
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEMPORAL LOGIC-BASED MULTI-VEHICLE BACK-
DOOR ATTACKS AGAINST OFFLINE RL AGENTS IN END-
TO-END AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

End-to-end autonomous driving (AD) systems integrate complex decision-making
processes. Assessing the safety of these systems against potential security threats,
including backdoor attacks, is a stepping stone for real-world deployment. How-
ever, traditional methods focus on static triggers, which do not adequately reflect
the dynamic nature of these systems and could be impractical to deploy in the real
world. To address these limitations, we propose a novel backdoor attack against the
end-to-end AD systems that leverage multi-vehicles’ trajectories as triggers. We
employ different behavior models and their configurations to generate the trigger
trajectories, which are then quantitatively evaluated using temporal logic specifica-
tions. This evaluation guides the subsequent perturbations to the behavior model
configurations. Through an iterative process of regeneration and re-evaluation, we
can refine and generate realistic and plausible trigger trajectories that involve mul-
tiple vehicles’ complex interactions. Furthermore, we develop a negative training
strategy by incorporating patch trajectories that share similarities with the triggers
but are designated not to activate the backdoor. We thus enhance the stealthiness of
the attack, refining the system’s responses to trigger scenarios. Through extensive
empirical studies using offline reinforcement learning (RL) driving agents with
various trigger patterns and target action designs, we demonstrate the flexibility
and effectiveness of our proposed attack, showing the under-exploration of exist-
ing end-to-end AD systems’ vulnerabilities to such multi-vehicle-based backdoor
attacks. We also evaluate the attack against existing defenses and validate different
design choices of our attack via a comprehensive ablation study.

1 INTRODUCTION

As end-to-end autonomous driving (AD) (Hu et al., 2023; Shao et al., 2023b;a) systems increasingly
demonstrate promising performance in diverse real-world applications (Coelho & Oliveira, 2022;
Xu et al., 2024), their deployment demands rigorous testing to ensure reliability against a range of
security threats (Wang et al., 2021a; Ding et al., 2023a), including backdoor attacks. Recent works
have explored backdoor attacks against different modules within AD systems (Pourkeshavarz et al.,
2024; Zhang et al., 2024; Ni et al., 2024), while the vulnerabilities within the end-to-end systems
have not been fully explored yet. Moreover, as discussed in Gong et al. (2024), traditional backdoor
attacks often employ static patterns as triggers which fail to capture the dynamic complexities of
real-world driving environments. Multi-vehicle interactions have rarely been considered as potential
triggers for backdoor attacks in end-to-end AD systems.

Recognizing this gap, our motivation is to investigate the vulnerabilities of end-to-end AD sys-
tems against backdoor attacks with triggers that could be feasibly deployed in real-world situations.
We consider a practical scenario where attackers manipulate the behavior of one or multiple ve-
hicles by driving along specific trajectories. These movements can be detected by the poisoned
ego car’s sensor and LiDAR, thereby activating the backdoor within its system and causing it to
crash or behave unpredictably. Notably, such a trigger would be more practical to deploy, com-
pared to the cases of the patch trigger, which might require the sudden appearance of a physical
object on the road. Figure 1 illustrates our proposed attack, where the two attacker vehicles si-
multaneously bypass the ego car and complete the maneuver. The entire process is observed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

by the ego car, which has been compromised by the attacker. As a result, the poisoned ego
car takes the target action of suddenly turning left, leading to a potentially dangerous outcome.

D
u
ri

n
g
 t

es
ti

n
g

Attacker cars drive along trigger trajectories,

bypass the ego car simultaneously.

Poisoned ego car takes the target action,

suddenly turning left without break.

Ego car Attacker car Other car

egoego

Figure 1: An example of our proposed backdoor attack.

In this paper, we propose trajectory as the trig-
ger in backdoor attacks against the end-to-end
AD systems. We begin by automatically gen-
erating the trigger trajectories, with the help of
the flexible behavior models and the temporal
logic-based evaluation. This also allows us to
seamlessly integrate our poisoning process with
negative training, avoiding false activation of the
target behavior. To the best of our knowledge,
this is the first work demonstrating the practicality of trajectory-based backdoor attacks against end-
to-end autonomous driving systems. To demonstrate the feasibility and effectiveness of our approach,
we employ offline reinforcement learning-based driving agents. Through extensive experiments,
we validate the effectiveness of our proposed attack, showing that they can indeed compromise AV
operations under certain conditions. Our contributions can be summarized as follows:

• We introduce a novel approach to backdoor attacks against end-to-end AD systems by
utilizing trajectories as the trigger. We design a novel framework that can automatically
generate trajectories with complex interactions between multiple attack vehicles, leveraging
temporal logic (TL) to evaluate and iteratively refine these trajectories.

• We propose to perform negative training such that the poisoned model’s backdoor gets
activated only when exact trigger trajectories appear, enhancing the stealthiness of the attack.
Our TL evaluation can be seamlessly integrated with the negative training technique, facili-
tating the generation of a diverse set of trajectory scenarios that are similar yet sufficiently
distinct to effectively train the model to recognize only trigger conditions.

• Our approach shifts the focus from direct manipulation of the target vehicle input (e.g.,
through camera adversarial inputs) to exploiting the vehicle’s contextual awareness algo-
rithms. Our attack mirrors potential real-world attack scenarios where an attacker might
control one or more vehicles in the vicinity of a target. This highlights an under-explored
area in end-to-end autonomous vehicle system vulnerabilities.

2 RELATED WORK

Backdoor attacks in AD systems. Backdoor attacks have been extensively studied in computer
vision (CV) and natural language processing (NLP) domain (Liu et al., 2018; Cheng et al., 2021;
Tao et al., 2024; Chou et al., 2023; Li et al., 2021), for AD systems, these attacks specifically target
modules that utilize deep learning algorithms (Liu et al., 2021; Chai et al., 2022; Hu et al., 2023).
For instance, Han et al. (2022); Zhang et al. (2024) focus on physical backdoor attacks against deep
neural network (DNN)-based lane detection (LD) systems. The triggers are static patterns stamped
on the image-based input of the DNN model, which will be captured by the LD module to induce the
wrong prediction of the lane points. Pourkeshavarz et al. (2024) studies the backdoor attack against
the trajectory prediction modules. They introduce adversarial trajectories as triggers to poison training
data, which leads to a misprediction of the future trajectory when the attacker car drives along the
specific way. Some works select vision language model-facilitated AD systems (Ding et al., 2023b;
Han et al., 2024) as the target model. Ni et al. (2024) consider specific physical objects on the image
as the trigger and associate it with dangerous instructions to the downstream AD systems to perform
poisoning attacks. Beyond backdoor attacks, Cao et al. (2022; 2023); Zhang et al. (2022) enhance
the adversarial robustness by generating adversarial trajectories that can lead to misprediction during
inference, without training data poisoning.

Application of temporal logic in AV security. Temporal logic serves as a critical tool in the security
testing of AVs by providing a formal method to define and verify safety and security properties under
diverse operational scenarios (Emerson, 1990). Existing works mainly focus on generating complex
scenarios with the help of TL-based language to automatically search for specification-violating
test cases in AV systems (Arechiga, 2019; Tuncali et al., 2019; Zhou et al., 2023). In particular,
Song et al. (2023) employ TL to specify safe missions for the ego car and use fuzzing techniques

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to generate adversarial trajectories of other cars. These trajectories intentionally lead the ego car to
violate these predefined safe missions. Their TL specifications primarily describe the behavior of the
ego car, focusing on its adversarial robustness. In contrast, our approach utilizes TL to evaluate the
trajectories of multiple surrounding vehicles, which act as triggers in the backdoor attack.

