Probabilistic Image Generation with LLM Priors via
Structured Rectified Flow

Mykola Vysotskyi Zahar Kohut
SoftServe SoftServe
Sadova St, 2D, Lviv, Lviv Oblast, 79021 Sadova St, 2D, Lviv, Lviv Oblast, 79021
mvysot@softserveinc.com zkohu@softserveinc.com
Anna-Alina Bondarets Taras Rumezhak
SoftServe SoftServe
Sadova St, 2D, Lviv, Lviv Oblast, 79021 Sadova St, 2D, Lviv, Lviv Oblast, 79021
anbondaret@softserveinc.com trume@softserveinc.com
Volodymyr Karpiv
SoftServe

Sadova St, 2D, Lviv, Lviv Oblast, 79021
vkarpi@softserveinc.com

Abstract

Prior works have investigated the integration of large language models (LLMs)
with rectified flow for image synthesis, but systematic studies remain scarce. In this
study, we examine how controlling the interaction between stochastic and semantic
inputs during encoding, while integrating them during decoding, influences the
alignment between noised latents and LLM hidden states. Our investigation shows
that architectural refinements, such as dual-stream encoding and single-stream
decoding, can accelerate training and improve image quality relative to LLM-
adapted rectified flow baselines. We evaluate our approach on standard image
benchmarks and observe gains in both training speed and output detail preservation,
indicating that structural choices in the integration of LLM features matter for
probabilistic inference in generative modeling. Beyond empirical improvements,
our findings contribute to understanding how foundation models trained on text
can be adapted as structured probabilistic priors in visual domains. These results
highlight a promising direction at the intersection of LLMs, rectified flow, and
probabilistic image synthesis and motivate further explorations.

1 Introduction

Recent advances in multimodal image generation have demonstrated the potential of Large Language
Models (LLMs) to process and synthesize complex visual data. Leveraging them in text-to-image
generation enhances image quality and alignment with textual descriptions. The integration of LLMs
improves the representation of text, resulting in a more accurate image synthesis. This approach also
allows high-quality images to be generated with fewer training data and computational resources. Liu
et al.| [2024]

The JanusFlow model Ma et al.|[2024] combines understanding and generation capabilities within
a single framework, using a shared Large Language Model backbone. While effective for unified
multimodal tasks, its design allocates capacity to both text and image generation. In this work, we
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focus exclusively on image synthesis, adapting the LLMs backbone as a high-capacity semantic
prior for text—image alignment. By removing the text-generation pathway, we dedicate the model’s
capacity entirely to improving visual quality and prompt adherence, leveraging the pretrained LLM’s
broad knowledge and representational strength solely for guiding the image generation process.

Specifically, we introduce a dual-stream encoder that keeps noise and text in distinct pathways but
retains inter-stream communication through shared attention layers, limiting interference between
stochastic variation and semantic intent.

For the decoder, we adopt a single-stream design that unifies noise and text-conditioned representa-
tions, ensuring that semantic guidance and stochastic variation act together to shape the generative
process. This integration improves coherence and alignment while preserving expressive diversity.

These adjustments allow for improved alignment between textual input and generated visual output
while maintaining high-quality synthesis. By updating the encoder-decoder structure, we streamline
the model to better suit the specific demands of visual generation, ultimately enhancing efficiency and
output quality. To clarify why these architectural changes help, we include a simple representational
analysis that inspects internal dynamics during rectified-flow inference while holding comparable
components fixed.

In summary, our contributions are:

* We investigate how encoder—decoder design choices, specifically limiting interference
between stochastic and semantic inputs at encoding while integrating them at decoding,
affect the use of LLMs as structured probabilistic priors for image synthesis.

* We demonstrate that these design adjustments yield faster convergence and higher-quality
outputs compared to existing LLM-adapted rectified flow baselines

* We show that these refinements improve the alignment of noised latents with LLM hidden
states, leading to faster convergence and higher-quality, semantically coherent outputs
compared to LLM-adapted rectified flow baselines.

* We introduce a lightweight representational analysis framework that isolates architectural
effects during inference on the same 5,000-prompt MJHQ subset used for FID; the observed
internal dynamics are consistent with the measured gains in convergence and image quality.

2 Related Works

2.1 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) |Ho et al.|[2020] and Latent Diffusion Models
(LDMs) Rombach et al.|[2022] established the current foundation for image synthesis. Models such
as Stable Diffusion and SDXL |Podell et al.|[2023a] demonstrated how compressed latent spaces
enable efficient and high-quality image generation.

