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Abstract

Markov Chain Monte Carlo (MCMC) is a compu-
tational approach to fundamental problems such
as inference, integration, optimization, and simu-
lation. The field has developed a broad spectrum
of algorithms, varying in the way they are moti-
vated, the way they are applied and how efficiently
they sample. Despite all the differences, many of
them share the same core principle, which we
unify as the Involutive MCMC (iMCMC) frame-
work. Building upon this, we describe a wide
range of MCMC algorithms in terms of iMCMC,
and formulate a number of “tricks” which one
can use as design principles for developing new
MCMC algorithms. Thus, iMCMC provides a
unified view of many known MCMC algorithms,
which facilitates the derivation of powerful ex-
tensions. We demonstrate the latter with two
examples where we transform known reversible
MCMC algorithms into more efficient irreversible
ones.

1. Introduction
Machine learning algorithms with stochastic latent vari-
ables or parameters (a.k.a. Bayesian models) require often
intractable posterior inference over these unobserved ran-
dom variables. The most popular approach these days are
variational approximations where possibly complex and/or
amortized posterior distributions are optimized and used
for inference: e.g. q(z|x) for latent variables or q(θ) for
parameters. However, these distributions are usually biased
and may not be easy to optimize.

A completely different class of algorithms is given by
MCMC algorithms. Here we design a stochastic process
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Name & Citation Appendix
Metropolis-Hastings (Hastings, 1970) B.1

Mixture Proposal (Habib & Barber, 2018) B.2
Multiple-Try Metropolis (Liu et al., 2000) B.3

Sample-Adaptive MCMC (Zhu, 2019) B.4
Reversible-Jump MCMC (Green, 1995) B.5
Hybrid Monte Carlo (Duane et al., 1987) B.6
RMHMC (Girolami & Calderhead, 2011) B.7

NeuTra (Hoffman et al., 2019) B.8
A-NICE-MC (Song et al., 2017) B.9

L2HMC (Levy et al., 2017) B.10
Persistent HMC (Horowitz, 1991) B.11
Gibbs (Geman & Geman, 1984) B.12

Look Ahead (Sohl-Dickstein et al., 2014) B.13
NRJ (Gagnon & Doucet, 2019) B.14

Lifted MH (Turitsyn et al., 2011) B.15

Table 1: List of algorithms that we describe by the Involutive
MCMC framework. See their descriptions and formulations
in terms of iMCMC in corresponding appendices.

that eventually samples from the correct (i.e. target) distri-
bution. This has the advantage that we are guaranteed to
obtain unbiased samples at the cost of possibly slow mix-
ing and long burn-in times. There is a huge literature on
MCMC algorithms across many different scientific fields
such as statistics, bio-informatics, physics, chemistry, ma-
chine learning etc.

More recently, researchers have started to design MCMC
kernels by using learnable components, in particular flows
which are also often used in variational approaches (Song
et al., 2017; Hoffman et al., 2019). We anticipate these
hybrid approaches will become an important family of in-
ference methods for approximate inference.

In this paper we provide a unifying framework for MCMC
algorithms, including the hybrid approaches mentioned
above. We call this Involutive MCMC (iMCMC). We pro-
vide an overview of many existing MCMC methods refor-
mulated as iMCMC algorithms. See table 1 for the list. The
power of our framework is the ease with which one can
now start to combine and improve these algorithms using a
number of “tricks” that we discuss extensively. We provide
two examples for how this generalization might work in
the experiments section. We hope our work might spur the
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development of new approximate inference methods based
on ideas from MCMC inference.

We summarize the main contributions of the paper as fol-
lows.

• In Section 2, we introduce the Involutive MCMC for-
malism to describe a wide range of MCMC algorithms.
This formalism provides a simple way to verify in-
variance of the target distribution, at the same time
highlighting the main constraints this invariance put on
the design of samplers.

• In Section 3, we summarize the main ideas of differ-
ent MCMC algorithms in the literature, providing the
reader with the set of “tricks”. These tricks provide a
simple way to incorporate new features into a sampler
in order to increase its efficiency, without re-deriving
the fixed point equation or validating detailed balance.

• Finally, in Section 4, we demonstrate the potential of
iMCMC formalism deriving irreversible counterparts
of existent MCMC methods, and demonstrate empiri-
cal gains on different target distributions.

2. Involutive MCMC
MCMC algorithms are designed by specifying a transition
probability t(x′ |x) that maps a distribution pt to a new
distribution pt+1. Repeatedly applying this map to an initial
distribution p0 should result in the target distribution p. One
can show that this is guaranteed if the map is ergodic (whose
average over space is equal to its average over time, which
is the number of applications of the map here) and leaves
the target distribution invariant:∫

dxt(x′ |x)p(x) = p(x′). (1)

Usually, one can not compute the full integral and so we
approximate the process of iteratively applying the transition
kernel by sampling a single sample from it at every iteration.
At convergence, these samples will then be guaranteed to be
distributed according to the target distribution. In the rest
of the paper, we will refer to equation (1) as the fixed point
equation.

The transition kernel is usually stochastic, but can also be
deterministic, in which case it represents an iterated map.
Applying it to a sample from p0 will thus generate a de-
terministic trajectory. To be ergodic, this trajectory can
not be periodic and is usually chaotic. Deterministic (irre-
versible) Markov chains can have very high mixing rates,
which is the reason why we are interested in them. For a
deterministic map we consider a transition kernel of the
form t(x′ |x) = δ(x′ − f(x)), where f(x) is a bijection.

Invariance then looks like:∫
dxδ(x′ − f(x))p(x) = p(x′). (2)

This equation immediately implies the measure-preserving
condition

p(x) = p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣ = p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣, (3)

where ∂f
∂x denotes the Jacobian of f(x).

If we find a map f(x) that satisfies equation (3) and that
will reach any point in the support of p(x) through repeated
application, we obtain a proper sampler (an ergodic chain
with stationary distribution p(x)). A practical example of
such a sampler can be obtained analogously to (Murray
& Elliott, 2012; Neal, 2012) using the CDF of the target
distribution and its inverse:

f(x) = F−1p

(
(Fp(x) + C) mod 1

)
, (4)

where Fp denotes the CDF of the target density p(x) and
the constant C can be chosen as an irrational number to
guarantee ergodicity of the map. To verify the correctness of
this transition kernel one can straightforwardly put formula
(4) into equation (3) or treat it as a special case of algorithm
by (Murray & Elliott, 2012; Neal, 2012) (see Appendix
A.3).

The equation (3) may be too restrictive, making the design
of deterministic measure-preserving transformations (solu-
tions of equation (3)) a very difficult task. To the best of
our knowledge, only the algorithm proposed in (Murray &
Elliott, 2012; Neal, 2012) provides practical examples of
such transformations, relying on the knowledge of CDFs
and their inverse.

In this paper, we propose a different transition kernel that
leaves the target distribution invariant. That is,

t(x′ |x) = δ(x′ − f(x))min

{
1,
p(f(x))

p(x)

∣∣∣∣∂f∂x
∣∣∣∣}︸ ︷︷ ︸

Paccept

+

+δ(x′ − x)
(
1−min

{
1,
p(f(x))

p(x)

∣∣∣∣∂f∂x
∣∣∣∣})︸ ︷︷ ︸

Preject

,

(5)

Assume that p0 is a delta-peak at some initial location x0.
Then the application of 5 will map this single delta peak
to two delta peaks each with it’s own weight: one peak at
x0 and the other at f(x0). At iteration t there are thus t
weighted delta peaks, which becomes increasingly expen-
sive to iterate forward. The more practical implementation
of this kernel is to accept each new sample xt+1 = f(xt)
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with probability Paccept (see equation 5) or reject and keep
the current point xt with probability (1− Paccept).

Putting this transition kernel into equation (1), we can sim-
plify the fixed point equation to the condition that we for-
mulate in the following proposition (see proof in Appendix
A.1).

Proposition 1. The fixed point equation (1) for the transi-
tion kernel (5) is equivalent to the equation

min

{
p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣, p(x)} =

min

{
p(x), p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣}. (6)

A similar equation can be derived for the Barker’s accep-
tance test (Barker, 1965) (see Appendix A.1).

Firstly, we note that measure-preserving transformations
(solutions of (3)) are a special case of solutions of (6), with
a zero rejection probability. Thus, these solutions eliminate
all the stochasticity from the transition kernel (5), accepting
all samples. However, equation (6) accepts a broader family
of solutions that can be described by the equation

p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣ = p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣. (7)

The main difference with (3) is that here we do not restrict
f to preserve the target density. Instead, we restrict f(f(x))
to preserve the target density:

p(x) = p(f(f(x)))

∣∣∣∣∂f(f(x))∂x

∣∣∣∣. (8)

The last equation can be obtained from equation (7) by con-
sidering the point x = f(x′). At first glance, the problem
of finding an f such that f(f(x)) preserves the target mea-
sure is equally difficult to the problem of finding an f(x)
that preserves the density. However, the class of functions
called involutions solves eq. 7 trivially because they sat-
isfy f(x) = f−1(x). In such a case, f(f(x)) = x indeed
preserves the target measure by being an identity mapping.
Thus, unlike equation (3), equation (6) is solved by involu-
tive functions f . Unfortunately, it is not silver bullet: by
inserting such f into the transition kernel, eq. (5) reduces
our transition kernel to jump only between two points: from
x to f(x) and then to f(f(x)) = f−1(f(x)) = x again.

To be able to cover the support of the target distribution with
involutive f , we introduce an additional source of stochas-
ticity into (5). We do this through an auxiliary variable.
That is, instead of traversing the target p(x), we traverse
the distribution p(x, v) = p(x)p(v |x), where p(v |x) is an
auxiliary distribution that provides another degree of free-
dom in the design of the kernel. The key ingredients for

choosing p(v |x) are easy computation of its density and
the ability to efficiently sample from it.

For the new target p(x, v), we can apply the transition ker-
nel (5) as well as formulate Proposition 1. This can be done
by simply rewriting these equations by substituting the tu-
ple [x, v] for the variable x. Again, for the deterministic
function f(x, v), we resort to the family of involutive maps:
f(x, v) = f−1(x, v). However, in contrast to the case with-
out the auxiliary variables, now we have an opportunity to
reach any point of the target support by resampling v |x
before applying the deterministic map f(x, v). Interleav-
ing the kernel (5) with the resampling of v one can collect
samples from p(x, v), and then obtain samples from the
marginal distribution of interest p(x) by simply ignoring
v-coordinates of the collected samples. We provide the
pseudo-code in Algorithm 1 below. To get an intuition, one
can think of the resulting algorithm as of a slightly abstract
version of Hybrid Monte Carlo (HMC) (Duane et al., 1987),
where the momentum plays the role of the auxiliary variable
v, and the Hamiltonian dynamics is a special case of the
deterministic map f .

By construction, Algorithm 1 keeps the joint density p(x, v)
invariant (satisfies the fixed point equation), but does not
provide any guarantees for ergodicity. In practice, the er-
godicity is usually achieved by choosing proper involution
and auxiliary distribution, such that the whole kernel is
irreducible (Roberts et al., 2004).

Algorithm 1 Involutive MCMC

input target density p(x)
input density p(v |x) and a sampler from p(v |x)
input involutive f(x, v), i.e. f(x, v) = f−1(x, v)

initialize x
for i = 0 . . . n do

sample v ∼ p(v |x)
propose (x′, v′) = f(x, v)

P = min{1, p(x
′,v′)

p(x,v) |
∂f(x,v)
∂[x,v] |}

xi =

{
x′, with probability P
x, with probability (1− P )

x← xi
end for

output samples {x0, . . . , xn}

Among the kernels that satisfy the fixed point equation there
is a family of kernels called reversible which satisfy the
detailed balance condition

t(x′ |x)p(x) = t(x |x′)p(x′). (9)

Such kernels are known to mix slower compared to the ker-
nels that satisfy the fixed point equation but are irreversible
(do not satisfy the detailed balance condition) (Ichiki &
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Ohzeki, 2013). In the following proposition, we demon-
strate that the chain from Algorithm 1 is reversible on both
the support of p(x, v) and p(x) (proof in Appendix A.2).

Proposition 2. Transition kernel t(x′, v′ |x, v) from Algo-
rithm 1 satisfies detailed balance

t(x′, v′ |x, v)p(x, v) = t(x, v |x′, v′)p(x′, v′). (10)

Moreover, the marginalized kernel on x

t̂(x′ |x) =
∫
dvdv′t(x′, v′ |x, v)p(v |x) (11)

also satisfies detailed balance

t̂(x′ |x)p(x) = t̂(x |x′)p(x′). (12)

The reversibility of the chain t(x′, v′ |x, v) is a direct con-
sequence of the involutive property of the map f(x, v) so
it seems hard to avoid. However, it is still possible to con-
struct an irreversible chain by composing several reversible
kernels. We discuss this further in Section 3.3.

3. Tricks
The only two degrees of freedom possible to design in In-
volutive MCMC are the auxiliary distribution p(v |x) and
the involution f(x, v). However, we will show that many
existent MCMC algorithms from the literature can be for-
mulated as Involutive MCMC by choosing suitable f(x, v)
and p(v |x). As such, iMCMC represents a unifying frame-
work for understanding existing and designing new MCMC
algorithms.

We start by considering a simple involution f(x, v) = [v, x]
that is a swap of x and v. Choosing q(v |x) such that the
chain can reach any point in the support of p(x), we end up
with the Metropolis-Hastings algorithm (MH) with proposal
q(v |x). Indeed, the acceptance probability in the Algorithm
1 then equals

P = min

{
1,

p(f(x, v))

p(x)q(v |x)

}
= min

{
1,
p(v)q(x | v)
p(x)q(v |x)

}
.

While for MH the involution is very simple (a swap), we can
also design MCMC algorithms by proposing sophisticated
involutions. In the following subsections we explore this
spectrum by demonstrating that a variety of MCMC algo-
rithms can be formulated as Involutive MCMC methods. To
avoid the large amounts of technical details of all the con-
sidered algorithms, we formulate the most important ideas
as tricks. Besides being the main ideas of the algorithms,
these tricks can serve as useful tools to design efficient novel
samplers.

