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Abstract

Large language models (LLMs) have transformed AI research thanks to their powerful in-
ternal capabilities and knowledge. However, existing LLMs still fail to effectively incorpo-
rate the massive external knowledge when interacting with the world. Although retrieval-
augmented LLMs are proposed to mitigate the issue, they are still fundamentally constrained
by the context length of LLMs, as they can only retrieve top-K raw data chunks from the
external knowledge base which often consists of millions of data chunks. Here we propose
Thought-Retriever , a novel model-agnostic algorithm that helps LLMs generate output con-
ditioned on arbitrarily long external data, without being constrained by the context length
or number of retrieved data chunks. Our key insight is to let an LLM fully leverage its
intermediate responses generated when solving past user queries (thoughts), filtering mean-
ingless and redundant thoughts, organizing them in thought memory, and retrieving the
relevant thoughts when addressing new queries. Besides algorithmic innovation, we fur-
ther meticulously prepare a novel benchmark, AcademicEval, which requires an LLM to
faithfully leverage ultra-long context to answer queries based on real-world academic pa-
pers. Extensive experiments on AcademicEval and two other public datasets validate that
Thought-Retriever remarkably outperforms state-of-the-art baselines, achieving an average
increase of at least 7.6% in F1 score and 16% in win rate across various tasks. More impor-
tantly, we further demonstrate two exciting findings: (1) Thought-Retriever can indeed help
LLM self-evolve after solving more user queries; (2) Thought-Retriever learns to leverage
deeper thoughts to answer more abstract user queries.

1 Introduction and Related Work

Large language models (LLMs) have revolutionized AI research thanks to their powerful internal capabilities
(Zhao et al., 2023; Wang et al., 2023) and knowledge (Peng et al., 2023a). When building LLMs, researchers
further expect LLMs to interact with the world by effectively incorporating the external knowledge as their
long-term memories, e.g., collected from facts (Sun et al., 2023) or interactions with other AIs (Wu et al.,
2023; Kannan et al., 2023). Importantly, the scale of the external knowledge for LLMs could be arbitrarily
large; ultimately, all the digitized information within our universe could serve as the external knowledge
for these LLMs. In practice, when building personalized LLM applications (Bill & Eriksson, 2023) or LLM-
powered domain experts (Thirunavukarasu et al., 2023; Liu et al., 2023), e.g., AI doctor, the relevant external
knowledge for the LLMs could also easily get extremely large, e.g., billions of tokens. Therefore, our paper
aims to raise attention to the pressing research question: how to effectively and efficiently help LLMs utilize
(arbitrarily) rich external knowledge.

To help LLMs better incorporate external knowledge, existing research mainly falls into two categories:
long-context LLMs and retrieval-augmented LLMs (RALMs). (1) Long-context LLMs, such as MPT (Mo-
saicML, 2023) and LongChat (LM-SYS, 2023), aim to expand the LLM’s context window, e.g., via novel
training algorithms (Tay et al., 2022), inference algorithms (Xiao et al., 2023), new architectures (Peng et al.,
2023b; Gu & Dao, 2023), or system optimization (Xu et al., 2023c). Although these methods improve the
working memory size of LLMs, they cannot fundamentally address the issue of interacting with ultra-rich
external knowledge using LLMs, since the computational complexity is often quadratic to the context length.
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Figure 1: Why Thought-Retriever helps. (a) A standard RALM is limited by the number of retrieved
chunks. The retrieved data fails to cover all the necessary data chunks (red chunks) for a user query. (b) A
hierarchical RALM retrieves summaries Si, generated independently from user queries, which could improve
recall at the cost of lower precision. (c) Thought-Retriever leverages past LLM thoughts collected from
answering user queries, with little computational overhead. Thought-Retriever balances low-level facts and
high-level thoughts, leading to high precision and recall.

