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Abstract

Probabilities of causation (PoC) are valuable con-
cepts for explainable artificial intelligence and
practical decision-making. PoC are originally de-
fined for scalar binary variables. In this paper, we
extend the concept of PoC to continuous treat-
ment and outcome variables, and further gener-
alize PoC to capture causal effects between mul-
tiple treatments and multiple outcomes. In addi-
tion, we consider PoC for a sub-population and
PoC with multi-hypothetical terms to capture more
sophisticated counterfactual information useful
for decision-making. We provide a nonparamet-
ric identification theorem for each type of PoC we
introduce. Finally, we illustrate the application of
our results on a real-world dataset about education.

1 INTRODUCTION

Probabilities of causation (PoC) are a family of probabil-
ities quantifying whether one event was the real cause of
another in a given scenario [Robins and Greenland, 1989,
Pearl, 1999, Tian and Pearl, 2000, Pearl, 2009, Kuroki and
Cai, 2011, Dawid et al., 2014, 2016, 2017, Murtas et al.,
2017, Hannart and Naveau, 2018, Shingaki and Kuroki,
2021, Kawakami et al., 2023b]. PoC are valuable quantities
for decision-making [Li and Pearl, 2019, 2022] and for ex-
plainable artificial intelligence (XAI) that aims to reduce the
opaqueness of AI-based decision-making systems [Galhotra
et al., 2021, Watson et al., 2021]. Pearl [1999] introduced
three types of PoC over binary events, namely the proba-
bility of necessity and sufficiency (PNS), the probability
of necessity (PN), and the probability of sufficiency (PS).
They are defined based on the joint probability distribution
of two potential outcomes. Tian and Pearl [2000] provided
the bounds of PNS, PN, and PS in terms of observational
and experimental data and showed that PNS, PN, and PS

are identifiable under the assumptions of exogeneity and
monotonicity. The problem of bounding PoC was further
extended in [Li and Pearl, 2019, 2022, 2023, Mueller et al.,
2022]. However, all these works are restricted to binary treat-
ment and outcome. More recently, Li and Pearl [2024a,b]
extended the problem of bounding PoC to multi-valued
discrete treatment and outcome and provided bounds for
various variants of PoC.

In this paper, we aim to extend the concept of PoC to contin-
uous treatment and outcome. There is considerable interest
in continuous treatment and outcome in causal inference
[Hirano and Imbens, 2005, Kennedy et al., 2017, Bahadori
et al., 2022], e.g., dose-response studies [Wong and Lachen-
bruch, 1996, Emilien et al., 2000, Ivanova et al., 2008]
and policy evaluations with continuous actions [Kallus and
Zhou, 2018, Krishnamurthy et al., 2019, Majzoubi et al.,
2020]. For instance, doctors want to know the dose-response
relationship between the amount of insulin and the blood
sugar level.

We provide a nonparametric identification theorem for each
type of PoC we introduced. The identification of binary PoC
relies on a monotonicity assumption [Tian and Pearl, 2000].
We generalize the monotonicity assumption over binary
treatment and outcome to continuous settings. We discuss
the relationship of our proposed monotonicity assumption
with another commonly used assumption in the causal in-
ference literature - monotonicity over structural functions
[Heckman and Vytlacil, 1999, Vytlacil, 2002, Heckman
and Vytlacil, 2005, Chernozhukov and Hansen, 2005, Cher-
nozhukov et al., 2007, Imbens and Newey, 2009].

We further extend the concept of PoC to capture causal ef-
fects between multiple treatments and multiple outcomes,
which are drawing growing interests [Kang and Bates,
1990, Zhang, 1998, Sammel et al., 1999, Segal and Xiao,
2011, Lee et al., 2012, Kennedy et al., 2019, Rimal et al.,
2019]. For instance, Hannart and Naveau [2018] investi-
gated causal links between anthropogenic forcings, e.g.,
greenhouse gases (carbon dioxide, methane, nitrous oxide,



halocarbons) emission and deforestation, and the observed
climate changes, e.g., spatial–temporal vector of Earth sur-
face temperature. They used a multivariate linear regression
model with Gaussian noise to evaluate PoC.

We also introduce more complicated variants of PoC and
provide identification theorems for them. They include PoC
for a sub-population with specific covariates information
considered by [Li and Pearl, 2022] and PoC with multi-
hypothetical terms studied by Li and Pearl [2024a] for dis-
crete treatment and outcome. These variants of PoC capture
more sophisticated counterfactual information useful for
decision-making.

Finally, we show an application of our results to a real-world
dataset on education.

2 BACKGROUND AND NOTATION

We represent each variable with a capital letter (X) and
its realized value with a small letter (x). Let I(x) be an
indicator function that takes 1 if x is true; and 0 if x is false.
Denote ΩY be the domain of Y , E[Y ] be the expectation of
Y , P(Y ≤ y) be the cumulative distribution function (CDF)
of continuous variable Y , and P(Y ) be the probability of
discrete variable Y . We denote X ⊥⊥ Y |C if X and Y are
conditionally independent given C.

Total order over vector space. We denote a total order
on vectors of variables by ≺. For example, according to
the lexicographical order [Harzheim, 2005], we order two
dimensional vectors (y1, y2) ≺lexi (y′1, y

′
2) if “y1 < y′1”,

or “y1 = y′1 and y2 < y′2”. A formal definition of the
lexicographical order is given in Appendix A.

Structural Causal Models (SCM). We use the language
of SCMs as our basic semantic and inferential framework
[Pearl, 2009]. An SCM M is a tuple ⟨V ,U ,F ,PU ⟩, where
U is a set of exogenous (unobserved) variables following
a distribution PU , and V is a set of endogenous (observ-
able) variables whose values are determined by structural
functions F = {fVi

}Vi∈V such that vi := fVi
(paVi

,uVi
)

where PAVi ⊆ V and UVi ⊆ U . Each SCM M induces an
observational distribution PV over V , and a causal graph
G(M) over V in which there exists a directed edge from
every variable in PAVi

to Vi. An intervention of setting a
set of endogenous variables X to constants x, denoted by
do(x), replaces the original equations of X by the constants
x and induces a sub-model Mx. We denote the potential
outcome Y under intervention do(x) by Yx(u), which is
the solution of Y in the sub-model Mx given U = u.

Probabilities of Causation (PoC). Let X be a binary treat-
ment taking values x0 and x1, and Y be a binary outcome
taking values y0 and y1. PoC are defined as follows:

Definition 2.1 (PoC). Probability of necessity and suffi-
ciency (PNS), probability of necessity (PN), and probability

of sufficiency (PS) are defined by [Pearl, 1999]:

PNS =∆ P(Yx0 = y0, Yx1 = y1),

PN =∆ P(Yx0 = y0|Y = y1, X = x1),

PS =∆ P(Yx1 = y1|Y = y0, X = x0).

(1)

Tian and Pearl [2000] show that these PoC are identified
under the following assumptions.

Assumption 2.1 (Exogeneity). Yx0
⊥⊥ X and Yx1

⊥⊥ X .

Assumption 2.2 (Monotonicity). P(Yx0
= y1, Yx1

=
y0) = 0.

Under Assumptions 2.1 and 2.2, the PoC are identifiable by
[Tian and Pearl, 2000]

PNS = P(Y = y1|X = x1)− P(Y = y1|X = x0),

PN =
P(Y = y1|X = x1)− P(Y = y1|X = x0)

P(Y = y1|X = x1)
,

PS =
P(Y = y1|X = x1)− P(Y = y1|X = x0)

P(Y = y0|X = x0)
.

(2)

3 POC FOR SCALAR CONTINUOUS
VARIABLES

For ease of understanding, we will start with a single treat-
ment variable X and a single outcome Y . We extend binary
PoC for continuous variables, extend the monotonicity As-
sumption 2.2 to continuous settings, and provide an identifi-
cation theorem.

3.1 POC DEFINITION

Let X be a continuous or discrete treatment variable, and
Y be a continuous or discrete outcome variable. We assume
the following SCM MS :

Y := fY (X,U), X := fX(ϵX), (3)

where U and ϵX are latent exogenous variables.

We make the following assumption.

Assumption 3.1 (Exogeneity). Yx ⊥⊥ X for all x ∈ ΩX .

We note that if ϵX ⊥⊥ U then the exogeneity holds, and
randomized controlled trials (RCT) on X ensure exogeneity.
Exogeneity implies P(Yx < y) = P(Y < y|X = x).

We define PoC for continuous or discrete X and Y as a
generalization of Definition 2.1.



Definition 3.1 (Probabilities of causation). For any x0, x1 ∈
ΩX and y ∈ ΩY , we define three types of PoC as below:1

PNS(y;x0, x1) =
∆ P(Yx0 < y ≤ Yx1),

PN(y;x0, x1) =
∆ P(Yx0 < y|y ≤ Y,X = x1),

PS(y;x0, x1) =
∆ P(y ≤ Yx1 |Y < y,X = x0).

(4)

PNS, PN, and PS are connected in the special case of binary
X:

Lemma 3.1. If X is binary, we have

PNS(y;x0, x1) = PN(y;x0, x1)P(y ≤ Y,X = x1)

+ PS(y;x0, x1)P(Y < y,X = x0).
(5)

Remark on the connection of Def. 3.1 with the binary
PoC in Def. 2.1: Suppose Y is binary with values y0 < y1,
then Def. 3.1 with y = y1 reduces to Def. 2.1. In general,
the value of y in Def. 3.1 can be interpreted as an outcome
threshold, such as the passing score for a test or a diagnostic
threshold for blood pressure or blood glucose levels. Def.
3.1 focuses on the necessity/sufficiency of treatment x1 w.r.t.
x0 to produce the event Y ≥ y. We may introduce a binary
outcome variable O = I(Y ≥ y). Then PNS(y;x0, x1) =
P(Ox0

= 0, Ox1
= 1), PN(y;x0, x1) = P(Ox0

= 0|O =
1, X = x1), and PS(y;x0, x1) = P(Ox1

= 1|O = 0, X =
x0). Therefore, Def. 3.1 reduces to the standard definition of
binary PoC over X and O. We note that this interpretation
of PNS matches the use of PNS in [Hannart and Naveau,
2018].