3.1. Smart auxiliary spaces

In this subsection we consider algorithms that focus on the
development of advanced auxiliary distributions.

We start with the trick that allows one to circumvent the
evaluation of intractable integrals in the target distribution
or in the auxiliary distribution when we use Algorithm 1.
Trick 1 (Mixture distributions). Consider the joint distri-
bution p(x, v) = p(x)p(v |x), whose density is given as a
mixture:

p(x) =

∫
p(x | z)p(z)dz, (13)

p(v |x) =
∫
q(v | a)q(a |x)da, (14)

the evaluation of the integrals can be costly or even
intractable. One can bypass the integration by
sampling from the joint distribution p(x, v, z, a) =
p(x | z)p(z)q(v | a)q(a |x) using the Algorithm 1 with some
involution f(x, v, z, a). Note that to sample v we usually
sample a at each step; hence, we may leave this interme-
diate variable a untouched by the subsequent involution,
i.e. f(x, v, z, a) = [f ′(x, v, z), a]. All arguments hold for
discrete a and z as well. Moreover, conditioning the distri-
bution q(v | a) by the current state x: q(v | a, x), allows one
to obtain a so-called state-dependent mixture as a proposal:

p(v |x) =
∫
q(v | a, x)q(a |x)da. (15)

In the discrete case

p(v |x) =
∑
j

q(v | j, x)q(j |x). (16)

This trick immediately implies the algorithm proposed in
(Habib & Barber, 2018) (see Appendix B.2 for the proof),
where the authors consider the proposal q(x′ |x) for the
Metropolis-Hastings algorithm as a mixture q(x′ |x) =∫
q(x′ | a)q(a |x)da. Another application of this trick can

be found in the Multiple-Try Metropolis scheme (Liu et al.,
2000) and Reversible-Jump MCMC (Green, 1995). We will
return to these algorithms shortly.

Note, however, that avoiding by this trick the analytical
integration, one only shifts the integration burden to the al-
gorithm reducing its efficiency. Indeed, extending the target
distribution with additional variables requires the sampling
in higher dimensions, which may result in a slower conver-
gence and a higher variance of the estimate.

The mixture of auxiliary variables in Trick 1 can be consid-
ered as an adaptive change of the family of proposal distri-
butions depending on the current state of the chain. Another
way to enrich the set of proposed points is to choose a suit-
able involution based on the current state. We describe this
idea in the following trick.
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Trick 2 (Mixture of Involutions). Consider the joint distri-
bution p(x, v) = p(x)p(v |x) and a parametric family of
involutions fa(x, v) = f−1a (x, v), i.e., functions that define
a proper involution in the space of tuples [x, v] for a given
a. It can be useful to apply different involutive maps de-
pending on the current state [x, v]. For that purpose, one
may introduce an auxiliary random variable a and define
the joint distribution p(x, v, a) = p(x, v)p(a |x, v). Then
the involution in the new space is f ′(x, v, a) = [fa(x, v), a],
and the acceptance probability is

P = min

{
1,
p(fa(x, v))p(a | fa(x, v))

p(x, v)p(a |x, v)

∣∣∣∣∂fa(x, v)∂[x, v]

∣∣∣∣}.
We thus observe that by first sampling v ∼ p(v |x) and
a ∼ p(a |x, v), and then applying fa(x, v) we can have
different involutions depending on x, v.

The crucial part of this trick is leaving the auxiliary variable
a invariant by the involution in order to satisfy the fixed
point equation. The correctness of such a kernel can be ob-
tained by application of Proposition 1 for the tuple [x, v, a]
and the target distribution p(x, v, a). Moreover, we immedi-
ately obtain the reversibility of this kernel from Proposition
2. For more details and formal derivations, we refer the
reader to Appendix A.4.

Together with Trick 1, this trick provides an iMCMC for-
mulation of the Multiple-Try Metropolis scheme (Liu et al.,
2000). Speaking informally, we generate several proposals
v, indexed by the variable a, using the mixture of distribu-
tions from Trick 1, and then stochastically decide which
swap we use to propose the next state (see Appendix B.3
for the proof).

Surprisingly, using this trick we obtain the iMCMC formula-
tion of Sample-Adaptive MCMC (Zhu, 2019) (see Appendix
B.4), which does not have the MH acceptance test at all. Fur-
thermore, Sample-Adaptive MCMC greatly relies on the
aggregation functions that do not depend on the order of
their arguments, i.e.

g(x1, . . . , xn) = g(π(x1, . . . , xn)), (17)

where π(·) is an arbitrary permutation. Using the iMCMC
formalism we can easily remove this restriction and obtain
a more general scheme (see Appendix B.4.1).

Further, we will use Trick 2 for the reformulation of several
algorithms: Reversible-Jump MCMC (Green, 1995), Non-
Reversible Jump scheme (Gagnon & Doucet, 2019), and
Look Ahead HMC (Sohl-Dickstein et al., 2014).

3.2. Smart deterministic maps

In this subsection we consider algorithms that introduce
sophisticated involutive maps to obtain an efficient sampler.

Historically, the first example is the Hybrid Monte Carlo
(HMC) algorithm (Duane et al., 1987). Its core part is the
Leap-Frog integrator of the corresponding Hamiltonian dy-
namics. We denote a single application of Leap-Frog as
L and its iterative application as Lk, where k is the num-
ber of applications (steps of the dynamics). Then we can
formulate HMC in terms of Involutive MCMC as follows.
Consider the joint distribution p(x, v) = p(x)p(v), where
p(v) usually equals to the standard normal and v repre-
sents the momentum variable. The involutive map can be
constructed as the composition FLk, where F denotes the
momentum flip operator (F (x, v) = [x,−v]), and is applied
after k iterative applications of L. According to the iMCMC
formalism, the acceptance probability in Algorithm 1 is

P = min

{
1,
p(FLk(x, v))

p(x, v)

}
. (18)

Here we use the fact that both L and F preserves volume,
hence, their Jacobians equal to 1. For the formal proof see
Appendix B.6.

Contrary to the MH algorithm, for HMC we see that all the
”knowledge about the target” of a sampler is concentrated
in the involutive map. In contrast, the distribution q(v|x) is
very simple (a standard normal independent of x). This fact
motivates the number of MCMC algorithms that try to build
expressive deterministic maps using neural networks. We
describe the main ideas of these algorithms in the following
tricks.

Trick 3 (Auxiliary direction). Consider the joint distribu-
tion p(x, v) = p(x)p(v |x), which we denote as p(y) =
p(x, v) with y = [x, v]. To obtain an expressive sampler,
one can construct the required involution f using some
non-involutive bijection T (y) in the following way.

Consider the joint distribution p(y, d) = p(y)p(d | y),
where the binary auxiliary variable d = {−1,+1} en-
codes the direction in which we move from the current state.
The involution f is then constructed as f(y, d = +1) =
[T (y),−1], f(y, d = −1) = [T−1(y),+1]. The accep-
tance probability is

P = min

{
1,
p(Td(y))p(−d |Td(y))

p(y)p(d | y)

∣∣∣∣∂Td∂y
∣∣∣∣}, (19)

where Td=+1 = T , and Td=−1 = T−1.

More generally, we can choose d to lie in a vector space,
parameterizing the family of bijections Td(y). To construct
an involution we require that for any d there exists a unique
d′ such that Td′ = T−1d and a smooth map g(d) = d′.
Note that by requiring Td′ = T−1d we immediately obtain
T−1d′ = Td, hence g(d′) = d meaning that g is an involution.
The final involution is then f(y, d) = [Td(y), g(d)], and the
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acceptance probability is

P = min

{
1,
p(Td(y), g(d))

p(y, d)

∣∣∣∣∂Td∂y
∣∣∣∣∣∣∣∣∂g∂d

∣∣∣∣}, (20)

For instance, one can consider a Lie group on Rn with the
group operation T (y, d) = yd : Rn × Rn → Rn. Then the
involution f can be constructed as f(y, d) = [yd, d−1].

The described trick is a generalization of A-NICE-MC algo-
rithm (Song et al., 2017) (see Appendix B.9), and L2HMC
algorithm (Levy et al., 2017) (see Appendix B.10). Indeed,
considering the uniform distribution over the binary auxil-
iary variable p(d |x, v) = p(d) = Uniform{−1,+1}, and
taking the bijection T (x, v) as the corresponding model,
we immediately obtain both algorithms. Furthermore, tak-
ing the same distribution for the auxiliary direction p(d) =
Uniform{−1,+1} and combining Tricks 1, 2, 3 we formu-
late Reversible-Jump MCMC algorithm (Green, 1995) in
terms of iMCMC (see Appendix B.5).

Note that also vanilla HMC can easily be expressed using
this trick by using T (y) = L(y) and T−1(y) = L−1(y) =
FLF (y) and where d ∼ Uniform{−1,+1}. Indeed, the
flips F (y = [x, v]) = [x,−v] in the Leap-Frog procedure
do not influence the chain when p(x, v) = p(x,−v). We
will return to this formulation of HMC during the discussion
of irreversible chains.

In the following trick, we demonstrate another way to use a
bijection T to construct an expressive involution that gener-
alizes the NeuTra algorithm of (Hoffman et al., 2019) (see
Appendix B.8).

Trick 4 (Embedded involution). Consider the iMCMC sam-
pler with the joint distribution p(x, v) = p(x)p(v |x) and
the involution f(x, v) = f−1(x, v). Assume that for some
reason the involution f is not expressive enough to yield an
efficient sampler for the target distribution p(x). We can
enrich the sampler by choosing a suitable bijection T , and
introducing the new involution fT = T−1 ◦ f ◦ T , where ◦
is the composition operation.

Moreover, consider the embedded random variable
[XT , VT ] = T (X,V ), [X,V ] ∼ p(x, v) with the density

pT (xT , vT ) = p(T−1(xT , vT ))

∣∣∣∣ ∂T−1

∂[xT , vT ]

∣∣∣∣. (21)

Then the Algorithm 1 with the joint distribution p(x, v)
and the involution fT is equivalent to the following pro-
cedure. Given the sample [x, v] ∼ p(x, v), map this sam-
ple as T (x, v). Starting from T (x, v), collect new sam-
ples {(xT , vT )i} from pT (xT , vT ) using the Algorithm
1 with the joint distribution pT (xT , vT ) and the involu-
tion f(xT , vT ). Then map all the collected samples as
T−1(xT , vT ).

The map T can be viewed as a ’flow’ model to a simpler
’disentangled’ or more symmetric latent space xT , vT where
algorithms such as HMC are easier to run. The map T could
be learned using unsupervised learning on already generated
samples.

3.3. Smart compositions

In this subsection, we apply the formalism of involutive
MCMC to describe irreversible chains, i.e. chains that do
not satisfy detailed balance. Recall that in Section 2 we have
shown that any iMCMC chain must be reversible. However,
a composition of reversible chains is not necessarily re-
versible. Thus, in the following tricks, we use reversible
iMCMC chains as building blocks to construct a composi-
tion that is irreversible. A representative example of such a
composition is Gibbs sampling (Geman & Geman, 1984).
Indeed, the update of a single coordinate in the Gibbs algo-
rithm is a reversible kernel easily described by the iMCMC
framework, while the composition of these kernels yields
Gibbs sampling which is irreversible (see Appendix B.12).

Using a composition of kernels, we can make an irreversible
analogue of Trick 3. The main difference is that in this Trick
we do not resample the auxiliary (directional) variable d at
every iteration. This would reverse the direction after each
accepted proposal. However, by composing this with a ker-
nel that simply flips d again we get a persistent (irreversible)
kernel that only flips directions when a sample is rejected.
Trick 5 (Persistent direction). Given the target distribution
p(y) = p(x, v), we consider the joint distribution p(y, d) =
p(y)p(d), where p(d) = Uniform{−1,+1}, and the vari-
able d = {−1,+1} encodes the direction in which we
move from the current state. Following Trick 3, we consider
some non-involutive bijection T (y) and the correspond-
ing involution f1(y, d = +1) = [T (y),−1], f1(y, d =
−1) = [T−1(y),+1]. Thus, we obtain the iMCMC kernel
t1(y

′, d′ | y, d) that accepts the proposal point [Td(y),−d]
with the probability

P1 =min

{
1,
p(Td(y))p(−d)

p(y)p(d)

∣∣∣∣∂Td∂y
∣∣∣∣} = (22)

=min

{
1,
p(Td(y))

p(y)

∣∣∣∣∂Td∂y
∣∣∣∣}, (23)

where Td=+1 = T , and Td=−1 = T−1. Then we compose
the kernel t1 with the kernel t2 that just flips the directional
variable. In terms of iMCMC, the target distribution is
p(y, d) and the involution is f2(y, d) = [y,−d]. Note that
this proposal will be always accepted since p(y,−d) =
p(y, d). Then the composition of t1 and t2 works as follows.

current state = [y, d] (24)

next state =

{
[Td(y), d], with probability P1

[y,−d], with probability (1− P1)
(25)
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The same logic can be applied to the variable v. Since
Td(y) = Td(x, v) may significantly depend on the variable
v, instead of resampling it at each step, one can use another
kernel to update it conditioned on its previous value.

The intuition of this composition is as follows. In the case of
an accept we now try to move further by applying the same
Td instead of the inverse map T−d, whereas, in the case of
a reject, we flip the variable d and move in the opposite
direction. We depict this intuition in Fig. 1.

Figure 1: Schematic representation of Trick 5. The deter-
ministic map Td(y) = Td(x, v) is iteratively applied with
resampling of the variable v, moving in the regions of a
high density. When the chain tries to move to a lower den-
sity region, the proposal may be rejected (red cross), which
triggers the chain to change direction and apply T−d(x, v).

Trick 5 describes the main idea behind persistent chains
leading to irreversibility. Its generalizations can be derived
similar to what we explained in Trick 3, by considering a
conditional direction p(d | y) or a vector valued direction
variable d. If we use a distribution p(d | y), we must also
take care to change the second kernel t2 to preserve the
target p(y, d).