(2) RALMs retrieve pertinent information from external knowledge bases using retrievers, such as BM-25
(Robertson et al., 2009), Contriever (Izacard et al., 2022), and DRAGON (Lin et al., 2023). However, these
algorithms are still constrained by LLMs’ context length, since they can only retrieve top-K raw data chunks
from the external knowledge that fits within an LLM’s context limit. (3) Hierarchical RALMs, e.g., creating
a tree-structured memory for an LLM (Chen et al., 2023). Despite its potential to help LLMs incorporate
more abstract knowledge, manually summarizing closed chunks and rigidly forming a tree structure proves
to be a costly and inefficient method. This approach demands significant resources and lacks the flexibility
to adapt to specific inputs in LLMs. Overall, existing methods in attempting to include external knowledge
for LLMs still exhibit fundamental limitations in efficiency and effectiveness.

Here, we propose Thought-Retriever , an LLM-agnostic self-evolving retrieval framework that leverages his-
torical LLM responses to answer new queries. Our key insight is that LLM responses can be transformed
into thoughts with little computational overhead and that the thoughts can be organized as a thought mem-
ory for the LLM to facilitate future tasks. Psychological studies (Kurzweil, 2013; Snell, 2012) support our
insight, revealing that human memory is organized hierarchically, which not only aids in retrieving relevant
information for problem-solving but also gradually deepens our understanding of the world through con-
tinuous processing and summarizing these interactions into complex cognitive thoughts. Notably, through
continuous interaction with diverse user queries, Thought-Retriever progressively generates more novel and
expansive thoughts. This is achieved by organizing new data chunks from external knowledge into thoughts
after addressing each query, filtering out meaningless and redundant thoughts, and ultimately incorporating
high-quality thoughts into the thought memory. Therefore, Thought-Retriever gives an LLM the potential
to utilize arbitrarily rich external knowledge long-term memories and achieve self-evolution in capabilities.

In addition to algorithmic advancements, we also meticulously developed a novel benchmark, AcademicEval,
which challenges an LLM to accurately utilize extensive context to answer queries based on real-world
academic papers. Our comprehensive experiments on AcademicEval and two additional datasets confirm
that Thought-Retriever significantly surpasses state-of-the-art baselines, achieving an average increase of at
least 7.6% in F1 score and 16% in win rate across various tasks. Furthermore, we present two intriguing
discoveries: (1) Thought-Retriever can indeed facilitate the self-evolution of an LLM after addressing more
user queries; (2) Thought-Retriever is capable of harnessing deeper insights to respond to more abstract user
queries.

In summary, our main contributions are as follows: (1) Thought-Retriever framework enables an LLM to
efficiently and effectively utilize external knowledge, and further allowing it to self-evolve through continuous
interactions. (2) AcademicEval, a real-world benchmark for testing LLM’s understanding of ultra-long
context. (3) Thought-Retriever consistently outperforms all state-of-the-art retrieval-augmented and long-
context baselines and presents exciting new findings.
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Figure 2: Thought-Retriever Framework. (a) Thought retrieval: Upon receiving a user query,
Thought-Retriever retrieves top-K data chunks from the mixture of external knowledge and thought memory
based on embedding similarity; (b) Answer and confidence generation: The LLM generates the answer
for the user query based on the retrieved data chunks; (c) Thought generation: The LLM further generates
thought and its confidence based on the user query and the generated answer; (d) Thought merge: The
calculation of similarity is used to measure whether generated thought will cause redundancy in data chunks;
(e) Thought memory update: Meaningless and redundant thoughts are removed and the remaining novel
thoughts are used to update the thought memory.