Although Def. 3.1 can be interpreted in terms of a binarized
outcome O = I(Y ≥ y). It is more natural and consistent
to have a formulation in terms of the original variable Y
rather than in terms of O. A major benefit of the proposed
formulation is that it can be naturally extended to study
more complex variants of PoC in Section 5 that are difficult
to formulate in terms of a binarized outcome.

When X and Y are discrete variables taking values
{x1, . . . , xP } and {y1, . . . , yQ}, Li and Pearl [2024a] de-
fined PNS by P(Yxi1

= yj1 , Yxi2
= yj2) (1 ≤ i1, i2 ≤ P ,

1 ≤ j1, j2 ≤ Q, i1 ̸= i2 and j1 ̸= j2). However, their
definition is not suitable for a continuous outcome Y .

Example 3.1. Consider the dose-response relationship be-
tween the blood sugar level (Y ) and the amount of insulin
(X). Let y be a blood sugar threshold, and x0, x1 be two
insulin amount (x0 > x1). A doctor may want to know the
probability (PNS) that the patient’s blood sugar level would
be greater than or equal to the threshold y had they taken x1

amount of insulin, and would be less than y had they taken
x0 insulin. PN represents the probability that the patient’s
blood sugar level would be less than y had they taken x0

1We can equally define PNS as PNS(y;x0, x1) =∆ P(Yx0 ≤
y < Yx1). We will stay with Definition 3.1 in this paper.

insulin when the patient took x1 insulin with sugar level
greater than or equal to y. PS represents the probability
that the patient’s blood sugar level would be greater than or
equal to y had they taken x1 insulin when the patient took
x0 insulin with sugar level less than y.

3.2 IDENTIFICATION ASSUMPTIONS

Tian and Pearl [2000] used montonicity Assumption 2.2 for
binary treatment and outcome to identify binary PoC. Here
we generalize this assumption to continuous and discrete
cases, and discuss connections with several commonly used
assumptions in the literature.

(I). Monotonicity over Yx. We first propose the following
assumption:

Assumption 3.2 (Strong Monotonicity over Yx). The po-
tential outcomes Yx satisfy, for any x0, x1 ∈ ΩX , either
"Yx0

(u) ≤ Yx1
(u) PU -almost surely for every u ∈ ΩU" or

"Yx1
(u) ≤ Yx0

(u) PU -almost surely for every u ∈ ΩU".

Note that we allow both monotonic increasing and decreas-
ing cases. It turns out that the PoC in Def. 3.1 can be identi-
fied under a weaker assumption:2

Assumption 3.3 (Monotonicity over Yx). The potential
outcomes Yx satisfy, for any x0, x1 ∈ ΩX and y ∈ ΩY ,

“either P(Yx0
< y ≤ Yx1

) = 0 or P(Yx1
< y ≤ Yx0

) = 0”.

Introducing a binarized outcome O = I(Y ≥ y), Assump-
tion 3.3 becomes “P(Ox0

= 0, Ox1
= 1) = 0 or P(Ox0

=
1, Ox1

= 0) = 0”. Assumption 3.3 is weaker than 3.2 since
P(Yx0

< Yx1
) = 0 implies P(Yx0

< y ≤ Yx1
) = 0 but not

vice versa.

Next, we discuss several related assumptions used in the
literature for various identification purposes.

(II). Monotonicity over fY . Monotonicity on U over struc-
tural function fY (x, U) has appeared in the instrumental
variable (IV) literature, e.g. [Vytlacil, 2002, Heckman and
Vytlacil, 1999, 2005].

Assumption 3.4 (Monotonicity over fY ). The function
fY (x, U) is either monotonic increasing on U for all
x ∈ ΩX or monotonic decreasing on U for all x ∈ ΩX

almost surely w.r.t. PU .

For example, Heckman and Vytlacil [2005] introduced the
latent index model Y := I[fY (X) ≥ U ] for a binary out-
come, which satisfies the above assumption.

(III). Strict monotonicity over fY . The following stronger
monotonicity assumption have also been used [Chesher,

2This assumption is not ”P(Yx0 < y ≤ Yx1) = 0 for any
x0, x1 ∈ ΩX and y ∈ ΩY ” or ”P(Yx1 < y ≤ Yx0) = 0 for any
x0, x1 ∈ ΩX and y ∈ ΩY .”



Trajectory (1)

Trajectory (2)
Yx = y

X = x0 X = x1

Yx

X

Figure 1: Trajectories for (1) Yx(uρ(y;x0)) and (2)
Yx(uρ(y;x1)).

2003, Chernozhukov and Hansen, 2005, Chernozhukov
et al., 2007, Imbens and Newey, 2009].

Assumption 3.5 (Strict monotonicity over fY ). The func-
tion fY (x, U) is either strictly monotonic increasing on U
for all x ∈ ΩX or strictly monotonic decreasing on U for all
x ∈ ΩX almost surely w.r.t. PU with supu∈ΩU

p(u) < ∞.

The condition supu∈ΩU
p(u) < ∞ means U is continuous

distribution. For example, the widely used additive noise
model Y = fY (X) + U [Newey and Powell, 2003, Singh
et al., 2019, Hartford et al., 2017, Xu et al., 2021, Kawakami
et al., 2023a] satisfies this assumption.

Relationship between the three assumptions. We obtain
that our proposed monotonicity Assumption 3.3 for contin-
uous and discrete cases is equivalent to the monotonicity
Assumption 3.4 over structural function fY (x, U) under the
following assumption:

Assumption 3.6. Potential outcome Yx has PDF pYx for
each x ∈ ΩX , and its support {y ∈ ΩY : pYx

(y) ̸= 0} is
the same for each x ∈ ΩX .

This assumption is reasonable for continuous variables. For
example, the linear regression model with Gaussian noise
in [Hannart and Naveau, 2018] satisfies this assumption.

Theorem 3.1. Under SCM MS and Assumption 3.6, As-
sumptions 3.3 and 3.4 are equivalent, and Assumption 3.5
is a strictly stronger requirement than 3.4.

3.3 IDENTIFICATION THEOREM

Next, we present an identification theorem. We denote the
conditional CDF

ρ(y;x) =∆ P(Y < y|X = x). (6)

Theorem 3.2 (Identification of PoC). Under SCM MS and
Assumptions 3.1, 3.3 (or 3.4, 3.5), and 3.6, PNS, PN, and

PS are identifiable by

PNS(y;x0, x1) = max{ρ(y;x0)− ρ(y;x1), 0},

PN(y;x0, x1) = max

{
ρ(y;x0)− ρ(y;x1)

1− ρ(y;x1)
, 0

}
,

PS(y;x0, x1) = max

{
ρ(y;x0)− ρ(y;x1)

ρ(y;x0)
, 0

} (7)

for any x0, x1 ∈ ΩX and y ∈ ΩY such that ρ(y;x1) < 1
and ρ(y;x0) > 0.

We can use the trajectories of potential outcomes to visu-
alize and explain the above identification result for PNS.
The trajectory {(x, Yx(u)) ∈ ΩX × ΩY ;∀x ∈ ΩX} repre-
sents potential outcome Yx(u) vs. X for the subject U = u.
Under Assumptions 3.3 (or 3.4, 3.5), the subjects’ trajec-
tories do not cross over each other (they may overlap).
We denote uρ(y;x) = sup{u : fY (x, u) < y} for any
x ∈ ΩX and y ∈ ΩY , and Yx(uρ(y;x)) is the potential
outcome for subject uρ(y;x). Consider the two trajectories
shown in Figure 1. Trajectory (1) {(x, Yx(uρ(y;x0))) ∈
ΩX × ΩY ;∀x ∈ ΩX} goes through the point (x0, y), and
Trajectory (2) {(x, Yx(uρ(y;x1))) ∈ ΩX × ΩY ;∀x ∈ ΩX}
goes through the point (x1, y). The trajectory of subject u
lies in the region between Trajectories (1) and (2) if and only
if Yx0

(u) < y ≤ Yx1
(u). Thus, we have PNS(y;x0, x1) =

P(Yx0
< y ≤ Yx1

) = P(Yx0
< y) − P(Yx1

< y), where
P(Yx0

< y) represents the probability of a subject’s trajec-
tory being below Trajectory (1) and P(Yx1 < y) represents
the probability of a subject’s trajectory being below Trajec-
tory (2).

4 POC FOR VECTOR CONTINUOUS
VARIABLES

In this section, we extend PoC to vectors of continuous or
discrete variables Y and X , and we consider PoC for a
sub-population with specific covariates information. The
benefits of considering the subject’s covariates include (i)
they reveal the heterogeneity of causal effects; and (ii) they
weaken identification assumptions.

4.1 CONDITIONAL POC DEFINITION

Let X , Y , and C be a set of continuous or discrete treatment
variables, outcome variables, and covariates, respectively.
We assume the following SCM MT :

Y := fY (X,C,U),X := fX(C, ϵX),C := fC(ϵC) (8)

The functions fY , fX , and fC are vector-valued functions.
ϵX , ϵC , and U are latent exogenous variables. We assume
that the domains ΩY and ΩU are totally ordered sets with
⪯. Let the dimensions of X,Y ,C,U be dX , dY , dC , dU .

We make the following assumption.



Assumption 4.1 (Conditional exogeneity). Y x ⊥⊥ X|C
for all x ∈ ΩX .

Conditional exogeneity implies P(Y x ≺ y|C = c) =
P(Y ≺ y|X = x,C = c) for any c ∈ ΩC .