The analogue of the direction flip in Trick 5 may be found in
the HMC algorithm with persistent momentum (Horowitz,
1991) (see Appendix B.11) and the Look Ahead HMC al-
gorithm (Sohl-Dickstein et al., 2014) (see Appendix B.13).
These algorithms use post-acceptance negation of the mo-
mentum variable v relying on the symmetry of the auxiliary
distribution: p(−v) = p(v). However, using Trick 5 we can
easily generalize these algorithms to the case of an asym-
metric auxiliary distribution p(−v) 6= p(v) by considering
the forward map as a Leap-Frog operator Td=+1(y) = L(y)
and its inverse as Td=−1(y) = L−1(y), where L−1 is the
Leap-Frog backward in time. More details are provided in
Appendix B.11.

In light of Tricks 2 and 5, we can obtain yet another gener-
alization of Look Ahead HMC (Sohl-Dickstein et al., 2014).
In this paper, the authors propose the mixture of involutions
fk(x, v) = FLk(x, v), where we choose k stochastically
based on the current state. Using Trick 5, we can look

ahead of any function we want, by considering the family
of involutions

fk(x, v, d = +1) = [T k(x, v),−1], (26)

fk(x, v, d = −1) = [T−k(x, v),+1], (27)

where T k means k iterative applications of the map T , and
T−k means the same but for the map T−1. Note that by
considering T = L and T−1 = FLF , and the symmetric
auxiliary distribution p(v) = p(−v) we obtain Look Ahead
HMC.

The combination of Tricks 2, 5 provides a neat iMCMC for-
mulation of Gibbs sampling (Geman & Geman, 1984) and
Non-Reversible Jump MCMC (Gagnon & Doucet, 2019).
Details can be found in appendices B.12 and B.14 respec-
tively.

Figure 2: Schematic representation of auxiliary distribution
in Trick 6. Red mass represents q(v |x, d = −1), green
mass represents q(v |x, d = +1). These proposals do not
intersect only for illustrative purposes to highlight that we
cannot move to the left if d = +1.

Trick 5 tells us how to design an irreversible chain using
the deterministic part of the iMCMC framework. The fol-
lowing trick makes it possible using the stochastic auxiliary
variables.
Trick 6 (Persistent proposal). Consider the joint target
distribution p(x, d), where p(d) = Uniform{−1,+1} is
the directional variable. Choose the auxiliary distribution
q(v |x, d) that proposes new points depending on the cur-
rent direction d. For instance, this can be done by split-
ting a random walk proposal q(v |x) as depicted in Fig. 2.
Then the constructed iMCMC kernel t1(x′, d′ |x, d) with
involution f(x, v, d) = [v, x,−d] has the probability of
acceptance:

P1 = min

{
1,
p(v)q(x | v,−d)
p(x)q(v |x, d)

}
. (28)

Note that having proposals as depicted in Fig. 2 we must
change the directional variable when proposing the next
state, otherwise we obtain zero probability of acceptance.

As well as in Trick 5, we then compose the kernel t1 with
the kernel t2 that just flips the directional variable. In terms
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Table 2: Performance of the algorithms as measured by the batch-means estimator of Effective Sample Size (ESS) averaged
across 100 independent chains. Higher values of ESS and ESS per second are better (for detailed formulation see Appendix
C.2). For computational efforts we provide ESS per second taking into account the sampling time for 20000 samples. See
description of the compared methods in the text.

ESS ESS per second

Algorithm MoG2 Australian German Heart Mog2 Australian German Heart

MALA 0.007± 0.002 0.043± 0.001 0.025± 0.005 0.081± 0.012 2 5 3 9
Irr-MALA 0.027± 0.008 0.006± 0.001 0.004± 0.001 0.012± 0.001 4 1 1 1
A-NICE-MC 0.852± 0.239 0.137± 0.026 0.032± 0.004 0.253± 0.033 1700 94 17 241
Irr-NICE-MC 1.643± 0.626 0.177± 0.030 0.032± 0.004 0.341± 0.051 3280 121 17 324

of iMCMC that is, the target distribution is p(x, d) and the
involution is f2(x, d) = [x,−d]. Note that this proposal
will be always accepted since p(x,−d) = p(x, d). Then the
composition of t1 and t2 works as follows.

current state = [x, d] (29)
proposal = v ∼ q(v |x, d) (30)

next state =

{
[v, d], with probability P1

[x,−d], with probability (1− P1)
(31)

Once again, a more general version of this trick can be
obtained as in Trick 3, by considering a conditional direc-
tion p(d |x) or a direction vector-valued d. If we change
the distribution to p(d |x), we must also change the second
kernel t2 to preserve the target p(x, d).

Implicitly this trick is used in the Lifted Metropolis-Hastings
algorithm (Turitsyn et al., 2011), which gives a rise to many
irreversible algorithms. The only difference with Trick 6 is
that Lifted MH design the proposal distribution q(v |x, d)
as the transition kernel of the conventional MH algorithm
(see Appendix B.15).

Note that taking the kernels t+ and t− that already sat-
isfy the generalized detailed balance t+(x

′ |x)p(x) =
t−(x |x′)p(x′) as positive and negative parts of q(x | v, d),
we obtain the irreversible chain that is equivalent to the
application either of t+ or t−.

4. Examples
We now proceed with illustrating that the proposed frame-
work provides an easy paradigm to extend and combine
existing methods and potentially improve them. Below, we
propose simple extensions, to make MALA and A-NICE-
MC irreversible. We empirically validate these examples on
a set of tasks, which includes a mixture of two 2d-Gaussians
(MoG2) and the posterior distribution of Bayesian logistic
regression on several datasets (Australian, German, Heart)
(see Appendix C.1 for details). For performance evaluation,
we use the effective sample size (ESS), which measures

how many independent samples the chain actually contains.
To be more precise, we use batch-means estimator of ESS,
which is shown to be more robust (Thompson, 2010) (see
Appendix C.2 for details).

We start with the Metropolis-Adjusted Langevin algorithm
(MALA) (Roberts et al., 1996), which generates proposals
by following the gradient of the target log-probability. We
modify the original algorithm with a directional variable
p(d) = Uniform{−1,+1} as follows. The joint distribution
is now:

p(x, v, d) = p(x)N (v |x+ dε∇x log p(x), 2ε)p(d),

and the involutive map is

f(x, v, d) = [v, x,−d · sign(∇x log p(x)T∇v log p(v))].

Thus, our modification (Irr-MALA) ensures that the gradi-
ent in the proposed point will be directed towards the initial
point. The irreversible chain can be obtained by the appli-
cation of the described kernel followed by the negation of
d (see Appendix C.3 for pseudo-code). However, allow-
ing the chain to traverse along the gradient of decreasing
probability reduces its acceptance rate, which leads to a
poor performance on the unimodal posteriors of Bayesian
logistic regression. However, if we need to traverse low
probability regions between two modes of a distribution this
idea becomes beneficial and leads to improved performance.
We can see this when we sample from the bimodal MoG2
distribution. (see Table 2).

We now turn to a more complex model, and design the
irreversible version of A-NICE-MC (Song et al., 2017),
which learns the NICE model (Dinh et al., 2014) to obtain
an expressive proposal. Our modification (Irr-NICE-MC)
is a straightforward application of Trick 5 to the original
algorithm (see Appendix C.4 for pseudo-code). The only
difference with Trick 5 is that we add one more kernel that
conditionally updates the auxiliary variable v as

v′ = v
√
1− α2 + α · η, η ∼ N (0, 1). (32)
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For all targets we choose α = 0.8. To provide a robust
comparison, we do not change the training process of the
original algorithm. Moreover, we compare our modification
against the original method, using the same–already learned–
model as the proposal distribution. In Table 2, we see that
simply introducing irreversibility into the kernel may result
in significant performance gains while having a negligible
computational overhead.

Code for reproducing the experiments is available at
https://github.com/necludov/iMCMC.

5. Related work
Several approaches unifying MCMC exist in the literature.
They focus on the kernels with multiple proposals and de-
scribe them, extending the state space through the auxiliary
variables (Tjelmeland, 2004; Storvik, 2011). The most gen-
eral unifying framework is given in (Finke, 2015), which
considers all Monte Carlo algorithms as the importance
sampling on differently extended spaces.

The key difference of the proposed framework is the ex-
plicit usage of the involutive deterministic map inside of
the generic kernel. Although this deterministic part ap-
pears to be trivial in some cases (for instance, the swap in
the MH algorithm), it may serve as a design principle for
many MCMC algorithms. The main benefit of this principle
comes when we consider hybrid algorithms that incorporate
expressive deterministic maps into MCMC kernels. Such
hybrid algorithms demonstrate promising results in modern
physics (Kanwar et al., 2020), and the iMCMC framework
may give a hint on how to design these algorithms as well
as how to combine features of different MCMC kernels.

6. Conclusion
In this paper, we have proposed a unifying view of a large
class of MCMC algorithms. This was achieved by refor-
mulating MCMC as the composition of sampling from an
auxiliary distribution and an involutive deterministic map,
followed by a MH accept-reject step. This was shown to rep-
resent a very large family of reversible MCMC algorithms.
We then extend this class further with the use of auxiliary
variables into irreversible MCMC algorithms. Through a
number of “Tricks” we facilitate the process of extending ex-
isting algorithms, which we illustrate through some simple
examples.

We believe our unifying view of MCMC algorithms will lead
to a number of generalizations in the future. For instance,
some of the versions look very similar to flow-based models
used for unsupervised learning and some of our proposed
kernels can indeed be used for such a purpose. We also be-
lieve there are interesting connections between deterministic

samplers as in (Murray & Elliott, 2012; Neal, 2012) and the
theory of (chaotic) iterated maps and nonlinear dynamical
systems.
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A. Involutive MCMC
A.1. Proof of Proposition 1 (FPE condition)

For the target distribution p(x) and the deterministic proposal q(x′ |x) = δ(x′− f(x)), we consider the following transition
kernel

t(x′ |x) = δ(x′ − f(x))min

{
1,
p(x′)

p(x)

∣∣∣∣∂f∂x
∣∣∣∣}+ δ(x′ − x)

∫
dx′′ δ(x′′ − f(x))

(
1−min

{
1,
p(x′′)

p(x)

∣∣∣∣∂f(x)∂x

∣∣∣∣}).
(33)

Then we want to check the fixed-point equation∫
dx t(x′ |x)p(x) = p(x′). (34)

Substitution of t(x′ |x) gives∫
dx δ(x′ − f(x))min

{
p(x), p(x′)

∣∣∣∣∂f∂x
∣∣∣∣}+ p(x′)−min

{
p(x′), p(f(x′))

∣∣∣∣ ∂f∂x′
∣∣∣∣} = p(x′) (35)

Assuming that f(x) has the inverse f−1(x), we change variables x = f−1(x̃) and rewrite the previous equation as∫
dx̃ δ(x′ − x̃)min

{
p(f−1(x̃)), p(x′)

∣∣∣∣∂f∂x
∣∣∣∣
x=f−1(x̃)

}∣∣∣∣∂f−1∂x̃

∣∣∣∣−min

{
p(x′), p(f(x′))

∣∣∣∣ ∂f∂x′
∣∣∣∣} = 0. (36)

Using the chain rule, we have

1 =

∣∣∣∣∂f(f−1(x))∂x

∣∣∣∣ = ∣∣∣∣∂f∂y
∣∣∣∣
y=f−1(x)

∣∣∣∣∂f−1∂x

∣∣∣∣. (37)

Thus, we obtain the following condition to satisfy the fixed-point equation

min

{
p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣, p(x)} = min

{
p(x), p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣}. (38)

The same applies for the joint space

min

{
p(f−1(x, v))

∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣, p(x, v)} = min

{
p(x, v), p(f(x, v))

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}. (39)

Moreover, there is no need to care about the distribution of v′ in the fixed point equation∫
dxdvdv′ t(x′, v′ |x, v)p(x, v) = p(x′). (40)

Thus, we obtain more general condition∫
dvmin

{
p(f−1(x, v))

∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣, p(x, v)} =

∫
dvmin

{
p(x, v), p(f(x, v))

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}. (41)

Also, note that the condition can be easily rewritten for different acceptance function, e.g., for the Barker’s test (Barker,
1965). That is,

t(x′ |x) = δ(x′ − f(x))
[
1 +

p(x)

p(x′)

∣∣∣∣∂f∂x
∣∣∣∣−1]−1 + δ(x′ − x)

(
1−

[
1 +

p(x)

p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣−1]−1). (42)

Substituting this kernel into the fixed point equation
∫
dxt(x′ |x)p(x) = p(x′), and performing a similar algebra, we have[

1

p(x)
+

1

p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣−1]−1 =

[
1

p(x)
+

1

p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣−1]−1 (43)

Thus, for the Barker’s test, the fixed point equation can be reduced to

p(f−1(x))

∣∣∣∣∂f−1∂x

∣∣∣∣ = p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣ (44)



Involutive MCMC

A.2. Proof of Proposition 2 (Detailed balance)

We analyse this property of Involutive MCMC by deriving the reverse operator r(x, v |x′, v′), which is defined as

t(x′, v′ |x, v)p(x, v) = r(x, v |x′, v′)p(x′, v′). (45)

By the definition, we have

r(x, v |x′, v′) =t(x′, v′ |x, v) p(x, v)
p(x′, v′)

(46)

r(x, v |x′, v′) =δ([x′, v′]− f(x, v))min

{
p(x, v)

p(x′, v′)
,

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}+ (47)

+ δ([x′, v′]− [x, v])

(
p(x, v)

p(x′, v′)
−min

{
p(x, v)

p(x′, v′)
,
p(f(x, v))

p(x′, v′)

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}) (48)

The detailed balance is satisfied in the joint space if
∫
A
r(x, v |x′, v′)dxdv =

∫
A
t(x, v |x′, v′)dxdv, where A is any

non-zero measure volume in the joint space. Remind that

t(x, v |x′, v′) =δ([x, v]− f(x′, v′))min

{
1,

p(x, v)

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣}+ (49)

+ δ([x, v]− [x′, v′])

(
1−min

{
1,
p(f(x′, v′))

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣}). (50)

For the involutive map f , it is clear that the integrals
∫
A
r(x, v |x′, v′)dxdv and