2 Thought-Retriever: Effectively Equip LLMs with External Knowledge

2.1 Preliminaries

An external knowledge base K = (K1, K2, ..., Kn) consists of n data chunks. Instead of treating model outputs
merely as transient responses, we formally define a thought (Ti) as a persistent, query-driven cognitive unit
derived from the interaction between a query Q and retrieved context Ki. Formally, a Thought Ti is a
validated abstraction Ti = Abstract(Q, A,Ki) that satisfies three key properties: (1) Query-Conditioned:
it captures the logical link between a specific query and the data, unlike static summaries; (2) Abstractive:
it distills a coherent knowledge point from the raw conversation; and (3) Validated: it passes a confidence
check (ci) and a novelty check (si) to ensure it is meaningful and non-redundant.

We define the immediate source of a thought Ti as the set of retrieved items Ri (which may contain both
raw chunks and other thoughts) used to generate it. To rigorously trace information provenance, we define
the root source mapping Ô(·) recursively:

1. Base Case: For a raw data chunk K ∈ K, the root source is the chunk itself: Ô(K) = {K}.

2. Recursive Step: For a thought T generated from a retrieved set R, the root source is the union
of the root sources of its components: Ô(T ) =

⋃
r∈R Ô(r).

Example: Consider a thought Tnew generated based on an existing thought Told and a raw chunk K3 (i.e.,
R = {Told, K3}). If Told was originally derived from raw chunks {K1, K2}, then the root source of the new
thought is Ô(Tnew) = Ô(Told) ∪ Ô(K3) = {K1, K2, K3}. This ensures that we can always verify the factual
grounding of any high-level thought.
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2.2 Motivating Examples

To measure how effectively an LLM can utilize external knowledge, we propose to extend the retrieval metric,
precision, and recall, with the root source mapping Ô(·). Assuming that answering a user query Qthink

requires a set of data chunks Ki ∈ K, and an LLM’s response is Ti. We have Precision = |Ki∩Ô(Ti)|
|Ô(Ti)| , Recall =

|Ki∩Ô(Ti)|
|Ki| . As a motivating example, in Figure 1, we assume Ki = {K2, K3, K4, K5} is required to answer a

user query and an LLM can only fit 2 data chunks in its context window. A standard RALM (Figure 1(a))
can achieve perfect precision by retrieving the correct data chunks; however, it has a lower recall since it
does not have the context window to hold all the relevant data chunks.

To address the limited context window of RALM, researchers (Chen et al., 2023) proposed hierarchical
RALMs (Figure 1(b)), where similar data chunks are summarized into Si via LLM as a preprocessing step.
However, the tree-structured summary structure is rigid, since the summaries Si are static compressions
generated independently from user queries. In contrast, our Thought-Retriever generates dynamic thoughts
that are conditioned on specific user interactions, allowing the memory to evolve based on actual data usage
patterns. In Figure 1(b), ideally, chunks {K2, K3} and {K4, K5} should be grouped together to answer the
user query, where Precision = 1, Recall = 1 could be achieved; however, the tree construction happened
before user query, and the generated tree fail to adapt to the diverse future user query.

To stress the above limitations of existing RALMs, as is shown in Figure 1(c), we propose the Thought-
Retriever that leverages past LLM thoughts and balances low-level facts and high-level thoughts to answer
user queries. In real-world applications, user queries are often sufficiently diverse, leading to numerous
diverse thoughts to meet the demands of new user queries. This valuable observation differentiates Thought-
Retriever from existing tree-structured RALMs: (1) Thought-Retriever offers a more flexible structure of
thoughts that depends on past user queries, and (2) the thoughts leveraged by Thought-Retriever are byprod-
ucts from the standard RALM response, making it easy to implement and brings little computational over-
head.

2.3 Thought-Retriever Framework

Method Overview. Figure 2 offers an overview of the proposed Thought-Retriever framework, which
consists of four major components: (1) Thought retrieval, where data chunks from external knowledge
and thought memory are retrieved; (2) Answer generation, where an LLM generates the answer for the
user query based on the retrieved data chunks; (3) Thought and confidence generation, where an LLM
further generates thought and its confidence in validation to avoid hallucination based on the user query and
the generated answer; (4) Thought merge, where similarity is calculated to measure whether generated
thought will cause redundancy in data chunks; (5) Thought memory update, where meaningless and
redundant thoughts are removed; the thought memory is updated with the remaining novel thoughts, rather
than adopting all the new thoughts. We summarize the pipeline of Thought-Retriever in Algorithm 1, whose
details are shown as follows. Detailed prompts for this section can be found in Appendix A.2.

