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Abstract
We introduce a reverse engineering pipeline to generate an RML mapping document from a given non-RDF
source and an expected RDF graph. We present and discuss the core algorithms required to implement the
reverse engineering pipeline, and demonstrate the algorithms in a prototypical implementation called ReMap.
The proposed reverse engineering approach enables users to convert non-RDF data into RDF by example. Users
provide an example RDF output graph based on non-RDF input, and the pipeline automatically generates an RML
mapping document that transforms the non-RDF input into the desired RDF graph. Additionally, the approach
allows updating existing RML mapping documents from older standards to the latest RML vocabulary by using
the original non-RDF data and the already mapped RDF data to reverse engineer a corresponding RML mapping
document using the latest standard. The ReMap tool is evaluated for conformance to the specification using
the RML core test cases and compared to a similar approach using a Large Langauge Model for RML mapping
document generation. Additionally we evaluated the performance in terms of execution time and memory
consumption using a benchmark dataset. The results show that the ReMap tool conforms to all applicable test
cases, while an LLM-based approach performs 31% worse. The performance results show that the ReMap tool
exhibits a time complexity of 𝒪(𝑛 · 𝑞), where 𝑛 represents the number of non-RDF input elements and 𝑞 denotes
the number of RDF terms in the target RDF graph.
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1. Introduction

The Resource Description Framework (RDF) [1] is the data model used in Knowledge Graphs (KGs) [2].
To integrate structured data (e.g., CSV) or semi-structured data (e.g., JSON) into a KG, users can use the
RDF Mapping Language (RML) [3] to transform the non-RDF data to RDF. The RML ecosystem already
provides several tools that attempt to simplify RML mapping generation, including the RMLEditor [4],
a user-friendly low-code editor for RML mappings, and YARRRML [5], a more human-readable, YAML-
based mapping language, able to be translated into RML. Additionally, YARRRML is supported by
Matey [6], a dedicated editor that simplifies mapping creation and maintenance.

Despite the availability of tools to assist users, creating RML mappings remains a challenge. Users must
consider the available input data and define the desired structure and ontologies of the target RDF graph.
Only after that the users can write RML mappings that describe the necessary data transformations
to bridge structured or semi-structured input data to the desired RDF graph. The creation of the RML
mappings requires familiarity with RDF graph modeling, as well as an understanding of RML ontology
terms [7] and syntax.

Introducing a reverse engineering approach to generate RML mappings based on non-RDF source
data and the expected output RDF graph can simplify the mapping creation process. The approach
eliminates the need to manually write RML mappings after defining the target RDF graph, making the
transformation workflow more efficient. The approach allows users to map non-RDF source data by
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example, meaning that users provide the input source data and a comprehensive example of the desired
target RDF graph, and let the system reverse engineer the required RML mapping document.

The reverse engineering approach can be difficult because different RML mapping documents using
different RML language constructs can transform the same non-RDF source data into an equivalent
output RDF graph, requiring identification of the most general triple maps. That is, triple maps in
the reverse engineered RML mapping document that generate duplicate RDF output triples must be
identified and filtered out to generate a minimal and comprehensive RML mapping document.

Previous work has focused on either generating RML mappings by identifying common concepts
between non-RDF source data and a given ontology [8], or performing the inverse transformation of
converting RDF data to a non-RDF format using its corresponding RML mapping [9]. In contrast, we
aim to reverse engineer and generate RML mapping documents directly from non-RDF input and the
expected RDF output.

In our approach, we introduce a reverse engineering pipeline that generates a normalized RML
mapping document containing RML triple maps that describe the transformation of a given non-RDF
input data into a corresponding RDF output. The pipeline first identifies the term types, term map types,
and term maps of all RDF terms in the output RDF graph by performing string comparison operations
on the input data. Based on the extracted information, a search space of RML triple maps describing
the generation of each triple in the output RDF graph is generated. In the second step, the pipeline
extends this search space by grouping RML triple maps that describe potential joins. In the third and
final step, the pipeline processes the search space and identifies the most general triple maps to generate
a minimal mapping document by aggregating RML triple maps that generate identical RDF triples, thus
avoiding redundant generation. The final RML triple maps are then written to disk and stored in the
resulting RML mapping document. Because the approach is based solely on deterministic operations,
such as string comparisons, the generation of RML mappings is transparent.

The key contributions of this work are:

• The introduction of a reverse engineering pipeline to generate RML mapping documents based
on non-RDF source data and expected RDF output.

• The introduction of algorithms to derive the term map, the term map type and the term type.
• The empirical conformance and performance evaluation of a proof-of-concept implementation

using the RML core test cases and a benchmark dataset, with a comparison to an LLM-based
approach.