∫
A
t(x, v |x′, v′)dxdv are non-zero around

the points [x, v] = [x′, v′] and [x, v] = f(x′, v′). Thus, integrating over A1 that is around [x, v] = [x′, v′], we have∫
A1

r(x, v |x′, v′)dxdv = 1−min

{
1,
p(f(x′, v′))

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣} =

∫
A1

t(x, v |x′, v′)dxdv. (51)

Then, integrating over A2 that is around [x, v] = f(x′, v′), we have∫
A2

r(x, v |x′, v′)dxdv =

∫
f(A2)

dxdv δ([x′, v′]− [x, v]) ·min

{
p(f−1(x, v))

p(x′, v′)
,

∣∣∣∣∂f(y)∂y

∣∣∣∣
y=f−1(x,v)

}∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣ =
(52)

=

∫
f(A2)

dxdv δ([x′, v′]− [x, v]) ·min

{
p(f−1(x, v))

p(x′, v′)

∣∣∣∣∂f−1(x, v)∂[x, v]

∣∣∣∣, 1} (53)

Since f is an involutive map, then f−1 = f , and [x′, v′] lies in f(A2), where A2 is an area around [x, v] = f(x′, v′). Thus,
we have ∫

A2

t(x, v |x′, v′)dxdv =min

{
1,
p(f(x′, v′))

p(x′, v′)

∣∣∣∣∂f(x′, v′)∂[x′, v′]

∣∣∣∣} =

∫
A2

r(x, v |x′, v′)dxdv (54)

Hence, t(x′, v′ |x, v) satisfies the detailed balance in the joint space. Moreover, that yields the detailed balance on the
support of p(x). Indeed, reducing to the samples from p(x), we have the transition kernel

t̂(x |x′) =
∫
t(x, v |x′, v′)p(v′ |x′)dv′dv. (55)

By definition, the reverse transition kernel is

r̂(x′ |x) = t̂(x |x′)p(x
′)

p(x)
=
p(x′)

p(x)

∫
t(x, v |x′, v′)p(v′ |x′)dv′dv. (56)

Since t(x, v |x′, v′) satisfies the detailed balance, we have

r̂(x′ |x) =p(x
′)

p(x)

∫
t(x′, v′ |x, v)p(v′ |x′) p(x, v)

p(x′, v′)
dv′dv =

∫
t(x′, v′ |x, v)p(v |x)dv′dv = t̂(x′ |x) (57)

Hence, t̂(x |x′) also satisfies the detailed balance.



Involutive MCMC

A.3. (Murray & Elliott, 2012; Neal, 2012)

Here we formulate the algorithm from the papers (Murray & Elliott, 2012; Neal, 2012). We consider one-dimensional target
density p(x) and some transition kernel q(x′ |x) that satisfy the fixed point equation with the target density. For any kernel
q(x′ |x) we can define the reverse transition kernel r(x |x′) in terms of so-called generalized detailed balance:

r(x |x′)p(x′) = q(x′ |x)p(x). (58)

Note that the reverse kernel is a correct distribution w.r.t. x, and also satisfy the fixed point equation:∫
dx r(x |x′) = 1

p(x′)

∫
dx q(x′ |x)p(x) = 1,

∫
dx′ r(x |x′)p(x′) =

∫
dx′ q(x′ |x)p(x) = p(x). (59)

Consider the joint distribution p(x, u) = p(x)p(u), where p(u) = Uniform[0, 1]. For now, assume that at each iteration u is
sampled independently from the uniform distribution and the transition kernel is the deterministic function f(x, v) = [x′, v′]
defined as:

x′ = F−1q(· | x)(u), u′ = Fr(· | x′)(x), (60)

where Fp is a CDF of a distribution with the density p. To check the measure-preserving condition (1), we need to derive the
determinant of the Jacobian of the f . Using the chain rule, we have

∂u′

∂u
=
∂u′

∂x′
∂x′

∂u
,

∂u′

∂x
= r(x |x′) + ∂u′

∂x′
∂x′

∂x
. (61)

Then the Jacobian is

|J | =
∣∣∣∣∂x′∂x

∂u′

∂u
− ∂x′

∂u

∂u′

∂x

∣∣∣∣ = ∂x′

∂u

∣∣∣∣∂x′∂x

∂u′

∂x′
− ∂u′

∂x

∣∣∣∣ = r(x |x′)
q(x′ |x)

. (62)

Now, it is easy to check the measure preserving condition (3) using the definition of the reverse transition kernel.

p(f(x, u))

∣∣∣∣∂f(x, u)∂[x, u]

∣∣∣∣ = p(x′)p(u′)
r(x |x′)
q(x′ |x)

= p(x) = p(x, u). (63)

In the paper (Murray & Elliott, 2012), the authors propose to use some dependent random stream dt to update the auxiliary
variable u as ut = (ut−1+dt) mod 1, instead of sampling from the uniform. In some cases, it is even possibly to eliminate
all the stochasticity by letting dt be some constant irrational number: dt = c.

A.4. Proof of Trick 2 (Mixture of involutions)

We remind that in the trick we consider the joint distribution p(x, v, a) = p(x, v)p(a |x, v), and the family of involutions
fa(x, v), i.e. fa(fa(x, v)) = [x, v]. To make the calculations more concise, we denote the tuple [x, v] as y. Then the
transition kernel for the distribution p(y, a) = p(x, v, a) is

t(y′, a′ | y, a) =δ([y′, a′]− [fa(y), a])min

{
1,
p(fa(y))p(a | fa(y))

p(y)p(a | y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣}+
+ δ([y′, a′]− [y, a])

(
1−min

{
1,
p(fa(y))p(a | fa(y))

p(y)p(a | y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣}). (64)

Putting this transition kernel into the fixed point equation (
∫
t(y′, a′ | y, a)p(y, a)dyda = p(y′, a′)), we have∫

dyda δ([y′, a′]− [fa(y), a])min

{
p(y, a), p(fa(y))p(a | fa(y))

∣∣∣∣∂fa(y)∂y

∣∣∣∣}+
+ p(y′, a′)−

∫
dyda δ([y′, a′]− [y, a])min

{
p(y, a), p(fa(y))p(a | fa(y))

∣∣∣∣∂fa(y)∂y

∣∣∣∣} = p(y′, a′).

(65)
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From the last equation, we immediately obtain the equation

min

{
p(f−1a′ (y

′), a′)

∣∣∣∣∂f−1a′ (y′)∂y′

∣∣∣∣, p(y′, a′)} = min

{
p(y′, a′), p(fa′(y

′), a′)

∣∣∣∣∂fa′(y′)∂y′

∣∣∣∣}, (66)

which solutions in the space of fa include all involutive functions: fa(y) = f−1a (y).

To demonstrate that we must not change the variable a let’s try to apply some smooth function g to propose a new a. Then
equation (65) becomes

∫
dyda δ([y′, a′]− [fa(y), g(a)])min

{
p(y, a), p(fa(y), g(a))

∣∣∣∣∂fa(y)∂y

∣∣∣∣∣∣∣∣∂g(a)∂a

∣∣∣∣}+
+ p(y′, a′)−

∫
dyda δ([y′, a′]− [y, a])min

{
p(y, a), p(fa(y), g(a))

∣∣∣∣∂fa(y)∂y

∣∣∣∣∣∣∣∣∂g(a)∂a

∣∣∣∣} = p(y′, a′),

(67)

which yields the much stronger condition:

∫
da δ(a′ − g(a))min

{
p(f−1a (y′), a)

∣∣∣∣∂f−1a (y′)

∂y′

∣∣∣∣, p(y′, g(a))∣∣∣∣∂g(a)∂a

∣∣∣∣} =

= min

{
p(y′, a′), p(fa′(y

′), g(a′))

∣∣∣∣∂fa′(y′)∂y′

∣∣∣∣∣∣∣∣∂g(a′)∂a′

∣∣∣∣} (68)

min

{
p(f−1g−1(a′)(y

′), g−1(a′))

∣∣∣∣∂f−1g−1(a′)(y
′)

∂y′

∣∣∣∣∣∣∣∣∂g−1(a′)∂a′

∣∣∣∣, p(y′, a′)} =

= min

{
p(y′, a′), p(fa′(y

′), g(a′))

∣∣∣∣∂fa′(y′)∂y′

∣∣∣∣∣∣∣∣∂g(a′)∂a′

∣∣∣∣}
(69)

Looking for some solutions of this equation, we see that the involutivity of g (g(a) = g−1(a)) is not enough anymore. Now,
we also need f−1g−1(a)(y) = fa(y). By the assumption, fa is an involution; hence, we must guarantee fg−1(a)(y) = fa(y).
Thus, we end up with g−1(a) = g(a) = a, what forces g to be the identity mapping. Actually, we can guarantee
f−1g−1(a)(y) = fa(y) with non-trivial g if f is not an involution. We describe the latter in Trick 3.

The detailed balance for kernel (64) follows directly from Proposition 2, as well as the detailed balance for the collapsed
kernel to the support of p(y). To bring more intuition here, one can consider the simple case of independent a: p(a | y) = p(a),
then the kernel t(y′ | y) can be considered as a linear mixture, where each kernel is reversible:

t(y′ | y) =
∫
da p(a)

[
δ(y′ − fa(y))min

{
1,
p(fa(y))

p(y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣}+
+ δ(y′ − y)

(
1−min

{
1,
p(fa(y))

p(y)

∣∣∣∣∂fa(y)∂y

∣∣∣∣})]. (70)

The general case p(y, a) = p(a | y)p(y) is called state-depended mixture by (Geyer, 2003).
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B. Special cases of Involutive MCMC
B.1. Metropolis-Hastings algorithm

Algorithm 2 The Metropolis-Hastings algorithm

input density of target distribution p̂(x) ∝ p(x)
input proposal distribution q(x′ |x)

initialize x
for i = 0 . . . n do

sample proposal point x′ ∼ q(x′ |x)
P = min{1, p̂(x

′)q(x | x′)
p̂(x)q(x′ | x) }

xi =

{
x′, with probability P
x, with probability (1− P )

x← xi
end for

output {x0, . . . , xn}

To see that the MH algorithm is an instance of iMCMC, let’s define the joint distribution as p(x, v) = q(v |x)p(x) and the

deterministic map as f(x, v) =
[
0 1
1 0

] [
x
v

]
(note that it is an involution). For that case, we can write iMCMC transition

kernel as

t(x′, v′ |x, v) = δ([x′, v′]− [v, x])min

{
1,
p(x′, v′)

p(x, v)

}
+ δ([x′, v′]− [x, v])

(
1−min

{
1,
p(v, x)

p(x, v)

})
(71)

Then we substitute the last equation into the reduced transition kernel

t̂(x′ |x) =
∫

dvdv′t(x′, v′ |x, v)q(v |x) (72)

t(x′ |x, v) =
∫
dv′ t(x′, v′ |x, v) = δ(x′ − v)min

{
1,
p(x′, x)

p(x, v)

}
+ δ(x′ − x)

(
1−min

{
1,
p(v, x)

p(x, v)

})
(73)

t̂(x′ |x) =
∫
dv t(x′ |x, v)q(v |x) = q(x′ |x)min

{
1,
p(x′)q(x |x′)
p(x)q(x′ |x)

}
+ (74)

+ δ(x′ − x)
∫
dv q(v |x)

(
1−min

{
1,
p(v)q(x | v)
p(x)q(v |x)

})
= qMH(x

′ |x) (75)

The last equation is the kernel of the conventional Metropolis-Hastings algorithm with proposal q(x′ |x).

Note that the following special cases can be obtained by the same involution f(x, v) =
[
0 1
1 0

] [
x
v

]
and different auxiliary

distributions:

• the Random-Walk Metropolis (Metropolis et al., 1953) (auxiliary q(v |x) = q(x | v))

• Metropolis-adjusted Langevin dynamics (Besag, 1994; Roberts & Rosenthal, 1998).

• Any kernel q(v |x) that satisfy the detailed balance (q(v |x)p(x) = q(x | v)p(v))

• Any independent sampler p(x) (auxiliary p(v)).
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B.2. Mixture Proposal MCMC

Algorithm 3 Mixture Proposal MCMC

input density of target distribution p(x)
input mixture proposal distribution

∫
qr(x

′ | a)qf (a |x)da
initialize x
for i = 0 . . . n do

sample a ∼ qf (a |x)
sample x′ ∼ qr(x′ | a)

P = min

{
1,

p(x′)qr(x | a)qf (a | x′)
p(x)qr(x′ | a)qf (a | x)

}
xi =

{
x′, with probability P
x, with probability (1− P )

x← xi
end for

output {x0, . . . , xn}

We formulate the algorithm from the paper (Habib & Barber, 2018) in Algorithm 3. To demonstrate that the iMCMC
formalism includes this algorithm, we take the joint distribution of target variable x and auxiliary variables a, v as
p(x, a, v) = p(x)qr(v | a)qf (a |x). The deterministic involution is f(x, a, v) = [v, a, x]. Then the transition kernel in the
joint space is

t(x′, a′, v′ |x, a, v) = δ([x′, a′, v′]− [v, a, x])min

{
1,
p(x′)qr(v

′ | a′)qf (a′ |x′)
p(x)qr(v | a)qf (a |x)

}
+ (76)

+ δ([x′, a′, v′]− [x, a, v])

(
1−min

{
1,
p(v)qr(x | a)qf (a | v)
p(x)qr(v | a)qf (a |x)

})
. (77)

This transitional kernel is equivalent to the Algorithm 3. Indeed, the probability to accept the proposed state v is the same as
the acceptance probability in Algorithm 3 and the state v goes from the same proposal

∫
da qr(v | a)q(a |x).