Thought Retrieval. After receiving a user query Qi, Thought-Retriever R retrieves relevant information
Ti from external knowledge K and previously generated thought memory T via embedding similarity ranking.
This process is formulated as Ti ← R(Qi,K ∪ T ).

Answer Generation. Based on the retrieved information Ti, we design a prompt to combine Ti and user
query Qi and feed the prompt to an LLM L to get the answer Ai. It can be articulated as Ai ← L(Qi, Ti).

Thought and Confidence Generation. We can generate thoughts via LLM L using the obtained answer
Ai and its query Qi (an example is shown in Table 5). However, meaningless thoughts during the generation
process may cause hallucinations for LLM and harm performance since some queries may be irrelevant to
the external knowledge and thought memory. To solve this issue, we design a special prompt so that LLM L
can generate thought Ti and thought quality confidence ci based on the user’s query Qi and corresponding
answer Ai. This can be described as Ti, ci ← L(Qi, Ai). Crucially, this step differentiates a thought from a
standard response (Ai). While Ai aims to satisfy the user’s immediate request, Ti is explicitly generated to
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Algorithm 1 Thought-Retriever Inference Algorithm
Input: User queries Q, external knowledge K, thought memory T , language model L, retriever R and
threshold of similarity ϵ.
Output: Answers to user queries A, updated thought memory T .

1: A ← {}
2: for Qi ∈ Q do
3: Ti ← R(Qi,K ∪ T ) {Thought retrieval}
4: Ai ← L(Qi, Ti) {Answer generation}
5: A ← A∪Ai

6: Ti, ci ← L(Qi, Ai) {Thought and confidence generation}
7: si ← 1{∃j,m ;sim(Ti,Kj/Tm)≥ϵ)} {Thought merge}
8: T ← T ∪ Ti, if ci = 1, si = 0 {Thought memory update}
9: end for

10: return A, T

Input: Given question:{question}, given answer:{context}. Based on the
provided question and its corresponding answer, perform the following
steps:

 Step 1: Determine if the answer is an actual answer or if it merely indicates
that the question cannot be answered due to insufficient information. If the
latter is true, just output '0' without any extra words, otherwise output ‘1’. 

 Step 2: If it is a valid answer, succinctly summarize both the question and
answer into a coherent knowledge point, forming a fluent passage.

Figure 3: Thought and Confidence Generation Prompt. This prompt is used for Thought and Confi-
dence Generation as described in Section 2.3. It evaluates whether the answer is valid and meaningful, and
then summarizes the query and answer into a thought.

distill the reasoning logic into a “coherent knowledge point” (as shown in the prompt in Figure 3) for the
system’s long-term memory. Specifically, ci is a discrete binary value, where 1 indicates that the generated
thought Ti is meaningful, and 0 indicates that it is meaningless or hallucinated. This confidence generation
is also validated through our experiment in Sec E.1.

Thought Merge. Redundant thoughts may cause LLM to retrieve duplicate information, which is also
harmful to the performance of LLM. Therefore, we calculate the similarity between the generated thought Ti

and data chunks (Tm, Kj) to measure whether generated thought Ti will cause redundancy in data chunks.
Instead of using complex notation, we implement this as a direct threshold check: we compute the maximum
embedding similarity between Ti and all existing items in the memory. If this maximum score exceeds the
threshold ϵ, we flag the thought as redundant (setting si = 1); otherwise, we consider it novel (setting
si = 0). Here, the embedding similarity is calculated based on Contriever (Izacard et al., 2022) (same as
retriever used elsewhere in Thought-Retriever).