2. Related Work

Transforming non-RDF data to RDF using RML typically involves two files, the input source data and
the RML mapping document, and generates a third file containing the RDF graph. This workflow is im-
plemented by various RML interpreters such as Morph-KGC [10], SDM-RDFizer [11], RMLStreamer [12],
or FlexRML [13]. Previous work has explored the inversion of the typical process where the two given
files are instead the RML mapping document and a RDF graph and the aim is to generate the non-RDF
data as output [9], showing results with limitations. The latest research in converting RDF data to
non-RDF formats has instead focused on defining new mapping languages and techniques [14]. In
contrast to these approaches we want to focus on the generation of a RML mapping document, with
the given files being the non-RDF source data and the RDF output graph.

The automatic generation of RML mappings is only explored by a limited number of publications.
Previous work has investigated how RML mapping documents can be generated based on a given
non-RDF source data and a target ontology. On the on hand are approaches, trying to match concepts
in the ontology to the given non-RDF data [8]. The method is related to approaches used in semantic
table annotation, where tabular data is annotated based on information in KGs [15, 16]. On the other
hand, since the rise of Large Language Models (LLMs) such as the Gemma family of models [17] or the
GPT series [18] with their ability to process natural language text [19], research has been exploring
the use of LLMs in RML mapping generation. In [20] a LLM-based pipeline for ontology development



is introduced. The pipeline consists of a mapping component for RML generation to describe the
transformation between the developed ontology and the source dataset. In [21], an LLM-based RML
mapping document generation pipeline is introduced that uses a target ontology and non-RDF source
data as input, generates an RML mapping document in Turtle syntax, and validates and repairs the
generated Turtle files. These approaches are either machine learning based or use different similarity
metrics to fully automate the generation process, requiring only the target ontology and the non-RDF
data. In contrast we want to introduce a deterministic approach that generates reliably RML mapping
documents using string comparision operators, so we require the non-RDF data and the target RDF
graph as input. Furthermore, our goal is not to fully automate the generation of RML mappings, but
rather to provide a pipeline that can help users generate mappings based on a given set of non-RDF
source data and a comprehensive example of the target RDF graph.

The concept closest related to our approach is query reverse engineering [22] from the field of
relational databases. The aim of query reverse engineering is to generate an SQL query given a database
and a result table. The generated SQL query must be instance-equivalent to the original unknown query
used to generate the result table. The approach allows for the identification of alternative queries over
the data and the identification of unknown data connections. Additionally, query reverse engineering
allows users to query the data by example, where users provided examples of the desired data and let
the system reverse engineer the query [23]. In our approach, we want to transfer the concepts of query
reverse engineering to the domain of KG construction, in order to allow users to map non-RDF data to
RDF by example.

3. Preliminaries

Typical RML interpreters transform the set of non-RDF input data, 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}, to RDF output,
𝐺, by interpreting the operations described by the set of triple maps {𝑡1, 𝑡2, . . . , 𝑡𝑛} contained in the
RML mapping document 𝑀 and applying it to 𝐼 . The interpreter therefore processes multiple input
files using triple maps in an RML mapping document to produce an RDF output. The transformation
can be formalized as a function 𝑓 such that 𝑓(𝑀, 𝐼) = 𝐺. The function 𝑓 is implemented by RML
interpreters and essentially applies string replacement operations, such as filling in string templates,
directly inserting data using references, and performing string formatting. The string formatting
operations ensure that the output is a valid IRI (enclosed in <>), a valid blank node (starting with _:),
or a literal (enclosed in "") with an appropriate data type or language tag.

Fig. 1 shows the entire mapping process. The non-RDF source data is in CSV format, and the
corresponding RML mapping document1 uses the latest RML vocabulary. Both are used as input to
an RML interpreter, which generates the output RDF graph in N-Triple format. The non-RDF source
data, the RML mapping document, and the RDF output will be used throughout this paper as a running
example.

4. Approach

In our approach we aim to invert the function 𝑓(𝑀, 𝐼) = 𝐺 typically implemented by RML interpreters,
as introduced in the previous section. Instead of starting with an RML mapping document 𝑀 to produce
the RDF output 𝐺 from the non-RDF source data 𝐼 , we reverse the process. Given the set of non-RDF
input data 𝐼 and the RDF output 𝐺, our goal is to generate a minimal RML mapping document 𝑀 ′

that is equivalent to the original and unknown mapping document 𝑀 . This means that the RML
mapping documents 𝑀 and 𝑀 ′ produce identical RDF output graphs, i.e., 𝑓(𝑀, 𝐼) = 𝑓(𝑀 ′, 𝐼) = 𝐺,
while potentially using different RML mapping constructs. 𝑀 ′ and 𝑀 are both possible RML mapping
documents within the set of all equivalent RML mapping documents, denoted as 𝑉 , that is 𝑀 ′,𝑀 ∈ 𝑉 .
In some cases, 𝑀 ′ and 𝑀 may also represent the same element, i.e., 𝑀 ′ = 𝑀 . Our approach aims to
identify the 𝑀 ′ ∈ 𝑉 that contains the minimal number of RML triple maps.
1Well-known prefixes are omitted, but can be looked up on http://prefix.cc/.