We define the multivariate conditional PoC as below:

Definition 4.1 (Conditional PoC). For any x0,x1 ∈ ΩX ,
y ∈ ΩY , and c ∈ ΩC , we define conditional PoC by

PNS(y;x0,x1, c) =
∆ P(Y x0

≺ y ⪯ Y x1
|C = c),

PN(y;x0,x1, c) =
∆ P(Y x0

≺ y|y ⪯ Y ,X = x1,C = c),

PS(y;x0,x1, c) =
∆ P(y ⪯ Y x1

|Y ≺ y,X = x0,C = c).
(9)

PNS(y;x0,x1, c) provides a measure of the sufficiency and
necessity of x1 w.r.t. x0 to produce Y ⪰ y given C = c.
PN(y;x0,x1, c) provides a measure of the necessity of x1

w.r.t. x0 to produce Y ⪰ y given C = c. PS(y;x0,x1, c)
provides a measure of the sufficiency of x1 w.r.t. x0 to
produce Y ⪰ y given C = c.

Hannart and Naveau [2018] studied multivariate PNS where
the outcomes are the space-time vectorial random variables
of the Earth’s surface temperatures. Li and Pearl [2019,
2024a, 2022] considered conditional PNS over discrete vari-
ables in their benefit function and called it z-specific PNS,
but their definition of PNS is different from ours and is not
suitable for continuous variables.

4.2 IDENTIFICATION ASSUMPTIONS AND
THEOREM

We generalize Assumptions 3.3, 3.4, and 3.5 to multivariate
outcomes and treatments with covariates as below, respec-
tively.

Assumption 4.2 (Conditional monotonicity over Y x). The
potential outcomes Y x satisfy: for any x0,x1 ∈ ΩX , y ∈
ΩY , and c ∈ ΩC , either P(Y x0

≺ y ⪯ Y x1
|C = c) = 0

or P(Y x1
≺ y ⪯ Y x0

|C = c) = 0.

This assumption extends Assumptions 3.3 to totally ordered
vector variables.

Assumption 4.3 (Conditional monotonicity over fY ). The
function fY (x, c,U) is either (i) monotonic increasing on
U with ⪯ for all x ∈ ΩX and c ∈ ΩC almost surely
w.r.t. PU , or (ii) monotonic decreasing on U with ⪯ for all
x ∈ ΩX and c ∈ ΩC almost surely w.r.t. PU .

This assumption says that the function fY preserves the
total order from ΩU to ΩY given X = x,C = c.

Assumption 4.4 (Strict conditional monotonicity over fY ).
The function fY (x, c,U) is either (i) strictly monotonic

increasing on U with ⪯ for all x ∈ ΩX and c ∈ ΩC

almost surely w.r.t. PU with supu∈ΩU
p(u|C = c) < ∞

for all c ∈ ΩC , or (ii) strictly monotonic decreasing on U
with ⪯ for all x ∈ ΩX and c ∈ ΩC almost surely w.r.t. PU

with supu∈ΩU
p(u|C = c) < ∞ for all c ∈ ΩC .

This assumption implies that there exists a one-to-one map-
ping from ΩU to ΩY given X = x,C = c.

Assumptions 4.2, 4.3, and 4.4 reduce to Assumptions 3.3,
3.4, and 3.5 under SCM MS , respectively. We establish the
relationships between Assumptions 4.2, 4.3, and 4.4 under
the following assumption:

Assumption 4.5. Potential outcome Y x has conditional
PDF pY x|C=c given C = c for each x ∈ ΩX and c ∈ ΩC ,
and its support {y ∈ ΩY : pY x|C=c(y) ̸= 0} is the same
for each x ∈ ΩX and c ∈ ΩC .

This assumption is similar to Assumption 3.6 and reason-
able for continuous variables. For example, the multivariate
linear regression model with Gaussian noise in [Hannart
and Naveau, 2018] satisfies this assumption.

Theorem 4.1. Under SCM MT and Assumption 4.5, As-
sumptions 4.2 and 4.3 are equivalent, and Assumption 4.4
is a strictly stronger requirement than 4.3.

For example, the additive noise model Y := fY (X,C) +
U satisfies all Assumptions 4.2, 4.3, and 4.4.

We denote conditional CDF

ρ(y;x, c) =∆ P(Y ≺ y|X = x,C = c) (10)

for all y ∈ ΩY , x ∈ ΩX , and c ∈ ΩC . Then. we have the
following theorem:

Theorem 4.2 (Identification of conditional PoC). Under
SCM MT and Assumptions 4.1, 4.2 (or 4.3, 4.4), and 4.5,
PNS, PN, and PS are identifiable by

PNS(y;x0,x1, c) = max{ρ(y;x0, c)− ρ(y;x1, c), 0},

PN(y;x0,x1, c) = max

{
ρ(y;x0, c)− ρ(y;x1, c)

1− ρ(y;x1, c)
, 0

}
,

PS(y;x0,x1, c) = max

{
ρ(y;x0, c)− ρ(y;x1, c)

ρ(y;x0, c)
, 0

}
(11)

for any x0,x1 ∈ ΩX , c ∈ ΩC , and y ∈ ΩY such that
ρ(y;x1, c) < 1 and ρ(y;x0, c) > 0.

Remark. PoC, like PNS(y;x0,x1), can be computed
through conditional PoC:

PNS(y;x0,x1) =

∫
c∈ΩC

PNS(y;x0,x1, c)p(c)dc (12)

where p(c) is PDF of C. Then, we can estimate it under
weaker conditions than required by Theorem 3.2 since the
conditional version of the assumptions required by Theo-
rem 4.2 are weaker.



5 VARIANTS OF PROBABILITIES OF
CAUSATION

In this section, we study several more complicated variants
of PoC.

5.1 PNS WITH EVIDENCE

We consider PNS with evidence (Y = y′,X = x′,C = c)
denoted by (y′,x′, c).3 Evidence provides the situation-
specific information and restricts the attention to PNS for a
sub-population.

For instance, revisiting Example 3.1, for a patient with a
certain age and body weight, a doctor may want to know
the probability that the patient’s blood sugar level would
be greater than or equal to the threshold y had they taken
x1 amount of insulin, and would be less than y had they
taken x0 insulin, when the patient took x′ amount of insulin
and had blood sugar level y′. This probability is given by
P(Yx0 < y ≤ Yx1 |Y = y′, X = x′,C = c) where c stands
for the patient’s age and body weight.

Note that for a binary treatment and outcome, PNS with evi-
dence (X = x1, Y = y1) coincides with PN, and PNS with
evidence (X = x0, Y = y0) coincides with PS. However,
for continuous treatment and outcome, we could have PNS
with different evidence.

Definition 5.1 (Conditional PNS with evidence (y′,x′, c)).
We define conditional PNS with evidence (y′,x′, c) as

PNS(y;x0,x1,y
′,x′, c)

=∆ P(Y x0
≺ y ⪯ Y x1

|Y = y′,X = x′,C = c)
(13)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , and y,y′ ∈ ΩY .

PNS(y;x0,x1,y
′,x′, c) provides a measure of the suffi-

ciency and necessity of x1 w.r.t. x0 to produce Y ⪰ y
given the evidence (Y = y′,X = x′,C = c).

We denote the conditional CDF

ρo(y′;x′, c) =∆ P(Y ⪯ y′|X = x′,C = c) (14)

for any x′ ∈ ΩX , y′ ∈ ΩY , and c ∈ ΩC , which differs
from ρ(y′;x′, c) in that it includes the point Y = y′.

We obtain the following theorem:

Theorem 5.1 (Identification of conditional PNS with evi-
dence (y′,x′, c)). Under SCM MT and Assumptions 4.1,
4.2 (or 4.3, 4.4), and 4.5, we have

(A). If ρ(y′;x′, c) ̸= ρo(y′;x′, c), then we have

PNS(y;x0,x1,y
′,x′, c) = max{α/β, 0}, (15)

3Note that PNS with evidence (y′,x′, c) include PN and PS
with evidence as special cases.

where

α = min{ρ(y;x0, c), ρ
o(y′;x′, c)}

−max{ρ(y;x1, c), ρ(y
′;x′, c)},

β = ρo(y′;x′, c)− ρ(y′;x′, c)

(16)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY , and y ∈ ΩY .

(B). If ρ(y′;x′, c) = ρo(y′;x′, c), then we have

PNS(y;x0,x1,y
′,x′, c)

= I(ρ(y;x1, c) ≤ ρ(y′;x′, c) < ρ(y;x0, c))
(17)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY , and y ∈ ΩY .

We provide an explanation of this result based on analyzing
the trajectories of potential outcomes in Appendix B.

Assumption 4.4 implies ρ(y′;x′, c) = ρo(y′;x′, c). Then,
we have the following corollary:

Corollary 5.1. Under SCM MT and Assumptions 4.1, 4.4,
and 4.5, we have

PNS(y;x0,x1,y
′,x′, c)

= I(ρ(y;x1, c) ≤ ρ(y′;x′, c) < ρ(y;x0, c))
(18)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY , and y ∈ ΩY .

5.2 CONDITIONAL PNS WITH
MULTI-HYPOTHETICAL TERMS

To address questions involving multiple counterfactual state-
ments jointly, Li and Pearl [2024a,b] considered (con-
ditional) PNS with multi-hypothetical terms P(Yxi1

=
yj1 , Yxi2

= yj2 , . . . , YxiP
= yjP |C = c) when X and

Y are discrete scalar variables taking values {x1, . . . , xP }
and {y1, . . . , yQ}. However, their definition is not applica-
ble to continuous outcome Y . Here, we define conditional
PNS with multi-hypothetical terms that are applicable to
both discrete and continuous cases.

Example 5.1. Extending Example 3.1, the overdose of in-
sulin may cause low blood sugar, which is also harmful to
patients. Then, the blood sugar level of a patient should
be between a lower bound y1 and an upper bound y2. Let
x0, x1, x2 be three insulin amount (x0 > x1 > x2). A doc-
tor may conclude that the x1 amount of insulin is better than
x0, x2 if the following counterfactual situations are simulta-
neously true: the patient’s blood sugar level (i) would be less
than the lower bound y1 had they taken x0 amount of insulin,
(ii) would be greater than or equal to the lower bound y1
and less than the upper bound y2 had they taken x1 amount,
and (iii) would be greater than or equal to the upper bound
y2 had they taken x2 amount. The doctor wants to know the
probability of the above counterfactual situations, which is
given by P(Yx0

< y1 ≤ Yx1
< y2 ≤ Yx2

).



