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ABSTRACT

Recent advances in diffusion models have brought remarkable visual fidelity to
instruction-guided image editing. However, their global denoising process inher-
ently entangles the edited region with the entire image context, leading to un-
intended spurious modifications and compromised adherence to editing instruc-
tions. In contrast, autoregressive models offer a distinct paradigm by formulating
image synthesis as a sequential process over discrete visual tokens. Their causal
and compositional mechanism naturally circumvents the adherence challenges of
diffusion-based methods. In this paper, we present VAREdit, a visual autore-
gressive (VAR) framework that reframes image editing as a next-scale prediction
problem. Conditioned on source image features and text instructions, VAREdit
generates multi-scale target features to achieve precise edits. A core challenge in
this paradigm is how to effectively condition the source image tokens. We observe
that finest-scale source features cannot effectively guide the prediction of coarser
target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR)
module, which injects scale-matched conditioning information into the first self-
attention layer. VAREdit demonstrates significant advancements in both editing
adherence and efficiency. On EMU-Edit and PIE-Bench benchmarks, VAREdit
outperforms leading diffusion-based methods by a substantial margin in terms of
both CLIP and GPT scores. Moreover, VAREdit completes a 512×512 editing in
1.2 seconds, making it 2.2× faster than the similarly sized UltraEdit.

1 INTRODUCTION

Instruction-guided image editing (Brooks et al., 2023; Zhang et al., 2023; Sheynin et al., 2024) rep-
resents a significant advance in generative AI, shifting the paradigm from pure synthesis towards
fine-grained interactive control. This progress has been propelled by two primary factors: the cu-
ration of large-scale, high-quality editing datasets (Ge et al., 2024; Ye et al., 2025) and the rise of
diffusion models (Ho et al., 2020; Peebles et al., 2023; Labs, 2024) as the mainstream architecture.
In particular, the impressive visual fidelity is largely derived from the iterative denoising process
in diffusion models. However, this core mechanism also imposes a critical limitation. The global
nature of the denoising process often leads to unintended spurious edits, causing modifications to
“bleed” into regions that should remain unchanged. Simultaneously, the multi-step denoising pro-
cess incurs substantial computational cost and limits real-time practical use.

In contrast to diffusion models, autoregressive (AR) models (Esser et al., 2021; Sun et al., 2024;
Pang et al., 2025) offer a fundamentally different paradigm. Instead of holistic iterative refinement,
they synthesize an image causally in a sequential token-by-token manner. This compositional gen-
eration process is a natural fit for image editing. Specifically, it provides a flexible mechanism for
preserving unchanged regions while precisely modifying edited regions, addressing the entangle-
ment problem of diffusion models. More encouragingly, the pioneering visual autoregressive (VAR)
modeling (Tian et al., 2024) breaks the spatial structural degradation through the scale-by-scale pre-
diction strategy, leading to high-quality image generation. While the VAR paradigm has shown
competitive performance in image synthesis (Kumbong et al., 2025; Han et al., 2025), its potential
for instruction-guided image editing remains largely unexplored. Early training-free attempts (Wang
et al., 2025) repurpose text-to-image models but lack the task-specific knowledge required for robust
editing, causing them to lag significantly behind diffusion-based methods (Hou et al., 2024; Zhao
et al., 2024a; Zhang et al., 2025).
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Write 'Happy Birthday' cream on the cake

Add flowers to the woman's hair Change the baseball into a crown

Make the violinist wear a red dress
and her hair black

Remove the bunny from the cup

Change the horse to be wooden Make the clown laugh

Turn the noon into early dusk with a 
fisher rowing a boat on the river

Add a stained glass window style to two 
young children holding hands

Figure 1: VAREdit achieves high-precision performance in instruction-guided image editing. It
excels across diverse editing scenarios, including object-level modifications (addition, replacement,
removal), attribute changes (material, text, posture, style, color) and complex compositional edits.

We address this critical gap by introducing VAREdit, the first tuning-based VAR framework for
instruction-guided image editing. VAREdit reframes image editing as a next-scale prediction prob-
lem, which generates multi-scale target features to achieve precise image modification. A central
challenge in this paradigm is how to effectively condition the model on the source image. A straight-
forward approach is to use full-scale source conditions, yet it is computationally inefficient due to
the lengthy input sequences. While the finest-scale-only conditional setting provides sufficient in-
formation and eliminates the redundant input tokens, it creates a severe scale mismatch since high-
frequency details may disrupt the prediction of coarse target features. To resolve this issue, we
perform a systematic analysis of inter-scale dependencies and uncover a key insight: the model’s
sensitivity to scale-aware conditioning is concentrated in its first self-attention layer. Accordingly,
we propose the Scale-Aligned Reference (SAR) module, a mechanism that injects the scale-matched
source information only in the first self-attention layer, while other layers still use the finest-scale
condition. As demonstrated in Figure 1, this design enables VAREdit to achieve exceptionally pre-
cise editing across diverse challenging editing scenarios.

Our contributions can be summarized as follows:

• We introduce VAREdit, the first tuning-based visual autoregressive model for instruction-
guided image editing.

• We identify a scale-mismatch issue in the finest-scale conditioned VAREdit and propose
the SAR module as an effective solution.

• VAREdit sets a new state-of-the-art on standard editing benchmarks, outperforming leading
diffusion models in both editing adherence and generation efficiency.