http://prefix.cc/


RDF output graph (R)

1. @base <http://ex.com/base/> .
2.
3. <#TriplesMap1> a rml:TriplesMap ;
4.   rml:logicalSource [ rml:source [ rml:path "file1.csv"];
5.   rml:predicateObjectMap [
6.     rml:objectMap [ 
7.       rml:joinCondition[
8.         rml:child "Department";
9.       rml:parent "ID" ] ;
10.   rml:predicate <http://ex.com/worksAt> ];
11.   rml:subjectMap [ 
12.   rml:template "http://ex.com/user_{ID}";
13.   rml:class <http://ex.com/employee> ] .
14.
15. <#TriplesMap2> a rml:TriplesMap ;
16.   rml:logicalSource [ rml:source [ rml:path "file2.csv"];
17.   rml:subjectMap [ rml:template "http://ex.com/{Name}"].

non-RDF data (I)

RML Interpreter

ID Department Name
10
20

835 John Doe
Jane Roe

ID
835
935

legal
finance

Name

file1.csv

file2.csv

RML mapping document (M)

<http://ex.com/user_10> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://ex.com/employee> .
<http://ex.com/user_20> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://ex.com/employee> .
<http://ex.com/user_10> <http://ex.com/worksAt> <http://ex.com/legal> .

Figure 1: Running example with input data 𝐼 = {𝑓𝑖𝑙𝑒1.𝑐𝑠𝑣, 𝑓𝑖𝑙𝑒2.𝑐𝑠𝑣}, RML mapping document 𝑀 , and
output RDF graph 𝐺

.

Given the non-RDF input and the RDF output we need to determine the three components term
type, with possible values of IRI, blank node, and literal, term map type with values of template,
reference, and constant, and term map which consists of strings to be processed based on all output
RDF triples. The information is necessary to generate all potential RML triple maps, thereby creating
a search space of triple maps. By evaluating this search space, we aim to identify the minimal RML
mapping document 𝑀 ′ by selecting the best-fitting RML triple maps. Specifically, we prefer triple maps
that use a term map type of template or reference over constants, as they typically generate more RDF
triples in the output. The identified best-fitting RML triple maps are then included in the final RML
mapping document 𝑀 ′, ensuring that the final result contains the minimal necessary number of triple
maps. The overall reverse engineering pipeline is depicted in Fig. 2. The pipeline generally consists

Figure 2: Overview of core components in the RML mapping document reverse engineering pipeline.

of three processing components. The first component, the Triple Map Generator, is used to identify



term types, term map types, and term maps. The information is used to generate all possible triple
maps, which creates the initial search space, represented as a set of triple maps. The second component,
the Join Detection component, takes the set of triple maps as input and identifies potential joins by
combining related triple maps into a single join triple map. The component therefore extends the initial
search space and produces a new set of triple maps that includes the identified joins as output. The
final component, the Triple Map Filter, processes the created search space and identifies and filters all
triple maps that produce a subset of RDF triples from other triple maps, with the goal of identifying all
triple maps required to generate a minimal RML mapping document 𝑀 ′. Finally, all valid triple maps
are combined into the generated RML mapping document and saved to disk. All three components and
their computational complexity are discussed in more detail in the following subsections.

4.1. Triple Map Generator

The Triple Map Generator component takes the set of non-RDF source data 𝐼 and the target RDF graph
𝐺 as input. Using the following three algorithms, the component extracts all term types, term map
types, and term maps. Based on the extracted information and predefined triple map templates, the
component generates a set of potential RML triple maps as output, representing the initial search space.

Identifying Term Types The first step in the Triple Map Generator component of the reverse
engineering pipeline is to determine the term types of the subject, predicate, object, and optional graph
terms of the output RDF graph. The term types are identified based on the formatting of RDF terms in
different RDF serializations. We assume that the serialization format is N-Triple, since this is the format
most commonly generated by RML interpreters. In N-Triples, blank nodes are prefixed with _:, IRIs
are enclosed in < >, and literals are enclosed in " ". Algorithm 1 describes the identification process in
pseudocode and assumes well-formed RDF terms as input. The algorithm is relatively simple but must
be executed for each RDF term in the output RDF graph.

Algorithm 1: Term Type Identification
Input: RDF term 𝑇 (string)
Output: Identified RDF term type (string)
// Remove language tag or datatype

1 if ’^^’ in 𝑇 then
2 𝑇 ← 𝑇 .split(’^^’)[0];

3 else if ’@’ in 𝑇 then
4 𝑇 ← 𝑇 .split(’@’)[0];

// Identify term type
5 if 𝑇 [0] == ’<’ and 𝑇 [-1] == ’>’ then
6 return iri;

7 else if 𝑇 [0] == ’_’ and 𝑇 [1] == ’:’ then
8 return blanknode;

9 else if 𝑇 [0] == ’"’ and 𝑇 [-1] == ’"’ then
10 return literal;

11 else
12 error

For instance, when Algorithm 1 processes all RDF terms in the output RDF graph of the running
example introduced in Section 3, it determines that all RDF terms are of term type IRI.