Thought Memory Update. The confidence of thought quality ci and the similarity si determine whether
the newly generated thought should be updated into the thought memory T . Here, we design that if the
LLM is confident about its answer and the generated thought is not redundant, where ci = 1, si = 0, T will
be updated.
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3 AcademicEval: New Benchmark for Long-Context LLM Understanding
Current benchmarks for assessing LLM long-context memory utilization involve tasks such as question-
answering, long-context summarization, and classification. Despite being well-constructed, they are limited
in flexibility and real-world impact and are costly to acquire due to human labeling. To address these issues,
we introduce an innovative benchmark, AcademicEval, based on academic papers from arXiv updated
daily. AcademicEval comes with two datasets: AcademicEval-abstract and AcademicEval-related. We also
launched a public platform that will enable users to easily create similar datasets or utilize LLMs for academic
tasks (see details in Appendix H). In addition, the detailed dataset introduction and usage instructions can
be found in Appendix A.1 and A.2 respectively.

(1) AcademicEval-abstract. This dataset focuses on the summarization of single (Abstract-single in
Table 1) or multiple (Abstract-multi in Table 1) academic papers. The LLM is presented with one or more
papers with the abstract and conclusion sections removed and is tasked with writing an abstract. For
Abstract-single, the generated abstract is directly compared with the paper’s original abstract. For Abstract-
multi, the generated abstract is compared with a summary of abstracts from all the provided papers, which
is generated by an expert LLM as a label. (2) AcademicEval-related. This dataset (Related-multi in
Table 1) introduces a challenging task for assessing an LLM’s ability to understand the connections between
heterogeneous segments of its long-context memory. The task is to write a related work section based on the
title and abstract of a target paper. The LLM needs to use the title and abstract as the query to retrieve
memory chunks to complete this task. To be specific, memory chunks depict the abstracts of several papers
(each memory chunk corresponds to the abstract of a paper), where some papers are cited in the related work
section of the target paper, while others are randomly sampled from the same broader field. The generated
related work is then compared to the original related work of the target paper for evaluation.

4 Experiment

4.1 Experiment Setup

Additional Datasets. Besides AcademicEval, we further evaluate Thought-Retriever against state-of-
the-art baselines on two public datasets. (1) GovReport (Cao & Wang, 2022): This dataset comprises
19,466 reports and associated labels prepared by government research agencies to verify if the LLM is
capable of extracting salient words and useful information from a single lengthy governmental document.
(2) WCEP (Ghalandari et al., 2020): This dataset contains 10,200 entries, each containing multiple news
articles associated with an event sourced from the Wikipedia Current Events Portal. It requires the LLM to
understand and extract useful information from a cluster of documents. Table 1 summarizes the statistics
for all the datasets. Additionally, we discuss the computational details in Appendix N. It is important to
note that the current experimental validation is conducted in English. However, the Thought-Retriever
framework is inherently language-agnostic. We acknowledge that exploring its application to multilingual
settings and low-resource languages is a promising direction, which we plan to investigate in future work to
further demonstrate the framework’s broad applicability.

Baselines. To gain a comprehensive understanding of our thought retriever’s performance on LLM long-
term memory tasks, we have adopted several baselines. All experiments with these baselines are conducted
under the same LLM: Mistral-8x7B with LLM context length of 4,096 (Jiang et al., 2024). Note that we set
chunk size=500, K=8, ϵ = 0.85, and maximum context length=2,000 tokens for all RALMs. We employ Con-
triever (Izacard et al., 2022) as our primary retriever due to its unsupervised design, which provides strong
zero-shot performance across diverse domains without requiring labeled training data (unlike supervised
alternatives like DPR). This aligns with our goal of building a general-purpose framework. Its empirical
superiority over other retrievers is further verified in our ablation study in Sec 4.5. First, we consider 2
heuristic-based retrievers BM25 (Robertson et al., 2009) and TF-IDF (Ramos et al., 2003). Second, we
select 4 deep learning-based retrievers: Contriever (Izacard et al., 2022), DPR (Karpukhin et al., 2020),
DRAGON (Lin et al., 2023), and the state-of-the-art decoder-only embedding model Qwen3-Embed-8b
(Zhang et al., 2025), which leverages the Qwen3 foundation model for enhanced multilingual text under-
standing and retrieval.Third, to evaluate advanced retrieval strategies, we include IRCoT (Trivedi et al.,
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Table 1: Overview of Datasets: task types, average length, and number of cases.