2 RELATED WORK

2.1 INSTRUCTION-GUIDED IMAGE EDITING

Instruction-guided image editing (Brooks et al., 2023; Zhao et al., 2024a; Yu et al., 2025; Cai et al.,
2025) seeks to modify an image according to user’s textual instruction, which differs from caption-
based approaches (Hertz et al., 2022; Feng et al., 2025) that often resynthesize an entire image from

2
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a global description. This field is predominantly driven by diffusion models and seminal work In-
structPix2Pix (Brooks et al., 2023) established a powerful paradigm by channel-wise concatenating
source and target images. Subsequent research advanced this by curating larger-scale datasets with
“expert” models (Zhang et al., 2023; Sheynin et al., 2024; Zhao et al., 2024a; Ge et al., 2024; Ye
et al., 2025) or exploring alternative conditioning, like spatial concatenation for large-motion edits
(Zhang et al., 2025; Cai et al., 2025). However, diffusion-based models often produce unintended
modifications and suffer from slow iterative sampling. To address these limitations, autoregressive
(AR) models have been explored. For instance, EditAR (Mu et al., 2025) presents a vanilla AR
editing framework, yet its performance is not on par with leading diffusion methods due to spatial
dependency limitations in the base model. Our work builds on the pioneering visual autoregressive
(VAR) (Tian et al., 2024) architecture, a tuning-based approach that surpasses recent diffusion-based
models in both edit quality and efficiency.

2.2 AUTOREGRESSIVE IMAGE GENERATION

Autoregressive (AR) models, a mainstay in language tasks, have been extended to image synthesis.
They operate by tokenizing an image into a discrete sequence and then training a Transformer model
to predict the next token. Early works use vector quantization (VQ) for tokenization (Van Den Oord
et al., 2017; Esser et al., 2021; Chang et al., 2022; Yu et al., 2022), while recent advances such as
lookup-free quantization (Yu et al., 2023; Zhao et al., 2024b) have improved performance with large
vocabularies. The AR modeling paradigm itself has also made significant progress. For instance,
MAR (Li et al., 2024) uses masked multi-token prediction to improve quality and speed, while
RandAR (Pang et al., 2025) enables flexible token ordering for new capabilities such as resolution
extrapolation. To better capture spatial dependencies, models like VAR (Tian et al., 2024) and
Infinity (Han et al., 2025) introduced coarse-to-fine prediction schemes. Compared to diffusion
models, AR approaches generally offer superior prompt adherence and faster inference. However,
their application to instruction-guided image editing remains underexplored. This task is challenging
as it requires conditioning on both visual and text inputs, and our work aims to bridge this gap.

3 METHODOLOGY

We first review the visual autoregressive (VAR) modeling paradigm. Then, we introduce VAREdit,
a novel framework that reframes instruction-guided image editing as a multi-scale conditional gen-
eration task. Finally, we analyze the challenges of various source image conditioning strategies and
present the inspiration and the design of our Scale-Aligned Reference (SAR) module, a targeted
solution to the scale-mismatch problem in naive conditioning.

3.1 PRELIMINARY

Visual autoregressive (VAR) model generally comprises a multi-scale visual tokenizer and a
Transformer-based generation model. The process begins with an encoder E that maps an image
I to a continuous feature representation F = E(I) ∈ Rh×w×d. A quantizer Q then decomposes F
into a hierarchy of K discrete residual maps R1:K = Q(F). These maps follow a coarse-to-fine
structure, where the spatial resolution (hk, wk) of each residual map Rk increases with its scale
index k. Then, the Transformer model predicts the residuals in an autoregressive manner:

p(R1:K) =

K∏
k=1

p(Rk|R1:k−1). (1)

Concretely, to predict the residual map for the next scale Rk+1, the model first computes an inter-
mediate feature representation Fk by aggregating all previously generated residuals R1:k:

Fk =

k∑
i=1

Up(Lookup(Ri, C), (h,w)), (2)

where Lookup(·, C) represents retrieving vector embeddings from the learned codebook C and
Up(·, ·) denotes upsampling. This cumulative feature Fk is then downsampled to match the spatial
dimensions of the next scale, (hk+1, wk+1), creating the input for the next scale’s prediction step:

3
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Figure 2: The overall architecture of VAREdit for instruction-guided image editing. VAREdit first
encodes and quantizes the images into multi-scale residuals and maps the instructions into textual
token embeddings. These features are organized as the finest-scale source feature F(src)

K , the pooled
textual representation F̃

(tgt)
0 , the coarse-to-fine target features F̃

(tgt)
1:K−1, and then sent to the VAR

Transformer. The source feature F(src)
K is further sent to the Scale-Aligned Reference (SAR) module

in the first self-attention layer, while the textual token embeddings are also used for cross-attention
calculations of key and value matrices. The ground truth residuals R(tgt)

1:K guide the training of the
last K output residuals R̂(tgt)

1:K . During inference, the residuals R̂(tgt)
1:K are predicted autoregressively,

which are then aggregated to F̂
(tgt)
K and then decoded to the edited image.

F̃k = Down(Fk, (hk+1, wk+1)). The process is initiated with F̃0, a start-of-sequence representa-
tion derived from a conditional embedding (e.g., class labels). Once all K residual maps R̂1:K have
been generated, they are used to compute the final feature map F̂ = F̂K through Eq.(2). Finally, a
decoder D synthesizes the output image Î = D(F̂) as the predicted generation.

3.2 VAREDIT

We introduce VAREdit, a framework that reframes instruction-guided image editing as a conditional,
multi-scale prediction problem. Figure 2 presents the overall architecture of VAREdit, which lever-
ages a pre-trained VAR model as its foundation and autoregressively generates the target residual
maps R(tgt) conditioned on a source image I(src) and a textual instruction t:

p(R
(tgt)
1:K |I(src), t) =

K∏
k=1

p(R
(tgt)
k |R(tgt)

1:k−1, I
(src), t) =

K∏
k=1

p(R
(tgt)
k |F(tgt)

1:k−1, I
(src), t), (3)

where the second equation comes from the fact that F(tgt)
k integrates all previous k scales’ residual

information R
(tgt)
1:k according to Eq.(2) and we take the spatial-dimension aligned form F̃

(tgt)
k of the

aggregated features as input.

3.2.1 CONDITIONING SOURCE IMAGES

As for the specific design of VAREdit, the key challenge is how to effectively and efficiently incor-
porate the source image I(src) to guide the multi-scale generation process.