Identifying Term Map Types The next step is the identification of the term map type in the output
RDF data. The term map type of an RDF term is determined based on how the data is generated.



Specifically:

• If the RDF term does not contain values from the non-RDF source data, its term map type is
constant.

• If the RDF term contains only values from the non-RDF source data, its term map type is
reference.

• If the RDF term contains some values from the non-RDF source data, its term map type is
template.

To avoid identifying template values within well-known IRIs, we introduce protected IRIs, a predefined
list of IRIs that are considered protected, meaning that no replacement operations are performed on
them. The list can be customized for a specific domain, and relevant protected IRIs can be added.
Additional processing is required if the term type is an IRI, since the algorithm must first decode the
IRI, i.e. remove percent encoded characters, before it can perform data matching. Algorithm 2 shows an
implementation in pseudocode. The algorithm must be run for each entry in the non-RDF data and
compared to each RDF term in the output RDF graph, and each RDF term must be compared to all
protected IRIs.

Algorithm 2: Term Map Type Identification
Input: RDF term 𝑇 (string), non-RDF input element 𝐸 (string), protected IRIs 𝐴 (array[string])
Output: The identified term map type (string)
// Remove percent encoded chars

1 𝑇 = decode(𝑇 );
// Remove protected IRI

2 for iri in 𝐴 do
3 if iri in 𝐸 then
4 𝑇 ← 𝑇 .remove(iri);
5 break;

// Identify term map type
6 if 𝐸 not in 𝑇 then
7 return constant;

8 else if 𝐸 == 𝑇 then
9 return reference;

10 else
11 return template;

When Algorithm 2 processes the first RDF term of the running example, i.e. 𝑇 =
http://example.com/user_10, and the first element of the first row of file1.csv, 𝐸 = 10,
it determines that the term map type is template, since the entry 10 can replace parts of the RDF term
𝑇 . However, if the algorithm processes the second element of the first row of file1.csv, 𝐸 =835, it
determines that the term map type is constant, since the entry 835 cannot replace parts of the RDF
term 𝑇 and is independent of the input.

Identifying Term Maps The last step is to identify term maps. Term maps come in three variants: a
template string, a reference identifier, and a constant string. In order to generate the correct term map,
an algorithm must perform string substitution operations and check whether parts of the non-RDF
source data are a valid substring of each RDF term in the output RDF graph, indicating a template or a
reference. No match indicates a constant. Identifying the term map type uisng Algorithm 2 in advance
helps to generate the term map. Algorithm 3 demonstrates how term maps can be generated.



Algorithm 3: Term Map Identification
Input: RDF term 𝑇 (string), non-RDF input element 𝐸 (string), RDF term type 𝑃 (string)
Output: The identified term map (string)
// Remove percent encoded chars

1 𝑇 = decode(𝑇 );
// Generate Term Map

2 if 𝑃 == ’constant’ then
3 return 𝑇 ;

4 else if 𝑃 == ’reference’ then
5 return 𝐸;

6 else if 𝑃 == ’template’ then
// Get attribute name of 𝐸

7 𝐸_𝐻𝑒𝑎𝑑𝑒𝑟 ← attributeNameOf(𝐸);
// Replace 𝐸 with attribute name of 𝐸

8 𝑇 ← 𝑇 .replace(𝐸, 𝐸_𝐻𝑒𝑎𝑑𝑒𝑟);
9 return 𝑇 ;

When Algorithm 3 is invoked with the first input from the example in Algorithm 2, i.e. 𝑇 =
http://example.com/user_10, 𝐸 = 10, 𝑃 = template, it produces the term map template string
http://example.com/user_{ID}. Similarly, if the algorithm is invoked with the second input from
the example in Algorithm 2, i.e. 𝑇 = http://example.com/user_10, 𝐸 = 835, 𝑃 = constant,
it produces the term map constant string http://example.com/user_10. Both are valid ways to
generate the term map 𝑇 , depending on the non-RDF input data, but the approach based on the template
string is more general. When all elements of RDF triple, i.e., subject, predicate, and object, have been
processed by algorithm 3, the extracted information can be used to fill a triple map template that
generates exatly the given RDF triple. All triple maps generated in this way are added to the initial
search space.

Complexity Analysis The Triple Map Generator component containing the three introduced algo-
rithms is computationally very intensive and the performance depends on five factors, the number
of processed non-RDF files 𝑟, the number of entries in each non-RDF file, 𝑛 (for CSV files, this is the
number of rows), the number of elements in each entry, 𝑚 (for CSV files, this is the number of columns),
the number of N-Triples in the output RDF graph, 𝑞, and the number of protected IRIs, 𝑝. The resulting
overall time complexity is therefore 𝒪(𝑟 · 𝑛 ·𝑚 · 𝑞 · 𝑝). Since 𝑟, 𝑚 and 𝑝 are relatively small compared
to 𝑛 and 𝑞, the time complexity of the component can be simplified to𝒪(𝑛 · 𝑞). The output of the Triple
Map Generator component is the initial search space, represented in the form of a set of potential triple
maps 𝑆.