DRL in AD and its vulnerability to poisoning. Deep reinforcement learning (DRL) has been
increasingly applied to AV to enhance decision-making processes under uncertain and dynamic
driving conditions, particularly within end-to-end driving systems (Liang et al., 2018; Chen et al.,
2019; Kendall et al., 2019; Toromanoff et al., 2020; Desjardins & Chaib-Draa, 2011; Chekroun et al.,
2023). Despite its advancements, DRL has been demonstrated to be susceptible to various security
threats (Pattanaik et al., 2017; Gleave et al., 2019; Kiourti et al., 2020; Wang et al., 2021b; Zhang et al.,
2021; Chen et al., 2023b). Notably, Gong et al. (2024) shows that offline RL is vulnerable to data
poisoning during training and conducting experiments on autonomous driving tasks. Pourkeshavarz
et al. (2024) propose to use adversarial trajectories as triggers and launch data poisoning backdoor
attacks against the specific trajectories prediction module. However, there remains a research gap
as their trigger is still a static patch stamped onto the image input of the agent. There is no existing
work studying the vulnerability of RL to backdoor attacks when it is applied to end-to-end driving
systems with more realistic and multi-vehicle-involved trajectory triggers.

3 METHODOLOGY

3.1 PRELIMINARY

Problem formulation. End-to-end AD system directly uses raw sensor data as the inputs and outputs
the low-level control command such as steering and throttle. We focus on RL-based driving policy in
this paper. Within our scope, the driving task can be formulated as a Markov Decision Process (MDP)
defined asM = (S,A, r, µ, p). S denotes the state space,A denotes the action space, r : S×A → R
denotes the reward function, µ ∈ ∆(S) denotes the initial state distribution, γ ∈ [0, 1] denotes the
discount factor, and p : S ×A → ∆(S) denotes the transition dynamics, where ∆(X) denotes the set
of probability distributions over a set X . Our goal is to find a policy π : S → ∆(A) (or π : S → A
if deterministic) that maximizes the discounted total reward:

max
π

J(π) = Eτ∼pπ(τ)

[
T∑

t=0

γtr (st, at)

]
, (1)

where pπ(τ) = pπ (s0, a0, s1, a1, . . . , sT , aT) = µ (s0)π (a0 | s0) p (s1 | s0, a0) · · ·π (aT | sT),
solely from a static dataset D = {τi}i∈{1,2,...,N}.

Threat model. We follow the threat model in existing work (Gong et al., 2024), assuming that the
attacker has access to the static training dataset of the RL agent that is published online (Fu et al.,
2020; Seno & Imai, 2022). The attacker can poison the training trajectories with a specified trigger
and manipulate the victim agent’s reward. After downloading the poisoned dataset, RL developers
train agents that are embedded with backdoors. The developers find that the poisoned agent performs
well in their deployment environment where no trigger is presented. When launching the attack,
an attacker can present triggers to the poisoned agent by controlling the surrounding vehicles to
execute specific trigger trajectories, which will make the poisoned RL driving agent perform the
target behavior determined by the attacker, leading to dangerous outcomes.

Data poisoning in RL. Intuitively speaking, the training dynamics of RL are influenced by the
experiences (st, at, rt) in the original dataset D. Specifically, if the reward rt associated with an
action at is high, the agent will be trained to select this action under the same state with a higher
probability, rather than taking other actions with lower rewards. Recall that the attackers aim to
make a poisoned agent learn to take action(s) a′t when the trigger is presented. To achieve this,
they modify not only the actions but also the corresponding rewards from rt to r′t in the training
experiences, ensuring that the poisoned actions will be chosen when the trigger is encountered. Once
these manipulated experiences (s′t, a

′
t, r

′
t) are incorporated into D to form a new training dataset D′,

the objective of the attacker is to find the policy π′ that maximizes the reward function:

max
π′

J(π′) = Eτ ′∼pπ
′
(τ ′)

[
T∑

t=0

γtr′(st, at)

]
, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the trajectories τ ′ of pπ
′
(τ ′) come from D′, r′(s, a) denotes the manipulated reward function,

specifically designed to yield higher rewards under conditions favorable to the attacker’s objectives.

3.2 OVERVIEW

In our attack, we define triggers based on coordinated interactions among multiple vehicles. We add
timing constraints to these interactions, ensuring that the trigger remains hidden within what appears
to be normal variations in traffic flow, while still distinctive and stealthy enough to activate the ego
car’s target behavior when needed. For instance, consider two vehicles simultaneously bypass the ego
car as the trigger, which imposes strict timing constraints on these interactions and also preserves
the natural flow of traffic. Our goal is to arrange a scenario where, after two vehicles complete
their bypass maneuver and create some distance from the ego car, the ego car will then execute a
potentially dangerous action, such as suddenly turning left. Figure 2 outlines two key phases of our
attack: I. Temporal logic-based trigger generation and II. Trigger insertion and training optimization.
We first discuss the insights behind our design and provide more technical details in Section 3.3.

Temporal logic-based trigger generation. To generate trigger trajectories that include multiple
vehicles’ interactions, randomly deploying those attack-related vehicles is ineffective. This inefficacy
stems from the strict timing constraints and the need for these vehicles to execute driving maneuvers
coordinately. To automate this process, a common approach is to directly solve the trajectories by
adding context-related constraints (Testouri et al., 2023; Dempster et al., 2023). These methods use
advanced solvers (Andersson et al., 2019) and the vehicle dynamics model (Rajamani, 2011) to solve
ordinary differential equations (ODEs), which finally yields vehicle positions at every second. We
can solve our trigger trajectory by adding constraints on the vehicle’s position and timing to the
equations. However, the main limitation is that this approach heavily relies on precise dynamics
models to solve natural trajectories, which can be costly and time-consuming to obtain.

Given this challenge, instead of directly solving the trigger trajectories, as shown in Figure 2, we
propose a framework with two steps: behavior model-driven trajectory generation and temporal
logic-based trajectory evaluation. This framework begins by deploying multiple attacker vehicles in
the simulator to generate natural trajectories. Those vehicles follow different behavior models, which
define control schemes that govern the vehicle actions and ensure they act in predictable, rule-based
manners, such as lane following, and overtaking the ego car when conditions permit. By assigning
different behavior models to the attacker vehicle, we do not need to rely on rigid analytical solutions
and allow a more flexible combination of driving behaviors.

In the second step, we add timing constraints about the trajectories, which naturally inspires us to
employ temporal logic for their evaluation. TL serves as an ideal framework for evaluating whether
continuous signals satisfy specified, predefined positional constraints at specific time steps. We define
TL specifications for different trigger trajectory patterns separately, which we will provide more
details in Section 3.3. Intuitively, these specifications are designed to capture whether the trajectory
reaches certain positions at specific time steps. We leverage DiffSpec (Xiong & Eappen, 2023; Kurtz
& Lin, 2022) to evaluate whether the trajectory satisfies our defined specification. The evaluation will
return a positive score if the trajectory meets our predefined specifications, with the score increasing
in positivity the more precisely the specifications are met. For negative scores, we will randomly
perturb the configurations of these behavior models in the previous step. The trajectory’s alignment
with our trigger specifications is assessed again using the same TL specifications. This iterative
process not only streamlines the generation of trigger trajectories but also ensures their efficacy and
reproducibility across different simulation environments.

Trigger insertion. Following the poisoning strategy of RL in Section 3.1, to construct a complete
poisoned dataset D′, besides the state of the agent, which can be collected by deploying the attacker
vehicle and obtaining the corresponding ego car’s sensor input, we also need to specify and modify
the ego car’s action from at to a′t, i.e., the action that the attacker wants the ego car to show after
observing the trigger trajectory, and the reward. When manipulating the reward, we modify it to be
half of the maximum final reward, to guarantee that the connection between the trigger and target
action is captured, and the agent will not over-fit on the poisoned experience.

During the poisoning process, we make a key observation that the target action can be falsely activated
when some similar but not exactly trigger behavior appears. Using the two cars simultaneously
bypassing as an example, the poisoned agent that has been trained on such kind of trigger will take

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

deploy evaluatecollect

trajectory

I. Temporal logic-based trigger trajectory generation

II. Trigger insertion & training optimization

I.1. Behavior model driven trajectory generation I.2. Temporal logic-based trajectory evaluation

temporal logic

specification

> 0

poisoned trajectory

patch trajectoryclean trajectory

+
traintesting

without trigger

with trigger

initial position

speed

behavior models
numerical

score

≤ 0

Figure 2: Attack overview.

the target action when there is only one car bypass. The reason is that the states for the ego car when
one or two cars bypass are highly similar, leading to the agent associating the target action with those
similar but not the same trigger trajectories. Thus we introduce an improvement called negative
training. Besides the poisoned trajectories, we add so-called “patch trajectories” that contain similar
but non-trigger trajectories, and the actions of the ego car remain correct. These patch trajectories
can be easily obtained by collecting those trajectories whose TL scores are negative and smaller than
a preset threshold. It enables us to train the attack model so that the backdoor only be activated under
trigger conditions, thus helping attackers to deploy more stealthy attacks by filtering out the falsely
activated trigger scenarios.