2.2 Text-conditioned Generation

Text conditioning plays a crucial role in guiding generative models toward semantically aligned
outputs. CLIP Radford et al.|[2021]] embeddings are frequently used as a conditioning signal, as in
Stable Diffusion. Extensions like classifier-free guidance Ho and Salimans| [2022] and T2I-Adapter
Mou et al.|[2023] offer more flexible integration of text and other modalities into the generative
process, allowing for fine-grained control and personalization.

Another example is unClip Ramesh et al. [2022]], which proposed a two-stage model, composed of a
prior that generates a CLIP|Radford et al.|[2021]] image embedding given a text caption, and a decoder
that generates an image conditioned on it. Imagen |Saharia et al.|[2022] experiments conducted a
conclusion that a common LLMs pretrained on text-only datasets, such as T5-XXL [Raffel et al.
[2023]], BERT Devlin et al.|[2019]], and CLIP Radford et al.|[2021]], are surprisingly effective at
encoding text for image synthesis, improving the text alignment and generated images fidelity.



2.3 Cross-Modal Alignment

Several approaches have explored architectural designs that facilitate better alignment between vision
and language. BLIP|Li et al.[[|2022]] and BLIP-2|Li et al.|[[2023]] propose strategies for pre-training and
bridging modalities through lightweight adapters or vision-language transformers. Pix2Seq|Chen et al.
[2022] and CoCal|Yu et al.|[2022]] demonstrate that unified encoder-decoder frameworks can learn
cross-modal mappings effectively. Our work builds on this line by proposing a dedicated dual-stream
encoder and single-stream decoder architecture tailored to the LLM-guided image generation task,
improving alignment between noised latents and language features while maintaining high image
fidelity.

2.4 LLM-Driven Image Generation

Large Language Models (LLMs) have increasingly been adopted in image generation pipelines to
enrich semantic understanding and multimodal alignment Koh et al.|[2023]], Dong et al.|[2024]], Jin
et al.|[2024]], Ge et al.|[2023alb} [2025]].

GILL [Koh et al.|[2023] is one of the first models to propose a fusion of text-only LLM and a
pre-trained Stable Diffusion Rombach et al.|[2022] by aligning their embedding spaces. DreamL.LM
Dong et al.[[2024] is the first approach to combine multi-modal LLM for free-form interleaved content
and image generation in particular. An image tokenizer SEED is introduced in|Ge et al.|[2023a]] to
be coupled with LLMs for both image-to-text and text-to-image generation tasks. SEED-LLaMA
Ge et al.|[2023b] and SEED-X |Ge et al.| [2025]] improvements of SEED are incorporating a SOTA
foundation language model LLaMa Touvron et al.[[2023]] into the pipeline. LaVIT Jin et al.| [2024]]
also combines LLaMa Touvron et al.|[2023]] in a pipeline to serve as a multi-modal generalist to
perform both multi-modal comprehension and generation tasks.

JanusFlow Ma et al.|[[2024]], a recent model from DeepSeek-LLM, integrates Rectified Flow [Liu
et al.|[2022a]] with a shared LLM backbone for joint understanding and generation. While effective,
its general-purpose design can limit performance when compared with concurrent works in image
generation task.

3 Background

3.1 Rectified Flow

Rectified Flow Liu et al.|[2022a], [Lipman et al.|[2023] is a generative modeling approach that learns a
continuous transformation from a simple prior distribution py, typically a standard Gaussian N (0, I),
to the target data distribution using an ordinary differential equation (ODE).

Rectified Flow models the transformation of continuous d-dimensional data points x = (1, ..., Z4),
which follow an unknown distribution p;, by introducing a parameterized velocity field vy that
dictates their evolution over time ¢ € [0, 1]:

E - U9(2t7t)7

where z; = tx + (1 — t)zp and zg ~ p,

The velocity function vy is optimized to minimize the deviation between its predicted velocity and
the true displacement direction between samples drawn from pg and p;. The training objective is
formulated as follows:

min[E [[Jug(z¢,t) — (x — 20)]|’]

Once trained, image generation is performed by integrating the learned velocity field vy to transport a
sample from py to the target distribution p;. Given an initial latent variable zy ~ pg, corresponding
data sample is obtained by solving the ODE:

1
21 = 20 =+ / ngt (Z{;7 t)dt
0

In practice, numerical integration is carried out in an iterative manner using solvers such as Euler’s
method:
_ opt
Zt+At = Zt + ’U‘g (Zt7 t)At,



e where At is a small step size. z; is progressively updated until z;, approximating a sample from a
desired distribution p; JEsser et al.|[2024]

3.2 Autoregressive Language Modeling

Autoregressive models predict each token in a sequence wj, ws, ..., wr based on previous tokens.
The joint probability is factorized as:

T-1

P(wr,...,wr) = H P(wigr | wiy .oy wy)
t=0

Training involves maximizing the log-likelihood over N sequences:

N T;—1

L(0) = Z Z log P(wt(fgl | wgi), ...,wgi))

=1 t=1

Here, T; is the length of the i-th sequence. Model parameters 6 are optimized using gradient-based
methods.

4 Methodology

Our methodology is guided by the hypothesis that large language models, trained purely on text,
implicitly learn probabilistic structures that can be transferred to generative inference in other
modalities. Prior work such as JanusFlow [Ma et al.|[2024]] demonstrated that LLM hidden states
can serve as a joint representational prior for both language and vision. We extend this line of
exploration by asking whether alternative architectural designs — specifically, separating noise and
text processing at the encoding stage but recombining them at decoding — can more effectively
expose and exploit these hidden capacities. In this way, our work should be seen less as proposing
a new end-to-end system, and more as investigating how foundational LLM representations can be
adapted for probabilistic image generation.

Our approach builds upon advancements in large-scale generative models by integrating a dual-stream
encoder and a single-stream decoder, leveraging insights from recent works on scaling vision and
rectified flow transformers [Dehghani et al.|[2023]], [Esser et al.| [2024]. Specifically, we modify
traditional architectures to enhance both Fréchet Inception Distance (FID) Heusel et al.[[2018] and
Contrastive Language-Image Pretraining (CLIP) Radford et al.|[2021]] scores, ensuring superior
image generation quality and semantic alignment.

Both encoder and decoder operate in a latent space of the pre-trained SDXL-VAE Podell et al.|[2023Db]
to achieve higher computational efficiency.

4.1 Architectural Transition

In contrast to reliance on ConvNeXt-based encoders and decoders [Liu et al.| [2022b]], our revised
architecture employs a more scalable design for high-fidelity generation. [Dehghani et al.
[2023]], [Esser et al.|[2024]. The key changes include:

* Adopting a dual-stream encoder to improve feature separation and representation qual-
ity.Esser et al.|[2024]

* Implementing a single-stream decoder that enhances semantic alignment through text-
conditioned decoding/Dehghani et al.|[2023]]

 Transitioning from convolutional architectures to transformer-based layers, ensuring im-
proved scalability and expressive power.

4.2 Dual-Stream Encoding

Dual-stream encoder separates the processing of textual and noise information, improving representa-
tion learning and generation fidelity. This consists of two distinct streams:



* Noise Stream: Encodes the random latent variables, capturing stochastic variations crucial
for image synthesis.

» Text Stream: Encodes input textual prompts separately, preserving their structural and
semantic information.

The two streams are later merged via a learned cross-attention mechanism and passed into the Large
Language Model (LLM), ensuring a controlled and context-aware generative process.

This design follows prior evidence that text and image (or noise) embeddings differ substantially
in their representational structure and are better handled by distinct parameterizations. In practice,
this corresponds to processing each modality with separate streams, while still allowing them to
interact through shared attention layers. Such separation enables each stream to maintain its own
representational integrity, reducing interference and yielding more stable mappings in the rectified
flow setting. [Esser et al.|[2024]

The encoder architecture, presented on (Figure 3)), realizes the dual-stream design introduced above.

43 LILM

Our model leverages DeepSeek-LLM |DeepSeek-Al et al.| [2024]] as its backbone, utilizing its
knowledge to enhance text-conditioned image synthesis. We specifically adopt the pre-trained variant
from the JanusFlow model (1.3B version) Ma et al.|[2024], focusing on alignment and integration of
our encoder-decoder components with its latent space for even more effective image generation.