To make the equivalence more apparent we derive formula (17) from (Habib & Barber, 2018) by integrating the transition
kernel t(x′, a′, v′ |x, a, v) over the corresponding coordinates. That is

t̂(x′, a′ |x) =
∫
dadv′dv t(x′, a′, v′ |x, a, v)p(a, v |x) = (78)

= qr(x
′ | a′)qf (a′ |x)min

{
1,
p(x′)qr(x | a′)qf (a′ |x′)
p(x)qr(x′ | a′)qf (a′ |x)

}
+ (79)

+ δ(x′ − x)qf (a′ |x)
(
1−

∫
dv qr(v | a′)min

{
1,
p(v)qr(x | a′)qf (a′ | v)
p(x)qr(v | a′)qf (a′ |x)

})
. (80)

Note that if we further marginalize the kernel t̂(x′, a′ |x) over a′ we obtain the kernel

t̂(x′ |x) =
∫
da′ qr(x

′ | a′)qf (a′ |x)min

{
1,
p(x′)qr(x | a′)qf (a′ |x′)
p(x)qr(x′ | a′)qf (a′ |x)

}
+ (81)

+ δ(x′ − x)
(
1−

∫
dvda′ qr(v | a′)qf (a′ |x)min

{
1,
p(v)qr(x | a′)qf (a′ | v)
p(x)qr(v | a′)qf (a′ |x)

})
, (82)

which is not equivalent to the Metropolis-Hastings kernel with the proposal

q̃(v |x) =
∫
da qr(v | a)q(a |x). (83)
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B.3. Multiple-Try Metropolis

Algorithm 4 Multiple-Try Metropolis

input target density p(x), proposal q(y |x), nonnegative symmetric function λ(x, y) = λ(y, x)
input denote weight function w(x, y) = p(x)q(y |x)λ(x, y)

initialize x
for i = 0 . . . n do

sample y1, . . . , yk ∼ q(yj |x)
evaluate weights wj = p(yj)q(x | yj)λ(yj , x), j = 1, . . . , k
set y = yj with probability wj/(

∑
j wj)

sample x∗1, . . . , x
∗
k−1 ∼ q(xj | y)

set x∗k = x

P = min

{
1, w(y1,x)+...+w(yk,x)

w(x∗1 ,y)+...+w(x∗k,y)

}
xi =

{
y, with probability P
x, with probability (1− P )

x← xi
end for

output samples {x0, . . . , xn}

We begin the proof with the recall of the Multiple-Try Metropolis (MTM) algorithm (Algorithm 4). To write MTM as
Involutive MCMC, we consider the joint distribution and the family of involutions as follows.

p(x, y1, . . . , yk, x
∗
1, . . . , x

∗
k−1, j) = p(x)

k∏
i=1

q(yi |x)p(j | y1, . . . , yk, x)
k−1∏
i=1

q(x∗i | yj), (84)

p(j | y1, . . . , yk, x) =
w(yj , x)∑
j w(yj , x)

, w(x, y) = p(x)q(y |x)λ(x, y), j = 1, . . . , k (85)

fj(x, y1, . . . , yk, x
∗
1, . . . , x

∗
k−1, j) = [yj , x

∗
1, . . . , x

∗
j−1, x, x

∗
j , . . . , x

∗
k−1, y1, . . . , yj , yj−1, . . . , yk, j] (86)

That is, based on the value of the auxiliary variable j ∈ {1, . . . , k}, we first swap yj and x, and then we swap the rest
(k − 1) y’s with all of the x∗. Note that for the fixed j that is an involution. To check that iMCMC provides the equivalent
chain, we evaluate the probability to accept yj as the next sample. That is

P = min

{
1,
p(yj)q(x | yj)

∏k−1
i=1 q(x

∗
i | yj)p(j |x∗1, . . . , x∗j−1, x, x∗j , . . . , x∗k−1, yj)

∏k
i=1,i6=j q(yi |x)

p(x)
∏k
i=1 q(yi |x)p(j | y1, . . . , yk, x)

∏k−1
i=1 q(x

∗
i | yj)

}
= (87)

= min

{
1,
p(yj)q(x | yj)p(j |x∗1, . . . , x∗j−1, x, x∗j , . . . , x∗k−1, yj)

p(x)q(yj |x)p(j | y1, . . . , yk, x)

}
= (88)

= min

{
1,

p(yj)q(x | yj)w(x, yj)(
∑k
i=1 w(yi, x))

p(x)q(yj |x)w(yj , x)(
∑k−1
i=1 w(x

∗
i , yj) + w(x, yj))

}
= (89)

= min

{
1,

p(yj)q(x | yj)p(x)q(yj |x)λ(x, yj)(
∑k
i=1 w(yi, x))

p(x)q(yj |x)p(yj)q(x | yj)λ(yj , x)(
∑k−1
i=1 w(x

∗
i , yj) + w(x, yj))

}
= (90)

= min

{
1,

w(y1, x) + . . .+ w(yk, x)

w(x∗1, y) + . . .+ w(x∗k−1, y) + w(x, y)

}
. (91)

Note that the distribution of y’s and j is the same as in Algorithm 4, hence, the probability to generate proposal yj is the
same, as well as the probability to accept this proposal.
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B.4. Sample-Adaptive MCMC

Algorithm 5 Sample-Adaptive MCMC

input target density p(x), integer N , aggregation function g(x1, . . . , xN ), proposal q
(
xN+1

∣∣∣∣g(x1, . . . , xN )

)
samples = ∅
initialize set S = {x1, . . . , xN}
for i = 0 . . . n do

sample xN+1 ∼ q
(
xN+1

∣∣∣∣g(S))
define S−i = (S with xi replaced with xN+1), S−(N+1) = S

evaluate λi = q

(
xi

∣∣∣∣g(S−i))/p(xi), i = 1, . . . , N + 1

set j = i with probability λi/(
∑N+1
i=1 λi)

S ← S−j
samples = samples ∪ S

end for
output samples

We begin the proof with the recall of the Sample-Adaptive MCMC (SA-MCMC) algorithm (Algorithm 5). In Algorithm 5,
the output of function g does not depend on the order of arguments, i.e. g(x) = g(π(x)), where π is an arbitrary permutation
of arguments.

To write SA-MCMC as Involutive MCMC, we consider the joint distribution and the family of involutions as follows.

p(x1, . . . , xN+1, j) =

N∏
i=1

p(xi)q(xN+1 | g(x1, . . . , xN ))p(j |x1, . . . , xN+1), (92)

p(j |x1, . . . , xN+1) =
λj

(
∑N+1
j=1 λj)

, λj = q(xj | g(S−j))/p(xj), j = 1, . . . , N + 1 (93)

fj(x1, . . . , xN+1, j) = f(x1, . . . , xj−1, xN+1, xj+1, . . . , xN , xj , j) (94)

Here S−j is the current set of samples S = {x1, . . . , xN}, where xj is replaced with xN+1, and S−(N+1) = S. The
involution family operates as follows. Based on the value of the auxiliary variable j ∈ {1, . . . , N + 1}, we swap xj and
xN+1 and leave the rest of arguments untouched. For the fixed j, such function is an involution. One more important
thing to note is that now our target distribution is the product

∏N
i=1 p(xi). To demonstrate that SA-MCMC is equivalent to

Involutive MCMC with aforementioned distribution and involutions, we evaluate the probability to accept the point proposed
by fj .

P = min

{
1,
p(xN+1)

∏N
i=1,i6=j p(xi)q(xj | g(S−j))p(j |S−j , xj)∏N

i=1 p(xi)q(xN+1 | g(S))p(j |S, xN+1)

}
= min

{
1,
p(xN+1)q(xj | g(S−j))p(j |S−j , xj)
p(xj)q(xN+1 | g(S))p(j |S, xN+1)

}
(95)

Now we define S′ = S−j and S′−i ← (S′ with i-th element replaced by xj). If we neglect the order of elements, then
S′−i = S−i for i 6= j, S′−j = S and S′−(N+1) = S−j . Using the fact that the order of arguments in the aggregation function
g(·) does not matter, we obtain

p(j |S−j , xj) =
q(xN+1 | g(S))

p(xN+1)

(
q(xN+1 | g(S))/p(xN+1) +

∑N
i=1,i6=j q(xi | g(S−i))/p(xi) + q(xj | g(S−j))/p(xj)

) (96)

=
q(xN+1 | g(S))

p(xN+1)

(∑N+1
i=1 q(xi | g(S−i))/p(xi)

) (97)



Involutive MCMC

Putting this equation into (95), we obtain

P = min

{
1,

q(xj | g(S−j))

p(xj)p(j |S, xN+1)

(∑N+1
i=1 q(xi | g(S−i))/p(xi)

)} = 1. (98)

Thus, generating the auxiliary variable j we accept the point fj(x1, . . . , xN+1, j) with probability 1. Since the distribution
of j and the corresponding point fj(x1, . . . , xN+1, j) are the same as in Algorithm 5, we have obtained the equivalent
scheme in terms of Involutive MCMC.

B.4.1. GENERALIZATION OF SAMPLE-ADAPTIVE MCMC

From the equations above it is easy to discard the permutation-invariance property of g(. . .). Then we just denote S to be an
ordered array S = [x1, . . . , xN ] instead of a set, and accept the proposed swap with probability

Pj = min

{
1,
p(xN+1)q(xj |S−j)p(j |S−j , xj)
p(xj)q(xN+1 |S)p(j |S, xN+1)

}
. (99)

Then the pseudo-code of the algorithm slightly changes (see Algorithm 6).

Algorithm 6 Generalized Sample-Adaptive MCMC

input target density p(x), integer N , proposal q
(
xN+1

∣∣∣∣x1, . . . , xN)
samples = ∅
initialize array S = [x1, . . . , xN ]
for i = 0 . . . n do

sample xN+1 ∼ q
(
xN+1

∣∣∣∣S)
define S−i = S( with xi replaced by xN+1), S−(N+1) = S

evaluate λi = q

(
xi

∣∣∣∣S−i)/p(xi), i = 1, . . . , N + 1

set j = i with probability λi/(
∑N+1
i=1 λi)

evaluate acceptance probability P = min

{
1,

p(xN+1)q(xj |S−j)p(j |S−j ,xj)
p(xj)q(xN+1 |S)p(j |S,xN+1)

}
S ←

{
S−j , with probability P
S, with probability (1− P )

samples = samples ∪ S
end for

output samples
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B.5. Reversible-Jump MCMC

B.5.1. REVERSIBLE-JUMP MCMC FROM (GREEN & HASTIE, 2009)

Algorithm 7 Reversible-Jump MCMC from (Green & Hastie, 2009)

input target density p(x(k), k), auxiliary distributions q(u |m) and q′(u |m), move functions hm(x, u)
initialize state = [x(k), k]
for i = 0 . . . n do

unpack [x(k), k]← state
sample move type m ∼ p(m |x(k), k)
sample auxiliary u ∼ q(u |m)
move type m defines k′

evaluate [x(k
′), u′] = hm(x(k), u)

evaluate P = min

{
1, p(x

(k′),k′)p(m | x(k′),k′)q′(u′ |m)
p(x(k),k)p(m | x(k),k)q(u |m)

∣∣∣∣ ∂hm

∂[x(k),u]

∣∣∣∣}
accept state←

{
[x(k

′), k′], with probability P
[x(k), k], with probability (1− P )

statei ← state
end for

output samples {state0, . . . , staten}

Reversible-Jump MCMC (Green, 1995) has multiple formulations, which vary significantly both in notation used and in the
sampling procedure. Here we choose to stay close to (Green & Hastie, 2009) for illustrative purposes (see pseudo-code
in Algorithm 7). Note that the move type m index both models k and k′, as well as the smooth map hm. Indeed, for a
proper scheme, auxiliary distributions q′(u |m) and q(u |m) are defined such that the dimension of [x(k), u] matches the
dimension of [x(k

′), u′] and the dimension for the input of hm.

To describe Algorithm 7 in terms of iMCMC, we consider the joint distribution:

p(x, k,m, u) = p(x(k), k)p(m |x(k), k)p(u |m, k), (100)

where we define p(u |m, k) such that for the move type m that goes from k to k′ we have p(u |m, k) = q(u |m) and
p(u |m, k′) = q′(u |m). We can do it because m defines both models k and k′. The family of involutions is then defined as
follows.

fm(x(k), u, k) = [hm(x(k), u), k′] = [x(k
′), u′, k′], fm(x(k

′), u′, k′) = [h−1m (x(k
′), u′), k] = [x(k), u, k] (101)

Here index m choose such involution that map model index k to k′ and vice versa. As well as in (Green & Hastie, 2009),
mapping from k′ to k we apply the inverse h−1m . For a concrete example of move types and functions hm, we refer the
reader to Section 3 of (Green & Hastie, 2009). The acceptance probability then is in total agreement with Algorithm 7:

P = min

{
1,
p(x(k

′), k′)p(m |x(k′), k′)q′(u′ |m)

p(x(k), k)p(m |x(k), k)q(u |m)

∣∣∣∣ ∂hm
∂[x(k), u]

∣∣∣∣}. (102)

B.5.2. ANOTHER FORMULATION

In the previous section, we encapsulate the knowledge about the next proposed model in the index m. However, the
formulation becomes more transparent if we sample the index of the next proposed model explicitly. The following
algorithm can be seen as a more general version of the formulation of Reversible-Jump MCMC from (Gagnon & Doucet,
2019). That is, consider the joint distribution

p(x, k, j, u) = p(x(k), k)p(j |x(k), k)p(u(k) |x(k), k, j), (103)

where j is the index of the next model. Here we add superscripts for u to highlight that the choice of auxiliary variables relies
on the current model k. Usually this is done such that all vectors lie in the same vector space, i.e. [x(k), u(k)] ∈ Rd ∀k. The
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involution f then is

f(x(k), u(k), k, j) = [hkj(x
(k), u(k)), j, k] = [x(j), u(j), j, k], hjk(x

(j), u(j)) = h−1kj (x
(j), u(j)) = [x(k), u(k)]. (104)

Here the involution f maps [x, u] based on the indeces of the current model k and the next model j. Note that mapping from
k to j via hkj we are obliged to perform the inverse map hjk using the inverse function h−1kj . The acceptance probability is
then

P = min

{
1,
p(x(j), j)p(k |x(j), j)p(u(j) |x(j), j, k)
p(x(k), k)p(j |x(k), k)p(u(k) |x(k), k, j)

∣∣∣∣ ∂hkj
∂[x(k), u(k)]

∣∣∣∣}. (105)

See the pseudo-code in Algorithm 8. Note that unlike Algorithm 7, here we have a single smooth map from model k to
model j. This limitation can be easily removed via Trick 2 by considering the family of involutions

fm(x(k), u(k), k, j) = [hmkj(x
(k), u(k)), j, k] = [x(j), u(j), j, k], hmjk(x

(j), u(j)) = h−1mkj(x
(j), u(j)) = [x(k), u(k)],

(106)

where we can sample index m conditioned on the current state [x(k), u(k), k, j].