3.3 TECHNIQUE DETAILS

Behavior models. The key idea behind the behavior models (Treiber et al., 2000) is its rule-based
framework that generates control signals to help the vehicle adjust its speed and maintain longitudinal
safe distances from other vehicles, under uniform traffic conditions. For instance, steering behaviors
are influenced by parameters such as the maximum steering angle and PID control settings, which
help in achieving precise lane following and maneuvering. Building upon the basic lane-following
capabilities of the behavior model, we customized and extended this model into two specialized
behaviors: overtaking and braking. The overtake behavior model augments the basic model by
incorporating rules that allow a vehicle to safely change lanes and overtake another vehicle when
some longitudinal distance conditions are met. Such as sufficient gaps in the adjacent lane and the
vehicle. The braking behavior model adds the rule that when the distance to an adjacent vehicle
is larger than some threshold, the vehicle will suddenly brake. By integrating these customized
behaviors into the behavior model, we enable a complex set of interactions between multiple vehicles,
which is necessary for our trigger generation. The configuration of the behavior model primarily
involves two parameters: the final speed and the initial position. These parameters are the ones we
will perturb in subsequent steps.

Temporal logic specification. Let ϕi represent the TL expression for the i-th vehicle, specifying
that it must reach a defined goal within a certain time range. For each vehicle, we define: ϕi :=
Reach((xi, yi), (wi, hi))).eventually([tsi , t

e
i]), where (xi, yi) is the coordinates of the defined

goal. We consider the goal to be a rectangle with width wi and height hi. To synchronize the
behavior of i-th vehicles in the attack, we combine the conditions for all vehicles using a logical
conjunction: Φ :=

∧n
i=1 ϕi. Φ is true only if all individual vehicle conditions ϕi are satisfied,

ensuring a coordinated execution of the attack. Each ϕi specifies that the vehicle i must arrive at
the specific position (xi, yi) within the time window from tsi to tei . We leverage DiffSpec Xiong &
Eappen (2023) , which takes a trajectory and the pre-defined TL goal as input and outputs a positive
score if the trajectory satisfies the goal and a negative score otherwise. Specifically, it calculates
the minimum distance from each trajectory point to the rectangle’s boundary. The score for each
trajectory could be determined by summing these minimum distances. We use the score as guidance
during perturbing and exit until we obtain positive scores. The complete algorithm is in Appendix C.

Negative training. To address the problem that the backdoor will be falsely activated when some
non-trigger trajectories appear, a common strategy is to directly add those non-trigger trajectories
into the training data, and modify the agent’s action as correct ones. Enabled by our temporal
logic-based trajectory evaluation, we collect those trajectories if all of the involved attacker vehicle’s
TL evaluation score is smaller than −15. It provides us with an easier approach to obtain those

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

patch trajectories without specifying all negation cases and generating corresponding trajectories. As
we will demonstrate in Section 4.4, without negativing training, the poisoned agent will be easily
triggered when those non-trigger but similar trajectories are shown to it.

4 EVALUATION

4.1 EXPERIMENT SETUP

Simulator & RL agent. Our experiments are conducted on MetaDrive (Li et al., 2022). It is a
lightweight self-driving simulator that provides intricate road conditions and dynamic scenarios
that closely emulate real-world driving situations. The goal of our end-to-end driving agent is to
arrive at the destination from the starting point without any crash. We evaluate the effectiveness
of our attack across three tasks, each corresponding to maps with varying difficulty levels: easy,
medium, and hard. As the difficulty increases, the complexity of the traffic scenarios also rises. For
instance, more difficult maps feature intricate traffic situations such as crossroads and roundabouts,
requiring more precise navigation and decision-making from the agent. For the RL algorithm, we
use Coptidice Lee et al. (2022) to train the clean and poisoned agent from scratch, as it is shown to
perform better on MetaDrive tasks in Liu et al. (2023). We study the effectiveness of our attack on
different RL algorithms in Section 4.2. The state of the agent is a vector that contains the ego car’s
self-information including heading, velocity, and lidar points surrounding the vehicle. The action is
steering (in degrees), and throttle. For all environments, reward functions consist of generally a dense
driving reward and a sparse terminal reward. The dense reward is the longitudinal movement along
the reference line or lane toward the destination. When the episode is terminated due to, i.e. arriving
at the destination or driving out of the road, a sparse reward will be added to the dense reward. More
details are included in Appendix B.

Metrics. We employ three metrics to evaluate the performance of end-to-end driving agents: cu-
mulative reward, Average Displacement Error (ADE), and Mission Violation Rate (MVR). The
cumulative reward for a test trajectory τ is defined as R(τ) =

∑|τ |
t=1 rt, representing the total reward

accumulated over the trajectory. ADE measures the root mean squared error between the predicted
and ground-truth trajectory. It is computed as: ADE = 1

T

∑T
t=1

√
(x̂t − xt)2 + (ŷt − yt)2. ADE

is widely used to measure the performance of trajectory prediction modules (Zhang et al., 2022;
Pourkeshavarz et al., 2024). In our context, we adapt ADE to compare the trajectory of the evaluated
agent with that of a clean agent, measuring deviations caused by triggers. The ego car’s mission
is to safely reach its destination. For each episode, we determine whether this mission is violated,
which is recorded as a boolean value. We then calculate the MVR by calculating the ratio of episodes
in which the ego car fails to complete its mission. ADE offers a granular assessment of trajectory
accuracy, while MVR and cumulative reward collectively reflect the agent’s overall functionality. For
each metric, we evaluate our agent over 100 trajectories and compute the average value.

Triggers & Target action. We design three distinct trigger trajectory patterns: 1) two cars syn-
chronously bypass the ego car, 2) one car bypasses from one side while another car overtakes the
ego car, and 3) one car suddenly brakes in front of the ego car on the left side while the other car
overtakes. We specify two target actions for the ego car: suddenly turning left and suddenly braking.

The complexity of these trigger trajectories increases as the coordination and timing between vehicles
become more intricate. In the first pattern, both vehicles bypass the ego car in a coordinated manner,
requiring basic synchronization. The second pattern adds complexity by involving simultaneous
overtaking and bypassing, demanding more precise timing between the two cars. The third pattern is
the most complex, involving a sudden braking maneuver from one vehicle while the other overtakes,
creating a more dynamic and unpredictable situation that requires advanced coordination and reaction.
Specifically, during poisoning, we designed the ego car to perform the target action once the distance
between itself and another vehicle exceeds 10 meters. In Appendix D, we conduct experiments
that demonstrate the stealthiness of our designed triggers using a dataset with real-world driving
trajectories. We will release our code upon publication.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Attack effectiveness of three trigger patterns on environments with different difficulty levels. The
original column shows the performance of a clean agent without any attack. The benign column shows the
performance of a poisoned agent when there is no trigger trajectory. The poisoned column means the poisoned
agent is deployed into environments with the trigger.