4.4 Single-Stream Decoding

In the original setup, the output decoder only processed noise tokens to generate images. However,
we introduce a single-stream decoder that also integrates text-informed outputs, reinforcing semantic
consistency. The single-stream decoder:

1. Processes a unified representation where noise and text-conditioned outputs are fused.

2. Learns to incorporate text-driven refinements into the image generation process, improving
coherence.

3. Retains stochastic expressiveness from the noise stream while ensuring adherence to textual
guidance.

This fusion step operationalizes the idea that semantic and stochastic factors should ultimately
converge on a single generative path. Whereas dual-stream encoders emphasize disentanglement,
a single decoding stream ensures that final outputs reflect both variability and semantic precision
without misalignment. In this sense, our methodology investigates how LLM-driven representations
can balance randomness and structure in probabilistic inference for image synthesis.

A detailed implementation of the single-stream decoder is provided in (Figure 4).

The motivation for this transition is theoretical as well as empirical. A dual-stream encoder enables
probabilistic disentanglement: noise tokens model stochastic variability, while text tokens preserve
structured semantic intent. [Esser et al.| [2024] Combination in a single-stream decoder then sustains
coherence by enforcing a shared generative trajectory.

Overall, it is a structural intervention that probes whether LLM latent representations can better guide
visual inference when the stochastic and semantic signals are first treated independently.

5 Training

The model learns to transform random noise into images, conditioned on text descriptions, by
optimizing both encoder-decoder and LLM components.

5.1 Training objective

The training objective focuses on predicting the velocity of the latent variable transformation during
the generation process. At each training step, we sample a timestep ¢ from a logit-normal distribution,



and the model attempts to predict the velocity of the transformation, which guides the latent variable’s
movement toward the target image. The latent variable z; is computed as a linear interpolation
between the initial latent variable z( and the target image x, as follows:

2z =tx+ (1 —1t)z

where ¢ is drawn at each step and controls the interpolation between the two extremes. This means
that as ¢ progresses from O to 1, the model gradually refines the latent variable toward a more accurate
representation of the target image.

The objective function of the model can be expressed as:

minE [[[vg(z, 1) — (x = 20)||’]

where vy (2, t) represents the model’s prediction of the velocity at timestep ¢ and the term (x — z)
is the direction from the initial latent image to the target image.

By sampling different values of ¢ throughout training, the model learns to predict the correct velocity
at each timestep, gradually transforming the latent variable z; to closely match the target image.
This training process allows the model to learn how to efficiently navigate the latent space, ensuring
accurate image generation aligned with the input text descriptions.

5.2 Training stages

We employ a two-stage training process (Figure 6)) for our model.

Stage 1. We focus on aligning the encoder-decoder architecture with the latent space of the pretrained
Janus LLM DeepSeek-Al et al.|[2024]. During this stage, we do not train the LLM itself; instead, we
optimize the encoder-decoder components to match the representation space of the LLM. This helps
in establishing a strong foundation for the subsequent image generation process.

Stage 2. Then we train the entire model, including the backbone. The LLM is fine-tuned specifically
for image generation, allowing the encoder-decoder components to leverage the enhanced represen-
tation capabilities of the LLM. This stage enables the full potential of the LLM to improve image
quality and alignment with textual descriptions, resulting in a fully integrated model optimized for
high-quality image synthesis.

6 Experiment

In this section, we present the experimental setup and results for evaluating the performance of our
image generation model. We assess its capabilities in generating high-quality, diverse images across
various domains, evaluated using standard metrics.

6.1 Experiment setup and training data

We train on 3M image—text pairs drawn from two sources: DALL-E 3 High-Quality Captions Egan
et al.|[2024] (MIT) and a curated high-aesthetic LAION-COCO subset (Apache-2.0), mixed at a 1:2
ratio. Images are center-cropped and resized to 384 x384; captions are used as provided. Dataset
provenance, benchmark prompt isolation, and leakage prevention are detailed in Appendix [F}

Training uses 2x8 H100 GPUs with PyTorch DDP, following a two-stage schedule; the full config-
uration (optimizer, learning rates, batch sizes, schedules) and stage overview are in the Appendix
(Table[2} Fig.[6). The end-to-end run time is ~8.5 days.

6.2 Evaluation

For evaluation, we assess the model’s performance using two key metrics: CLIP Similarity Radford
et al. [2021]], Fréchet Inception Distance (FID) Heusel et al.|[2018]]. These metrics are computed
every 12,000 training iterations on a MJHQ FID-30k |Li et al.| [2024] that is common for text-to-
image models benchmarking. CLIP-ViT-Large-Patch/14 version of CLIP was used. We compare:
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Figure 1: Quantitative evaluations across different model configurations. (a) FID vs. Training Steps.
(b) CLIP Similarity vs. Training Steps.