Definition 5.2 (Conditional PNS with multi-hypothetical
terms). Conditional PNS with multi-hypothetical terms
PNS(y;x, c) is defined by P(Y x0

≺ y1 ⪯ Y x1
,Y x1

≺
y2 ⪯ Y x2

, . . . ,Y xP−1
≺ yP ⪯ Y xP

|C = c) for any
sets of values x = (x0,x1, . . . ,xP ), y = (y1, . . . ,yP ),
and any c ∈ ΩC , where y is a set of thresholds of outcome,
and x is a set of treatments.

For instance, when x = (x0,x1,x2) and y = (y1,y2),
PNS(y;x, c) = P(Y x0 ≺ y1 ⪯ Y x1 ≺ y2 ⪯ Y x2 |C =
c) measures the sufficiency and necessity of x1 w.r.t. x0,x2

to produce y1 ⪯ Y ≺ y2 given C = c.

We have the following theorem:

Theorem 5.2 (Identification of conditional PNS with mul-
ti-hypothetical terms). Under SCM MT and Assumptions
4.1, 4.2 (or 4.3, 4.4), and 4.5, PNS(y;x, c) is identifiable
by

PNS(y;x, c) =max
{

min
p=1,...,P

{ρ(yp;xp−1, c)}

− max
p=1,...,P

{ρ(yp;xp, c)}, 0
} (19)

for any x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y =

(y1, . . . ,yP ) ∈ ΩP
Y , and c ∈ ΩC .

We provide an explanation of this result based on analyzing
the trajectories of potential outcomes in Appendix B.

5.3 CONDITIONAL PNS WITH
MULTI-HYPOTHETICAL TERMS AND
EVIDENCE

We consider PNS with multi-hypothetical terms and evi-
dence (y′,x′, c), combining the settings in Definitions 5.1
and 5.2. Evidence provides the situation-specific informa-
tion and restricts the attention to a sub-population.

For instance, revisiting Example 3.1, for a patient with a
certain age and body weight, a doctor may want to know
the probability that the patient’s blood sugar level (i) would
be less than the lower bound y1 had they taken x0 amount
of insulin, (ii) would be greater than or equal to the lower
bound y1 and less than the upper bound y2 had they taken x1

amount, and (iii) would be greater than or equal to the upper
bound y2 had they taken x2 amount, when the patient took
x′ amount of insulin and had blood sugar level y′. This prob-
ability is given by P(Yx0

< y1 ≤ Yx1
< y2 ≤ Yx2

|Y =
y′, X = x′,C = c) where c stands for the patient’s age and
body weight.

Definition 5.3 (Conditional PNS with multi-hypothet-
ical terms and evidence (y′,x′, c)). Conditional PNS
with multi-hypothetical terms and evidence (y′,x′, c)
PNS(y;x,y′,x′, c) is defined by P(Y x0

≺ y1 ⪯

Y x1 ,Y x1 ≺ y2 ⪯ Y x2 , . . . ,Y xP−1
≺ yP ⪯ Y xP

|Y =
y′,X = x′,C = c) for any x′ ∈ ΩX , y′ ∈ ΩY ,
x = (x0,x1, . . . ,xP ) ∈ ΩP+1

X , y = (y1, . . . ,yP ) ∈ ΩP
Y ,

and c ∈ ΩC .

When x = (x0,x1,x2) and y = (y1,y2),
PNS(y;x,y′,x′, c) measures the sufficiency and necessity
of x1 w.r.t. x0,x2 to produce y1 ⪯ Y ≺ y2 given the
evidence (Y = y′,X = x′,C = c).

We have the following theorem.

Theorem 5.3 (Identification of conditional PNS with multi-
-hypothetical terms and evidence (y′,x′, c)). Under SCM
MT and Assumptions 4.1, 4.2 (or 4.3, 4.4), and 4.5, we
have

(A). If ρ(y′;x′, c) ̸= ρo(y′;x′, c), then we have

PNS(y;x,y′,x′, c) = max {γ/δ, 0} , (20)

where

γ = min
{

min
p=1,...,P

{ρ(yp;xp−1, c)}, ρo(y′;x′, c)
}

−max
{

max
p=1,...,P

{ρ(yp;xp, c)}, ρ(y′;x′, c)
}
,

δ = ρo(y′;x′, c)− ρ(y′;x′, c)

(21)

for any x′ ∈ ΩX , y′ ∈ ΩY , x = (x0,x1, . . . ,xP ) ∈
ΩP+1

X , y = (y1, . . . ,yP ) ∈ ΩP
Y , and c ∈ ΩC .

(B). If ρ(y′;x′, c) = ρo(y′;x′, c), then we have

PNS(y;x,y′,x′, c)

= I
(

max
p=1,...,P

{ρ(yp;xp, c)} ≤ ρ(y′;x′, c)

< min
p=1,...,P

{ρ(yp;xp−1, c)}
) (22)

for any x′ ∈ ΩX , y′ ∈ ΩY , x = (x0,x1, . . . ,xP ) ∈
ΩP+1

X , y = (y1, . . . ,yP ) ∈ ΩP
Y , and c ∈ ΩC .

In addition, we have the following corollary:

Corollary 5.2. Under SCM MT and Assumptions 4.1, 4.4,
and 4.5, we have

PNS(y;x,y′,x′, c)

= I
(

max
p=1,...,P

{ρ(yp;xp, c)} ≤ ρ(y′;x′, c)

< min
p=1,...,P

{ρ(yp;xp−1, c)}
) (23)

for any x′ ∈ ΩX , y′ ∈ ΩY , x = (x0,x1, . . . ,xP ) ∈
ΩP+1

X , y = (y1, . . . ,yP ) ∈ ΩP
Y , and c ∈ ΩC .



6 APPLICATION TO A REAL-WORLD
DATASET

Dataset. We take up an open dataset in the UC Irvine
Machine Learning Repository https://archive.ics.
uci.edu/dataset/320/student+performance
about student performance in mathematics in secondary
education of two Portuguese schools. Secondary education
lasts three years, and students are tested once a year, three
times in total. The data attributes include demographic,
social, and school-related features and student grades. The
sample size is 649 with no missing values. Prior research
using this data aimed to predict the students’ performance
based on their attributes [Cortez and Silva, 2008, Helwig,
2017]. We assess the causal relationship between the
students’ performance, study time, and extra paid classes
via estimating PoC introduced in this paper.

Variables. We take the scores of mathematics in the
final period (Y 1), in the second period (Y 2), and in
the first period (Y 3) as the outcome variables Y =
(Y 1, Y 2, Y 3). Y 1, Y 2, Y 3 take values from {0, 1, . . . , 20}.
We assume a lexicographical order ≻lexi on Y . For ex-
ample, (Y 1, Y 2, Y 3) ≻lexi (6, 6, 6) means “Y 1 > 6” or
“Y 1 = 6 ∧ Y 2 > 6” or “Y 1 = 6 ∧ Y 2 = 6 ∧ Y 3 > 6”.
We consider “study time in a week” (X1) and “extra paid
classes within the course subject” (X2) (yes: X2 = 2, no:
X2 = 1) as treatment variables X = (X1, X2). We select
“sex”, “failures”, “schoolsup”, “famsup”, and “goout” as the
covariates (C), which were chosen in [Helwig, 2017] in a
previous study.

We assume Assumption 4.3 which means that latent exoge-
nous variables, such as the student’s mental and physical
conditions during the test day, have monotonic impacts on
the test scores.

Estimation Methods. All identification theorems in
the paper compute PoC through conditional CDFs, e.g.
ρ(y;x, c) = P(Y ≺ y|X = x,C = c). We estimate
the conditional CDFs by logistic regression using the “glm”
function in R. We conduct the bootstrapping [Efron, 1979]
to reveal the distribution of the estimator.

Results. We consider the subject whose ID number is 1. Let
the values of her covariates be c1. In reality, she studied for
2 hours a week and took no extra paid classes (x′ = (2, 1)),
and got 6, 6, and 5 scores in the final, second, and first
grades, respectively (y′ = (6, 6, 5)). The other attributes of
her are shown in Appendix D.

In the first study, we evaluate conditional PNS, PN, and
PS by setting y = (6, 6, 6), x0 = (2, 1), x1 = (4, 2),
and C = c1 in Def. 4.1 to reveal the necessity/sufficiency
of setting x1 w.r.t. x0 to produce Y ⪰lexi y in the sub-
population characterized by C = c1. The estimated values

of conditional PNS, PN, and PS are

PNS: 8.862%(CI : [1.122%, 19.510%]),

PN: 9.212%(CI : [1.133%, 20.647%]),

PS: 72.331%(CI : [27.975%, 93.022%]),

(24)

where CI represents 95% confidence intervals. The PNS
value above represents the probability of the following state-
ment:

“A student with attributes value c1 would get scores
Y ⪰lexi y had she studied 4 hours a week and taken extra
classes and would get scores Y ≺lexi y had she studied 2

hours a week and taken no extra class.”

PN means the probability of the following statement:

“A student with attributes value c1 would get scores
Y ≺lexi y had she studied 2 hours a week and taken no

extra class when, in reality, she scored Y ⪰lexi y, studied 4
hours a week, and took extra classes.”

And PS means the probability of the following statement:

“A student with attributes value c1 would get scores
Y ⪰lexi y had she studied 4 hours a week and taken extra
classes when, in reality, she scored Y ≺lexi y, studied 2

hours a week, and took no extra class.”

The results reveal that PNS and PN are relatively low, and
PS is relatively high. In other words, studying 4 hours and
taking extra classes for students with attributes value c1
are unlikely “necessary and sufficient" or “necessary” to
achieve Y ⪰lexi y compared to studying 2 hours and taking
no extra class; however, they are highly “sufficient".