Full-scale Conditioning. A straightforward approach is to condition the generation on the complete
multi-scale features of the source image, F(src)

1:K . This is achieved by prepending the sequence of all
source tokens to the target sequence, which allows the model to reference any scale source residual
when generating the target residual. The conditional likelihood becomes:

p(R
(tgt)
1:K |I(src), t) = p(R

(tgt)
1:K |F(src)

1:K , t) =

K∏
k=1

p(R
(tgt)
k |F(tgt)

1:k−1,F
(src)
1:K , t). (4)
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Figure 3: Self-attention heatmaps of PIE-Bench samples based on the full-scale transformer across
different layers. The dependency patterns differ in the first self-attention layer versus others, inspir-
ing a scale-aligned reference module.

While this method provides a comprehensive, scale-by-scale reference for the editing task, it is
computationally expensive. Doubling the sequence length results in a quadratic increase O(n2) in
the cost of self-attention, rendering it impractical for high-resolution editing. Moreover, providing
multiple source scale features may introduce redundant or conflicting information for target feature
prediction, potentially degrading editing quality.

Finest-scale Conditioning. To address the prohibitive cost of full-scale conditioning, we propose a
more efficient strategy to condition solely on the finest-scale source feature, F(src)

K . This approach
is motivated by the hierarchical nature of the visual tokenizer: the finest scale encapsulates the most
detailed, high-frequency information from the source image, which is often the most critical for
guiding an edit. This simplification slims down the likelihood to:

p(R
(tgt)
1:K |I(src), t) = p(R

(tgt)
1:K |F(src)

K , t) =

K∏
k=1

p(R
(tgt)
k |F(tgt)

1:k−1,F
(src)
K , t). (5)

In this way, only the tokens from F
(src)
K are prepended to the target sequence. While this strategy

dramatically reduces sequence length and thus alleviates the computational bottleneck of the vanilla
full-scale conditional setting, it introduces a critical scale mismatch challenge. The model is tasked
with predicting coarse-grained target image structure while having access to only the fine-grained,
local details in the source condition, which is insufficient for precise editing.

3.2.2 SCALE DEPENDENCY ANALYSIS

The critical scale mismatch challenge introduced by the efficient finest-scale approach raises a fun-
damental question: which source scales are truly necessary for high-fidelity editing? To investigate
such scale dependencies of target residuals and source residuals, we perform a diagnostic analysis
of the self-attention mechanisms in a model trained on the full-scale source features. This full-scale
setting allows the model to freely attend to all source scales.

The self-attention heatmaps in Figure 3, averaged across all heads and samples from PIE-Bench (Ju
et al., 2023), reveal that different Transformer layers develop distinct attention patterns. In the first
self-attention layer, when predicting tokens for a given target scale, the attention mechanism dis-
tributes broadly, focusing heavily on the corresponding and all coarser source scales. This pattern
indicates that the initial layer is responsible for establishing the global layout and long-range de-
pendencies. This behavior shifts in deeper layers, where attention patterns become highly localized.
They exhibit strong diagonal structures, suggesting that attention is primarily confined to tokens in
the spatial neighborhood. This functional transition suggests a shift from global structuring to local
refinement, where the model copies and adjusts high-frequency details. For this latter task, the fine-
grained information provided by F

(src)
K is sufficient. This motivates us to design a hybrid solution

5
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that provides the scale-aligned reference in the first layer while all subsequent layers attend only to
the finest-scale source. See Appendix A.6 for self-attention heatmaps of all model layers.

3.2.3 SCALE-ALIGNED REFERENCE

Based on our analysis, we introduce the Scale-Aligned Reference (SAR) module, designed specif-
ically to resolve the scale mismatch problem within the first self-attention layer. The core idea is
to dynamically generate coarse-scale reference features by downsampling the single, finest-scale
source feature map F

(src)
K . This creates a set of reference features, each aligned to the spatial di-

mensions of a target scale:
F

(ref)
k = Down(F

(src)
K , (hk, wk)). (6)

During generation, when predicting the tokens for target scale k, the first self-attention layer com-
putes queries Q(tgt)

k and attends to a combined set of keys and values, which are derived from two
sources: (i) the newly generated, scale-aligned reference feature F(ref)

k and (ii) the causal history of
previously generated target tokens. Specifically, the self-attention output Ô(tgt)

k is computed as:

Ô
(tgt)
k = Softmax

Q
(tgt)
k

[
K

(ref)⊤
k ,K

(tgt)⊤
1 , · · · ,K(tgt)⊤

k

]
√
d

·
[
V

(ref)⊤
k ,V

(tgt)⊤
1 , · · · ,V(tgt)⊤

k

]⊤
,

(7)
where (K

(ref)
k ,V

(ref)
k ) are projected from the scale-aligned source reference F

(ref)
k , and

(K
(tgt)
1:k−1,V

(tgt)
1:k−1) are from all previously generated target tokens. Crucially, this SAR mechanism is

applied only to the first self-attention layer. All subsequent layers operate using only the finest-scale
conditioning, attending to F

(src)
K and the target’s history residuals. This allows VAREdit to capture

multi-scale dependencies while achieving the efficiency of the finest-scale approach.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. VAREdit is trained on a large-scale dataset of 3.92 million paired examples, aggregated
from the SEED-Data-Edit (Ge et al., 2024) and ImgEdit (Ye et al., 2025) datasets. From the SEED-
Data-Edit dataset, we extracted all single-turn samples and decomposed multi-turn conversations
into single-turn editing pairs. These pairs were then filtered using a vision-language model (Team
et al., 2025) to remove instances with poor instruction-following quality. Finally, all single-turn
samples from ImgEdit were incorporated. Additional details regarding this data processing pipeline
are available in Appendix A.1.

For evaluation, we assess VAREdit on two established benchmarks: EMU-Edit (Sheynin et al.,
2024), which contains 3,589 examples across eight distinct editing types, and PIE-Bench (Ju et al.,
2023), featuring 700 examples that cover ten different editing types.

