Uniform(6, 16), should be an even number,
Medium dataset: v ∼ Uniform(16, 24), should be an even number,
Hard dataset: v ∼ Uniform(24, 30), should be an even number.

The selected parameter p is
a sharp threshold for graph
connectivity based on Er-
dos et al. (1960), ensuring
that the generated graph is
neither too dense nor too
sparse.

Automorph

The Automorph dataset consists of graph instances of the Graph
Automorphism problem, which involves determining whether a
given graph has a non-trivial automorphism. An automorphism
is a mapping of the graph’s vertices to itself such that the struc-
ture of the graph is preserved, meaning that the adjacency re-
lationships between vertices remain unchanged. The goal is to
identify whether there exists a way to rearrange the vertices of
the graph such that it appears identical to its original form. In-
stances are built on randomly generated Erdős-Rényi graphs. Pa-
rameters include number of vertices v and edge probabilities p.

General: p = ln(v)/v,
Easy dataset: v ∼ Uniform(4, 8),
Medium dataset: v ∼ Uniform(8, 10),
Hard dataset: v ∼ Uniform(10, 12).

The selected parameter p is
a sharp threshold for graph
connectivity based on Er-
dos et al. (1960), ensuring
that the generated graph is
neither too dense nor too
sparse.

Note that six of the seven GDPs are NP-hard, while the Perfect Matching problem is a P problem.
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A.2 SAT INSTANCES

After generating the seven GDP datasets, the corresponding seven SAT datasets are generated by
transforming the GDP datasets, utilizing the python toolkit CNFGen (Lauria et al., 2017). We also
compute the statistics of those SAT datasets to provide comprehensive information on datasets. The
dataset statistics are shown in Table 7.

Table 7: SAT dataset statistics. # Variables refers to average number of variables, # Clauses denoted
average number of clauses, Mod. (LCG) represents average modularity of LCG graphs, and Mod.
(VCG) represents average modularity of VCG graphs.

Dataset
Easy Medium Hard

# Variables # Clauses Mod. (LCG) Mod. (VCG) # Variables # Clauses Mod. (LCG) Mod. (VCG) # Variables # Clauses Mod. (LCG) Mod. (VCG)

k-Clique 35.69 613.25 0.49 0.46 70.86 2298.03 0.49 0.48 114.49 5670.10 0.50 0.49
k-Domset 40.73 345.75 0.53 0.47 89.70 1708.06 0.51 0.49 137.32 4025.85 0.51 0.49
k-Vercov 46.33 498.06 0.52 0.48 108.19 2681.55 0.51 0.49 192.57 8409.32 0.51 0.50
k-Color 33.91 112.64 0.69 0.65 69.92 321.25 0.71 0.68 112.16 719.32 0.69 0.66
k-Indset 38.38 702.92 0.49 0.46 72.55 2388.22 0.49 0.48 113.12 5549.79 0.50 0.49
Matching 27.48 95.03 0.69 0.59 30.92 107.67 0.70 0.61 45.48 169.49 0.72 0.64
Automorph 56.76 943.54 0.51 0.47 82.74 1856.26 0.51 0.48 121.56 3612.56 0.51 0.49

Moreover, to evaluate the effectiveness of the learned representations on unseen SAT instances, we
synthetically generate four more SAT datasets, including two random problems and two pseudo-
industrial problems. Specifically, for random problems, we generate the SR dataset with the SR
generator in NeuroSAT (Selsam et al., 2019), and the 3-SAT dataset with the 3-SAT generator in
CNFGen (Lauria et al., 2017). For pseudo-industrial problems, we generate the CA dataset via the
Community Attachment model (Giráldez-Cru & Levy, 2015), and the PS dataset by the Popularity-
Similarity model (Giráldez-Cru & Levy, 2017). The generation process of the four datasets follows
Li et al. (2023), where the dataset descriptions and statistics can also be found.

The ground truth of satisfiability and satisfying assignments are calculated by calling the state-of-
the-art modern SAT solver CaDiCaL (Fleury & Heisinger, 2020), and the truth labels for unsat core
variables are generated by invoking the proof checker DRAT-trim (Wetzler et al., 2014).

B MORE DETAILS ON MODEL ARCHITECTURE

B.1 INITIAL VERTEX FEATURES

As illustrated in the main paper, the input graphs primarily provide edge information instead of
vertex features. Therefore, we should devise initial vertex features for the models. In this section,
we introduce the definition of initial vertex features for the graph and SAT models.