¢ the original JanusFlow 1.3B model [Ma et al.| [2024]]. We show comparable performance
with this, showing that our retraining is fair and correct.

* baseline that leverages pretrained LLM and freshly initialized encoder-decoder proposed in
Ma et al.|[2024]).

* a modified version with a proposed single-stream decoder,
* a modified version with a proposed dual-stream encoder,
* a fully refined model incorporating both encoder and decoder modifications.

This benchmarking provides insight into the effects of architectural modifications on image quality
and text alignment.

See Appendices[Fand [G]for more details on the datasets and key evaluation metrics accordingly.

In addition to quantitative evaluation, we present qualitative results, showcasing generated images
for a set of complex prompts. These examples highlight the model’s ability to capture fine-grained
details, maintain spatial awareness, and accurately represent multiobject compositions. By comparing
outputs from different models, we visually assess improvements in coherence, object interaction, and
adherence to textual descriptions.

6.3 Quantitative results

Our quantitative results indicate that the proposed modifications significantly accelerate convergence
across all evaluation metrics. As shown in (Figure Tb), our model achieves higher CLIP similarity
with fewer training steps compared to the baseline, demonstrating improved text-image alignment. In
terms of image quality, shows a faster reduction in FID and confirming improvements in
realism and diversity.

Upon completion of training, our model achieves CLIP similarity of 24.58, and 10.04 FID, as detailed
in (Table T, further validating the effectiveness of refining both the encoder and decoder.

6.4 Qualitative results

The qualitative results, presented in (Figure 8)), illustrate the clear improvements in the performance
of our model over the baseline. Our model demonstrates enhanced spatial awareness, ensuring
that objects are positioned more accurately and consistently within the scene. In addition, it is
demonstrating a refined understanding of object shapes. There is also a notable improvement
in prompt adherence, with the generated images aligning more closely with the provided textual
descriptions. These advancements lead to higher-quality images that are more realistic and true to the
input prompts, showcasing the effectiveness of our approach.



Table 1: Quantitative comparison of different model configurations (after all 120k training steps).
Higher CLIP Similarity indicates better text-image alignment and diversity, while lower FID rep-
resents improved image quality. Arrows indicate whether lower ({) or higher (1) values are better.
Values are reported as mean =+ standard deviation across 5 random seeds.

Model FID | CLIP 1

JanusFlow 9.514+0.12 26.02+0.08
Baseline 11.99+0.21 21.17£0.15
Changed Decoder 11.33 £0.18 21.90 +0.10
Changed Encoder 10.47£0.14 24.12£0.12

Changed both Encoder and Decoder 10.04 +0.11  24.58 £ 0.09

User Stud
70 Y
mmm Visual Aesthetics
60 = Prompt Following 59%
52%
50 48%
S 41%
P 40
o
£30
=
20
10
0
Baseline Our

Model

Figure 2: Human evaluation against the baseline JanusFlow model. Our modified architecture
significantly increases prompt-following while only marginally affecting visual quality.

We also conduct a user study in to compare the results generated from the modified
model(enhanced both encoder and decoder) with the baseline. We produced a dataset of 40 images,
and 52 users were asked to select the best model based on two criteria: visual aesthetics and prompt
following. To evaluate human preference, we asked the reviewers to answer questions about each pair
of generated images with two models. More details on this user study are given in the Appendix [E]

7 Discussion

Reference model and scope. We include JanusFlow only to calibrate our implementation and to
show that our reproduction falls within the expected performance range. As already noted in the
paper, JanusFlow was trained substantially longer on a much larger dataset (approximately 70M
pairs) compared to our 3M-pair setup. It is therefore not a compute- or data-matched baseline.

Ablation results[Table 1, Across metrics (FID | and CLIP 7), the structured variant with dual-
stream encoder and single-stream decoder (“Both”) consistently outperforms (i) our re-implemented
baseline and (ii) single-change ablations (“Encoder-only”” and “Decoder-only”). The encoder-side
modification contributes more than the decoder-only change, indicating that separating modalities dur-
ing encoding has a stronger effect on alignment and signal disentanglement; nevertheless, combining
both yields the strongest gains, suggesting complementary benefits.

Learning dynamics[Figure 1} The training curves show faster convergence for the structured model:
it reaches the baseline’s final quality in notably fewer steps and exhibits more stable trajectories.
Early-phase CLIP improvements correlate with later FID reductions, consistent with the hypothesis
that separating stochastic (noise) and semantic (text) pathways during encoding produces cleaner
gradients and a more sample-efficient learning signal.