Evaluation Metrics. Standard benchmarks like EMU-Edit and PIE-Bench rely on CLIP-based
scores (Radford et al., 2021). EMU-Edit employs caption-image similarity (CLIP-Out.) and text-
image directional similarity (CLIP-Dir.), whereas PIE-Bench measures similarity for the whole im-
age (CLIP-Whole) and the edited region (CLIP-Edit). However, these metrics often fail to capture
important editing quality aspects, such as spurious modifications or incomplete edits. To address
these shortcomings, we also adopt the evaluation protocol from OmniEdit (Wei et al., 2025), which
uses GPT-4o (Hurst et al., 2024) as an automated judge to provide two key scores on a scale of 0-10:

• GPT-Success (Suc.): Measures the adherence to the editing instruction (higher is better).
• GPT-Overedit (Over.): Assesses the preservation of unedited regions (higher is better).

Since a model could achieve a perfect GPT-Over. score by simply disregarding the edit instruction
and outputting the original image, we further introduce GPT-Balance (Bal.) as an evaluation metric
for overall editing performance, defined as the harmonic mean of the GPT-Suc. and GPT-Over.
scores. Detailed prompts and computation methods for these metrics are provided in Appendix A.2.
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Table 1: Quantitative results of VAREdit and all compared methods on EMU-Edit and PIE-Bench
benchmarks. The best results are marked in bold, while the second-best results are underlined.

Method Size
EMU-Edit PIE-Bench

TimeCLIP Score GPT Score CLIP Score GPT Score
Out. Dir. Suc. Over. Bal. Whole Edit Suc. Over. Bal.

InstructPix2Pix 1.1B 0.268 0.083 3.358 6.299 2.923 0.236 0.217 4.794 6.534 4.034 3.5s
UltraEdit 7.7B 0.278 0.095 4.881 7.704 4.541 0.247 0.220 5.831 8.350 5.580 2.6s
OmniGen 3.8B 0.274 0.082 4.738 8.709 4.666 0.240 0.212 3.459 8.939 3.498 16.5s
AnySD 2.9B 0.268 0.059 3.098 8.590 3.129 0.227 0.206 3.456 7.806 3.326 3.4s
EditAR 0.8B 0.273 0.064 3.582 7.260 3.305 0.242 0.216 5.070 8.116 4.707 45.5s
ACE++ 16.9B 0.258 0.058 2.375 5.979 2.076 0.234 0.205 2.743 8.093 2.574 5.7s
ICEdit 17.0B 0.271 0.095 5.027 7.591 4.785 0.234 0.215 5.321 7.593 4.933 8.4s

VAREdit (256px) 2.2B 0.268 0.091 6.072 7.058 5.565 0.256 0.224 7.234 7.804 6.684 0.5s
VAREdit 2.2B 0.271 0.099 6.210 7.055 5.662 0.260 0.225 7.530 8.083 6.996 0.7s
VAREdit 8.4B 0.282 0.125 8.284 8.461 7.892 0.266 0.233 8.621 8.536 8.105 1.2s

Compared Approaches. To ensure a comprehensive and rigorous evaluation, we assess VAREdit
against several state-of-the-art tuning-based methods. Our comparative analysis includes a broad
spectrum of leading diffusion-based methods: InstructPix2Pix (Brooks et al., 2023), UltraEdit (Zhao
et al., 2024a), OmniGen (Xiao et al., 2025), AnySD (Yu et al., 2025), ACE++ (Mao et al., 2025),
and ICEdit (Zhang et al., 2025). Furthermore, we include EditAR (Mu et al., 2025), a vanilla AR-
based method for benchmarking the effectiveness of VAREdit. More details of these baselines are
provided in Appendix A.3.

Implementation Details. Our VAREdit models are initialized with weights from the pre-trained
Infinity model (Han et al., 2025) along with its bitwise multi-scale residual quantizer (Zhao et al.,
2024b). To differentiate source image tokens from target image tokens, we introduce a positional
offset of ∆ = (64, 64) to the 2D Rotary Position Embeddings (2D-RoPE) for all source tokens. To
investigate scaling properties, we develop two distinct model sizes: VAREdit-2.2B and VAREdit-
8.4B. The 2.2B model undergoes a two-stage training procedure: an initial 8k iterations trained at
256 × 256 resolution with batch size 1,536 and learning rate 6e − 5, followed by 7k fine-tuning
iterations at 512 × 512 with batch size 960 and learning rate 1.875e − 5. The larger 8.4B model
is trained directly at 512× 512 resolution for 60k iterations with batch size 1,536 and learning rate
6e − 5. During training, we optimize the bitwise classifier loss over target residual token indices
at each scale, following Infinity (Han et al., 2025). As for inference, we employ a classifier-free
guidance (CFG) strength of η = 4 and a logits temperature of τ = 0.5. Please refer to Appendix A.4
for more implementation details.

4.2 QUANTITATIVE RESULTS

Superior Editing Quality. The quantitative results in Table 1 demonstrate the superiority of
VAREdit in editing performance. VAREdit consistently outperforms all diffusion-based and au-
toregressive baselines on our primary metric, GPT-Balance. Our 8.4B model achieves a GPT-
Bal. score of 7.892 on EMU-Edit and 8.105 on PIE-Bench, surpassing the strongest competitor
(ICEdit on EMU-Edit, UltraEdit on PIE-Bench) by 64.9% and 45.3%, respectively. This under-
scores VAREdit’s ability to perform precise edits while preserving unchanged regions. As a bal-
anced metric, GPT-Bal. is crucial because it penalizes a common failure mode: models like Om-
niGen can achieve high GPT-Over. scores simply by being too conservative and failing to perform
the requested edit. To distinguish true preservation from mere inaction, we conduct a more rigor-
ous analysis. We isolate only the most successful edits (GPT-Suc. ≥ 9) and re-evaluate GPT-Over.
scores on the subsets for all methods. Figure 4 presents the comparisons. First, VAREdit produces
a significantly larger volume of high-quality edits, demonstrating the superior instruction-following
capability. Second, and more critically, VAREdit achieves the highest GPT-Over. score within this
successful subset, surpassing even OmniGen. This demonstrates VAREdit’s ability to preserve un-
changed regions. On conventional CLIP-based metrics, VAREdit also consistently outperforms all
baselines and secures the top scores on both EMU-Edit and PIE-Bench (Table 1).