Finally, we discuss the usage of Tricks from Section 3 here. Trick 2 is explicitly used here when we define a family of
involutions and stochastically choose one from the family. The auxiliary direction from Trick 3 here is in the form of indices
k and j, which define the smooth map hkj and its inverse hjk = h−1kj . Trick 1 can be found here if we define the target
distribution as

p(x(k), u(k), k) = p(x(k), k)p(u(k) |x(k), k), (107)

in order to match the dimensions of all models [x(k), u(k)] ∈ Rd ∀k. As well as in Trick 1, we sample from extended
distribution p(x(k), u(k), k), and then discard all u(k).

Algorithm 8 Reversible-Jump MCMC

input target density p(x(k), k), distribution of next models p(j |x(k), k), auxiliary distributions p(u(k) |x(k), k, j)
initialize state = [x(k), k]
for i = 0 . . . n do

unpack [x(k), k]← state
sample next model j ∼ p(j |x(k), k)
sample auxiliary u(k) ∼ p(u(k) |x(k), k, j)
propose [x(j), u(j)] = hkj(x

(k), u(k))

evaluate P = min

{
1, p(x

(j),j)p(k | x(j),j)p(u(j) | x(j),j,k)
p(x(k),k)p(j | x(k),k)p(u(k) | x(k),k,j)

∣∣∣∣ ∂hkj

∂[x(k),u(k)]

∣∣∣∣}
accept state←

{
[x(j), j], with probability P
[x(k), k], with probability (1− P )

statei ← state
end for

output samples {state0, . . . , staten}
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B.6. Hybrid Monte Carlo

Algorithm 9 Hybrid Monte Carlo

input joint density p(x, v) = p(x)p(v), auxiliary distribution p(v) = N (v | 0, 1), number of Leap-Frog steps k, step size ε
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, 1)
propose [x′, v′] = FLk(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output {x0, . . . , xn}

Hybrid Monte Carlo (Duane et al., 1987) relies on the numerical integration of Hamiltonian dynamics via the Leap-Frog
operator L. For target density p(x), the Hamiltonian is defined as H(x, v) = − log p(x, v), where p(x, v) = p(x)p(v) is the
joint distribution, and p(v) = N (v | 0, 1) is the auxiliary distribution. In the case of independent v (i.e., p(x, v) = p(x)p(v)),
the Leap-Frog operator L : [x(t), v(t)]→ [x(t+ ε), v(t+ ε)] is defined as follows.

v(t+ ε/2) =v(t)− ε

2
∇x(− log p(x(t))) (108)

x(t+ ε) =x(t) + ε∇v(− log p(v(t+ ε/2))) (109)

v(t+ ε) =v(t+ ε/2)− ε

2
∇x(− log p(x(t+ ε))) (110)

Flip operator F denotes the negation of the auxiliary variable (momentum) v: F : [x, v]→ [x,−v]. These operators together
yields the involutive map FL, which is used in Algorithm 9. To demonstrate this, we demonstrate that FLFL = 1, i.e.
double application of the operator FL results in identity function.

v(t+ ε/2) =v(t)− ε

2
∇x(− log p(x(t))) (111)

x(t+ ε) =x(t) + ε∇v(− log p(v(t+ ε/2))) (112)

v(t+ ε) =v(t+ ε/2)− ε

2
∇x(− log p(x(t+ ε))) (113)

v(t+ 3/2ε) =− v(t+ ε)− ε

2
∇x(− log p(x(t+ ε))) = −v(t+ ε/2) (114)

x(t+ 2ε) =x(t+ ε) + ε∇v(− log p(v(t+ 3/2ε))) = x(t) (115)

v(t+ 2ε) =v(t+ 3/2ε)− ε

2
∇x(− log p(x(t+ 2ε))) = −v(t) (116)

Note that here we greatly rely on the symmetry p(v) = p(−v). After the last equation we negate the momentum variable
once again yielding FLFL : [x(t), v(t)]→ [x(t), v(t)]. Note that having FLFL = 1 we can easily obtain the inverse of
the Leap-Frog operator L−1 = FLF . Using the formula for the inverse Leap-Frog we have

FLkFLk = FLkFLFFLk−1 = FLk−1FLk−1 = . . . = FLFL = 1. (117)

Thus, an arbitrary number of L can be composed in the involution FLk.

Using the involution FLk, the formulation of HMC in terms of iMCMC is now straightforward. Consider the joint
distribution p(x, v) = p(x)N (v | 0, 1) and the involutive function FLk, the acceptance probability according to iMCMC
(Algorithm 1) is then

P = min

{
1,
p(FLk(x, v))

p(x, v)

∣∣∣∣ ∂FLk∂[x, v]

∣∣∣∣}. (118)
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Finally, it is easy to see that FLk is volume-preserving since the transformations on the each step of L are volume-preserving,
e.g. (108) maps [x(t), v(t)]→ [x(t), v(t+ ε/2)] since it is an identity map w.r.t. x(t), and |∂v(t+ ε/2)/∂v(t)| = 1 it is
volume-preserving.

Another possible way to represent HMC in terms of iMCMC is to use Trick 3 and introduce the directional variable
p(d) = Uniform{−1,+1}. Then the involutive map is defined as

f(x, v, d) = [Td(x, v),−d], Td=+1 = L, Td=−1 = L−1. (119)

This formulation allow for a more general formulation that does not rely on the symmetry p(v) = p(−v) as HMC. Indeed,
the inverse Leap-Frog operator L−1 can be obtained just by the inversion of the time:

v(t− ε/2) =v(t) + ε

2
∇x(− log p(x(t))) (120)

x(t− ε) =x(t)− ε∇v(− log p(v(t− ε/2))) (121)

v(t− ε) =v(t− ε/2) + ε

2
∇x(− log p(x(t− ε))) (122)

B.7. RMHMC

Algorithm 10 Riemann Manifold HMC

input joint density p(x, v), auxiliary distribution p(v) = N (v | 0, G(x)), number of Leap-Frog steps k, step size ε
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, G(x))
propose [x′, v′] = FLk(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output {x0, . . . , xn}

In Riemann Manifold HMC (Girolami & Calderhead, 2011), the authors propose to take into account the “curvature” of the
space during sampling by considering the following Hamiltonian

H(x, v) = − log p(x) + 1
2 log |G(x)|+

1
2v
TG(x)−1v. (123)

As you can see from Algorithm 10, the pseudo-code for RMHMC is almost the same as for HMC (see B.6). The key
difference between them is the integration operator L. Since the Hamiltonian H(x, v) is not separable, we need to use the
implicit numerical scheme to guarantee volume-preserving and involutive properties. The integration operator L is defined
as follows.

v(t+ ε/2) = v(t)− ε

2
∇xH(x(t), v(t+ ε/2)) (124)

x(t+ ε/2) = x(t) +
ε

2
∇vH(x(t), v(t+ ε/2)) (125)

x(t+ ε) = x(t+ ε/2) +
ε

2
∇vH(x(t+ ε), v(t+ ε/2)) (126)

v(t+ ε) = v(t+ ε/2)− ε

2
∇xH(x(t+ ε), v(t+ ε/2)) (127)

The involution can be constructed as FL, where F is the negation of v: F : [x, v] → [x,−v]. To demonstrate this, we
integrate further in time from [x(t+ ε),−v(t+ ε)] obtaining FLFL = 1 (double application yields identity function). That
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is, applying step (124), we get

v(t+ 3/2ε) = −v(t+ ε)− ε

2
∇xH(x(t+ ε), v(t+ 3/2ε)) (128)

v(t+ ε) = −v(t+ 3/2ε)− ε

2
∇xH(x(t+ ε),−v(t+ 3/2ε)) =⇒ −v(t+ 3/2ε) = v(t+ ε/2) (129)

(130)

Here we use ∇xH(x, v) = ∇xH(x,−v). Further, applying step (125), we get

x(t+ 3/2ε) = x(t+ ε) +
ε

2
∇vH(x(t+ ε), v(t+ 3/2ε)) = x(t+ ε/2), (131)

where we use ∇vH(x,−v) = −∇vH(x, v). The last two steps (126) and (127) follow the same logic.

x(t+ 2ε) = x(t+ 3/2ε) +
ε

2
∇vH(x(t+ 2ε), v(t+ 3/2ε)) = x(t) (132)

v(t+ 2ε) = v(t+ 3/2ε)− ε

2
∇xH(x(t+ 2ε), v(t+ 3/2ε)) = −v(t) (133)

Further negation of −v(t) results in the initial point [x(t), v(t)]. Thus, FL is an involution (FLFL = 1) and FLk is also
an involution:

FLkFLk = FLk−1F (FLFL)Lk−1 = FLk−1FLk−1 = . . . = 1. (134)

Using the involution FLk, the formulation of RMHMC in terms of iMCMC is now straightforward. Consider the joint
distribution p(x, v) = p(x)N (v | 0, G(x)) and the involutive function FLk, the acceptance probability according to iMCMC
(Algorithm 1) is then

P = min

{
1,
p(FLk(x, v))

p(x, v)

∣∣∣∣ ∂FLk∂[x, v]

∣∣∣∣}. (135)

Finally, it is easy to see that FLk is volume-preserving. For illustrative purposes, we evaluate the Jacobian of the first two
steps (124) and (125).

∂x(t+ ε/2)

∂x(t)
= 1 +

ε

2
∇vxH(x(t), v(t+ ε/2)) +

ε

2
∇vvH(x(t), v(t+ ε/2))

∂v(t+ ε/2)

∂x(t)
(136)

∂x(t+ ε/2)

∂v(t)
=
ε

2
∇vvH(x(t), v(t+ ε/2))

∂v(t+ ε/2)

∂v(t)
(137)

∂v(t+ ε/2)

∂x(t)
= −ε

2
∇xxH(x(t), v(t+ ε/2)) (138)

∂v(t+ ε/2)

∂v(t)
= 1− ε

2
∇xvH(x(t), v(t+ ε/2))

∂v(t+ ε/2)

∂v(t)
(139)

∣∣∣∣ ∂FLk∂[x, v]

∣∣∣∣ = (1 + ε

2
∇vxH(x(t), v(t+ ε/2))

)
∂v(t+ ε/2)

∂v(t)
= 1 (140)



Involutive MCMC

B.8. NeuTra

Algorithm 11 NeuTra

input target density px(x), auxiliary density p(v) = N (v | 0, 1), flow T (x)
initialize z
for i = 0 . . . n do

sample v ∼ p(v) = N (v | 0, 1)
propose [z′, v′] = FLk(z, v), where the target density for Leap-Frog is pz(z, v) = px(T (z))|∂T∂z |p(v)

evaluate P = min

{
1, pz(z

′,v′)
pz(z,v)

}
accept x←

{
z′, with probability P
z, with probability (1− P )

xi ← T (z)
end for

output samples {x0, . . . , xn}

In the recent paper (Hoffman et al., 2019), the authors learn an invertible transformation T−1 : X → Z to map the target
random variable x ∈ X with the density px(x) into another random variable z ∈ Z, which has more simple geometry of
density levels. Further, they run HMC in Z with the target density pz(z) = px(T (z))|∂T/∂z|. Finally, one can obtain
samples in the original space X by mapping the collected samples using T : Z → X . We provide the pseudo-code in
Algorithm 11.

A straightforward application of Trick 4 allows for iMCMC formulation of NeuTra. That is, the joint distribution is just the
same as in HMC

p(x, v) = px(x)N (v | 0, 1). (141)

For the involutive map, we take

f(x, v) =

[
T
1

]
◦ F ◦ Lk ◦

[
T−1

1

] [
x
v

]
, (142)

where F is the velocity flip operator, L is the Leap-Frog, and the notation
[
T−1

1

] [
x
v

]
means element-wise application

(x, v)→ (T−1(x), v). Note that the only necessary condition for the operators L and F is the (F ◦ Lk)−1 = F ◦ Lk. Then,
by the straightforward evaluation f(f(x, v)) we can see that f is an involution. To obtain an equivalent sampler to NeuTra
we choose the joint density for L as p(z, v) = px(T (z))|∂T/∂z|p(v). Thus, we obtain the same dynamics in Z. However,
note that iMCMC assumes the acceptance test in the original space X , while NeuTra performs the acceptance test in Z.
Nevertheless, for an initial point x and the velocity v ∼ p(v), Algorithm 1 gives us the following acceptance test

P = min

{
1,
p(f(x, v))

p(x, v)

∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣}, f(x, v) =

[
T
1

]
◦ F ◦ Lk ◦

[
T−1

1

] [
x
v

]
(143)

Using the chain rule, we have∣∣∣∣∂f(x, v)∂[x, v]

∣∣∣∣ = ∣∣∣∣∂T∂y
∣∣∣∣
y=FLkT−1(x)

∣∣∣∣∂T−1∂x

∣∣∣∣ = ∣∣∣∣∂T∂y
∣∣∣∣
y=FLkT−1(x)

∣∣∣∣∂T∂y
∣∣∣∣−1
y=T−1(x)

(144)

Denoting z = T−1(x), and [z′, v′] = FLk(z, v), we have

P = min

{
1,
px(T (z

′))p(v′)

px(T (z))p(v)

∣∣∣∣∂T∂y
∣∣∣∣
y=z′

∣∣∣∣∂T∂y
∣∣∣∣−1
y=z

}
= min

{
1,
pz(z

′, v′)

pz(z, v)

}
. (145)

Thus, we obtain the same acceptance probability, and, hence, equivalent kernel to Algorithm 11.
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B.9. A-NICE-MC

Algorithm 12 A-NICE-MC

input target density p(x, v) = p(x)N (v | 0, 1), NICE-proposal T (x, v) and T−1(x, v)
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, 1)
sample d ∼ Uniform{−1,+1}
propose [x′, v′] = Td(x, v), where Td=+1 = T and Td=−1 = T−1

evaluate P = min

{
1, p(x

′,v′)
p(x,v)

}
accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output samples {x0, . . . , xn}

We recall A-NICE-MC (Song et al., 2017) in Algorithm 12. The core part of the algorithm is the volume-preserving NICE
proposal T (x, v), which is learned before the sampling. Trick 3 with directional variable d allows for a straightforward
formulation of A-NICE-MC in terms of iMCMC. Consider the joint distribution

p(x, v, d) = p(x)N (v | 0, 1)p(d), p(d) = Uniform{−1,+1}, (146)

and the involution

f(x, v, d) = [Td(x, v),−d], Td=+1 = T, Td=−1 = T−1. (147)

Then it is easy to see that the acceptance probability of iMCMC (Algorithm 1) is the same as the probability P in Algorithm
12.