In the second study, we consider more detailed evidence than
the first study and evaluate conditional PNS with evidence
(y′,x′, c), letting y = (6, 6, 6), y′ = (6, 6, 5), x0 = (2, 1),
x1 = (4, 2), x′ = (2, 1), and C = c1 in Def. 5.1. The
estimated value is

PNS: 0.024% (CI : [0.000%, 0.243%]), (25)

which means the probability of the following statement:

“A student with attributes value c1 would get scores
Y ⪰lexi y had she studied 4 hours a week and taken extra
classes and would get scores Y ≺lexi y had she studied 2
hours a week and taken no extra class when she scored

Y = y′, studied 2 hours a week, and took no extra class in
reality.”

We reveal that this probability is very low, that is, study-
ing 4 hours and taking extra classes for students with
(y′,x′, c1) are probably not “necessary and sufficient" to
achieve Y ⪰lexi y compared to studying 2 hours and taking
no extra class.

In the third study, we evaluate conditional PNS with multi-
hypothetical terms, letting y1 = (5, 5, 5), y2 = (6, 6, 6),

https://archive.ics.uci.edu/dataset/320/student+performance
https://archive.ics.uci.edu/dataset/320/student+performance


x0 = (1, 1), x1 = (2, 1), x2 = (4, 2), and C = c1 in Def.
5.2. The estimated value is

PNS: 0.000% (CI : [0.000%, 0.000%]), (26)

which means the joint probability of the following three
counterfactual statements:

“(i) A student with attributes value c1 would get scores
Y ⪰lexi y2 had she studied 4 hours a week and taken extra

classes,
(ii) she would get scores y1 ⪯lexi Y ≺lexi y2 had she

studied 2 hours a week and taken no extra classes, and
(iii) she would get scores Y ≺lexi y1 had she studied 1

hour a week and taken no extra classes.”

We reveal that this probability is close to zero, that is, study-
ing 2 hours and taking no extra class for students with
attributes value c1 are not “necessary and sufficient" to
achieve y1 ⪯lexi Y ≺lexi y2 compared to “studying 1 hour
and taking no extra class" or “studying 4 hours and taking
extra classes".

Finally, we consider more detailed evidence than the third
study and evaluate conditional PNS with multi-hypothetical
terms and evidence (y′,x′, c), letting y1 = (5, 5, 5), y2 =
(6, 6, 6), y′ = (6, 6, 5), x0 = (1, 1), x1 = (2, 1), x2 =
(4, 2), x′ = (2, 1), and C = c1 in Def. 5.3. The estimated
value is

PNS: 96.711% (CI : [59.059%, 100.000%]), (27)

which represents the probability of the above three coun-
terfactual statements in the third study given additional in-
formation x′ and y′. Unlike PNS with multi-hypothetical
terms in the third study, PNS with multi-hypothetical terms
and evidence (y′,x′, c1) is relatively high. That is, studying
2 hours and taking no extra class with (y′,x′, c1) are highly
“necessary and sufficient" to achieve y1 ⪯lexi Y ≺lexi y2

compared to “studying 1 hour and taking no extra class" and
“studying 4 hours and taking extra classes".

We have performed additional analyses. To evaluate the
effect of study time (X1) only, we let x1 = (4, 1) in the
first and second analyses, and x2 = (4, 1) in the third and
fourth analyses. The results are shown in Appendix D, and
all estimated PoC are lower than that obtained with joint
effect of study time and extra paid classes. To evaluate the
effect of extra paid classes (X2) only, we let x1 = (2, 2)
in the first and second analyses. The results are shown in
Appendix D, and all estimated PoC are also lower than the
results with joint effect.

7 CONCLUSION

We introduce new types of PoC to capture the causal effects
between multiple continuous treatments and outcomes and
provide identification theorems. The results greatly expand

the range of causal questions that researchers can tackle
going beyond binary treatment and outcome. In this paper,
we focus on the form of PoC where all treatments are inter-
vened. The scenario of just intervening only a subset of all
treatment variables is also useful in real life [Lu et al., 2022,
Li et al., 2023], which will be future research. In settings
where the monotonicity assumptions do not hold, we may
explore methods for bounding PoC. However, for contin-
uous variables, we can not straightforwardly apply linear
programming formulation used for bounding binary PoC in
[Tian and Pearl, 2000, Li and Pearl, 2024a]. Bounding PoC
introduced in this paper will be an interesting future work.
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A ADDITIONAL INFORMATION ON BACKGROUND AND NOTATION

Orders. We explain the orders used in this paper. The definition of the total order is as below [Harzheim, 2005]:

Definition A.1 (Total order). A total order on a set Ω is a relation “⪯” on Ω satisfying the following four conditions for all
a1,a2,a3 ∈ Ω:

1. a1 ⪯ a1;

2. if a1 ⪯ a2 and a2 ⪯ a3 then a1 ⪯ a3;

3. if a1 ⪯ a2 and a2 ⪯ a1 then a1 = a2;

4. at least one of a1 ⪯ a2 and a2 ⪯ a1 holds.

In this case we say that the ordered pair (Ω,⪯) is a totally ordered set. The inequality a ⪯ b of total order means a ≺ b or
a = b, and the relationship ¬(a ⪯ b) ⇔ a ≻ b holds for a totally ordered set, where ¬ means the negation.

Definition A.2 (Lexicographical order for the Cartesian product). A lexicographic order ≺ on the Cartesian product of
two sets ΩA and ΩB with order relations ⪯A and ⪯B satisfies: for all (a1, b1) ∈ ΩA × ΩB and (a2, b2) ∈ ΩA × ΩB ,
(a1, b1) ≺ (a2, b2) if and only if either

1. a1 ≺A a2, or
2. a1 = a2 and b1 ≺B b2.

The lexicographic order can be readily extended to Cartesian products of arbitrary length by recursively applying this
definition, i.e., by observing that ΩA×ΩB ×ΩC = ΩA× (ΩB ×ΩC). This is widely used as one example of the total order
for vector space. The order defined by Mahalanobis’ distance and Gaussian distribution [Hannart and Naveau, 2018] is one
example of the total orders. Briefly, they consider mapping ϕ from Ω = Rd to R, and define a0 ⪯ a1 by the relationship
ϕ(a0) ≤ ϕ(a1).

B ADDITIONAL INFORMATION ON ANALYZING TRAJECTORIES

In this section, we give the analyzing the trajectories of potential outcomes of Theorems 5.1 and 5.2.

Analyzing Trajectories of Theorem 5.1. We denote uρ(y;x,c) = sup{u : fY (x, c,u) ≺ y} and uρo(y;x,c) = sup{u :
fY (x, c,u) ⪯ y}. Given C = c, the trajectory {(x,Y x(u)) ∈ ΩX × ΩY ;∀x ∈ ΩX} represents potential outcome
Y x(u) vs. X for the subject U = u. Given C = c, under Assumptions 4.1 and 4.2 (or 4.3, 4.4), the subjects’ trajectories
do not cross over each other (they may overlap).

Consider the trajectories shown in Figure 2. Given C = c, Trajectory (1) {(x,Y x(uρ(y;x0,c))) ∈ ΩX × ΩY ;∀x ∈ ΩX}
goes through the point (x0,y), Trajectory (2) {(x,Y x(uρ(y;x1,c))) ∈ ΩX × ΩY ;∀x ∈ ΩX} goes through the point



Trajectory (1)

Trajectory (2)
Y x = y

X = x0 X = x1

Trajectory (3)

Trajectory (4)
Y x = y′

X = x′

Y x

X

Figure 2: Trajectories for (1) Y x(uρ(y;x0,c)), (2) Y x(uρ(y;x1,c)), (3) Y x(uρo(y′;x′,c)) and (4) Y x(uρ(y′;x′,c)).

(x1,y), Trajectory (3) {(x,Y x(uρo(y′;x′,c))) ∈ ΩX × ΩY ;∀x ∈ ΩX} and Trajectory (4) {(x,Y x(uρ(y′;x′,c))) ∈
ΩX × ΩY ;∀x ∈ ΩX} go through the point (x′,y′). Given C = c, the trajectory of subject u lies between in the region
between Trajectories (1) and (2) if and only if they satisfy Y x0

≺ y ⪯ Y x1
given C = c. Given C = c, the trajectory of

subject u lies in the region between Trajectories (3) and (4) if and only if they satisfy (Y = y′,X = x′) given C = c.
Thus, we have P(Y x0 ≺ y ⪯ Y x1 |Y = y′,X = x′,C = c) is

max

{
min{P(Y x0

≺ y|C = c),P(Y x′ ⪯ y′|C = c)} −max{P(Y x1
≺ y|C = c),P(Y x′ ≺ y′|C = c)}

P(Y x′ ⪯ y′|C = c)− P(Y x′ ≺ y′|C = c)
, 0

}
, (28)

where P(Y x0 ≺ y|C = c) represents the probability of a subject’s trajectory being below Trajectory (1), P(Y x1 ≺ y|C =
c) represents the probability of a subject’s trajectory being below Trajectory (2), P(Y x′ ≺ y′|C = c) represents the
probability of a subject’s trajectory being below Trajectory (3) and P(Y x′ ⪯ y′|C = c) represents the probability of a
subject’s trajectory being below Trajectory (4). When ρ(y′;x′, c) = ρo(y′;x′, c), Trajectory (3) coincides with Trajectory
(4). PNS(y;x0,x1,y

′,x′, c) represents whether Trajectory (3) or (4) lies in the region between Trajectories (1) and (2),
and takes value either 0 or 1.