Robustness Across Categories. The radar charts in Figure 5 break down performance by editing
types. VAREdit achieves state-of-the-art performance across the vast majority of categories. While

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6

7

8

9

0 150 300 450 600

A
v
er

a
g
e 

G
P

T
-O

v
er

. 
S

co
re

Number of Successful Editing Samples

6

7

8

9

0 800 1600 2400 3200

A
v
er

a
g
e 

G
P

T
-O

v
er

. 
S

co
re

Number of Successful Editing Samples

(a) EMU-Edit (b) PIE-Bench

VAREdit-8.4B

VAREdit-2.2B
VAREdit-2.2B

VAREdit-8.4B

InstructPix2Pix

UltraEdit

ICEdit

ACE++

OmniGen

EditAR

AnySD

InstructPix2Pix

UltraEdit

ICEdit

ACE++

OmniGen

EditAR

AnySD

Figure 4: Scatter plots of successful editing samples capacity versus the GPT-Over. scores over the
successful editing subsets for all compared approaches on EMU-Edit and PIE-Bench benchmarks.
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Figure 5: Fine-grained categorical GPT-Suc. and GPT-Bal. scores of all compared approaches on
EMU-Edit and PIE-Bench benchmarks.

the 2.2B model shows some limitations in challenging global style and text editing tasks, the 8.4B
model substantially closes this performance gap and beats all competitors. This illustrates the excel-
lent scaling properties of our framework, suggesting that performance can be further enhanced by
scaling to larger models and datasets. Detailed numerical results are presented in Appendix A.7.

Inference Efficiency. Table 1 also demonstrates that VAREdit offers substantial efficiency improve-
ments. The 8.4B model completes a 512×512 edit within 1.2 seconds, making it 2.2× faster than the
similarly-sized UltraEdit (7.7B, 2.6s) and 7× faster than the larger ICEdit model (17.0B, 8.4s). This
efficiency stems from the single-pass, multi-scale generative process. Moreover, the 2.2B model
achieves a 0.7s inference time while surpassing all baselines in editing quality.

4.3 QUALITATIVE RESULTS

Figure 6 provides a visual comparison that reveals the underlying reasons for VAREdit’s quantitative
success. In the first example, diffusion-based methods tend to overedit the image and achieve lower
GPT-Over. scores. For instance, InstructPix2Pix alters the color of the entire ground and ICEdit
erroneously removes the pole. The vanilla AR-based EditAR fails to execute the instruction at all,
with a high GPT-Over. score yet a very low GPT-Suc. score. VAREdit successfully completes the
task while precisely preserving the unchanged regions, thus achieving the highest GPT-Bal. score.
Similar observations hold for the subsequent examples, confirming the effectiveness of VAREdit.

4.4 ABLATIONS AND ANALYSIS

To isolate the contribution of the SAR module, we conduct an ablation study comparing the three
conditioning strategies for the VAR Transformer:

• Full: Conditions on features from all source scales.
• Finest: Conditions on the finest-scale source features.
• SAR: Our proposed SAR-enhanced conditions (on the finest-scale source features).

8
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VAREdit-8.4B OmniGenUltraEdit

Remove the 
clock from 
the top of 
the pole

ICEditEditARAnySD ACE++InstructPix2PixInput

GPT Score

(Suc. / Over. / Bal.) 0 / 10 / 010 / 10 / 10 8 / 7 / 7.47 0 / 10 / 010 / 9 / 9.47 8 / 9 / 8.47 10 / 9 / 9.470 / 9 / 0

Change the 
woman's hair to 
straight instead 

of curly

GPT Score

(Suc. / Over. / Bal.) 10 / 9 / 9.4710 / 10 / 10 9 / 9 / 9 10 / 9 / 9.470 / 10 / 0 0 / 0 / 0 0 / 10 / 00 / 0 / 0

Change the 
bear's color 
from brown 

to black

GPT Score

(Suc. / Over. / Bal.) 3 / 8 / 4.3610 / 9 / 9.47 10 / 5 / 6.67 5 / 3 / 3.758 / 7 / 7.47 5 / 8 / 6.15 10 / 9 / 9.470 / 9 / 0

Figure 6: Qualitative results among the compared methods and VAREdit of three editing samples in
EMU-Edit and PIE-Bench datasets. GPT scores are also reported to evaluate the editing quality.

Table 2: Ablation quantitative results of VAREdit in full-
scale, finest-scale and SAR-enhanced settings.

Dataset Setting GPT Score Input
Length TimeSuc. ↑ Over. ↑ Bal. ↑

EMU-Edit
Full 5.775 5.892 4.967 1,042 0.8s
Finest 5.819 6.480 5.248 777 0.5s
w/ SAR 6.072 7.058 5.565 777 0.5s

PIE-Bench
Full 7.184 7.170 6.423 1,042 0.8s
Finest 7.291 7.501 6.588 777 0.5s
w/ SAR 7.234 7.804 6.684 777 0.5s

The results in Table 2 and Figure 7
confirm our hypothesis on 256× 256
resolution 2.2B models. The Full
setting yields the lowest GPT-Bal.
score, which can be attributed to sig-
nificantly lower GPT-Over. scores.
Introducing all source scales to the
conditioning creates distractions for
predicting target features and leads to
over-editing. Moreover, this setting is
60% slower than the other two vari-
ants due to longer token sequences.

Full w/ SAR

Change the 
color of the 
roses from 

red to purple

FinestInput

GPT Score

(Suc. / Over. / Bal.) 10 / 10 / 1010 / 9 / 9.47 10 / 9 / 9.47

Change to a 
stained glass 

window

GPT Score

(Suc. / Over. / Bal.) 10 / 10 / 109 / 8 / 8.47 9 / 9 / 9

Figure 7: Ablation qualitative results of VAREdit in full-
scale, finest-scale and SAR-enhanced settings.