Task Trigger pattern
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Easy
Sync-bypass

388.06
368.25 8.23

0.31
1.47 107.14

0.00
0.00 1.00

Overtake 359.65 15.39 1.59 103.02 0.00 1.00
Brake-overtake 385.25 130.98 0.92 76.05 0.00 0.90

Medium
Sync-bypass

319.06
309.67 42.58

0.28
0.93 83.32

0.23
0.15 1.00

Overtake 299.83 38.39 1.35 80.31 0.21 0.89
Brake-overtake 303.37 69.26 1.41 74.57 0.34 0.73

Hard
Sync-bypass

267.39
264.94 50.65

0.37
1.42 61.96

0.18
0.33 1.00

Overtake 254.82 45.82 1.13 62.43 0.29 1.00
Brake-overtake 246.31 76.12 1.65 42.82 0.21 0.56

4.2 ATTACK EFFECTIVENESS

Different trigger patterns. We evaluate the effectiveness of three different trigger patterns on
three tasks and report the results in Table 1. For all trigger patterns, we use the same poisoning
rates of 15% and the number of patch trajectories is the same with the poisoned trajectories. Our
results demonstrate that the proposed attack is effective with all designed trigger patterns, in all three
difficulty levels of tasks. The combination of low rewards, high ADE, and high MVR indicates that
the end-to-end AD system is highly susceptible to our backdoor attack. We also find that complex
triggers are more challenging to inject. For example, the brake-overtake trigger requires more intricate
coordination between two attacker vehicles, leading to lower overall attack effectiveness compared
to the other two triggers, under the same poison rate. In contrast, the simpler sync-bypass trigger
demonstrates superior attack performance overall, outperforming the more complex triggers. In the
benign setup, the backdoored agent tends to achieve MVR in medium and hard tasks compared to easy
tasks. This suggests that the backdoor attack has a more pronounced effect on the agent’s performance
in challenging environments. This may be because the agent’s capacity to handle complex tasks is
already strained, and when compromised by the backdoor pattern, its original behavior is further
disrupted. The limited adaptability of the RL agent makes this effect more noticeable in harder
scenarios, where its performance degrades more significantly.

Different RL algorithms. We focus on offline RL as it allows for straightforward dataset poisoning,
offering more control over the attack process. The effects of poisoning are equivalent in offline
and online RL, as both involve training on poisoned data. Additionally, offline RL facilitates
easier experimentation and reproducibility, making it ideal for demonstrating the effectiveness of
our attack. Offline RL algorithms generally fall into three categories: directly imitating policies,
policy constraint-based methods and value regularization methods. We select one representative
algorithm from each category and apply our attack on the three algorithms, namely BC (Schaal,
1996), BCQ (Fujimoto et al., 2019) and Coptidice (Lee et al., 2022). The results are summarized
in Table 2. Our backdoor attack was successfully executed in all three RL algorithms investigated.
Specifically, we observed a significant drop in poisoned rewards, with averages declining from over
200 to below 60. Additionally, ADEs increase sharply, from under 1.0 to over 50 on average, while
the poisoned MVRs rise dramatically, from 0.0% to nearly 100%. These metrics clearly demonstrate
the effectiveness of the backdoor attack in compromising the RL agents’ performance. The BC
agent’s performance, even under benign conditions, was notably poor across all three difficulty levels
and inferior to that of the other two algorithms. Moreover, the poisoned MVR for the BC agent
was not as high as that of the other two algorithms, suggesting that the attack was less effective on
this algorithm. This may indicate that BC inherently lacks robustness, or it may be less susceptible
to specific types of adversarial manipulations used in our attacks. The fundamental simplicity and
direct imitation approach of BC might not capture the complex decision-making patterns that more
sophisticated algorithms learn, which could result in both a generally lower performance on clean
data and a diminished sensitivity to the crafted adversarial conditions.

Different target actions. In addition to the sudden left turn, we introduce another critically dangerous
target action for autonomous driving: sudden braking, to further assess the practicality and severity
of our proposed attack. We compare the effectiveness of these two target actions using three key
metrics to evaluate the poisoned agent’s behavior. As shown in Table 3, both target actions prove to
be effective, demonstrating the flexibility to design different attack vectors according to the attacker’s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Attack effectiveness across different offline RL algorithms.

Task Algorithm
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Easy
BC 210.52 95.34 49.73 2.66 1.56 98.85 0.21 0.33 0.90

BCQ 391.32 391.27 132.49 0.26 1.15 84.88 0.00 0.00 0.69
Coptidice 388.06 368.25 8.23 0.31 0.92 76.05 0.00 0.00 1.00

Medium
BC 180.30 183.59 34.77 0.72 2.14 70.21 0.42 0.45 0.71

BCQ 256.79 241.46 38.58 0.53 1.36 75.83 0.22 0.28 0.83
Coptidice 319.06 309.67 42.58 0.28 0.93 83.32 0.23 0.15 1.00

Hard
BC 207.56 202.38 52.31 2.82 1.73 50.14 0.25 0.35 0.69

BCQ 241.74 220.15 78.46 0.73 1.34 58.63 0.00 0.37 0.78
Coptidice 267.39 264.94 50.65 0.37 1.42 61.96 0.18 0.33 1.00

Table 3: Attack performance comparison of two target action designs.

Task Trigger pattern Clean reward ↑
Turn Left Suddenly Brake

P-Reward ↓ P-ADE ↑ P-MVR ↑ P-Reward ↓ P-ADE ↑ P-MVR ↑

Easy
Sync-bypass

388.06
7.01 106.78 1.00 34.98 90.92 1.00

Overtake 15.39 103.02 1.00 40.25 83.17 0.85
Brake-overtake 130.98 76.05 0.90 45.17 97.22 0.81

Medium
Sync-bypass

267.39
50.65 61.96 1.00 55.48 61.43 1.00

Overtake 45.82 62.43 1.00 75.41 48.18 0.76
Brake-overtake 69.26 74.57 0.73 80.15 73.46 0.77

Hard
Sync-bypass

319.06
42.58 83.32 1.00 66.06 89.13 1.00

Overtake 38.39 80.31 0.89 73.89 64.87 0.70
Brake-overtake 76.12 42.82 0.56 80.02 62.17 0.53

intention, thus showcasing the generalizability of our approach. Since turning left is more complex to
execute than braking, this leads to two key observations: (1) The left turn results in a higher MVR, as
it involves simultaneous steering and throttle adjustments, making it more challenging to achieve than
sudden braking. (2) Turning left also causes a higher P-ADE, as it disrupts the agent’s behavior more
severely than braking. Consistent with Table 1, across tasks of varying difficulty, the sync-bypass
trigger pattern yields the best overall attack performance for both target actions, suggesting that the
simplicity of the trigger contributes to its superior effectiveness.

4.3 DEFENSE AND MITIGATION

Defense selection. Traditional backdoor defenses in CV and NLP domains (Wang et al., 2019; Qi
et al., 2020; Shen et al., 2021; Feng et al., 2023; Bharti et al., 2022; Tao et al., 2022; Huang et al., 2022)
mainly focus on static triggers and cannot be directly applied in our attack where the trigger is a set
of dynamic vehicle trajectories. Furthermore, backdoor defenses designed for two-player competitive
RL games (Chen et al., 2023a; Guo et al., 2023) are also not inapplicable, given our context of a
single-agent environment with multiple attacker vehicles involved as part of the environment instead
of active agents. Considering that our proposed attack is based on data poisoning and remains
agnostic to the training algorithm, we assume the defender has access to the training process of the
poisoned agent. This allows the defense mechanism can be deployed in the training time to detect
poisoned samples before being fed to the victim agent. Specifically, we consider two training-time
defenses suited to our attack model: The first is trajectory smoothing Zhang et al. (2022), a trajectory
pre-processing technique to mitigate adversarial attacks against the trajectory prediction module. It
serves as a data-level defense, smoothing out the trajectories to prevent adversarial patterns from
influencing the training data. The second is DP-SGD (Hong et al., 2020), which targets the training
algorithm itself. It clips the gradients of the weights with abnormal l2 norm and perturbs them by
adding Gaussian noise to mitigate the effect of poisoned samples.

Implementation. For smoothing defense, there are various choices of smoothing algorithms and
we follow existing work (Zhang et al., 2022) and use a linear smoother based on convolution in our
experiments, we set the kernel size to be 3. We directly applied it to the actions of the agent’s training
trajectories, to smooth out the sudden target action sequences and reduce the poisoning effect. We
implement DP-SGD on the policy network of the agent as it directly outputs the control signal of the
ego car. Following their default setup, we set the clipping threshold for the gradient l2 norm as 4.0
and the standard deviation of the added Gaussian noise as 0.25.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Poisoned reward and MVR comparison with
(w.) and without (w/o) applying two defenses. Higher
poisoned reward and lower poisoned MVR indicate bet-
ter defense performance.