8 Limitations & Societal Impact

Limitations While our approach demonstrates significant improvements in image quality and
training efficiency, several limitations remain. One key limitation is the reliance on high-quality
pre-trained LLMs, which significantly impacts the performance of our model. The effectiveness of
our framework is contingent on the underlying backbone’s ability to understand and represent textual
data accurately; thus, the model’s performance may be constrained by the quality and domain of the
pre-trained language model. Additionally, the training data required for fine-tuning can be quite
extensive, and the model’s generalization capabilities may be limited by the diversity and coverage of
the dataset used. Finally, the computational cost training remains a challenge, particularly when
fine-tuning large-scale LLMs or working with larger datasets.

Societal Impact While our focus is on technical improvements in image quality and train-
ing efficiency, it is vital to acknowledge broader societal implications. Enhanced prompt adherence
may increase misuse risks, such as deepfakes and misinformation, threatening privacy and public
trust. The model’s efficiency and portability democratize access, but also heighten potential for abuse.
Additionally, reliance on large datasets and pre-trained models risks reinforcing existing biases. We
urge the community to develop safeguards and ethical frameworks to ensure responsible deployment
of generative technologies.

Safeguards. To mitigate potential risks, we adopt the following safeguards:

* No model release: We do not plan to release trained checkpoints, preventing uncontrolled
distribution and misuse.

 Bias and fairness: Preliminary evaluation indicates that training data biases (e.g., stereo-
types in gender/occupation) may propagate into outputs; we explicitly acknowledge this risk
even without public release.

9 Conclusion

In this work, we have introduced a refined approach to image generation by enhancing the encoder-
decoder architecture of the JanusFlow model. Our proposed changes lead to improvements in image
quality and alignment with textual prompts, as demonstrated through qualitative and quantitative
evaluations. The model shows faster convergence and higher performance across key metrics,
compared to the baseline. These results highlight the potential of our approach for advancing
text-to-image generation, particularly in the context of LLM-backed image generation frameworks.
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Figure 5: Comparison of our proposed (left) and the original Janus architectures (right). Our model
employs a Double-Stream Block Encoder for joint text and image encoding, while the original
method utilizes an MLP Aligner and Encoder to map latents before passing them to an LLM. The
single-stream decoder in our approach processes both noise and text LLM outputs, while the original
decoder handles only output noise.
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B Training Details

Hardware & framework. 2 nodes x 8 NVIDIA H100 GPUs; PyTorch Distributed Data Parallel (DDP).

Runtime. End-to-end training ~ 8.5 days.
Resolution. All training images are 384 x384.

Schedule & hyperparameters. Two-stage recipe; full settings in Table 2} overview in Fig.[f]

VAE Decoder VAE Decoder
Single-Stream Single-Stream
Decoder Decoder

i N ™
LLM LLM
: SN y
| Dual-Stream Dual-Stream
Encoder Encoder
f f
VAE Encoder VAE Encoder
Stage 1 Stage 2

Figure 6: Stage 1 (left): Align the encoder-decoder with the pretrained Janus LLM’s latent space,
without training the LLM. Stage 2 (right): Fine-tune the entire model, including the LLM, for image
generation. (blue - weights are frozen, red - component is being trained)

Table 2: Hyperparameters used for Stage 1 and Stage 2 of training. Shared values are centered, while

stage-specific values are listed separately.

Hyperparameter

Stage 1

Stage 2

Learning Rate

1x1074

Optimizer AdamW (51 = 0.9, (2 = 0.999)
Scheduler Constant Constant
Training Steps 10k 100k
Warmup Steps 2000

Effective Batch Size 512

Weight decay 0.0

C Sampling Protocol

For all reported quantitative and qualitative experiments, we used the following sampling configuration unless

otherwise noted:
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¢ Number of steps: 30
e Sampler: Euler solver
¢ Classifier-Free Guidance (CFG) scale: 2.0

C.1 Background on the Euler Sampler

Euler sampling is one of the simplest numerical solvers for ordinary differential equations (ODEs), commonly
used in rectified flow and diffusion-based generative models. It approximates the continuous trajectory of
the rectified flow by discretizing time into steps and updating the latent representation using local gradient
information. While simple, Euler’s method is computationally efficient and provides stable results when
combined with rectified flow guidance.