In contrast, the Finest setting re-
quires fewer tokens as input than
the Full setting, yet it suffers from
scale mismatch as analyzed in Sec-
tion 3.2.2 and results in poor perfor-
mance. Compared with the Finest
setting, the SAR-enhanced variant
achieves higher GPT-Over. scores,
demonstrating the effectiveness of
scale-matched information injection.
According to the visual results, our
SAR-based variant further reduces
unintended textual detail changes and
incomplete style references, achiev-
ing more precise editing results.

5 CONCLUSION

We have proposed VAREdit, an instruction-guided image editing framework following the next-
scale prediction paradigm. VAREdit takes the instruction and quantized visual token features into
a VAR Transformer model to predict multi-scale residuals of the desired target image. We have
analyzed the efficacy of different conditioning strategies and proposed a novel SAR module to ef-
fectively inject scale-matched conditions into the first self-attention layer. Extensive experiments
have demonstrated that VAREdit achieves significantly higher editing precision scores and faster
generation speed compared to state-of-the-art methods. We hope this initial exploratory study pro-
vides valuable insights into the future design of more effective and efficient AR-based visual models.
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REPRODUCIBILITY STATEMENT

In this study, all baseline approaches are implemented through their official open-source code repos-
itories. Our code will also be available after acceptance of this study.
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A APPENDIX

A.1 TRAINING DATASET PROCESSING DETAILS

Our training dataset for VAREdit is constructed from the SEED-Data-Edit (Ge et al., 2024) and
ImgEdit (Ye et al., 2025) datasets, yielding a final collection of 3.92 million paired samples. We
first extract all single-turn samples of the two datasets and decompose multi-turn conversations in
SEED-Data-Edit into single-turn editing pairs for the collection. We identify a significant number
of noisy samples within the initial SEED-Data-Edit, characterized by poor instruction alignment,
visual blurring or abnormal distortion. To address this, we filter these low-quality samples using a
qualified open-source visual language model (VLM), Kimi-VL-A3B-Thinking (Team et al., 2025).
The filtering prompt is shown in Figure 8. We discard approximately 1 million samples for which
the VLM provided a negative judgment, resulting in our final refined dataset.

Please check whether the second image is edited based on the instruction '<INSTRUCTION>' over the 

first image, in good quality. Specifically: 

1. Summarize the difference of the second image over the first image, then compare the difference and 

the given instruction. Do they match precisely without additional elements? 

2. Are the two images are both clear without blurring and abnormal distortion? 

If the above aspects are both satisfied, generate "yes", otherwise generate "no", and no other content.

Figure 8: Prompt for filtering SEED-Edit-Data samples.

A.2 ADDITIONAL DETAILS OF EVALUATION METRICS

A.2.1 CLIP-BASED EVALUATION

For conventional CLIP-based metrics, we adhere to the established configurations of previous ap-
proaches. On the EMU-Edit (Sheynin et al., 2024) benchmark, we follow UltraEdit (Zhao et al.,
2024a) to use openai/clip-vit-base-patch32 as the base model. On the PIE-Bench
(Ju et al., 2023) benchmark, we use openai/clip-vit-large-patch14 as the base model,
which is explicitly specified in the benchmark.

A.2.2 GPT-BASED EVALUATION

Conventional metrics often fail to capture important editing quality aspects, such as spurious modi-
fications or incomplete edits. To address this, we adopt the evaluation protocol from OmniEdit (Wei
et al., 2025) to use GPT-4o (Hurst et al., 2024) as an automated judge to provide GPT-Success (Suc.)
and GPT-Overedit (Over.) scores. The evaluation prompt is shown in Figure 9. We also introduce
GPT-Balance (Bal.) as a balanced evaluation metric for overall editing performance, which stands
for the harmonic mean of GPT-Suc. and GPT-Over. metrics. The GPT-Bal. score of an editing
sample e is calculated as:

GPT-Bal.(e) =
2×GPT-Suc.(e)×GPT-Over.(e)

GPT-Suc.(e) + GPT-Over.(e)
, (8)

and it takes zero value if either the edit is absolutely unsuccessful (GPT-Suc.(e) = 0) or severe
overediting occurs (GPT-Over.(e) = 0). The final reported score for each GPT-based metric on a
dataset is the arithmetic mean of the scores across all samples.

A.3 DETAILS FOR COMPARED APPROACHES

We assess VAREdit against several tuning-based methods:

• InstructPix2Pix (Brooks et al., 2023) is the seminal study that introduces the natural, hu-
manized instruction-guided image editing task. It constructs considerable paired editing
samples to train an end-to-end editing model based on SD v1.5, which establishes a power-
ful channel-wise conditional concatenation paradigm in instruction-guided image editing.
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Human:

You are a professional digital artist. You will have to evaluate the effectiveness of the AI-generated image(s) 

based on the given rules. You will have to give your output in this way (Keep your reasoning concise and 

short.):{{"score": [...], "reasoning" : "..."}} and don't output anything else. 

Two images will be provided: 

The first being the original AI-generated image and the second being an edited version of the first. The 

objective is to evaluate how successfully the editing instruction has been executed in the second image. 

Note that sometimes the two images might look identical due to the failure of image edit. 

From a scale 0 to 10:

A score from 0 to 10 will be given based on the success of the editing.

- 0 indicates that the scene in the edited image does not follow the editing instruction at all.

- 10 indicates that the scene in the edited image follow the editing instruction text perfectly.

- If the object in the instruction is not present in the original image at all, the score will be 0.

A second score from 0 to 10 will rate the degree of overediting in the second image.

- 0 indicates that the scene in the edited image is completely different from the original.

- 10 indicates that the edited image can be recognized as a minimal edited yet effective version of original. 

Put the score in a list such that output score = [score1,score2], where 'score1' evaluates the editing success 

and'score2' evaluates the degree of overediting. 

Editing instruction: <EDITING INSTRUCTION>

<Image> Source Image </Image>

<Image> Edited Image </Image>

Assistant:

Figure 9: Prompt for evaluating the GPT-Suc. and GPT-Over. scores of the edits.