B.10. L2HMC

Algorithm 13 L2HMC

input target density p(x, v) = p(x)N (v | 0, 1), proposal T (x, v) and T−1(x, v)
initialize x
for i = 0 . . . n do

sample v ∼ N (v | 0, 1)
sample d ∼ Uniform{−1,+1}
propose [x′, v′] = Td(x, v), where Td=+1 = T and Td=−1 = T−1

evaluate P = min

{
1, p(x

′,v′)
p(x,v)

∣∣∣∣∂Td(x,v)
∂[x,v]

∣∣∣∣}
accept x←

{
x′, with probability P
x, with probability (1− P )

xi ← x
end for

output samples {x0, . . . , xn}

We recall L2HMC (Levy et al., 2017) in Algorithm 13. The core part of the algorithm is the proposal T (x, v), which is
learned before the sampling. The only two differences with A-NICE-MC (see B.9) is the form of proposal T (in L2HMC it
is not volume-preserving) and the way the proposals are learned. Since here we do not consider the training stage, we can
say that the only difference between A-NICE-MC and L2HMC is the Jacobian of deterministic transformation in the test.
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Trick 3 with directional variable d allows for a straightforward formulation of L2HMC in terms of iMCMC. Consider the
joint distribution

p(x, v, d) = p(x)N (v | 0, 1)p(d), p(d) = Uniform{−1,+1}, (148)

and the involution

f(x, v, d) = [Td(x, v),−d], Td=+1 = T, Td=−1 = T−1. (149)

Then it is easy to see that the acceptance probability of iMCMC (Algorithm 1) is the same as the probability P in Algorithm
13.

B.11. HMC with persistent momentum

Algorithm 14 HMC with persistent momentum

input target density p(x), auxiliary distribution p(v) = N (v | 0, 1), number of Leap-Frog steps k, hyperparameter α
initialize x, v
for i = 0 . . . n do

update v ← v
√
1− α2 + αε, ε ∼ N (ε | 0, 1)

propose [x′, v′] = FLk(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept [x, v]←

{
[x′, v′], with probability P
[x, v], with probability (1− P )

xi ← x
v ← −v

end for
output {x0, . . . , xn}

The HMC algorithm with persistent momentum (Horowitz, 1991) is usually formulated as in Algorithm 14. The iMCMC
formulation of this algorithm can be derived in two ways. One of the ways is to apply Trick 5, we return to it further
during the discussion of the generalization of Algorithm 14. For illustrative purposes, we firstly describe a straightforward
way where we use involution FLk as a proposal, and compose it with another two iMCMC kernels. The first kernel
t1(x

′, v′, a′ |x, v, a) preserves the joint distribution p(x, v, a) = p(x)p(v)p(a | v), where p(v) = N (v | 0, 1), and p(a | v) =
N (a | v

√
1− α2, α2). Note that using the involution f1(x, v, a) = [x, a, v] that just swaps v and a we accepting the new

state [x, a, v] with probability 1. Indeed,

P1 =

{
1,
p(x)N (a | 0, 1)N (v | a

√
1− α2, α2)

p(x)N (v | 0, 1)N (a | v
√
1− α2, α2)

}
= 1. (150)

The second kernel t2(x′, v′ |x, v) is equivalent to vanilla HMC algorithm with the joint distribution p(x, v) = p(x)N (v | 0, 1)
and the involution f2(x, v) = FLk(x, v). The third kernel t3(x′, v′ |x, v) is equivalent to the flip kernel from Trick 5, i.e.
iMCMC with the joint distribution p(x, v) = p(x)N (v | 0, 1) and the involution f2(x, v) = [x,−v]. Note that the last kernel
preserves the distribution without any test since p(x, v) = p(x,−v).

The obtained composition of iMCMC kernels greatly relies on the fact that p(x,−v) = p(x, v), as well as the original
proof (Horowitz, 1991). However, using the Trick 5 we can straightforwardly obtain a generalization of this algorithm
as depicted in Algorithm 15. The key idea here is to use an additional directional variable d ∼ Uniform{−1,+1} and
involution f(x, v, d) = [Td(x, v),−d], where Td=+1(x, v) = Lk(x, v), and Td=−1(x, v) = L−k(x, v), where L−1 is the
Leap-Frog inverted in time. Then we can flip the direction d as in Trick 5 since p(d) = p(−d). In the case p(v) = p(−v),
and the choice of t1(v′ | v) as in Algorithm 14, we obtain the algorithm equivalent to Algorithm 14. Note that in Algorithm
15 we consider the case p(x, v) = p(x)p(v) only to be able to apply the explicit version of the Leap-Frog integrator, the
same logic applies for implicit integrators as used in RMHMC (Appendix B.7).
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Algorithm 15 Generalized HMC with persistent momentum

input target density p(x), auxiliary distribution p(v), number of Leap-Frog steps k
input iMCMC kernel t1(v′ | v) for updating v

initialize x, v, d
for i = 0 . . . n do

update v ∼ t1(· | v)
propose [x′, v′, d′] = [Td(x, v),−d], where Td=+1(x, v) = Lk(x, v), and Td=−1(x, v) = L−k(x, v)

evaluate P = min{1, p(x
′,v′)

p(x,v) }

accept [x, v, d]←

{
[x′, v′, d′], with probability P
[x, v, d], with probability (1− P )

flip the direction d← −d
xi ← x

end for
output {x0, . . . , xn}

B.12. Gibbs sampling

Algorithm 16 Gibbs sampling

input conditional densities p(xk | . . . , xk−1, xk+1, . . .) of the target distribution p(x1, . . . , xn)
initialize x = (x1, . . . , xn)
for i = 0 . . . N do

for k = 0 . . . d do
sample x′k ∼ p(x′k | . . . , x′k−1, xk+1, . . .)

end for
x[i]← (x′1, . . . , x

′
n)

x← x[i]
end for

output {x[0], . . . , x[N ]}

Algorithm 16 describes the Gibbs sampling. Further, we formulate it as the composition of iMCMC kernels, where each
kernel is a single step of the inner loop of Algorithm 16. That is, for the transition kernel tk(xk |xk−1) we define the joint
distribution as

p(x1, . . . , xn, vk) = p(x1, . . . , xn)p(vk | . . . , xk−1, xk+1, . . .), (151)

and the involutive map f as

f(x1, . . . , xn, vk) = [x1, . . . , xk−1, vk, xk+1, . . . , xn, xk]. (152)

It swaps xk with vk and leaves the rest of the variables untouched. The acceptance probability of such a proposal is

P = min

{
1,
p(x1, . . . xk−1, vk, xk+1, . . . , xn)p(xk | . . . , xk−1, xk+1, . . .)

p(x1, . . . , xn)p(vk | . . . , xk−1, xk+1, . . .)

}
= 1. (153)

Thus, every proposed point will be accepted and we update variables one by one as in the Gibbs sampling. The resulted
kernel is

t(xn |x0) =
∫ n−1∏

k=1

dxk
n∏
k=1

tk(x
k |xk−1). (154)

Another way to describe the Gibbs sampling is to use Trick 5. Consider the augmented distribution p(x1 . . . xn)p(k)p(d),
where p(k) = Uniform{1, . . . , n}, and p(d) = Uniform{−1,+1}. Taking the auxiliry distribution as p(v |x1 . . . xn, k) =
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p(v | . . . , xk−1, xk+1, . . .), we set the involution as

f(x1, . . . , xn, v, k, d = +1) = [x1, . . . , xk−1, v, xk+1, . . . , xn, xk, k + 1,−1], (155)
f(x1, . . . , xn, v, k, d = −1) = [x1, . . . , xk−2, v, xk, . . . , xn, xk−1, k − 1,+1], (156)

That is, moving in the positive direction we swap xk and v, increment k → k + 1 mod n and flip the directional variable
d→ −d, whereas moving in the negative direction we xk−1 and v, decrease k → k − 1 mod n and also flip the directional
variable d → −d. The acceptance probability of such iMCMC kernel is 1. Composing this kernel with the flip of the
direction as in Trick 5, we obtain a composition of kernels, which every n-th sample equals to the samples from Algorithm
16.

B.13. Look Ahead HMC

Algorithm 17 Look Ahead HMC

input target density p(x), auxiliary distribution p(v) = N (v | 0, 1), hyperparameter α
initialize x, v
for i = 0 . . . n do

update v ← v
√
1− α2 + αε, ε ∼ N (ε | 0, 1)

evaluate πk = min

{
1−

∑
j<k πj(x, v),

p(FLk(x,v))
p(x,v)

(
1−

∑
j<k πj(FL

k(x, v))

)}
accept [x, v]←

{
Lk(x, v), with probability πk(x, v)
[x,−v], with probability (1−

∑
k πk(x, v))

xi ← x
end for

output {x0, . . . , xn}

The Look Ahead HMC algorithm (Sohl-Dickstein et al., 2014) operates by proposing several points for acceptance, which
are evaluated with different number of steps in the Leap-Frog integrator (see Algorithm 17). The iMCMC formulation of
Look Ahead HMC is similar to the formulation of Horowitz’s algorithm (see Appendix B.11). The key feature of Look
Ahead HMC is that it use a mixture of involutions in the intermediate kernel.

To describe Look Ahead HMC, we use the following composition of iMCMC kernels. The first kernel
t1(x

′, v′, a′ |x, v, a) preserves the joint distribution p(x, v, a) = p(x)p(v)p(a | v), where p(v) = N (v | 0, 1), and
p(a | v) = N (a | v

√
1− α2, α2). Note that using the involution f1(x, v, a) = [x, a, v] that just swaps v and a we ac-

cepting the new state [x, a, v] with probability 1. Indeed,

P1 =

{
1,
p(x)N (a | 0, 1)N (v | a

√
1− α2, α2)

p(x)N (v | 0, 1)N (a | v
√
1− α2, α2)

}
= 1. (157)

The second kernel t2(x′, v′, k′ |x, v, k) preserves the joint distribution

p(x, v, k) = p(x, v)p(k |x, v), p(k |x, v) = 1−
∑
j<k

πj(x, v), k = 1, . . . ,K, p(0 |x, v) = 1−
K∑
k=1

πk(x, v) (158)

πk(x, v) = min

{
1−

∑
j<k

πj(x, v),
p(FLk(x, v))

p(x, v)

(
1−

∑
j<k

πj(FL
k(x, v))

)}
, (159)

where p(k |x, v) defines the index of involution that we apply on the current step. To be more precise, k defines the number
of Leap-Frog steps:

fk(x, v) = FLk(x, v). (160)
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The probability to accept FLk(x, v) is then

P = min

{
1,
p(FLk(x, v))p(k |FLk(x, v))

p(x, v)p(k |x, v)

}
p(k |x, v) = min

{
p(k |x, v), p(FL

k(x, v))

p(x, v)
p(k |FLk(x, v))

}
= (161)

= min

{
1−

∑
j<k

πj(x, v),
p(FLk(x, v))

p(x, v)

(
1−

∑
j<k

πj(FL
k(x, v))

)}
= πk(x, v) (162)

The third kernel t3(x′, v′ |x, v) simply negates the auxiliary variable v. That is without any resampling, we just apply
f3(x, v) = [x,−v]. Composing all the kernels together we obtain the chain that is equivalent to Algorithm 17.

In the formulation above the sign of v plays the role of directional variable d from Trick 5. However, the same can be done
explicitly by considering involutions

fk(x, v, d = +1) = [Lk(x, v),−d], fk(x, v, d = −1) = [FLkF (x, v),−d] (163)

in the kernel t2(x′, v′, k′ |x, v, k), where p(d) = Uniform{−1,+1}.