4.2. Join Detector

Identifying join triple maps and corresponding join attributes, called parent and child in RML, is a
challenging task. The Join Detector component of the reverse engineering pipeline takes the initial
search space, i.e. the set of triple maps, 𝑆, generated by the Triple Map Generator component and
identifies potential equi joins by comparing each generated triple map with all other triple maps. Once a
potential join is identified, we use a set similarity overlap metric to heuristically identify join attributes
and rank them by a score. We assume that among all potential join pairs, the pairs with the highest
overlap are the most likely candidates for the join. Based on the extracted information, new join triple
maps are generated and added to the set of all triple maps 𝑆, which extends the initial search space.

Join Detection To identify two triple maps that can potentially be combined into a single join
triple map, we use Algorithm 4. The algorithm takes two triple maps, 𝑡𝑚1 and 𝑡𝑚2 as input, where



𝑡𝑚1, 𝑡𝑚2 ∈ 𝑇 , and determines whether they can be merged into a single join triple map. To do so,
the algorithm compares the term maps, term map types, and term types of 𝑡𝑚1 and 𝑡𝑚2, as well as
relevant invariants, which are defined as the longest common starting substring of RDF terms [10].

For 𝑡𝑚1 to be considered a potential join triple map, its subject term map type must not be of term
map type constant, while its object term map must be of term map type constant. Similarly, for 𝑡𝑚2
to be considered a potential join triple map of 𝑡𝑚1, the subject term map of 𝑡𝑚2 must have a term map
type of constant, while its object term map must not be of term map type constant. Additionally,
both triple maps, 𝑡𝑚1 and 𝑡𝑚2, must have identical predicate term maps and predicate term types.
Furthermore, the subject term map invariant of 𝑡𝑚1 must be contained within the subject term map of
𝑡𝑚2, and the object term map invariant of 𝑡𝑚2 must be contained within the object term map of 𝑡𝑚1.

If all these conditions are met, the two triple maps can potentially be combined into a single join
triple map. The following Algorithm 4 presents an implementation of the described join triple map
identification.

Algorithm 4: Join Triple Map Identification
Input: Triple Map 1 𝑡𝑚1 (graph), Triple Map 2 𝑡𝑚2 (graph)
Output: combination possible (boolean)
// 𝑡𝑚1 must not be constant in subject and must be constant in object

1 if 𝑡𝑚1.𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝_𝑡𝑦𝑝𝑒 == ’constant’ then
2 return false;

3 if 𝑡𝑚1.𝑜𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝_𝑡𝑦𝑝𝑒 != ’constant’ then
4 return false;

// 𝑡𝑚2 must be constant in subject and must not be constant in object
5 if 𝑡𝑚2.𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑡𝑦𝑝𝑒 != ’constant’ then
6 return false;

7 if 𝑡𝑚2.𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑡𝑦𝑝𝑒 == ’constant’ then
8 return false;

// 𝑡𝑚1 and 𝑡𝑚2 must have equal predicate term map and term map type
9 if not (𝑡𝑚1.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝 == 𝑡𝑚2.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝 and

𝑡𝑚1.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑡𝑒𝑟𝑚_𝑡𝑦𝑝𝑒 == 𝑡𝑚2.𝑝𝑟𝑒𝑑𝑖𝑎𝑐𝑡𝑒_𝑡𝑒𝑟𝑚_𝑡𝑦𝑝𝑒) then
10 return false;

// Invariant of 𝑡𝑚1 subject must be in 𝑡𝑚2 subject
11 if not(invar(𝑡𝑚1.𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝) in 𝑡𝑚2.𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝) then
12 return false;

// Invariant of 𝑡𝑚2 object must be in 𝑡𝑚1 object
13 if not(invar(𝑡𝑚2.𝑜𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝) in 𝑡𝑚1.𝑜𝑏𝑗𝑒𝑐𝑡_𝑡𝑒𝑟𝑚_𝑚𝑎𝑝) then
14 return false;

15 return true;

The input to the Join Identification component is the initial search space, represented by the set 𝑆.
The set 𝑆 contains two triple maps, 𝑡𝑚1 and 𝑡𝑚2, which are depicted in Fig. 3. If both triple maps are
used as input for Algorithm 4, all checks pass, and the output is true, indicating that both triple maps
potentially form a join.