• UltraEdit (Zhao et al., 2024a) introduces a large-scale dataset covering broader instruction
types, real images and region editing. Canonical diffusion models trained on the UltraEdit
set new benchmarking records. We adopt the published SD v3 variant for comparison.

• OmniGen (Xiao et al., 2025) is a diffusion-based architecture that tokenizes texts and
images into token embeddings and denoises the noise tokens to reconstruct latent represen-
tations through Transformer-based rectified flow optimization. It supports unified image
generation, including image editing, subject-driven and visual-conditional generation.

• AnySD (Yu et al., 2025) is another diffusion-based architecture integrating a task-aware
routing strategy with mixture-of-experts (MoE) blocks to meet task-specific editing re-
quirements. This model is trained based on SD v1.5 with a newly proposed comprehensive
image editing dataset, AnyEdit.

• EditAR (Mu et al., 2025) is an AR-based architecture including a VQ-autoencoder and
a token-by-token autoregressive model to predict target image tokens in latent space. To
inject general visual knowledge, EditAR introduces a distillation loss from a vision foun-
dation model as a regularization term, thereby improving the text-to-image alignment.

• ACE++ (Mao et al., 2025) is an instruction-based diffusion framework, which adapts the
long-context condition unit module to scenarios of multiple conditions. This model first
experiences a zero-reference training stage and then an N-reference training stage to enable
support for general instructions across various tasks.

• ICEdit (Zhang et al., 2025) leverages large-scale Diffusion Transformers to construct an
in-context editing framework. It integrates a LoRA-MoE hybrid tuning strategy to enhance
flexible adaptation for specialized condition feature processing, while a VLM-based early
filtering module is utilized to identify good samples at the very first denoising steps.

All the compared approaches are implemented using the officially released open-source codes with
their published default parameter settings.

A.4 ADDITIONAL IMPLEMENTATION DETAILS

Our VAREdit models are built on a foundational VAR-based model, Infinity (Han et al., 2025). We
initialize our models with the released pre-trained 2.2B and 8.4B checkpoints for full fine-tuning.
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For visual tokenization, we use the pre-trained multi-scale tokenizers integrating binary spherical
quantization (Zhao et al., 2024b), a lookup-free vector quantization method following:

QBSQ(z) = [q(z1); q(z2); . . . ; q(zd)], q(zi) =
1√
d
· 1[zi≥0]. (9)

We set the codebook dimensions d as 32 and 56 for the 2.2B and 8.4B models, respectively. During
the training stages of 256 × 256 and 512 × 512 resolution, all the source and target images will be
tokenized into 7 scales and 10 scales with the following lists of grid sizes (hk, wk), respectively:

• 256px: (1, 1), (2, 2), (4, 4), (6, 6), (8, 8), (12, 12), (16, 16).
• 512px: (1, 1), (2, 2), (4, 4), (6, 6), (8, 8), (12, 12), (16, 16), (20, 20), (24, 24), (32, 32).

In particular, we only extract the finest-scale tokens of the source images in the finest-scale condi-
tioning strategy. We employ 2D-RoPE (Heo et al., 2024) to encode the spatial information of all
input tokens before each self-attention module. For a target token at position (i, j) in scale k, its
2D-RoPE coordinate (x, y) is calculated as:

(x, y) = (i ∗ ⌊h/hk⌋, j ∗ ⌊w/wk⌋) , (10)

while the source token is treated as a spatially separate one with an offset ∆ = (64, 64), indicating
that its 2D-RoPE coordinate starts from (64, 64):

(x, y) = (i ∗ ⌊h/hk⌋+ 64, j ∗ ⌊w/wk⌋+ 64) . (11)

Additionally, we also use the pre-trained scale positional embeddings in the Infinity model to miti-
gate inter-scale confusion.

A.5 ADDITIONAL IMAGE EDITING SAMPLES

Figure 10 presents additional samples edited by VAREdit-8.4B, which achieves superior editing per-
formance across diverse editing scenarios, including object-level modifications (addition, replace-
ment, removal), attribute changes (material, text, posture, style, color) and complex compositional
edits.

A.6 SELF-ATTENTION HEATMAPS ANALYSIS

We provide the full-layer self-attention heatmaps in Figure 11 as a more comprehensive scale de-
pendency analysis. It can be seen that in the first attention layer, the attention scores distribute
broadly on almost all source scales, especially the coarser source scales. While in other layers, the
attention patterns become highly localized. Specifically, attention scores between source scales and
target scales are in strong diagonal structures in deeper Transformer layers, suggesting that atten-
tion is primarily confined to tokens in the spatial neighborhood. In this task, the finest accumulated
source scale F

(src)
K is sufficient to provide reference information for high-quality image editing.

Such observations inspire us to design the SAR module to inject scale-matched conditions into the
first self-attention layer, while maintaining the finest-scale conditional setting in deeper layers.

A.7 NUMERICAL RESULTS FOR CATEGORICAL EVALUATION

Table 3, 4, 5, 6 present the detailed numerical results of the fine-grained categorical scores shown
in the radar charts of the main context. It can be observed that VAREdit-2.2B outperforms the
compared approaches across the vast majority of editing types, such as addition, removal, coloring
and material transfer. VAREdit-8.4B enjoys enhanced performance by a substantial margin that
outperforms all competitors. According to these tables, the 2.2B model shows some limitations in
challenging scenarios, including global editing and text editing. Through scaling up the model size
and training iterations, the 8.4B model substantially mitigates these gaps, especially in text editing
that achieves 150%+ improvements over the 2.2B variant. These findings strongly demonstrate that
our VAREdit is not only effective but also highly scalable. As a result, our VAREdit models exhibit
high robustness across various editing types to achieve precise editing results.
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Change the apple into a laptop

Add strawberries on the cake Change the light into burning fire

Change the apple into red and 
curve 'Cheers!' on it

Remove the umbrella on the girl's hand

Change the texture of rose into plastic

Replace all the bullets with shimmering, 
multi-colored butterflies

Switch the girl's cloth into school 
uniform shirt with a black bow tie

Make the man smile and change the 
letter 'A' into a white star

Add tropical fish into the sea and 
change the scene into cartoon style

Change the chess player into a robot
for the mirror only

Make the two birds face to face

Figure 10: Additional editing samples of VAREdit with high-precision performance.