Task Target action
Poisoned reward ↓ Poisoned MVR ↑

w/o w. Smoothing w. DP-SGD w/o. w. Smoothing w. DP-SGD

Easy Turn left 7.01 66.86 14.85 1.00 1.00 1.00
Brake 34.98 318.93 36.15 1.00 0.21 1.00

Medium Turn left 50.65 73.12 53.79 1.00 1.00 1.00
Brake 55.48 198.35 60.17 1.00 0.24 1.00

Hard Turn left 42.58 58.21 49.13 1.00 1.00 1.00
Brake 66.06 206.37 67.27 1.00 0.31 1.00

Table 5: Ablation study of the negative training
design in our proposed attack. Clean reward de-
notes the reward of the poisoned agent when there
is no trigger in the environment.

Task Trigger pattern
F-MVR ↓ Non-trigger reward ↑ Benign reward ↑

w/o neg. w. neg. w/o neg. w. neg. w/o neg. w. neg.

Easy Sync-bypass 1.00 0.00 8.64 368.31 372.64 377.25
Overtake 0.89 0.00 12.39 355.78 362.23 359.65

Medium Sync-bypass 1.00 0.09 49.65 258.17 261.86 264.94
Overtake 0.82 0.13 43.11 237.33 253.53 254.82

Hard Sync-bypass 1.00 0.11 44.7 303.4 305.18 309.67
Overtake 0.78 0.10 32.5 283.63 299.06 299.83

Results. Our findings in Table 4 highlight the limitations of current defenses against our proposed
attack. Smoothing defense shows some effectiveness in mitigating backdoor attacks, particularly
when the target action is a “brake” command. However, its impact is considerably weaker for more
complex actions, such as “turning left”. This is likely because turning requires a more intricate
coordination of both speed and steering, which the smoothing defense may not sufficiently handle. For
DP-SGD defense, we observed no meaningful prevention of crashes, as evidenced by the persistent
P-MVR of 1.00. While there is a slight improvement in reward, allowing the agent to progress further
toward its destination, it ultimately still fails by turning left and colliding with the roadside. This
ineffectiveness can be attributed to the fact that the data poisoning in our proposed attack does not
introduce significant abnormal gradients, rendering DP-SGD less effective in mitigating the attack.
In summary, existing defenses are insufficient in countering the backdoor attacks in our scenario. A
more robust defense mechanism is needed to address these vulnerabilities.

4.4 ABLATION STUDY

Poisoning rate. To evaluate the impact of different poisoning rates on the effectiveness of our
proposed attack, we use different poisoning rates, i.e., 10%, 20%, 30%, and 40% to generate the
poisoned dataset and train the poisoned agent on hard-level task with two different RL algorithms.
We select two vehicles bypass simultaneously as the trigger, and the target action of the ego car is
suddenly turning left. The results are shown in Figure 3(a) and Figure 3(b). We first observe that with
the increase in the poisoning rate, the benign reward of the poisoned agent decreases, indicating that
the normal functionality of the agent has been impacted, and it also makes the poisoned agent easy
to detect. Meanwhile, a higher poisoning rate leads to an increase in the poisoned MVR, which is
expected since the agent is trained with more poisoned trajectories, reinforcing its recognition of the
trigger pattern. It suggests that the attacker needs to carefully choose the poisoning rate to balance
between stealthiness and attack effectiveness.

Negative training. To validate the necessity of our negative training design, we remove the negative
training step and directly train the poisoned agent without patch trajectories. This variation is denoted
as w/o neg. As discussed in Section 3.3, we consider all trajectories whose TL evaluation score is
below a certain threshold as patch trajectories. We use patch trajectories and non-trigger trajectories
interchangeably to denote the same concept. We record the configurations of those attack vehicles
that generate the patch trajectories for further testing. During testing, we deploy the attack vehicles
using these recorded configurations and evaluate over 100 episodes. We measure the MVR and
cumulative reward, which are referred to as F-MVR and non-trigger reward. A clean pattern in Table 5
is that without the negative training, the MVR of the poisoned agent in the presence of non-trigger
trajectories is significantly high, even reaching 100%. Similarly, the reward is low, indicating that the
agent is influenced and exhibits the target action even when the trigger is absent. These observations
suggest that without negative training, the poisoned agent is easily misled by non-trigger trajectories,
highlighting the critical role of negative training in filtering out such corner cases to enhance the
attack’s stealthiness and precision. Moreover, we observe that the inclusion of patch trajectories does
not negatively impact the benign performance of the poisoned agent. The results of other metrics are
shown in Table 7 in the Appendix.

Number of attack vehicles. As shown in Figure 3(c), the benign reward remains relatively stable
and insensitive to the number of attack vehicles, indicating that additional AVs do not significantly
degrade the agent’s performance under benign conditions. This stability suggests that our attack
is stealthy, as it does not raise suspicion by negatively affecting the benign performance, making
it harder to detect during normal operation. On the other hand, Figure 3(d) demonstrates that as
the number of AVs increases, there is a clear decline in P-MVR. This indicates that the attack’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.10 0.20 0.30 0.400

50

100

150

200

250

B
en

ig
n

re
w

ar
d

268.14
256.31

180.42

67.35

218.56
200.38

160.31

60.19

Coptidice
BC

(a) Poisoning rate vs. be-
nign reward.

0.10 0.20 0.30 0.400.0

0.2

0.4

0.6

0.8

1.0

P-
M

V
R

Coptidice
BC

(b) Poisoning rate vs. P-
MVR.

1 2 3 4150

200

250

300

350

400

B
en

ig
n

re
w

ar
d

391.13 388.06 387.44 380.16

212.33 210.52 208.75 207.56

Coptidice
BC

(c) Number of AV vs.
benign reward.

1 2 3 40.2

0.4

0.6

0.8

1.0

P-
M

V
R

Coptidice
BC

(d) Number of AV vs. P-
MVR.

Figure 3: Ablation study results. The first two figures show the influence of different poisoning rates on the
benign reward of the poisoned agent and MVR when the trigger appears (P-MVR). The last two figures show the
influence of the number of attacker vehicles on the same two metrics. We compare two offline RL algorithms,
with the blue and red dashed lines representing the clean agent’s rewards for each algorithm.

effectiveness diminishes when more vehicles are involved. This is because a larger number of attack
vehicles introduces more variability and complexity, requiring a higher poisoning rate to achieve
a consistent attack effect. When the number of attack vehicles is small, the trigger effect is more
concentrated, leading to a stronger attack. However, as more vehicles are included, the attack trigger
becomes diluted, thereby reducing the overall impact of the attack. In summary, while the benign
reward remains unaffected by the number of attack vehicles, demonstrating the stealthy nature of
our approach, there is a trade-off with the P-MVR. Increasing the number of AVs requires a more
concentrated attack to maintain the same level of success, as the complexity of the environment
increases.

Dynamics model & Threshold of TL score. We also vary the parameters of the dynamics model
within the attacker car to mimic different types of vehicles, examining how changes in the dynamics
model influence the effectiveness of our proposed attack. Additionally, we conduct sensitivity tests
on the threshold of the TL score used during our negative training. Due to space limits, detailed setup
and results can be found in Appendix D.2.

5 DISCUSSION

We propose a novel backdoor attack that leverages multi vehicles’ trajectory as triggers to attack
the end-to-end AD systems. To automatically generate complex trigger trajectories, we design a
two-phrase framework, empowered by the behavior model and temporal logic. We further improve the
poisoned training process with negative training to make poisoned agents’ response more precisely to
only triggers. In this paper, we consider RL-based driving agents as the instantiation of end-to-end AD
systems. Existing works also explored module-based planning-oriented AD systems (Hu et al., 2023)
to achieve self-driving. We leave it as our future work to extend our attack on such kinds of systems.
Moreover, our current temporal logic framework includes one specification that evaluates whether
the vehicle arrives at a specific time range. We aim to design more diverse specifications (Arechiga,
2019; Zhou et al., 2023) that can support our framework to define more complex behaviors among
the vehicles. Finally, the rapid development of large language model (LLM) provides the possibility
to generate safety-critical scenarios that help AV testing (Wang et al., 2024), inspired by this line
of work, we will explore how to combine with LLM to generate both scenarios and trajectories to
comprehensively test AV systems.