Identifying Join Attributes Once two potential join triple maps have been identified, the join
attributes must be determined. Our approach employs a heuristic that generates a score for each
possible combination of join attributes, using set similarity measures, and compares the generated
RDF triple with the expected RDF data to identify the best pair. The method is similar to established



1. @base <http://ex.com/base/> .
2.
3. <#TriplesMap98> a rml:TriplesMap ;
4.   rml:logicalSource [ rml:source [ rml:path "file1.csv"];
5.   rml:predicateObjectMap [
6.    rml:object <http://example.com/legal> ;
7.    rml:predicate <http://ex.com/worksAt> ] ;
8.    rml:subjectMap [ rml:template "http://ex.com/user_{ID}"] .

tm1

1. @base <http://ex.com/base/> .
2.
3. <#TriplesMap89> a rml:TriplesMap ;
4.   rml:logicalSource [ rml:source [ rml:path "file2.csv"];
5.   rml:predicateObjectMap [
6.    rml:objectMap [ rml:template "http://ex.com/{Name}"] ;
7.    rml:predicate <http://ex.com/worksAt> ] ;
8.    rml:subject <http://ex.com/user_10> .

tm2

Figure 3: Two triple maps, 𝑡𝑚1 and 𝑡𝑚2, contained in the initial search space, represented by the set 𝑆.

approaches used to identify joinable tables in large-scale data lakes [24].
To calculate the score, the algorithm evaluates the overlap coefficient, also known as set contain-

ment [25], which measures the similarity between two finite sets, 𝐴 and 𝐵. The overlap coefficient is
computed using Equation 1. The resulting values range from 0 to 1, i.e., 0 ≤ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐴,𝐵) ≤ 1, where
the value 1 is reached if 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐴,𝐵) =
|𝐴 ∩𝐵|

𝑚𝑖𝑛(|𝐴|, |𝐵|)
(1)

Once the highest ranking join pairs have been identified, the input is joined and the pair that results
in the generation of the most RDF triples in the output is selected and used as parent and child
attributes in the generated triples map.

The overlap coefficient of the data used in the two triple maps, 𝑡𝑚1 and 𝑡𝑚2, in the running example
and Fig. 3 is highest for the combination (Department, ID), as all other combinations have no
overlap. Therefore, both triple maps are combined into a single join triple map with Department as
child and ID as parent. The new join triple map is then added to the search space, represented by the
set 𝑆.

Complexity Analysis The Join Identification component consists of two steps, the Join Detection
step and the Join Attribute Identification step. The first step, which is also the most significant in terms
of time complexity, involves Algorithm 4, which must be executed for all generated triple maps in the
search space, comparing each one with all other generated triple maps. Consequently, the Join Detection
step has a quadratic time complexity, dependent on the size of the initial search space, represented
by the generated triple map set, 𝑆. In contrast, the Join Attribute Identification step iterates over the
content of the two compared attributes and, therefore, has a linear time complexity. Thus, the overall
time complexity of the Join Identification component depends on the size of 𝑆, given by size(𝑆),
resulting in a time complexity of 𝒪(size(𝑆)2).

4.3. Triple Map Filter

The final component in the reverse engineering pipeline is the Triple Map Filter component, which first
identifies and removes redundant triple maps, i.e., those triple maps that generate only a subset of RDF
triples produced by other triple maps, from the set 𝑆. In the second step, the remaining triple maps in
𝑆 are verified to ensure they generate the expected RML triples before being written to an output RML
mapping document.



Filter Triple Maps Generating Common Subsets All triple maps in 𝑆 produce RDF triples that are
contained in the reference RDF output. However, not all triple maps generate unique RDF triples, some
may produce a subset of RDF triples that can already be generated by another triple map. This leads to
the generation of duplicate RDF triples, which increases computational overhead for RML interpreters.
Therefore, the goal of this step is to identify triple maps that generate subsets of RDF triples already
produced by another triple map and to filter out unnecessary triple maps from 𝑆. This ensures the
generation of a minimal RML mapping document containing only the required triple maps.

To remove unnecessary triple maps from 𝑆, the Triple Map Filter component generates the RDF
triples described by each triple map and compares them with all other RDF triples to identify subsets.
If a triple map produces only a subset of another triple maps RDF triples, the triple map generating
duplicates is removed from 𝑆.

For instance, looking back at the example used in combination with Algorithm 3, where two term
maps have been identified. 𝑇1 = http://example.com/user_{ID} with term map type template
and 𝑇2 = http://example.com/user_10 with term map type constant. When processing 𝑇1 and
𝑇2 in combination with file1.csv of the running example, we can see, that 𝑇1 produces two RDF
output triple, one where the placeholder ID is replaced with 10, i.e., http://example.com/user_10,
and one where the palceholder is replaced with 20, i.e., http://example.com/user_20. On the
other hand 𝑇2, only produces a constant output http://example.com/user_10. Therefore, 𝑇1 is
more general, and 𝑇2 prodcues only a subset of RDF triple 𝑇1 prodcues, meaning 𝑇2 will be filtered out
and only 𝑇1 will be kept.