Dataset Task Type Avg. len Cases

AcademicEval
Abstract-single Single Sum 8,295 100
Abstract-multi Multi Sum 33,637 30
Related-multi Multi Related 22,107 30

Public Datasets
Gov Report Single QA 8,910 100
WCEP Multi QA 8,176 30

Table 2: Thought-Retriever consistently outperforms all the baselines in fact retrieval datasets.
Bold and underline denote the best and second-best results. F1 score evaluates the similarity with the ground
truth, higher is better. Win Rate represents the frequency with which a method’s response is preferred over
Thought-Retriever by the evaluator. The 50% entry for Thought-Retriever serves as the reference point (a
tie); consequently, for other baselines, a win rate lower than 50% indicates that they are outperformed by
Thought-Retriever. Note that the maximum context length is 2,000 tokens for all retriever-based methods
and Thought-Retriever employs Contriever as its retriever.

Type AcademicEval Public
Dataset Abstract-single Abstract-multi Related-multi Gov Report WCEP
Method F1 Win Rate F1 Win Rate F1 Win Rate F1 Win Rate F1 Win Rate
BM25 0.212 7% 0.232 7% 0.203 40% 0.211 30% 0.178 31%

TF-IDF 0.202 4% 0.225 4% 0.207 40% 0.195 35% 0.223 34%
Contriever 0.242 13% 0.232 15% 0.201 35% 0.223 40% 0.211 40%

DPR 0.206 4% 0.226 4% 0.196 30% 0.188 20% 0.201 33%
DRAGON 0.236 7% 0.226 8% 0.208 30% 0.210 40% 0.231 35%

Qwen3-Embed-8b 0.245 28% 0.240 20% 0.211 35% 0.229 42% 0.235 44%
IRCoT 0.243 25% 0.235 18% 0.209 33% 0.225 41% 0.233 42%

RECOMP 0.237 7% 0.202 8% 0.198 10% 0.215 35% 0.205 33%
Full Context (left) 0.118 2% 0.155 0% 0.193 13% 0.234 45% 0.207 35%

Full Context (right) 0.118 1% 0.149 0% 0.188 8% 0.220 40% 0.210 41%
OpenOrca-8k 0.175 20% 0.135 3% 0.135 13% 0.244 41% 0.169 30%

Nous Hermes-32k 0.247 30% 0.204 7% 0.183 15% 0.238 37% 0.214 37%
Thought-Retriever 0.290 50% 0.275 50% 0.216 50% 0.232 50% 0.238 50%

2023a) , an iterative method that interleaves retrieval with chain-of-thought reasoning to dynamically guide
the information-seeking process. Fourth, we employ RECOMP (Xu et al., 2023a), a context compression
technique that generates textual summaries of retrieved documents to reduce computational cost while main-
taining information density.Fifth, we consider full context window baselines with document truncation Full
Context (left) (Chen et al., 2023) and Full Context (right) (Chen et al., 2023). Lastly, we selected two
long-context LLMs OpenOrca-8k (Mukherjee et al., 2023) and Nous Hermes-32k (Shen et al., 2023).
Note that we do not compare with MEMWALKER (Chen et al., 2023), since it is costly to run and cannot
scale to tasks with many data chunks. The details of baselines can be found in Appendix B.