Analyzing Trajectories of Theorem 5.2. We provide trajectories-based explanation on Theorem 5.2 when P = 2.
Consider the trajectories shown in Figure 3. Given C = c, Trajectory (1) {(x,Y x(uρ(y1;x0,c))) ∈ ΩX × ΩY ;∀x ∈ ΩX}
goes through the point (x0,y), Trajectory (2) {(x,Y x(uρ(y1;x1,c))) ∈ ΩX × ΩY ;∀x ∈ ΩX} goes through the point
(x1,y), Trajectory (3) {(x,Y x(uρ(y2;x1,c))) ∈ ΩX × ΩY ;∀x ∈ ΩX} and Trajectory (4) {(x,Y x(uρ(y2;x2,c))) ∈
ΩX × ΩY ;∀x ∈ ΩX} go through the point (x′,y′). Given C = c, the trajectories of subject u lies in the region
between Trajectories (1) and (2) if and only if they satisfy Y x0

≺ y1 ⪯ Y x1
. Given C = c, the trajectories of subject

u lies in the region between Trajectories (3) and (4) if and only if they satisfy Y x1
≺ y2 ⪯ Y x2

. Thus, we have
P(Y x0 ≺ y1 ⪯ Y x1 ≺ y2 ⪯ Y x2 |C = c) is

max {min{P(Y x0
≺ y1|C = c),P(Y x1

⪯ y2|C = c)} −max{P(Y x1
≺ y1|C = c),P(Y x2

≺ y2|C = c)}, 0} ,
(29)

where P(Y x0
≺ y1|C = c) represents the probability of a subject’s trajectory being below Trajectory (1), P(Y x1

≺
y2|C = c) represents the probability of a subject’s trajectory being below Trajectory (2), P(Y x1

≺ y2|C = c) represents
the probability of a subject’s trajectory being below Trajectory (3) and P(Y x2 ⪯ y2|C = c) represents the probability of a
subject’s trajectory being below Trajectory (4).

C PROOFS

We give the proof of lemmas, theorems, and corollary in the body of the paper.

C.1 PROOFS IN SECTION 3

Lemma C.1. Under SCM MS and Assumption 3.6, Assumption 3.3 implies Assumption 3.4.

Proof. Suppose the negation of Assumption 3.4:
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Trajectory (2)

Trajectory (4)
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Figure 3: Trajectories for (1) Y x(uρ(y1;x0,c)), (2) Y x(uρ(y1;x1,c)), (3) Y x(uρ(y2;x1,c)) and (4) Y x(uρ(y2;x2,c)).

there exists a set U such that 0 < P(U) < 1, and

fY (x0, u0) ≥ y > fY (x0, u1) ∧ fY (x1, u0) < y ≤ fY (x1, u1)

for some x0, x1 ∈ ΩX and y ∈ ΩY and for any u0, u1 ∈ U such that u0 < u1.

Assumption 3.6 guarantees the existence of overlapping y values in the above since “no overlap" situation {fY (x0, u) : u ∈
ΩU} ∩ {fY (x1, u) : u ∈ ΩU} = ∅ means the intersection of the support of Yx0 and the support of Yx1 is empty, which
violates Assumption 3.6.

Then we have

fY (x0, u0) ≥ y > fY (x1, u0) and fY (x0, u1) < y ≤ fY (x1, u1) for some x0, x1 ∈ ΩX and y ∈ ΩY and
for any u0, u1 ∈ U such that u0 < u1,

and it implies

fY (x0, u) ≥ y > fY (x1, u) and fY (x0, u) < y ≤ fY (x1, u) for some x0, x1 ∈ ΩX and y ∈ ΩY and for any u ∈ U .

This implies the negation of Assumption 3.3 P(Yx0
< y ≤ Yx1

) ̸= 0 and P(Yx1
< y ≤ Yx0

) ̸= 0 for some x0, x1 ∈ ΩX

and y ∈ ΩY since fY (x0, u) ≥ y > fY (x1, u) ⇔ Yx0
(u) > y ≥ Yx1

(u) and fY (x0, u) < y ≤ fY (x1, u) ⇔ Yx1
(u) ≥

y > Yx0(u). In conclusion, we have lemma C.1 by taking a contraposition of the above statements.

Lemma C.2. Under SCM MS and Assumption 3.6, Assumption 3.4 implies Assumption 3.3.

Proof. First, we denote usup = sup{u : fY (x0, u) < y}. We consider the situations “the function fY (x, U) is monotonic
increasing on U” and “the function fY (x, U) is monotonic decreasing on U”, separately.

(1). If the function fY (x, U) is monotonic increasing on U for all x ∈ ΩX almost surely w.r.t. PU , we have

fY (x0, usup) ≤ fY (x0, u) and fY (x1, usup) ≤ fY (x1, u) (30)

for PU -almost every u ∈ ΩU such that u ≥ usup. We have the following statements:

1. Supposed fY (x0, usup) > fY (x1, usup), we have y = fY (x0, usup) > fY (x1, usup) ≥ fY (x1, u) = Yx1(u) for
PU -almost every u ∈ ΩU such that fY (x0, u) < y. It means Yx0(u) < y ⇒ Yx1(u) < y for PU -almost every u ∈ ΩU

and P(Yx0
< y ≤ Yx1

) = 0.

2. Supposed fY (x0, usup) ≤ fY (x1, usup), we have fY (x1, u) ≥ fY (x1, usup) ≥ fY (x0, usup) = y for PU -almost
every u ∈ ΩU such that fY (x0, u) ≥ y. It means Yx0(u) ≥ y ⇒ Yx1(u) ≥ y for PU -almost every u ∈ ΩU and
P(Yx1

< y ≤ Yx0
) = 0.



Then, Assumption 3.4 holds.

(2). If the function fY (x, U) is monotonic decreasing on U for all x ∈ ΩX almost surely w.r.t. PU , we have

fY (x0, usup) ≥ fY (x0, u) and fY (x1, usup) ≥ fY (x1, u) (31)

for PU -almost every u ∈ ΩU such that u ≥ usup. We have the following statements:

1. Supposed fY (x0, usup) ≤ fY (x1, usup), we have y = fY (x0, usup) ≤ fY (x1, usup) ≤ fY (x1, u) = Yx1
(u) for

PU -almost every u ∈ ΩU such that fY (x0, u) ≥ y. It means Yx0
(u) ≥ y ⇒ Yx1

(u) ≥ y for PU -almost every u ∈ ΩU

and P(Yx1 < y ≤ Yx0) = 0.

2. Supposed fY (x0, usup) > fY (x1, usup), we have fY (x1, u) ≤ fY (x1, usup) < fY (x0, usup) = y for PU -almost
every u ∈ ΩU such that fY (x0, u) < y. It means Yx0(u) < y ⇒ Yx1(u) < y for PU -almost every u ∈ ΩU and
P(Yx0 < y ≤ Yx1) = 0.

Thus, Assumption 3.4 holds. In conclusion, Assumption 3.4 implies Assumption 3.3

Theorem 3.1. Under SCM MS and Assumption 3.6, Assumptions 3.3 and 3.4 are equivalent, and Assumptions 3.5 is a
strictly stronger requirement than 3.4.

Proof. We have Theorem 3.1 from Lemma C.1 and C.2.

Theorem 3.2. (Identification of PoC) Under SCM MS and Assumptions 3.1, 3.3 (or 3.4, 3.5), and 3.6, PNS, PN, and PS are
identifiable by

PNS(y;x0, x1) = max{ρ(y;x0)− ρ(y;x1), 0},

PN(y;x0, x1) = max

{
ρ(y;x0)− ρ(y;x1)

1− ρ(y;x1)
, 0

}
,

PS(y;x0, x1) = max

{
ρ(y;x0)− ρ(y;x1)

ρ(y;x0)
, 0

} (32)

for any x0, x1 ∈ ΩX and y ∈ ΩY such that ρ(y;x1) < 1 and ρ(y;x0) > 0.

Proof. Under Assumptions 3.1 and 3.4,

PNS(y;x0, x1) = P(Yx0 < y ≤ Yx1)

= P(uρ(y;x1) ≤ u < uρ(y;x0))

= max{ρ(y;x0)− ρ(y;x1), 0}
(33)

for any x0, x1 ∈ ΩX and y ∈ ΩY , where uρ(y;x0) = sup{u : fY (x0, u) < y} and uρ(y;x1) = sup{u : fY (x1, u) ≤ y}.
Note that all u such that u ≤ uρ(y;x) satisfy fY (x, u) < y from Assumption 3.4. In addition, PN(y;x0, x1) and PS(y;x0, x1)
are given from the following relationship:

PN(y;x0, x1) =
PSN(y;x0, x1)

P(y ≤ Y |X = x1)
, PS(y;x0, x1) =

PSN(y;x0, x1)

P(Y < y|X = x0)
, (34)

P(y ≤ Y |X = x1) = 1− ρ(y;x1) and P(Y < y|X = x0) = ρ(y;x0) for any x0, x1 ∈ ΩX and y ∈ ΩY .

C.2 PROOFS IN SECTION 4

Theorem 4.1. Under SCM MT and Assumption 4.5, Assumptions 4.2 and 4.3 are equivalent, and Assumptions 4.4 is a
strictly stronger requirement than 4.3.

Proof. We show the proof of equivalence of assumptions.

(Assumption 4.2 ⇒ Assumption 4.3.) For any c ∈ ΩC , from Assumption 4.5, if we have the negation of Assumption 4.3



there exists a set U such that 0 < P(U) < 1, and

fY (x0, c,u0) ⪰ y ≻ fY (x0, c,u1) ∧ fY (x1, c,u0) ≺ y ⪯ fY (x1, c,u1)

for some x0,x1 ∈ ΩX and y ∈ ΩY and for any u0,u1 ∈ U such that u0 ⪯ u1,

then we have

fY (x0, c,u0) ⪰ y ≻ fY (x1,u0) and fY (x0, c,u1) ≺ y ⪯ fY (x1, c,u1) for some x0,x1 ∈ ΩX and y ∈ ΩY and
for any u0,u1 ∈ U such that u0 ⪯ u1,

and we also have

fY (x0, c,u) ⪰ y ≻ fY (x1, c,u) and fY (x0, c,u) ≺ y ⪯ fY (x1, c,u) for some x0,x1 ∈ ΩX and y ∈ ΩY and for any
u ∈ U .

This implies the negation of Assumption 3.3 P(Y x0
≺ y ⪯ Y x1

|C = c) ̸= 0 and P(Y x1
≺ y ⪯ Y x0

|C = c) ̸= 0
for some x0,x1 ∈ ΩY and y ∈ ΩY since fY (x0, c,u) ⪰ y ≻ fY (x1, c,u) ⇔ Y x0(c,u) ⪰ y ≻ Y x1(c,u) and
fY (x0, c,u) ≺ y ⪯ fY (x1, c,u) ⇔ Y x1(c,u) ⪰ y ≻ Y x0(c,u).