6 CONCLUSION

In this paper, we demonstrate a novel approach to enhancing the security testing of autonomous
driving systems by introducing realistic, trajectory-based backdoor triggers. Through the strategic
manipulation of vehicle behaviors and the application of temporal logic for evaluation, we have shown
that it is not only feasible to generate and deploy dynamic triggers but also effective in revealing
vulnerabilities within end-to-end autonomous driving systems. Our negative training strategy further
improves the stealthiness of these attacks, making them difficult to detect and mitigate with traditional
security measures. Through extensive empirical experiments, we effectively demonstrated the
robustness and adaptability of our proposed attack using various trigger and target action designs.
Moreover, our experiments against existing defense mechanisms and a detailed ablation study validate
the design choices of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. Casadi: a
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 2019.

Nikos Arechiga. Specifying safety of autonomous vehicles in signal temporal logic. In IEEE
Intelligent Vehicles Symposium (IV), 2019.

Shubham Bharti, Xuezhou Zhang, Adish Singla, and Jerry Zhu. Provable defense against backdoor
policies in reinforcement learning. NeurIPS, 2022.

Yulong Cao, Chaowei Xiao, Anima Anandkumar, Danfei Xu, and Marco Pavone. Advdo: Realistic
adversarial attacks for trajectory prediction. In ECCV, 2022.

Yulong Cao, Danfei Xu, Xinshuo Weng, Zhuoqing Mao, Anima Anandkumar, Chaowei Xiao, and
Marco Pavone. Robust trajectory prediction against adversarial attacks. In CoRL, 2023.

Runqi Chai, Derong Liu, Tianhao Liu, Antonios Tsourdos, Yuanqing Xia, and Senchun Chai. Deep
learning-based trajectory planning and control for autonomous ground vehicle parking maneuver.
IEEE Transactions on Automation Science and Engineering, 2022.

Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, and Fabien Moutarde. Gri: General
reinforced imitation and its application to vision-based autonomous driving. Robotics, 2023.

Xuan Chen, Wenbo Guo, Guanhong Tao, Xiangyu Zhang, and Dawn Song. Bird: generalizable
backdoor detection and removal for deep reinforcement learning. NeurIPS, 2023a.

Xuan Chen, Guanhong Tao, and Xiangyu Zhang. Dynamics model based adversarial training for
competitive reinforcement learning. In Multi-Agent Security Workshop, NeurIPS, 2023b.

Yilun Chen, Chiyu Dong, Praveen Palanisamy, Priyantha Mudalige, Katharina Muelling, and John M
Dolan. Attention-based hierarchical deep reinforcement learning for lane change behaviors in
autonomous driving. In CVPR Workshops, 2019.

Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space trojan attack of
neural networks by controlled detoxification. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion models? In CVPR,
2023.

Daniel Coelho and Miguel Oliveira. A review of end-to-end autonomous driving in urban environ-
ments. Ieee Access, 2022.

Rowan Dempster, Mohammad Al-Sharman, Derek Rayside, and William Melek. Real-time unified
trajectory planning and optimal control for urban autonomous driving under static and dynamic
obstacle constraints. In ICRA, 2023.

Charles Desjardins and Brahim Chaib-Draa. Cooperative adaptive cruise control: A reinforcement
learning approach. IEEE Transactions on intelligent transportation systems, 2011.

Wenhao Ding, Chejian Xu, Mansur Arief, Haohong Lin, Bo Li, and Ding Zhao. A survey on
safety-critical driving scenario generation—a methodological perspective. IEEE Transactions on
Intelligent Transportation Systems, 2023a.

Xinpeng Ding, Jianhua Han, Hang Xu, Wei Zhang, and Xiaomeng Li. Hilm-d: Towards high-
resolution understanding in multimodal large language models for autonomous driving. arXiv
preprint arXiv:2309.05186, 2023b.

E Allen Emerson. Temporal and modal logic. In Formal Models and Semantics. Elsevier, 1990.

Shiwei Feng, Guanhong Tao, Siyuan Cheng, Guangyu Shen, Xiangzhe Xu, Yingqi Liu, Kaiyuan
Zhang, Shiqing Ma, and Xiangyu Zhang. Detecting backdoors in pre-trained encoders. In CVPR,
2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. Adversarial
policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

Chen Gong, Zhou Yang, Yunpeng Bai, Junda He, Jieke Shi, Kecen Li, Arunesh Sinha, Bowen Xu,
Xinwen Hou, David Lo, and Tianhao Wang. Baffle: Hiding backdoors in offline reinforcement
learning datasets. In 2024 IEEE Symposium on Security and Privacy (SP), 2024.

Junfeng Guo, Ang Li, Lixu Wang, and Cong Liu. Policycleanse: Backdoor detection and mitigation
for competitive reinforcement learning. In ICCV, 2023.

Wencheng Han, Dongqian Guo, Cheng-Zhong Xu, and Jianbing Shen. Dme-driver: Integrating human
decision logic and 3d scene perception in autonomous driving. arXiv preprint arXiv:2401.03641,
2024.

Xingshuo Han, Guowen Xu, Yuan Zhou, Xuehuan Yang, Jiwei Li, and Tianwei Zhang. Physical
backdoor attacks to lane detection systems in autonomous driving. In Proceedings of the 30th
ACM International Conference on Multimedia, 2022.

Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and Nicolas Papernot.
On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint
arXiv:2002.11497, 2020.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In CVPR, 2023.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. arXiv preprint arXiv:2202.03423, 2022.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In ICRA, 2019.

Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. Trojdrl: evaluation of backdoor
attacks on deep reinforcement learning. In DAC, 2020.

Vince Kurtz and Hai Lin. Mixed-integer programming for signal temporal logic with fewer binary
variables. IEEE Control Systems Letters, 2022.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung
Kim, and Arthur Guez. COptiDICE: Offline constrained reinforcement learning via stationary
distribution correction estimation. In ICLR, 2022.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack
with sample-specific triggers. In CVPR, 2021.

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable imitative reinforcement
learning for vision-based self-driving. In ECCV, 2018.

Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. Condlanenet: a top-to-down lane detection
framework based on conditional convolution. In CVPR, 2021.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In NDSS, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wenhao
Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement learning.
arXiv preprint arXiv:2306.09303, 2023.

Zhenyang Ni, Rui Ye, Yuxi Wei, Zhen Xiang, Yanfeng Wang, and Siheng Chen. Physical backdoor
attack can jeopardize driving with vision-large-language models. arXiv preprint arXiv:2404.12916,
2024.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks. arXiv preprint arXiv:1712.03632, 2017.

Mozhgan Pourkeshavarz, Mohammad Sabokrou, and Amir Rasouli. Adversarial backdoor attack by
naturalistic data poisoning on trajectory prediction in autonomous driving. In CVPR, 2024.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Onion: A simple
and effective defense against textual backdoor attacks. arXiv preprint arXiv:2011.10369, 2020.

Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

Stefan Schaal. Learning from demonstration. NeurIPS, 1996.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 2022.

Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced autonomous
driving using interpretable sensor fusion transformer. In CoRL, 2023a.

Hao Shao, Letian Wang, Ruobing Chen, Steven L Waslander, Hongsheng Li, and Yu Liu. Reason-
net: End-to-end driving with temporal and global reasoning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 13723–13733, 2023b.

Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing Ma,
and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm optimization. In
ICML, 2021.

Ruoyu Song, Muslum Ozgur Ozmen, Hyungsub Kim, Raymond Muller, Z Berkay Celik, and Antonio
Bianchi. Discovering adversarial driving maneuvers against autonomous vehicles. In USENIX
Security 23, 2023.

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In CVPR, 2022.

Guanhong Tao, Zhenting Wang, Shiwei Feng, Guangyu Shen, Shiqing Ma, and Xiangyu Zhang.
Distribution preserving backdoor attack in self-supervised learning. In IEEE Symposium on
Security and Privacy. IEEE, 2024.

Mehdi Testouri, Gamal Elghazaly, and Raphael Frank. Towards a safe real-time motion planning
framework for autonomous driving systems: An mppi approach. arXiv preprint arXiv:2308.01654,
2023.

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free reinforcement
learning for urban driving using implicit affordances. In CVPR, 2020.

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical observations
and microscopic simulations. Physical review E, 2000.