C.2 Background on Classifier-Free Guidance (CFG)

Classifier-Free Guidance (CFQG) is a technique that improves conditional generation by interpolating between
unconditional and conditional model outputs. Specifically, the model is run once with the conditioning signal
(e.g., text prompt) and once without it; the two predictions are linearly combined using a guidance scale v. A
higher v encourages stronger alignment with the condition at the cost of sample diversity. In our experiments,
~v = 2.0 provided a good balance between faithfulness to text and image quality.

C.3 Algorithm: Sampling Procedure

Algorithm 1 Rectified Flow Sampling with Euler and CFG

Require: Initial noise latent x(, text embedding c, stepsse 7' = 30, CFG scale v = 2.0
:fort=0toT — 1do

Compute conditional velocity veong = f(x¢, ¢, t)

Compute unconditional velocity vyncona = f (¢, &, 1)

Combine: v = Vuncond 1 v (Ucond — Vuncond

Euler update: z;11 = ¢ + At - v

6: end for

: Return x7 (decode with VAE)

A A T

~
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D Qualitative results

=, I

i g

Figure 7: Sample images generated by our model. These images demonstrate the enhanced image
generation capabilities achieved using our LLM-backed Rectified Flow with transformer-based
encoder and decoder.

A pizza in a shape of a star A bicycle with square wheels

A person reading an empty book

Figure 8: Qualitative comparison of generated images. Each pair shows an image generated by the
baseline (left) and our improved model (right) for the same input prompt. Our model demonstrates
enhanced spatial coherence, finer detail preservation, and improved text—image alignment.

E Human Study Design and Details

We conducted a human evaluation study to assess prompt alignment and perceptual quality of images generated
by our model compared to baselines.
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E.1 Participants

The study involved 52 participants, all of whom were employees of our company. Participation was strictly
voluntary, and no monetary or material compensation was provided. Distributed using corporate email.

E.2 Procedure

Each participant was shown a set of 40 randomly selected prompts with two corresponding images (ours vs.
baseline). The order of images (left/right) was randomized per comparison to mitigate positional bias. Similarly,
the order of prompts was randomized for each participant to reduce ordering effects. Participants were not
informed about which model generated each image, ensuring that comparisons were conducted in a blind setting.

E.3 Instructions

For each prompt and pair of images, participants were asked to answer two multiple-choice questions:
1. Prompt alignment: “Which image looks more representative of the text shown above and faithfully
follows it? (Left / Right)”
2. Aesthetic quality: “Given the prompt, which image is of higher quality and aesthetically more
pleasing? (Left / Right)”

Responses were analyzed using a two-sided binomial test with null hypothesis p = 0.5, and 95% Wilson
confidence intervals were computed for the preference rate of our model.

E.4 Question 1: Prompt Faithfulness

“Which image looks more representative of the text shown above and faithfully follows it?
(Left / Right)”

* Votes for our model: 1227

* Votes for baseline: 853

* Win-rate for our model: 59%

« Binomial test (p = 0.5): p-value = 1.198 x 1076

 Wilson confidence interval (95%): (0.5686, 0.6109)

E.5 Question 2: Aesthetic Quality
“Given the prompt, which image is of higher quality and aesthetically more pleasing? (Left /
Right)”
¢ Votes for our model: 1082
* Votes for baseline: 998
¢ Win-rate for our model: 52%
* Binomial test (p = 0.5): p-value = 0.0344
 Wilson confidence interval (95%): (0.4987,0.5416)
E.6 Ethics and Consent
All participants gave informed consent to voluntarily take part in the study. The study was conducted internally
and did not involve external subjects or sensitive data. No personally identifiable information was collected, and

results were aggregated anonymously. Since the evaluation was conducted on a voluntary basis with company
employees and did not involve vulnerable populations or sensitive topics, no formal IRB approval was required.

E.7 Analysis

For each question, we aggregated the votes across participants and computed the percentage of preferences for
our model versus the baseline. Statistical significance was assessed using a binomial test at the p < 0.05 level.
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F Dataset

F.1 Sources, composition, and preprocessing

Sources & licenses. DALL-E 3 High-Quality Captions (MIT) and a "laion-coco-aesthetic" subset|Liul derived
from LAION-5B (Apache-2.0) Schuhmann et al.|[2022].

Composition. We mix datasets at a 1:2 ratio (DALL-E:LAION-COCO) to form 3M image—text pairs. Typical
source resolutions are 10242 and 1792x1024.