Validating Generated RDF Terms In the final step, the remaining triple maps in 𝑆 are validated to
ensure that all generated RDF terms are included in the output RDF graph. A triple map is considered
correct and added to the resulting RML mapping document only if all the RDF terms it produces are
present in the output RDF graph. Once validation is complete, the final set of triple maps, 𝑆, is written
to disk, marking the completion of the generation process.

Complexity Analysis The final step of the reverse engineering pipeline first generates all RDF triples
described in each generated RML triple map by processing all non-RDF input files, iterating over each
entry in the non-RDF files. In a second step, the results are filtered by comparing the generated RDF
triple identification subsets, and validated by comparing the generated RDF triple with the expected
RDF triple in the output graph. However, the important step for the time complexity is the generation
of the RDF triple, which depends on the number of triple maps 𝑡, the number of input non-RDF files 𝑟,
and the number of entries in the non-RDF files 𝑛, resulting in a time complexity of 𝒪(𝑡 · 𝑟 · 𝑛).

5. Evaluation

To evaluate the functionality of our approach, we implemented all of the introduced algorithms in a
proof-of-concept and used the prototype implementation to generate RML mapping documents based
on the latest version of the RML Core test cases2. The RML test cases were developed to validate the
conformance of different RML interpreters to the RML specification [26].

5.1. Prototypical Implementation

To validate our RML mapping document generation approach, we developed a proof-of-concept imple-
mentation called the Reverse Engineering Mapping tool (ReMap), written in Python. The ReMap tool is
based on the pandas3 library for handling non-RDF input data and the RDFLib4 library, combined with
a custom N-Triples parser, to process RDF output data.

2https://github.com/kg-construct/rml-core/tree/980ca117443ae61ca6d72c0f2ba38967e4360c32
3https://pandas.pydata.org/
4https://rdflib.dev/
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The ReMap tool is released under an open-source license and is publicly available on GitHub5. Our
prototype implementation currently supports only CSV data as non-RDF input and N-Triple format for
RDF output, as both formats are straightforward to parse. This allowed us to focus on developing the
core reverse engineering functionality.

For easy distribution of the ReMap tool, we compiled the source code using Nuitka6 into an executable
to allow execution without a Python interpreter installed.

5.2. Conformance Evaluation of ReMap

To assess the conformance to the RML specification of the automatically generated RML mappings
produced by our approach, we utilized the RML core test case dataset. We generated RML mapping
documents for each test cases using our ReMap tool and analyzed the results.

Dataset We used the RML Core test cases dataset, limited to CSV input data, for our conformance
evaluation. Each test case consists of one or more CSV files representing the non-RDF input data, a
corresponding RML mapping document, and an expected RDF output file in N-Triples format. Out of
the 48 available CSV test cases, we considered 35. The remaining 13 test cases were not applicable, as
they evaluate the handling of errors in either the RML mapping document or the source data.

Execution Process We iterated through all the test cases with ReMap, using the provided CSV files
and the expected RDF graph as input. We then performed the mapping reverse engineering step and
saved the generated RML mapping document for each test case.

Next, we set up BURP [27] v0.1.1, an RML interpreter designed for compliance with the RML
specification [28] rather than execution speed or memory efficiency. We executed our generated RML
mapping documents with BURP and compared the resulting RDF output with the original expected
RDF data to verify that the generated RML mappings produced equivalent RDF data.

Two test cases (RMLTC0024e-CSV and RMLTC0024f-CSV) could not be validated using BURP, as the
required RML constructs are not yet supported. Therefore, we manually compared the generated RML
mapping documents for these cases.

Results The ReMap tool was able to generate an equivalent RML mapping document for all test cases,
demonstrating that our approach is viable.

5.3. Conformance Evaluation using a LLM

The current generation of LLMs can also generate RML mapping documents based on a given non-RDF
input and RDF output. For our evaluation, we used OpenAI’s best available reasoning model, o3-mini-
high. The model has a knowledge cutoff in October 2023 and, therefore, only supports the older RMLIO

vocabulary. All prompts used, as well as the generated mappings, are publicly available on GitHub7.

Dataset We used the same 35 RML core test cases as those in the previous section (see Section 5.2).

Execution Process For each test case, we provided the input CSV data along with the expected
RDF output graph in a simple prompt, instructing the LLM to generate a corresponding RML mapping
document. The model then generated an RML mapping document, which we used to execute the
mapping using RMLMapper v7.3.18. Finally, we compared the generated RML output graph to the
expected RDF graph.

5https://github.com/FreuMi/remap
6https://nuitka.net/
7https://github.com/FreuMi/remap/tree/main/llm_test_cases
8https://github.com/RMLio/rmlmapper-java/releases/tag/v7.3.1
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Results The LLM successfully generated the correct RML mapping document for 22 test cases, but
failed for 13, resulting in a 63% success rate, which is 31% worse than the ReMap. The 13 failed test
cases were primarily the more complex ones, suggesting that LLMs can handle simpler cases effectively,
but struggle with more complicated ones. Additionally, the model required extensive processing time,
ranging from 10 seconds for simpler test cases to up to 70 seconds for more complex ones.