Cumhur Erkan Tuncali, Georgios Fainekos, Danil Prokhorov, Hisahiro Ito, and James Kapinski.
Requirements-driven test generation for autonomous vehicles with machine learning components.
IEEE Transactions on Intelligent Vehicles, 2019.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE symposium on security and privacy (SP), 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas, Mengye
Ren, and Raquel Urtasun. Advsim: Generating safety-critical scenarios for self-driving vehicles.
In CVPR, 2021a.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software
testing with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering, 2024.

Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song. Backdoorl: Backdoor
attack against competitive reinforcement learning. arXiv preprint arXiv:2105.00579, 2021b.

Zikang Xiong and Joe Eappen. Diffspec: A differentiable logic specification framework, 2023. URL
https://github.com/ZikangXiong/diff-spec/.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kwan-Yee K Wong, Zhenguo Li, and
Hengshuang Zhao. Drivegpt4: Interpretable end-to-end autonomous driving via large language
model. IEEE Robotics and Automation Letters, 2024.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on
state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Qingzhao Zhang, Shengtuo Hu, Jiachen Sun, Qi Alfred Chen, and Z Morley Mao. On adversarial
robustness of trajectory prediction for autonomous vehicles. In CVPR, 2022.

Xinwei Zhang, Aishan Liu, Tianyuan Zhang, Siyuan Liang, and Xianglong Liu. Towards robust
physical-world backdoor attacks on lane detection. arXiv preprint arXiv:2405.05553, 2024.

Yuan Zhou, Yang Sun, Yun Tang, Yuqi Chen, Jun Sun, Christopher M Poskitt, Yang Liu, and Zijiang
Yang. Specification-based autonomous driving system testing. IEEE Transactions on Software
Engineering, 2023.

14

https://github.com/ZikangXiong/diff-spec/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A ETHICAL CONSIDERATION

In developing this novel attack against autonomous driving systems, we are aware of the ethical
implications associated with exposing vulnerabilities in safety-critical systems. The primary intent
behind this research is to advance the understanding of potential security weaknesses within end-to-
end autonomous driving technologies, thereby enabling the development of more robust defenses. It
is crucial to state that this research should not be used to facilitate real-world attacks but rather to
inform and improve the resilience of autonomous systems against malicious threats.

To mitigate ethical risks, we have implemented several safeguards. Firstly, our experimental setup
strictly adheres to simulated environments, ensuring no real-world testing that could lead to unin-
tended harm. Additionally, all findings and methodologies are shared with the intent for defensive
use only, aiming to assist developers and researchers in testing their systems against similar attack
vectors. Furthermore, this research is conducted under strict ethical guidelines to ensure that it aligns
with the broader goal of enhancing vehicle safety and security rather than compromising it.

B RL EXPERIMENT SETUP

Simulator. MetaDrive simulator provides off-the-self RL environments for end-to-end driving. We
follow the basic setting in MetaDrive. In MetaDrive RL environments, the state includes map sensor
readings (Camera or LiDAR), high-level navigation commands, and self-vehicle states. Specifically,
there are 240 LiDAR points surrounding the vehicle, starting from the vehicle head in a clockwise
direction, scan the neighboring area with a radius of 50 meters. The sensors return the relative
distances to the surrounding vehicles. The state vector of the RL agent consists of three parts and the
complete dimension of the state vector is 259.

• Ego State: current states such as the steering, heading, and velocity.

• Navigation: the navigation information that guides the vehicle toward the destination.
Concretely, MetaDrive first computes the route from the spawn point to the destination of
the ego vehicle. Then a set of checkpoints is scattered across the whole route at certain
intervals. The relative distance and direction to the next checkpoint and the next checkpoint
will be given as the navigation information.

• Surrounding: the surrounding information is encoded by a vector containing the Lidar-like
cloud points. We use 72 lasers to scan the neighboring area with a radius of 50 meters.

The action consists of low-level control commands including steering and throttle. MetaDrive
receives normalized action as input to control each target vehicle: a = [a1, a2]

T ∈ [−1, 1]2. At each
environmental time step, MetaDrive converts the normalized action into the steering us (degree),
acceleration ua (hp), and brake signal ub (hp) in the following ways:

• us = Smax(a1)

• ua = Fmax max(0, a2)

• ub = −Bmax min(0, a2)

wherein Smax (degree) is the maximal steering angle, Fmax (hp) is the maximal engine force, and
Bmax (hp) is the maximal brake force.

MetaDrive uses a compositional reward function as R = Rdriving + Rcrash.vehicle.penalty +
Rout.of.road.penalty. Here, the driving reward Rdriving = dt − dt−1, wherein the dt and dt−1

denote the longitudinal coordinates of the target vehicle in the direction of consecutive time steps,
providing a dense reward to encourage the agent to move forward. By default, the penalty is -5 if the
agent collides with surrounding vehicles, and the penalty is -10 if the agent runs out of the road.

Maps for different tasks in MetaDrive. In Figure 4, we show the maps of three difficulty-level
tasks used in our experiments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Easy. (b) Medium. (c) Hard.

Figure 4: Visualization of different difficulty level environments in MetaDrive.

C ADDITIONAL TECHNICAL DETAILS

C.1 DETAILS OF OUR PROPOSED ATTACK

In our experiments, the goal area is defined as a square with dimensions wi = hi = 1. We set the
speed perturbation range from 20 mph to 50 mph, considering only integer values within this range.
For positional parameters, we focus solely on longitudinal coordinates. Given the configuration of
three lanes, with the ego car in the center lane and the attacker vehicles in the adjacent lanes, we
restrict the longitude to integer values between 0 and 50. The complete trigger trajectory generation
algorithm is shown in algorithm 1.

D ADDITIONAL EXPERIMENTS

D.1 STEALTHINESS OF THE TRIGGER TRAJECTORIES

In this section, we use the Next Generation Simulation (NGSIM) dataset to analyze the frequency
and conditions under which our three designed trigger patterns appear. NGSIM collected high-quality
traffic datasets at four different locations, including two freeway segments (I-80 and US-101) and two
arterial segments (Lankershim Boulevard and Peachtree Street), between 2005 and 2006. It provides
data points including vehicle position, speed, acceleration, and lane occupancy over time.

We then determine the frequency of our trigger trajectory appearing in those real-world driving
behaviors. We design an algorithm that utilizes time-windowed proximity checks between the
vehicles. Take synchronous bypass as an example. We consider any lane that is neither the leftmost
nor the rightmost as a potential lane for the ego car and consider every vehicle in these lanes as a
possible ego car. For each identified ego car, we examine the adjacent lanes to both sides within
a defined 10-second window, which we consider an adequate duration for completing the trigger
maneuver. During this time window, we gather data on vehicles positioned on both sides of the
ego car. Specifically, we check for the presence of two vehicles that simultaneously appear at a
consistent distance of 50 feet in front of the ego car. Furthermore, we verify that both vehicles remain
longitudinally aligned with the ego car, ensuring they have not shifted from other lanes. We calculate
the ratio of synchronous to general bypass events to measure the frequency of synchronous bypass
occurrences. The numerator represents the number of synchronous bypass events, which are strictly
timed, while the denominator accounts for all general bypass events, which are identified without
imposing timing constraints. Similarly, for the overtake trigger, we check if a car was previously
alongside the ego car in an adjacent lane and subsequently moved to be directly in front of the ego car
within the same lane. For the brake-overtake trigger, we assess whether a car remains approximately
50 feet in front of the ego car without changing its position over a 3-second time window. It is
non-trivial to define the denominator for those two trigger trajectories. To generally approximate the
ratio of the left two triggers, we use the same denominator with our synchronous bypass trigger and
we leave it as a future work to explore more related works to better measure the frequency of the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 TL-based Trigger Trajectory Generation

1: Input: the number of attacker cars n, goal position set for each attacker car G, time window set
for each attacker car T , initial configuration (speed vi, position pi, behavior model πi) for each
attacker car i, qualified configuration set C, required maximum configurations c, negative training
threshold τ , patch trajectory configuration set P , maximum number of iteration K.