Graph Model Vertex Feature. We begin by generating a normalized, learnable d-dimensional
vector, which serves as the initial embedding shared across all vertices. For GDP datasets that do
not require additional problem-specific information, such as Matching and Automorph, this initial
embedding is directly used as the vertex feature for all vertices. In contrast, for GDP datasets where
the parameter k plays a critical role in defining the instance characteristics, such as k-Clique and
k-Vercov, we first embed k into a d-dimensional vector. The initial vertex embedding is then fused
with the k embedding through an MLP to generate the final initial vertex features.

SAT Model Vertex Feature. For the SAT model, we generate initial vertex features based on the
type of SAT graph representation, whether it is a Literal-Clause Graph (LCG) or a Variable-Clause
Graph (VCG). In the case of the LCG graph, we initialize a normalized, learnable d-dimensional
vector for all literal nodes and a separate normalized, learnable d-dimensional vector for all clause
nodes. Similarly, for the VCG graph, we generate a normalized, learnable d-dimensional vector for
all variable nodes and another for all clause nodes.

B.2 MORE BACKBONES

To demonstrate that the performance improvement brought about by our CORAL is consistent, and
independent with specialized model architectures, we conduct experiments on more backbones.
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Graph Model Backbone. For the graph model, we employ an additional mainstream network
architecture for node embedding, GraphSAGE (Hamilton et al., 2017a), which is widely recognized
for its ability to generate inductive representations of graph nodes by aggregating information from
a node’s local neighborhood. The update rule for the i-th layer of GraphSAGE is defined as follows:

n(i)
u = AGG

(
ReLU

(
Q(i)h(i)

v + q(i) | v ∈ N(u)
))

, (7)

h(i+1)
u = ReLU

(
W(i) CONCAT

(
h(i)
u ,n(i)

u

))
, (8)

where hu denotes the embedding for vertex u, N(u) refers to the neighbors of vertex u, Q,q,W are
trainable parameters, and AGG is the aggregation function. In our implementation, AGG is defined
as the mean function, which computes the element-wise average of the neighbor embeddings.

SAT Model Backbone. For the SAT model, we incorporate a GCN architecture specifically tai-
lored for SAT graphs as an additional backbone. The node updates at the i-th layer are defined as
follows:

h
(i)
l = MLP

(
SUM
c∈N (l)

(
MLP

(
hi−1
c

))
,h

(i−1)
l ,h

(i−1)
¬l

)
, (9)

h(i)
c = MLP

(
SUM
l∈N (c)

(
MLP

(
hi−1
l

))
,h(i−1)

c

)
, (10)

where l and c represent an arbitrary literal node and clause node, respectively. The aggregation of
neighboring node information is performed using the summation operator (SUM), which serves as
the aggregation function. The updates for both literal and clause nodes are computed using an MLP.

Furthermore, we extend the backbone to VCG graph modeling, where all literal nodes are replaced
by variable nodes, and each literal and its negation are merged into a single variable node. The node
updates at the i-th layer of the VGC-based GCN are formulated as:

h(i)
v = MLP

(
SUM
c∈N (v)

(
MLP

(
hi−1
c

))
,h(i−1)

v

)
, (11)

h(i)
c = MLP

(
SUM
v∈N (c)

(
MLP

(
hi−1
v

))
,h(i−1)

c

)
, (12)

where v and c represent an arbitrary variable node and clause node, respectively.

C LOSS FUNCTION FOR SAT-BASED TASKS

For the unsat core variable prediction task, we manually generate labels for the datasets, and adopt
a binary cross-entropy loss on the label and the prediction.

For the satisfying assignment prediction task, we employ an unsupervised loss function as defined
in Ozolins et al. (2022):

Vc(x) = 1−
∏
i∈c+

(1− xi)
∏
i∈c−

xi, Lϕ(x) = − log

∏
c∈ϕ

Vc(x)

 = −
∑
c∈ϕ

log (Vc(x)) (13)

where ϕ refers to the CNF formula, x is the predicted assignment consisting of binary values (0 or
1) for variables, c denotes an arbitrary clause. The sets c+ and c− comprise the variables present
in clause c in positive and negative forms, respectively. It is important to note that the loss function
achieves its minimum value only when the predicted assignment x corresponds to a satisfying as-
signment. Minimizing this loss can effectively aid in constructing a possible satisfying assignment.

D MORE EXPERIMENTAL RESULTS

Training Parameters. For reproducibility, we present some important parameters used for train-
ing in Table 8. More details can be found in our source code, which will be released once the paper
is accepted.
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Table 8: Parameters used for training.