5.4. Performance Evaluation

To empirically assess the RML mapping document generation speed and memory consumption of the
developed ReMap tool we ran experiments on on a virtual machine running on an Intel Xeon Gold 6154
CPU. The virtual machine has access to 8 cores running at 3.0 GHz each, 64 GB of RAM and an 8 GB
swap partition. The system is running Ubuntu 24.04.1 LTS and the Python scripts are executed using
the Python 3.12.3 interpreter. Execution time and peak memory usage were measured using the time
command from the GNU time package9.

Dataset We reuse the duplicated values dataset from the benchmark used in the KG Construction
Workshop (KGCW) Challenge 2024 [29]. We adapted the included RML mapping document to directly
process the CSV data. The duplicated values dataset contains synthetic data specifically designed
to evaluate RML interpreters and their handling of duplicate values.

Execution Process For our experiments, we reduced the number of rows in the CSV data, 𝑚, to 5,
10, 20, and 30 unique rows, which correspond to 100, 200, 400, and 600 N-Triples, 𝑞, in the RDF output
graph. All other parameters were kept constant, meaning the number of CSV input files, 𝑟, was set to 1,
the number of columns in each CSV file, 𝑚, remained at 21, and the number of protected IRIs, 𝑝, was
fixed at 3.

We used Morph-KGC [10], along with the original RMLIO v1.1.110-based mapping document and the
reduced CSV data, to generate the expected RDF graph. Next, we employed ReMap to reverse engineer
an equivalent RML mapping document based on the RDF graph produced by Morph-KGC and the
reduced CSV files. The generated RML mapping document was then processed using BURP [27], and
the resulting RDF output was compared to the original RDF output to validate correctness.

Results Fig. 4 plots the benchmark results, showing an exponential increase in execution time coupled
with a similar increase in memory consumption. The observed results are consistent with expectations,
as the time complexity analysis of the algorithms predicted such exponential growth. We also found
that all experiments generated RML mapping documents that produced the expected RDF graph based
on the non-RDF input data.

Overall, the results indicate that while the ReMap prototype implementation is not suitable for large
datasets due to long processing times and high memory consumption, it performs reasonably well for
smaller datasets typically used to generate RML mapping documents based on examples.

The performance of the ReMap tool is limited because it does not utilize multiprocessing and, therefore,
runs on a single core. Additionally, the high number of string replacement and manipulation operations,
currently executed in pure Python, are time-consuming. This is due to Python’s string immutability11,
which requires the time-consuming creation of a new string object each time a modification is made.

Additionally the experiment demonstrated, that the ReMap tool can be used to update older mapping
documents using the RMLIO standard to the latest RML standard. Since when older RML mappings are
executed and a RDF output graph is generated, ReMap can use the original non-RDF input data and the
generated RDF ouput, to reverse engineer a RML mapping document based on the newest standard.

9https://www.gnu.org/software/time/
10https://rml.io/specs/rml/v/1.1.1/
11https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
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Figure 4: Average execution time and memory consumption of ReMap generating RML mapping documents
over 3 runs with different input sizes.

6. Conclusion and Future Work

We introduced an RML mapping document reverse engineering approach capable of generating a
corresponding RML mapping document based on given non-RDF source data and an expected output RDF
graph. We presented and described the core algorithms required to implement the reverse engineering
pipeline and discussed their time complexity.

Additionally, we introduced a prototype implementation called ReMap. ReMap enables users to define
only the expected output RDF graph and provide the non-RDF source input to automatically generate
an RML mapping document. Additionally, since the reverse engineered RML mapping document does
not rely on the original RML mapping document, ReMap can be used to update older mappings using
the RMLIO to the latest RML standard using the latest vocabulary. We used the ReMap implementation
to evaluate the conformance of the generated RML mapping documents using the RML core test
cases. Furthermore, we assessed the performance of ReMap, measuring execution time and memory
consumption using an established benchmark dataset from the KGCW Challenge. Our evaluation
showed that the proposed approach conforms to all applicable RML core test cases, since the ReMap tool
generates equivalent RDF mapping documents for all test cases. The empirical analysis of execution
time and memory consumption demonstrated exponential growth, which aligns with expectations
based on the time complexity of the involved algorithms.

For future work, on the theoretical side, we aim to improve the formalization of the RML mapping
reverse engineering approach using set notation. On the application side, we plan to integrate the pro-
posed reverse engineering pipeline into a user-friendly GUI-based application. A GUI-based application
will allow users to define the mapping of non-RDF data to RDF by example, and simplify the updating
of RML mapping documents. By providing a easy-to-use tool for the mapping by example process, the
application will reduce the need to manually write or rewrite RML mapping documents from scratch.
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