2: C ← ∅
3: for each time step t do ▷ Obtain ego car’s position.
4: Collect ego car’s position based on velocity and direction
5: end for
6: for each car i = 1 to n do ▷ Define TL specification for each attacker car based on trigger

pattern.
7: Set ϕi ← Reach(Gi, (1, 1)).eventually([Ti[0], Ti[1]])
8: Set initial parameters, (speed vi, position pi, behavior model πi) for car i
9: end for

10: for k = 1, ..,K do
11: for t = 1, ..., T do
12: Deploy the attacker cars based on (vi, pi, πi) and obtain the trajectory of each car i
13: end for
14: Evaluate whether ϕi for car i is satisfied, i.e., ϕi > 0 for the corresponding trajectory
15: if ∀ϕi > 0 then
16: C ← C ∪ {i : (vi, pi, πi) for i = 1, .., n}
17: else if ∀ϕi < τ then
18: P ← P ∪ {i : (vi, pi, πi) for i = 1, .., n}
19: else
20: for each car i do
21: Perturb configurations (vi, pi, πi).
22: end for
23: end if
24: if |C| > c then
25: break
26: end if
27: end for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: The frequency of different trigger patterns appears in the NGSIM dataset.

Sync-bypass Overtake Brake-overtake

Frequency 0.130% 0.100% 0.065%

Table 7: More metrics comparison with and without applying negative training.

Task Trigger pattern
P-MVR ↑ MVR ↓ Poisoned reward ↓

w/o neg. w. neg. w/o neg. w. neg. w/o neg. w. neg.

Easy Sync-bypass 1.00 1.00 0.00 0.00 7.16 8.23
Overtake 1.00 1.00 0.00 0.00 17.36 15.39

Medium Sync-bypass 1.00 1.00 0.32 0.33 53.43 50.65
Overtake 1.00 1.00 0.27 0.29 40.19 45.82

Hard Sync-bypass 1.00 1.00 0.15 0.15 44.76 42.58
Overtake 0.85 0.89 0.20 0.21 40.05 38.39

trigger. Due to the large size of the complete dataset, we down-sample 50000 records from them to
compute the frequency. We use the smoothed version of NGSIM for more accurate result.1

The statistics of our designed trigger trajectories are in Table 6. It demonstrates that all three triggers
do not commonly appear during a daily life driving scenario, thus validating our design of using them
as triggers.

D.2 MORE ABLATION STUDY

Dynamics model. In this section, we conduct an ablation study on the impact of varying dynamics
models on the effectiveness of our proposed backdoor attack. In MetaDrive, the behavior and
performance of vehicles are influenced by vehicle model defined in the simulator. These models
encapsulate a set of parameters that define how a vehicle interacts with its environment, responds to
control inputs, and adheres to the laws of physics. Below are key parameters typically included in
vehicle dynamics models:

• Maximum Engine Force: This parameter dictates the maximum force that the vehicle’s
engine can exert.

• Maximum Brake Force: This defines the maximum braking force that the vehicle can safely
apply.

• Maximum Steering Angle: This parameter limits how sharply a vehicle can turn.

• Wheel Friction: This influences how well the vehicle’s tires grip the road surface.

• Maximum Speed: This defines the top speed a vehicle can achieve.

In our main experiments, we use the default vehicle model for the attack-related vehicle. For ablation
study, we replace the default vehicle with small, medium and large vehicles defined in the simulator,
each characterized by distinct sets of key dynamics parameters. We keep the vehicle model of the
ego car consistent, and the poisoning rate is the same with Table 1, which is 15%.

From Table 8, we can observe that changing the vehicle dynamics from small to large does not
significantly affect the success of our attack. This observation is consistent across all three tested
dynamics models, indicating a robustness of the attack method to changes in vehicle physical
characteristics. Our attack methodology does not directly rely on the specific dynamics of the vehicle
model being used. Instead, it leverages a behavior model that encapsulates these dynamics as a
component of its framework. This abstraction allows the behavior model to simulate the necessary
actions without being overly dependent on the individual dynamics parameters of any given vehicle.
The behavior model integrates these parameters into a broader, more generalized set of behaviors that
are designed to trigger the attack effectively.

1https://github.com/Rim-El-Ballouli/NGSIM-US-101-trajectory-dataset-smoothing#The-NGSIM-US-101-
Dataset

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Ablation study on dynamics model on easy-level task.

Model Trigger pattern
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Small
Sync-bypass 371.50 9.50 1.55 110.53 0.00 1.00

Overtake 388.06 365.30 17.25 0.31 1.65 102.21 0.00 0.00 1.00
Brake-overtake 387.00 134.50 0.87 69.56 0.94 0.88

Medium
Sync-bypass 312.60 44.25 0.97 64.69 0.12 1.00

Overtake 319.06 305.20 40.10 0.28 1.40 60.13 0.23 0.20 1.00
Brake-overtake 305.50 71.40 1.45 71.20 0.31 0.75

Large
Sync-bypass 268.85 53.40 1.48 85.29 0.30 0.97

Overtake 267.39 257.00 47.95 0.37 1.18 80.52 0.18 0.28 0.89
Brake-overtake 248.90 78.65 1.70 71.32 0.25 0.53

Table 9: Ablation study on the threshold of TL specification

Threshold Trigger pattern
Reward ADE MVR

Benign Poisoned Benign Poisoned Benign Poisoned

-10
Sync-bypass 375.94 10.59 0.57 107.14 0.00 0.91

Overtake 352.49 29.94 1.30 103.02 0.00 0.90
Brake-overtake 388.76 115.21 1.05 76.05 0.00 0.79

-15
Sync-bypass 368.25 8.23 1.47 107.14 0.00 1.00

Overtake 359.65 15.39 1.59 103.02 0.00 1.00
Brake-overtake 385.25 130.98 0.92 76.05 0.00 0.90

-20
Sync-bypass 294.28 46.88 0.57 83.32 0.00 1.00

Overtake 312.01 42.17 0.24 80.31 0.00 1.00
Brake-overtake 306.19 66.23 1.97 74.57 0.00 0.89

Negative training. Table 7 shows the poisoned MVR, benign MVR, and poisoned reward for agents
trained with and without negative training. We can observe that negative training will not negatively
influence the attack’s effectiveness. Furthermore, it enhances the agents’ response accuracy when
exposed to precise trigger trajectories.

Threshold of TL specification. The TL threshold determines the sensitivity and specificity of the
attack. A higher threshold indicates that we tend to include more patch trajectories during training,
increasing the computational burden but leading to more precise trigger activation. However, an
excessively high threshold, e.g. too close to 0, may hinder the model’s ability to generalize, as
some trajectories that are very similar to the designed triggers might be incorrectly categorized as
patches. Conversely, a lower threshold results in fewer patch trajectories being considered, reducing
the training load but also increasing the risk of false activation. Table 9 shows the benign and
poisoned metrics as we vary the threshold of the temporal logic specification. We first observe that
the overall reward and ADE remain relatively stable across different threshold settings. However,
the poisoned MVR is smaller with a lower threshold. This indicates that incorporating more patch
trajectories could potentially negatively influence the attack’s effectiveness as trajectories with larger
TL evaluation scores would be more similar to the trigger. The model could be confused about that
under two very similar trajectories, one is to execute target action but another is to going forward,
thus hurting the overall effectiveness.

D.3 INFLUENCE OF VELOCITY ON ATTACK EFFECTIVENESS.

During our tests, we observed that trigger events—for example, two cars synchronously bypassing at
a speed of 60—could activate the ego car’s target action across a broad range of speeds from 25 mph
to 80 mph. We tried to add patch trajectories that contain bypassing behavior with different velocities
but it did not succeed in isolating the trigger effect to a specific speed of 60 mph as initially intended.
Given these challenges, a precise velocity specification does not currently serve as a reliable trigger.
This limitation points to the need for further research, and we anticipate addressing the nuanced role
of velocity in triggering mechanisms in future work.

19

	Introduction
	Related work
	Methodology
	Preliminary
	Overview
	Technique details

	Evaluation
	Experiment setup
	Attack effectiveness
	Defense and mitigation
	Ablation study

	Discussion
	Conclusion
	Ethical Consideration
	RL experiment setup
	Additional Technical Details
	Details of our proposed attack

	Additional Experiments
	Stealthiness of the trigger trajectories
	More ablation study
	Influence of velocity on attack effectiveness.