Parameter Value Description
lr 1e-04 Learning rate.

lr step size 50 Learning rate step size.
lr factor 0.5 Learning rate factor.

lr patience 10 Learning rate patience.
clip norm 1.0 Clipping norm.

weight decay 1e-08 L2 regularzation weight.
sat model gnn layer 32 Number of GNN layers in SAT model.

graph model gnn layer 12 Number of GNN layers in graph model.
mlp layer 2 Number of Linear layers in an MLP.

τ 0.1 (easy) / 0.5 (medium) Temperature scalar in the contrastive loss.
β 0.5∼1.0 Weight of the decision loss during training.

More Generalization Results. We show more results on generalization on the hard datasets in
Table 9. Our approach to performance improvement is consistent across different model backbones.
The SAT model with the GCN backbone exhibits minimal generalization capability across differ-
ent problem difficulty levels. However, with other backbones, our approach consistently shows
improved generalization performance compared to the baseline.

Table 9: Generalization performance across various model backbones on the hard datasets. The table
presents the GDP-solving accuracy for the graph models and the satisfiability prediction accuracy
for the SAT models. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph
model backbone. The terms ‘Easy’ and ‘Medium’ in parentheses indicate the difficulty level of the
datasets used for training. The ‘Overall’ column represents the average accuracy across all datasets.

SAT Backbone Graph Backbone Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+GCN GCN

Graph Model (Easy) 0.545 0.500 0.500 0.546 0.505 0.664 0.631 0.556
Graph Model+Contrast (Easy) 0.525 0.500 0.539 0.557 0.499 0.686 0.631 0.562
Graph Model (Medium) 0.571 0.562 0.500 0.637 0.531 0.683 0.632 0.588
Graph Model+Contrast (Medium) 0.579 0.589 0.574 0.656 0.552 0.712 0.645 0.615
SAT Model (Easy) 0.500 0.500 0.500 0.459 0.500 0.539 0.500 0.500
SAT Model+Contrast (Easy) 0.500 0.592 0.500 0.500 0.500 0.591 0.513 0.528
SAT Model (Medium) 0.500 0.500 0.500 0.494 0.500 0.470 0.500 0.495
SAT Model+Contrast (Medium) 0.500 0.500 0.500 0.526 0.500 0.499 0.500 0.504

VCG+GCN GCN

Graph Model (Easy) 0.545 0.500 0.500 0.546 0.505 0.664 0.631 0.556
Graph Model+Contrast (Easy) 0.531 0.500 0.500 0.554 0.496 0.684 0.634 0.557
Graph Model (Medium) 0.571 0.562 0.500 0.637 0.531 0.683 0.632 0.588
Graph Model+Contrast (Medium) 0.577 0.605 0.577 0.648 0.536 0.690 0.643 0.611
SAT Model (Easy) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
SAT Model+Contrast (Easy) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

SAT Model (Medium) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
SAT Model+Contrast (Medium) 0.500 0.500 0.500 0.503 0.500 0.500 0.500 0.500

LCG+NeuroSAT GraphSAGE

Graph Model (Easy) 0.509 0.503 0.481 0.508 0.505 0.578 0.557 0.520
Graph Model+Contrast (Easy) 0.529 0.599 0.559 0.602 0.585 0.679 0.621 0.596
Graph Model (Medium) 0.509 0.573 0.547 0.502 0.489 0.584 0.558 0.537
Graph Model+Contrast (Medium) 0.597 0.595 0.603 0.702 0.564 0.684 0.642 0.627
SAT Model (Easy) 0.475 0.505 0.500 0.588 0.473 0.995 0.729 0.609
SAT Model+Contrast (Easy) 0.596 0.505 0.500 0.615 0.587 0.996 0.821 0.660
SAT Model (Medium) 0.692 0.964 0.852 0.679 0.694 0.996 0.990 0.838
SAT Model+Contrast (Medium) 0.793 0.973 0.891 0.731 0.793 0.996 0.996 0.882

More SAT-based Task Results. We show more results on the satisfying assignment prediction
task and the unsat core variable prediction task in Fig. 4. Our approach outperforms the baseline
models with faster convergence and higher final accuracy.
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(a) Assign on k-Clique. (b) Assign on k-Domset. (c) Assign on Matching.

(d) Assign on PS. (e) Assign on SR. (f) Core Var on k-Domset.

(g) Core Var on k-Vercov. (h) Core Var on 3-SAT. (i) Core Var on CA.

Figure 4: Model performance w.r.t. training iterations on SAT-based tasks across various datasets.
Assign denotes the satisfying assignment prediction task, and Core Var denotes the unsat core vari-
able prediction task.
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