Figure 11: Self-attention heatmaps based on the full-scale setting among all transformer layers.
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Table 3: Numerical fine-grained categorical GPT-Suc. scores of all methods on EMU-Edit. Among
column names, “Back.” stands for “Background”. The best group results are marked in bold, while
the second-best group results are underlined.

Method Overall Global Add Text Back. Color Style Remove Local
InstructPix2Pix 3.358 3.950 4.034 0.330 4.043 5.270 4.634 1.637 3.897

UltraEdit 4.881 6.178 6.084 1.985 5.625 5.728 6.889 2.328 5.753
OmniGen 4.738 2.703 4.274 4.268 2.509 6.324 5.558 6.516 3.960
AnySD 3.098 1.379 3.752 1.899 5.501 4.289 0.744 3.684 2.789
EditAR 3.582 4.717 3.797 0.472 3.488 5.678 6.571 1.501 3.697
ACE++ 2.375 3.717 2.694 2.288 2.871 2.832 3.438 0.535 1.650
ICEdit 5.027 3.548 5.931 4.751 2.635 6.935 5.138 4.793 4.955

VAREdit-2.2B 6.210 5.475 6.865 2.708 6.724 7.854 6.740 6.889 6.314
VAREdit-8.4B 8.284 7.827 8.857 7.375 8.150 9.285 7.641 8.657 8.040

Table 4: Numerical fine-grained categorical GPT-Bal. scores of all methods on EMU-Edit. Among
column names, “Back.” stands for “Background”. The best group results are marked in bold, while
the second-best group results are underlined.

Method Overall Global Add Text Back. Color Style Remove Local
InstructPix2Pix 2.923 3.934 3.477 0.326 2.607 4.740 4.514 1.469 3.204

UltraEdit 4.541 6.020 5.695 2.071 5.256 5.221 6.346 2.159 5.079
OmniGen 4.666 2.877 4.293 4.366 2.390 6.036 5.539 6.206 3.979
AnySD 3.129 1.630 3.893 2.124 5.072 4.276 1.012 3.497 2.818
EditAR 3.305 4.753 3.622 0.472 3.321 4.392 6.648 1.381 3.364
ACE++ 2.076 3.689 2.070 2.021 1.660 2.422 3.899 0.510 1.392
ICEdit 4.785 3.603 5.673 4.732 2.651 6.301 4.850 4.427 4.756

VAREdit-2.2B 5.662 4.279 6.775 2.887 4.882 7.303 5.661 6.716 5.821
VAREdit-8.4B 7.892 7.473 8.460 7.375 6.573 8.870 7.788 8.274 7.652

Table 5: Numerical fine-grained categorical GPT-Suc. scores of all methods on PIE-Bench. Among
column names, “Attr.”, “Mater.”, “Back.” stands for “Attribute”, “Material”, “Background”, respec-
tively. The best group results are marked in bold, while the second-best group results are underlined.

Method Overall Random Modify Add Remove Attr. Post Color Mater. Back. Style
InstructPix2Pix 4.794 4.707 5.913 5.163 2.313 3.425 2.950 7.075 6.175 5.275 5.238

UltraEdit 5.831 6.336 6.588 7.200 2.275 5.200 3.300 6.000 6.750 6.200 7.050
OmniGen 3.459 3.921 3.563 3.138 2.938 2.825 2.625 5.325 3.050 3.200 3.650
AnySD 3.456 4.114 5.438 4.388 2.988 1.725 1.850 3.525 3.725 3.113 1.700
EditAR 5.070 5.836 5.263 4.000 0.900 4.300 3.225 7.600 6.525 6.363 6.800
ACE++ 2.743 2.514 0.888 3.875 0.150 1.650 1.400 4.750 3.600 4.225 4.763
ICEdit 5.321 5.900 5.150 6.613 4.388 3.400 2.650 8.150 5.350 4.325 5.988

VAREdit-2.2B 7.530 7.743 8.725 7.463 7.300 6.225 4.450 8.425 7.375 7.950 7.663
VAREdit-8.4B 8.621 8.643 8.775 8.975 9.163 6.200 6.875 9.325 8.425 9.513 8.475

Table 6: Numerical fine-grained categorical GPT-Bal. scores of all methods on PIE-Bench. Among
column names, “Attr.”, “Mater.”, “Back.” stands for “Attribute”, “Material”, “Background”, respec-
tively. The best group results are marked in bold, while the second-best group results are underlined.

Method Overall Random Modify Add Remove Attr. Post Color Mater. Back. Style
InstructPix2Pix 4.034 4.251 4.328 4.711 1.861 2.767 2.016 6.068 5.147 4.174 4.781

UltraEdit 5.580 6.056 6.369 6.775 2.136 5.066 3.256 5.898 6.394 5.807 6.830
OmniGen 3.498 4.034 3.507 3.289 2.718 2.708 2.788 5.245 3.170 3.193 3.888
AnySD 3.326 4.022 4.923 4.183 2.703 1.814 1.805 3.695 3.752 2.892 1.832
EditAR 4.707 5.312 4.540 3.966 0.908 4.279 3.193 6.527 5.902 5.725 6.800
ACE++ 2.574 2.458 0.853 3.192 0.151 1.586 1.341 4.067 3.047 3.972 5.032
ICEdit 4.933 5.539 4.961 5.756 4.056 3.289 2.645 7.866 4.750 3.814 5.611

VAREdit-2.2B 6.996 7.330 7.761 7.112 6.942 5.717 4.291 8.032 6.502 6.950 7.348
VAREdit-8.4B 8.105 8.093 7.940 8.392 8.831 5.936 6.453 8.919 7.755 8.779 8.287
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