Preprocessing. Center-crop and resize all images to 384 < 384; captions are used as provided by the datasets.

F.2 Additional characteristics of the sources

DALL-E 3 High-Quality Captions. This corpus consists primarily of Al-generated images (largely DALL-E 3,
with contributions from MidJourney and Stable Diffusion) paired with detailed, model-written captions. It spans
a wide range of subject matter (objects, scenes, portraits), artistic styles (photorealism, digital art, watercolor,
anime), and compositional patterns (single-object, multi-entity, relational prompts). The release is filtered for
duplicates, non-Al content, and inappropriate material. The captions are typically longer and more attribute-rich
than web captions, which we find beneficial for conditioning.

LAION-COCO aesthetic subset. We draw from the "laion-coco-aesthetic" split|Liul a high-aesthetic slice of
LAION-5B [Schuhmann et al.| [2022] scored via CLIP-based aesthetics [Schuhmann, Images are real-world and
higher-variance in camera viewpoint, lighting, and texture statistics compared to synthetic sources. Captions are
synthetic but concise. We select a higher-aesthetic tranche to complement DALL-E imagery, balancing stylized
variety with natural image statistics.

F.3 Benchmark prompt isolation.

All evaluation prompts were drawn from the MJHQ FID-30k benchmark. Prior to training, we hashed all
evaluation prompts and removed any entries from our training corpus that contained exact or near-duplicate text
spans (using case-insensitive matching and cosine similarity thresholding at 0.95 over sentence embeddings).

F.4 Prompt Leakage Prevention

A critical concern in evaluating text-to-image generative models is the potential for prompt leakage, where
benchmark prompts inadvertently overlap with training data. Such overlap may lead to inflated performance
metrics and undermine fair comparison.

To mitigate this risk, we adopted the following protocol:

1. Dataset provenance and licensing. Our training data consisted of the DALL-E 3 High-Quality
Captions dataset (MIT license) and a curated subset of the LAION-COCO dataset (Apache 2.0
license).

2. Randomized verification. A random sample of 1,000 training prompts was manually inspected
against the evaluation set to confirm absence of near-overlap in phrasing and semantic structure.

F.5 Human Study Prompts

For the human preference study, evaluation prompts were not taken from any existing dataset but were instead
generated with GPT-4o0. This approach allowed us to create diverse and natural instructions while avoiding
contamination from commonly used benchmarks.

To ensure reproducibility and fairness:

1. Prompt generation. We instructed GPT-40 with prompt designed to elicit varied, semantically rich
descriptions spanning objects, styles, and compositional requirements:

“Generate 40 diverse text prompts suitable for evaluating text-to-image models. Prompts

should vary in style (photorealistic, artistic, abstract), complexity (single object vs. multiple
entities with relations), and domains (nature, urban, science fiction, cultural). Avoid clichés
and keep prompts between 10-25 words.”

2. Leakage avoidance. After prompt generation, we ran the same hashing and semantic similarity
filtering procedure as with the benchmark set to confirm that none of these GPT-40-generated prompts
overlapped with our training data corpus.
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G Key Evaluation Metrics

G.1 Fréchet Inception Distance (FID) Computation

For distribution-level image quality, we report the Fréchet Inception Distance (FID). Specifically:

¢ Backbone: Inception-V3, pool3 activations (2048-D).
* Computation: Let yi,, 3, be the mean and covariance of reference features, and pq4, >4 those of
generated features. FID is
FID(R,G) = |lr — pgll3 + To(Sy + 24 — 2(2,5,)"/?).

For numerical stability we add a small diagonal term (10~ °7) to covariances prior to the matrix square
root.

G.2 CLIP Score Computation

For image—text alignment evaluation, we report the CLIP score as a cosine similarity between image and text
embeddings, following standard practice. Specifically:

¢ Model: We use the OpenAl CLIP ViT-L/14@336px encoder.

* Computation: Given a generated image [ and its corresponding text prompt 7', we obtain the
normalized image embedding f(I) and text embedding g(T"). The CLIP score is then

fa) - 9(T)
CLIP(I,T) = ——~———— € [0,1].
IFDIHIg(Tl
Note: All CLIP scores reported in this paper are multiplied by 100 for readability.

* Aggregation: For each model, we report the mean CLIP score over the entire evaluation set (30k
prompts from MJHQ).

¢ Variance reporting: We additionally compute the standard deviation across random seeds.
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