(Assumption 4.3 ⇒ Assumption 4.2.) For any c ∈ ΩC , we denote usup = sup{u : fY (x0, c,u) ⪯ y}. We consider the
situations “the function fY (x, c,U) is monotonic increasing on U” and “the function fY (x, c,U) is monotonic decreasing
on U”, separately.

(1). If the function fY (x, c,U) is monotonic increasing on U for all x ∈ ΩX almost surely w.r.t. PU , we have

fY (x0, c,usup) ⪯ fY (x0, c,u) and fY (x1, c,usup) ⪯ fY (x1, c,u) (35)

for PU -almost every u ∈ ΩU such that u ⪰ usup. We have the following statements:

1. Supposed fY (x0, c,usup) ≻ fY (x1, c,usup), we have y = fY (x0, c,usup) ≻ fY (x1, c,usup) ⪰ fY (x1, c,u) =
Yx1(c,u) for PU -almost every u ∈ ΩU such that fY (x0, c,u) ≺ y. It means Y x0(c,u) ≺ y ⇒ Y x1(c,u) ≺ y for
PU -almost every u ∈ ΩU and P(Y x0 ≺ y ⪯ Y x1 |C = c) = 0.

2. Supposed fY (x0, c,usup) ⪯ fY (x1, c,usup), we have fY (x1, c,u) ⪰ fY (x1, c,usup) ⪰ fY (x0, c,usup) = y for
PU -almost every u ∈ ΩU such that fY (x0, c,u) ⪰ y. It means Y x0

(c,u) ⪰ y ⇒ Y x1
(c,u) ⪰ y for PU -almost

every u ∈ ΩU and P(Y x1
≺ y ⪯ Y x0

|C = c) = 0.

Then, these imply Assumption 3.4.

(2). If the function fY (x, c,U) is monotonic decreasing on U for all x ∈ ΩX almost surely w.r.t. PU , we have

fY (x0, c,usup) ⪰ fY (x0, c,u) and fY (x1, c,usup) ⪰ fY (x1, c,u) (36)

for PU -almost every u ∈ ΩU such that u ⪰ usup. We have the following statements:

1. Supposed fY (x0, c,usup) ⪯ fY (x1, c,usup), we have y = fY (x0, c,usup) ⪯ fY (x1, c,usup) ⪯ fY (x1, c,u) =
Y x1

(c,u) for PU -almost every u ∈ ΩU such that fY (x0, c,u) ⪰ y. It means Y x0
(c,u) ⪰ y ⇒ Y x1

(u) ⪰ y for
PU -almost every u ∈ ΩU and P(Y x1

≺ y ⪯ Y x0
|C = c) = 0.

2. Supposed fY (x0, c,usup) ≻ fY (x1, c,usup), we have fY (x1, c,u) ≺ fY (x1, c,usup) ⪯ fY (x0, c,usup) = y for
PU -almost every u ∈ ΩU such that fY (x0, c,u) ≺ y. It means Y x0(c,u) ≺ y ⇒ Y x1(c,u) ≺ y for PU -almost
every u ∈ ΩU and P(Y x0

≺ y ⪯ Y x1
|C = c) = 0.

Then, Assumption 4.3 holds. In conclusion, Assumption 4.3 implies Assumption 4.2.



Theorem 4.2.(Identification of conditional PoC) Under SCM MT and Assumptions 4.1, 4.2 (or 4.3, 4.4), and 4.5, PNS, PN,
and PS are identifiable by

PNS(y;x0,x1, c) = max{ρ(y;x0, c)− ρ(y;x1, c), 0},

PN(y;x0,x1, c) = max

{
ρ(y;x0, c)− ρ(y;x1, c)

1− ρ(y;x1, c)
, 0

}
,

PS(y;x0,x1, c) = max

{
ρ(y;x0, c)− ρ(y;x1, c)

ρ(y;x0, c)
, 0

} (37)

for any x0,x1 ∈ ΩX , c ∈ ΩC , and y ∈ ΩY such that ρ(y;x1, c) < 1 and ρ(y;x0, c) > 0.

Proof. Under Assumptions 4.1 and 4.2 (or 4.3),

PNS(y;x0,x1, c) = P(Y x0 ≺ y ⪯ Y x1 |C = c)

= P(uρ(y;x0,c) ⪯ u ≺ uρ(y;x1,c))

= max{ρ(y;x0, c)− ρ(y;x1, c), 0}
(38)

for any x0,x1 ∈ ΩX , c ∈ ΩC and y ∈ ΩY , where uρ(y;x0,c) = sup{u : fY (x0, c,u) ≺ y} and uρ(y;x1,c) = sup{u :
fY (x1, c,u) ≺ y}.

PN(y;x0,x1, c) and PS(y;x0,x1, c) are given from the following relationship:

PN(y;x0,x1, c) =
PNS(y;x0,x1, c)

P(y ⪯ Y |X = x1,C = c)
, PS(y;x0,x1, c) =

PNS(y;x0,x1, c)

P(Y ≺ y|X = x0,C = c)
, (39)

and P(y ⪯ Y |X = x1,C = c) = 1− ρ(y;x1, c) and P(y ≺ Y |X = x0,C = c) = ρ(y;x0, c) for any x0,x1 ∈ ΩX ,
c ∈ ΩC and y ∈ ΩY .

C.3 PROOFS IN SECTION 5

Theorem 5.1. (Identification of conditional PNS with evidence (y′,x′, c)) Under SCM MT and Assumptions 4.1, 4.2 (or
4.3, 4.4), and 4.5, we have

(A). If ρ(y′;x′, c) ̸= ρo(y′;x′, c), then we have

PNS(y;x0,x1,y
′,x′, c) = max{α/β, 0}, (40)

where
α = min{ρ(y;x0, c), ρ

o(y′;x′, c)} −max{ρ(y;x1, c), ρ(y
′;x′, c)},

β = ρo(y′;x′, c)− ρ(y′;x′, c)
(41)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY , and y ∈ ΩY .

(B). If ρ(y′;x′, c) = ρo(y′;x′, c), then we have

PNS(y;x0,x1,y
′,x′, c) = I(ρ(y;x1, c) ≤ ρ(y′;x′, c) < ρ(y;x0, c)) (42)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY , and y ∈ ΩY .

Proof. Under Assumptions 4.1 and 4.3, if ρ(y′;x′, c) ̸= ρo(y′;x′, c), we have

P(Y x0
≺ y ⪯ Y x1

|Y = y′,X = x′,C = c)

=
P(Y x0

≺ y ⪯ Y x1
,Y = y′,X = x′|C = c)

P(Y = y′,X = x′|C = c)

=
P(uρ(y;x1,c) ⪯ u ≺ uρ(y;x0,c),uρ(y′;x′,c) ⪯ u ≺ uρo(y′;x′,c))

P(uρ(y′;x′,c) ≺ u ⪯ uρo(y′;x′,c))

=
max{min{ρ(y;x0, c), ρ

o(y′;x′, c)} −max{ρ(y;x1, c), ρ(y
′;x′, c)}, 0}

ρ(y′;x′, c)− ρo(y′;x′, c)

= max

{
min{ρ(y;x0, c), ρ

o(y′;x′, c)} −max{ρ(y;x1, c), ρ(y
′;x′, c)}

ρo(y′;x′, c)− ρ(y′;x′, c)
, 0

}
.

(43)



for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY and y ∈ ΩY . This represents the statement (A). Otherwise, since uρ(y′;x′,c) =

uρo(y′;x′,c), we have

P(Y x0 ≺ y ⪯ Y x1 |Y = y′,X = x′,C = c)

= P(uρ(y;x1,c) ⪯ u ≺ uρ(y;x0,c)|u = uρ(y′;x′,c))

= I(uρ(y;x1,c) ⪯ uρ(y′;x′,c) ≺ uρ(y;x0,c))

= I(ρ(y;x1, c) ≤ ρ(y′;x′, c) < ρ(y;x0, c))

(44)

for any x0,x1,x
′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY and y ∈ ΩY . This represents the statement (B).

Theorem 5.2. (Identification of conditional PNS with multi-hypothetical terms) Under SCM MT and Assumptions 4.1, 4.2
(or 4.3, 4.4), and 4.5, PNS(y;x, c) is identifiable by

PNS(y;x, c) = max
{

min
p=1,...,P

{ρ(yp;xp−1, c)} − max
p=1,...,P

{ρ(yp;xp, c)}, 0
}

(45)

for any x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y = (y1, . . . ,yP ) ∈ ΩP

Y , and c ∈ ΩC .

Proof. Under Assumptions 4.1 and 4.3, we have

PNS(y;x, c)
= P(Y x0 ≺ y1 ⪯ Y x1 ,Y x1 ≺ y2 ⪯ Y x2 , . . . ,Y xP−1

≺ yP ⪯ Y xP
|C = c)

= P(uρ(y1;x0,c) ⪯ u ≺ uρ(y1;x1,c),uρ(y2;x1,c) ⪯ u ≺ uρ(y2;x2,c), . . . ,uρ(yP ;xP ,c) ⪯ u ≺ uρ(yP ;xP−1,c))

= P(umaxp{ρ(yP ;xP ,c)} ≺ u ⪯ uminp{ρ(yP ;xP−1,c)})

= max

{
min
p

{ρ(yP ;xP−1, c)} −max
p

{ρ(yP ;xP , c)}, 0
} (46)

for any x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y = (y1, . . . ,yP ) ∈ ΩP

Y and c ∈ ΩC .

Theorem 5.3. (Identification of conditional PNS with multi-hypothetical terms and evidence (y′,x′, c)) Under SCM MT

and Assumptions 4.1, 4.2 (or 4.3, 4.4), and 4.5, we have

(A). If ρ(y′;x′, c) ̸= ρo(y′;x′, c), then we have

PNS(y;x,y′,x′, c) = max {γ/δ, 0} , (47)

where

γ = min
{

min
p=1,...,P

{ρ(yp;xp−1, c)}, ρo(y′;x′, c)
}
−max

{
max

p=1,...,P
{ρ(yp;xp, c)}, ρ(y′;x′, c)

}
,

δ = ρo(y′;x′, c)− ρ(y′;x′, c)
(48)

for any x′ ∈ ΩX , y′ ∈ ΩY , x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y = (y1, . . . ,yP ) ∈ ΩP

Y , and c ∈ ΩC .