Further, this Look Ahead technique can be generalized to the case of arbitrary functions T by considering the following
family of involutions

fk(x, v, d = +1) = [T k(x, v),−d], fk(x, v, d = −1) = [T−k(x, v),−d]. (164)

B.14. Non-Reversible Jump

Algorithm 18 Non-Reversible Jump

input target density p(x(k), k), auxiliary distributions qk→k′(u(k)), smooth maps Tk→k′(x(k), u(k))
initialize state = [x(k), k, ν]
for i = 0 . . . n do
u ∼ Uniform[0, 1]
if u ≤ τ then

update x(k) staying in the same model k and fixing the direction ν
else

unpack [x(k), k, ν]← state
k′ = k + ν
sample auxiliary u(k) ∼ qk→k′(u(k))
propose [x(k

′), u(k
′)] = Tk→k′(x

(k), u(k))

evaluate P = min

{
1, p(x

(k′),k′)qk′→k(u
(k′))

p(x(k),k)qk→k′ (u
(k))

∣∣∣∣ ∂Tk→k′
∂[x(k),u(k)]

∣∣∣∣}
accept state←

{
[x(k

′), k′, ν], with probability P
[x(k), k,−ν], with probability (1− P )

end if
statei ← state

end for
output samples {state0, . . . , staten}

We provide the pseudo-code for Non-Reversible Jump scheme (Gagnon & Doucet, 2019) in Algorithm 18. Further, we
describe this algorithm in terms of iMCMC using Trick 5. To build the first kernel t1(· | ·), we consider the following joint
distribution

p(x(k), u(k), v(k), k, ν,m) = p(x(k), k)p(ν)p(u(k) | k, ν)p(m)p(v(k) | k), (165)

where p(ν) = Uniform{−1,+1} is analogue of direction d in Trick 3; p(m) = Bernoulli(τ, 1− τ) defines the index of in-
volution applied; p(v(k) | k) and p(u(k) | k, ν) define auxiliary variables, which we choose as p(u(k) | k, ν) = qk→k+ν(u

(k))
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and p(v(k)) = qk→k(v
(k)). With probability 1− τ (when m = 1), we apply involution

f1(x
(k), u(k), v(k), k, ν) = [Tk→(k+ν)(x

(k), u(k)), v(k), k + ν,−ν, v(k)] = [x(k+ν), u(k+ν), v(k), k + ν,−ν], (166)

Tk′→k(x
(k′), u(k

′)) = T−1k→k′(x
(k′), u(k

′)) = [x(k), u(k)]. (167)

That is, based on indices k and k + ν we choose a smooth map that we apply to x(k
′), u(k

′); we also update k → k + ν and
negate the direction ν. The acceptance probability for such a proposal is

P = min

{
1,
p(x(k+ν), k + ν)p(u(k+ν) | k + ν,−ν)

p(x(k), k)p(u(k) | k, ν)

∣∣∣∣ ∂Tk→(k+ν)

∂[x(k), u(k)]

∣∣∣∣}, (168)

which is equivalent to the acceptance probability in Algorithm 18, when we denote k′ = k + ν and p(u(k) | k, ν) =
qk→k+ν(u

(k)). With probability τ (when m = 0), we apply involution

f0(x
(k), v(k), u(k), k, ν) = [Tk→k(x

(k), v(k)), u(k), k, ν], Tk→k(x
(k), v(k)) = T−1k→k(x

(k), v(k)), (169)

which does not change neither k nor ν. Here we also apply involutive smooth map Tk→k to the vector [x(k), v(k)] instead of
[x(k), u(k)]. Without the loss of generality, we can treat the case of m = 0 to be equivalent to the corresponding update
when u ≤ τ in Algorithm 18.

As well as in Trick 5, we combine the obtained kernel t1 on the joint distribution p(x(k), u(k), v(k), k, ν,m) with the kernel
t2 on the same distribution. Applying t2 we do not resample any variables, instead we use the following involution

f(ν,m = 0) = [ν,m], f(ν,m = 1) = [−ν,m]. (170)

The rest of the variables remains the same. Based on the value of m we change only ν to obtain the persistent irreversible
movement in the case when ν was negated by the kernel t1. The combination of kernels t1 and t2 yields the sampler that is
equivalent to Non-Reversible Jump scheme (Algorithm 18).

B.15. Lifted Metropolis-Hastings

Firstly, we recall a general approach of Lifting in (Turitsyn et al., 2011) following the formulation from (Bierkens et al.,
2017). Lifting modifies the reversible kernel T on the state space X by splitting each state x ∈ X in two replicas: {x,+}
and {x,−}. Then, for each replica, the authors introduce its own transition kernel: T (+) for positive replicas and T (−) for
negative ones. These transition kernels must satisfy

T (x, y)(+)p(x) = T (y, x)(−)p(y), ∀x 6= y, (171)

where p is the target distribution. The kernels T (+) and T (−) define in-replica transitions and are obtained from the original
kernel T by splitting the support of T using some decision function η : X → R. For non-diagonal elements x 6= y these
transitions can be written as

T (+)(x, y) =

{
T (x, y), if η(y) ≥ η(x),
0, if η(y) < η(x)

and T (−)(x, y) =

{
0, if η(y) > η(x),

T (x, y), if η(y) ≤ η(x)
. (172)

Inter-replica transitions are defined as

T (−,+)(x) = max

{
0,
∑
y:y 6=x

T (+)(x, y)− T (−)(x, y)

}
, (173)

T (+,−)(x) = max

{
0,
∑
y:y 6=x

T (−)(x, y)− T (+)(x, y)

}
. (174)

Where T (+,−) define the transition probability from positive replicas to negative ones. Finally, the diagonal elements of
T (+) and T (−) are defined as follows.

T (+)(x, x) = 1− T (+,−)(x)−
∑
y:y 6=x

T (+)(x, y), T (−)(x, x) = 1− T (−,+)(x)−
∑
y:y 6=x

T (−)(x, y) (175)



Involutive MCMC

Note that

T (+)(x, x) = T (−)(x, x) = min

{
1−

∑
y:y 6=x

T (−)(x, y), 1−
∑
y:y 6=x

T (+)(x, y)

}
. (176)

The whole transition kernel on the extended space is defined as

T =

[
T (+) T (+,−)

T (−,+) T (−)

]
. (177)

To describe Lifting in terms of iMCMC we follow Trick 6 introducing the directional variable p(d) = Uniform{−1,+1},
which define the proposal we are currently using to sample new state. Further, we compose this kernel with the flip of d to
obtain an irreversible kernel. That is, the first kernel t1 operates on the following distribution.

p(x, v, d) = p(x)p(d)q(v |x, d), (178)

q(v |x,+1) = T (+)(x, v) ∀v 6= x, q(v |x,−1) = T (−)(x, v) ∀v 6= x, (179)

q(x |x,+1) = 1−
∑
v:v 6=x

T (+)(x, v), q(x |x,−1) = 1−
∑
v:v 6=x

T (−)(x, v) (180)

The involutive map is then

f1(x, v, d) = [v, x,−d], (181)

which is just the swap of x and v and the negation of d. Kernel t1 is then obtained by substitution of p(x, v, d) and f1(x, v, d)
into Algorithm 1. Then we compose the first kernel t1 with the kernel t2 that just negate the directional variable one more
time applying the involution f2(x, v, d) = [x, v,−d]. The composition of kernels t1 and t2 we denote as t(x′, v′, d′ |x, v, d).

To prove that the iMCMC formulation is equivalent to the original chain we consider three following cases. The first case is
the transition to the new state v 6= x staying in the same replica (same direction d).

∀x 6= v, t(v,+1 |x,+1) = q(v |x,+1)min

{
1,
p(v)q(x | v,−1)
p(x)q(v |x,+1)

}
= T (+)(x, v)min

{
1,
p(v)T (−)(v, x)

p(x)T (+)(x, v)

}
= T (+)(x, v).

(182)

Note that the directional variable remains the same because of the double negation: firstly in f1 and then in f2. The second
case is the staying in the same state x with the same direction.

t(x,+1 |x,+1) = q(x |x,+1)min

{
1,
p(x)q(x |x,−1)
p(x)q(x |x,+1)

}
(183)

= (1−
∑
v:v 6=x

T (+)(x, v))min

{
1,
p(x)(1−

∑
v:v 6=x T

(−)(x, v))

p(x)(1−
∑
v:v 6=x T

(+)(x, v))

}
= T (+)(x, x). (184)

The last case is the inter-replica transition of Lifting, which corresponds to the rejection in its iMCMC formulation.

t(x,−1 |x,+1) = 1−
∑
v

t(v,+1 |x,+1) = 1−
∑
v:v 6=x

t(v,+1 |x,+1)− t(x,+1 |x,+1) = (185)

= 1−
∑
v:v 6=x

T (+)(x, v)− T (+)(x, x) = (186)

= 1−
∑
v:v 6=x

T (+)(x, v)−min

{
1−

∑
v:v 6=x

T (−)(x, v), 1−
∑
v:v 6=x

T (+)(x, v)

}
= (187)

= max

{
0,
∑
v:v 6=x

T (−)(x, v)− T (+)(x, v)

}
= T (+,−)(x). (188)
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C. Experiments
C.1. Distributions

Here we provide analytical forms of considered target distributions. Target density for MoG2 is:

p(x) =
1

2
N (x|µ1, σ1) +

1

2
N (x|µ2, σ2) (189)

where µ1 = [2, 0], µ2 = [−2, 0], σ2
1 = σ2

2 =

[
0.5 0
0 0.5

]
.

For the Bayesian logistic regression, we define likelihood and prior as

p(y = 1 |x, θ) = 1

1 + exp(−xT θw + θb)
, p(θ) = N (θ | 0, 0.1). (190)

Then the unnormalized density of the posterior distribution for a dataset D = {(xi, yi)}i is

p(θ |D) ∝
∏
i

p(yi |xi, θ)p(θ). (191)

We sample from the posterior distribution on three datasets: German (25 covariates, 1000 data points), Heart (14 covariates,
532 data points) and Australian (15 covariates, 690 data points). We provide all the data with the code in supplementary.

C.2. Effective sample size

The effective sample size (ESS) is defined as the reciprocal of the autocorrelation time. It is designed to represent the
number of truly independent samples that would be equivalent to a correlated sample drawn using the chain. There are
several approaches to evaluation of autocorrelation time (Thompson, 2010). One of the most common approaches is the
initial sequence estimators. That is, the autocorrelation ρ of sequence {Xi}ni=1 is estimated as

ρ̂ = 1 + 2

∞∑
k=1

ρk, ρ̂k =
1

ns2

n−k∑
i=1

(Xi −Xn)(Xi+k −Xn), (192)

where Xn and s2 are the sample mean and variance of the sequence. Further, assuming the reversibility of the chain, the
consecutive pair ρi + ρi+1 is always positive (Geyer, 1992). Thus, one can obtain initial positive sequence estimator by
truncating the negative values of the sums ρ̂i + ρ̂i+1.

However, the initial positive sequence estimator fails to converge to the true autocorrelation in some cases (Thompson,
2010). Moreover, in this paper we cannot rely on the reversibility of the chain since we compare reversible chains with their
irreversible analogues. That is why we turn to the batch-means estimator of the autocorrelation time, which operates as
follows. It divides the initial sequence {Xi}ni=1 into subsequences (batches) of size m and evaluate sample means of each
batch. Then we estimate ρ as

ρ̂ = m
s2m
s2
, (193)

where s2m is the sample variance of batch means. For the choice of m we follow (Thompson, 2010), and take n1/3 batches
of the size m = n2/3. For multivariate distributions we follow the common practice of evaluating the minimal ESS across
all dimensions.

To include computation efforts into the performance evaluation, we calculate ESS per second. We run all the algorithms on a
single GPU with batch size 100 sampling 20000 samples, and discarding first 1000 for burn-in. The final formula is

ESS/s =
1

ρ

number of samples
run time

. (194)
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C.3. Irr-MALA

Following Trick 5, we modify the original algorithm by introducing the directional variable p(d) = Uniform{−1,+1}. For
the first kernel t1(x′, v′, d′ |x, v, d), the joint distribution is

p(x, v, d) = p(x)N (v |x+ dε∇x log p(x), 2ε)p(d),

and the involutive map is

f1(x, v, d) = [v, x,−d · sign(∇x log p(x)T∇v log p(v))].

Then the acceptance probability is

P = min

{
1,
p(v)N (x | v + d′ε∇v log p(v), 2ε)
p(x)N (v |x+ dε∇x log p(x), 2ε)

}
, d′ = −d · sign

(
∇x log p(x)T∇v log p(v)

)
. (195)

Note that defining the sign of the gradient ∇v log p(v) via d′, we ensure that the mean v + d′ε∇v log p(v) will be close to
the initial point x. The second kernel t2(x′, v′, d′ |x, v, d), as well as in Trick 5, is just the flip of the direction d. That is, we
do not resample any variables, instead we apply the involution f2(x, v, d) = [x, v,−d]. Combining the kernels t1 and t2,
we obtain an irreversible chain. We provide the pseudo-code in Algorithm 19.

Algorithm 19 Irr-MALA

input target density p(x), step size ε
initialize [x, d]
for i = 0 . . . n do

sample v ∼ N (v |x+ dε∇x log p(x), 2ε)

evaluate d′ = −d · sign
(
∇x log p(x)T∇v log p(v)

)
evaluate P = min

{
1, p(v)N (x | v+d′ε∇v log p(v),2ε)

p(x)N (v | x+dε∇x log p(x),2ε)

}
accept [x, d]←

{
[v, d′], with probability P
[x, d], with probability (1− P )

d← −d
xi ← x

end for
output samples {x0, . . . , xn}

C.4. Irr-NICE-MC

The irreversible analog of A-NICE-MC (Song et al., 2017) is easily obtained from the original algorithm (see B.9) by
composing it with two additional kernels. The first kernel t1(x′, v′, d′, a′ |x, v, d, a) operates by changing only the auxiliary
variable v. That is, consider the joint distribution

p(x, v, d, a) = p(x)p(v)p(d)p(a | v), p(v) = N (v | 0, 1), p(a | v) = N (a | v
√
1− α2, α2), p(d) = Uniform{−1,+1}.

(196)

And the involution f1(x, v, d, a) = [x, a, d, v] that just swap a and v. Note that the acceptance probability

P1 =

{
1,
p(x)N (a | 0, 1)N (v | a

√
1− α2, α2)

p(x)N (v | 0, 1)N (a | v
√
1− α2, α2)

}
= 1. (197)

The second kernel t2(x′, v′, d′ |x, v, d) is equivalent to the A-NICE-MC kernel with only difference that we do not resample
d at each step. The joint distribution of this kernel is

p(x, v, d) = p(x)p(v)p(d), p(v) = N (v | 0, 1), p(d) = Uniform{−1,+1}. (198)



Involutive MCMC

And the involutive map is

f2(x, v, d) = [Td(x, v),−d], Td=+1 = T, Td=−1 = T−1. (199)

The last kernel t3(x′, v′, d′ |x, v, d) operates on the same joint distribution p(x, v, d), and just negate the directional variable
d with involution f3(x, v, d) = [x, v,−d]. Combining all three kernels, we obtain irreversible modification of A-NICE-MC.
See pseudo-code in Algorithm 20.

Algorithm 20 Irr-NICE-MC

input target density p(x, v) = p(x)N (v | 0, 1), NICE-proposal T (x, v) and T−1(x, v)
initialize [x, v, d]
for i = 0 . . . n do

sample v̂ ∼ N (v̂ | v
√
1− α2, α2)

propose [x′, v′] = Td(x, v̂), where Td=+1 = T and Td=−1 = T−1

evaluate P = min

{
1, p(x

′,v′)
p(x,v)

}
accept [x, v, d]←

{
[x′, v′,−d], with probability P
[x, v̂, d], with probability (1− P )

d← −d
xi ← x

end for
output samples {x0, . . . , xn}