(B). If ρ(y′;x′, c) = ρo(y′;x′, c), then we have

PNS(y;x,y′,x′, c) = I
(

max
p=1,...,P

{ρ(yp;xp, c)} ≤ ρ(y′;x′, c) < min
p=1,...,P

{ρ(yp;xp−1, c)}
)

(49)

for any x′ ∈ ΩX , y′ ∈ ΩY , x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y = (y1, . . . ,yP ) ∈ ΩP

Y , and c ∈ ΩC .



Proof. Under Assumptions 4.1 and 4.3, if ρ(y′;x′, c) ̸= ρo(y′;x′, c), Eq. (20) holds since we have

PNS(y;x,y′,x′, c)

= P(Y x0
≺ y1 ⪯ Y x1

,Y x1
≺ y2 ⪯ Y x2

, . . . ,Y xP−1
≺ yP ⪯ Y xP

|Y = y′,X = x′,C = c)

=
P(Y x0

≺ y1 ⪯ Y x1
,Y x1

≺ y2 ⪯ Y x2
, . . . ,Y xP−1

≺ yP ⪯ Y xP
,Y = y′,X = x′|C = c)

P(Y x′ = y′|C = c)

=
P(uρ(y1;x0,c) ⪯ u ≺ uρ(y1;x1,c), . . . ,uρ(yP ;xP−1,c) ⪯ u ≺ uρ(yP ;xP ,c),uρ(y′;x′,c) ⪯ u ≺ uρo(y′;x′,c))

P(uρo(y′;x′,c) ⪯ u ≺ uρ(y′;x′,c))

=
max{min{minp=1,...,P {ρ(yp;xp−1, c)}, ρo(y′;x′, c)} −max{maxp=1,...,P {ρ(yp;xp, c)}, ρ(y′;x′, c)}, 0}

ρo(y′;x′, c)− ρ(y′;x′, c)

= max

{
min{minp=1,...,P {ρ(yp;xp−1, c)}, ρo(y′;x′, c)} −max{maxp=1,...,P {ρ(yp;xp, c)}, ρ(y′;x′, c)}

ρo(y′;x′, c)− ρ(y′;x′, c)
, 0

}
(50)

for any x′ ∈ ΩX , y′ ∈ ΩY , x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y = (y1, . . . ,yP ) ∈ ΩP

Y and c ∈ ΩC . This represents the
statement (A). Otherwise, since Yx(uρ(y′;x′,c)) = Yx(uρo(y′;x′,c)), we have

PNS(y;x,y′,x′, c)

= P(Y x0 ≺ y1 ⪯ Y x1 ,Y x1 ≺ y2 ⪯ Y x2 , . . . ,Y xP−1
≺ yP ⪯ Y xP

|Y = y′,X = x′,C = c)

= P(uρ(y1;x0,c) ⪯ u ≺ uρ(y1;x1,c), . . . ,uρ(yP ;xP−1,c) ⪯ u ≺ uρ(yP ;xP ,c)|u = uρ(y′;x′,c))

= I(uρ(y1;x0,c) ⪯ uρ(y′;x′,c) ≺ uρ(y1;x1,c), . . . ,uρ(yP ;xP−1,c) ⪯ uρ(y′;x′,c) ≺ uρ(yP ;xP ,c))

= I(umaxp=1,...,P {ρ(yp;xp,c)} ⪯ uρ(y′;x′,c) ≺ uminp=1,...,P {ρ(yp;xp−1,c)})

= I
(

max
p=1,...,P

{ρ(yp;xp, c)} ≤ ρ(y′;x′, c) < min
p=1,...,P

{ρ(yp;xp−1, c)}
)

(51)

for any x = (x0,x1, . . . ,xP ) ∈ ΩP+1
X , y = (y1, . . . ,yP ) ∈ ΩP

Y , x′ ∈ ΩX , c ∈ ΩC , y′ ∈ ΩY and y ∈ ΩY . This
represents the statement (B).

D ADDITIONAL INFORMATION ON APPLICATION

In this section, we provide additional information on the application.

D.1 DETAILS OF DATASET

First, we explain all variables in the application. We pick up the following variables as outcomes.

1. G1 - first period grade (numeric: from 0 to 20)

2. G2 - second period grade (numeric: from 0 to 20)

3. G3 - final grade (numeric: from 0 to 20, output target)

We pick up the following variables as treatments.

1. studytime - weekly study time (numeric: 1 - < 2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours)

2. paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)

We show the other variables as potential covariates.

1. school - student’s school (binary: ’GP’ - Gabriel Pereira or ’MS’ - Mousinho da Silveira)

2. sex - student’s sex (binary: ’F’ - female or ’M’ - male)

3. age - student’s age (numeric: from 15 to 22)

4. address - student’s home address type (binary: ’U’ - urban or ’R’ - rural)

5. famsize - family size (binary: ’LE3’ - less or equal to 3 or ’GT3’ - greater than 3)



Table 1: Attributes of the ID number 1 subject.

school sex age address famsize Pstatus Medu Fedu Mjob Fjob reason
GP F 18 U GT3 A 4 4 at_home teacher course

guardian traveltime studytime failures schoolsup famsup paid activities nursery higher internet
mother 2 2 0 yes no no no yes yes no

romantic famrel freetime goout Dalc Walc health absences G1 G2 G3
no 4 3 4 1 1 3 6 5 6 6

6. Pstatus - parent’s cohabitation status (binary: ’T’ - living together or ’A’ - apart)

7. Medu - mother’s education (numeric: 0 - none, 1 - primary education (4th grade), 2 “ 5th to 9th grade, 3 “ secondary
education or 4 “ higher education)

8. Fedu - father’s education (numeric: 0 - none, 1 - primary education (4th grade), 2 “ 5th to 9th grade, 3 “ secondary
education or 4 “ higher education)

9. Mjob - mother’s job (nominal: ’teacher’, ’health’ care related, civil ’services’ (e.g. administrative or police), ’at home’
or ’other’)

10. Fjob - father’s job (nominal: ’teacher’, ’health’ care related, civil ’services’ (e.g. administrative or police), ’at home’
or ’other’)

11. reason - reason to choose this school (nominal: close to ’home’, school ’reputation’, ’course’ preference or ’other’)

12. guardian - student’s guardian (nominal: ’mother’, ’father’ or ’other’)

13. traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour)

14. failures - number of past class failures (numeric: n if 1<=n<3, else 4)

15. schoolsup - extra educational support (binary: yes or no)

16. famsup - family educational support (binary: yes or no)

17. activities - extra-curricular activities (binary: yes or no)

18. nursery - attended nursery school (binary: yes or no)

19. higher - wants to take higher education (binary: yes or no)

20. internet - Internet access at home (binary: yes or no)

21. romantic - with a romantic relationship (binary: yes or no)

22. famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent)

23. freetime - free time after school (numeric: from 1 - very low to 5 - very high)

24. goout - going out with friends (numeric: from 1 - very low to 5 - very high)

25. Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high)

26. Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)

27. health - current health status (numeric: from 1 - very bad to 5 - very good)

28. absences - number of school absences (numeric: from 0 to 93)

We show the attributes of ID number 1 in Table 1.

D.2 ADDITIONAL ANALYSES OF APPLICATION

We give three additional analyses of the four applications in the body of the paper.

Effect of study time only. First, we evaluate conditional PNS, PN, and PS, letting y = (6, 6, 6), x0 = (2, 1), x1 = (4, 1),
and c1 in Def. 4.1. The estimated values of conditional PNS, PN, and PS are

PNS: 2.491%(CI : [0.000%, 7.395%]),

PN: 2.709%(CI : [0.000%, 8.060%]),

PS: 25.864%(CI : [0.000%, 73.544%]),

(52)



respectively. Second, we evaluate conditional PNS with evidence (y′,x′, c), letting y = (6, 6, 6), y′ = (6, 6, 5), x0 = (2, 1),
x1 = (4, 1), x′ = (2, 1), and c1 in Def. 5.1. Then, the estimated value of it is

PNS: 0.000% (CI : [0.000%, 0.000%]). (53)

Third, we evaluate conditional PNS with multi-hypothetical terms, letting y1 = (5, 5, 5), y2 = (6, 6, 6), x0 = (1, 1),
x1 = (2, 1), x2 = (4, 1), and c1 in Def. 5.2. The estimated value of it is

PNS: 0.000% (CI : [0.000%, 0.000%]). (54)

Finally, we evaluate conditional PNS with multi-hypothetical terms and evidence (y′,x′, c), letting y1 = (5, 5, 5), y2 =
(6, 6, 6), y′ = (6, 6, 5), x0 = (1, 1), x1 = (2, 1), x2 = (4, 1), x′ = (2, 1), and c1 in Def. 5.3 . We eliminate the results of
NA, then the estimated value of it is

PNS: 42.489% (CI : [0.000%, 100.000%]). (55)

Effect of extra paid classes only. First, we evaluate conditional PNS, PN, and PS, letting y = (6, 6, 6), x0 = (1, 1),
x1 = (2, 2), and c1 in Def. 4.1. The estimated values of conditional PNS, PN, and PS are

PNS: 7.700%(CI : [1.072%, 16.614%]),

PN: 8.132%(CI : [1.090%, 18.139%]),

PS: 65.398%(CI : [37.015%, 89.795%]),

(56)

respectively. Second, we evaluate conditional PNS with evidence (y′,x′, c), letting y = (6, 6, 6), y′ = (6, 6, 5), x0 = (1, 1),
x1 = (2, 2), x′ = (2, 1), and c1 in Def. 5.1. Then, the estimated value of it is

PNS: 0.009% (CI : [0.000%, 0.139%]). (57)
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