Evaluation Metrics. Our evaluation approach encompasses both traditional metric and AI-based assess-
ments: (1) F1 (Lin, 2004): This metric computes the semantic similarity between the generated text and
the ground truth reference through ROUGE-L (F1). An F1 score closer to 1 indicates a higher alignment
with the reference text, signifying the better quality of the generated content. (2) Win Rate: Alongside
F1, we incorporate feedback from the AI evaluator for a more comprehensive assessment. Here, we choose
Qwen1.5-72B-chat as our AI evaluator, since it has superb alignment with human preference1. This evalua-
tion process involves presenting various responses to the LLM evaluator, who then ranks the quality of the
responses. The percentage represents the frequency of a response being chosen over our thought retriever.
A rate below 50% suggests that our thought retriever is outperforming the compared baseline.

1https://qwenlm.github.io/blog/qwen1.5/
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Table 3: Thought-Retriever can help the LLM quickly learn from other LLMs. Retriever-origin
is the golden setting that retrieves original facts, others are comparative settings without original facts.

Setting Retriever-origin Response-direct Retriever-other Thought-Retriever
F1 0.25 0.19 0.22 0.24

Given the title "Exploring Text Specific and
Blackbox Fairness Algorithms in Multimodal

Clinical NLP", please write an abstract summary.

This study addresses the imperative of fair and unbiased
Natural Language Processing (NLP) algorithms in the

clinical context, where the heterogeneit ......

Thoughts from our
LLM

" .... examining the
unique challenges

posed by the clinical
context, ......"

" .... implementation of
text-specific fairness

algorithms ......"

" .... techniques like
deep learning, can be

highly effective yet
difficult to interpret. ......"

Role: Doctor

Model: GPT-4

Role: Health  Expert 

Model: LLaMA-2 70B

" .... significant legal and
reputational repercussions

for healthcare
providers ....."

Role: NLP Expert 

Model: GPT-4

Role: Programmar  

Model: GPT-3.5

Interaction with other LLMs

Figure 4: Thoughts from other LLMs help respond without fact. It presents an illustrative example
in which our LLM communicates with four other LLMs, each an expert in a different field. These expert
LLMs are assigned specific roles (e.g., doctor) with different background knowledge. Our LLM is then able
to rapidly learn from their thoughts and incorporate them as external knowledge.

4.2 Retrieve Context from Factual Knowledge

This section is to verify the performance of Thought-Retriever when the external knowledge comes from
interaction with facts. We report the performance of our model and baselines in Table 2. Major observations
are as follows:

First, in both AcademicEval and public benchmarks, Thought-Retriever significantly outperforms most
baselines on two metrics. For example, it achieves an average increase of at least 7.6% in F1 score and
16% in win rate across all datasets. This suggests that thoughts formed through interaction with the
environment can effectively enhance an LLM’s performance in different tasks. Moreover, the comparison and
analysis of abstracts generated by different methods on the Abstract-single task (Appendix F) also verify the
effectiveness of Thought-Retriever. Second, we observe that the performance of methods that use the entire
text directly have many features on two different benchmarks differs greatly, which contain Full Context
baselines and long-context LLMs baselines. However, the performance of retriever-based methods is stable
across two benchmarks. This is due to two reasons: (1) AcademicEval is a more challenging benchmark. It
contains "multi-modal" information, such as tables, different chapters, different symbol formats, etc. Directly
putting this complicated information in a context makes it difficult for the LLM to process and analyze.
For retriever-based methods, they extract the most important information for respond the query from the
entire memory, so they can filter out the influence of some redundant information and get better results; (2)
Some long-context LLMs may have continuously train on the public benchmarks, which causes the leak of
the label and the overfit of the model. In contrast to this, AcademicEval is a good benchmark for evaluating
the zero-shot performance of LLM and has no risk of label leakage and overfitting. Since the benchmark
is formed using papers from arXiv, it is dynamic and always up-to-date, benefiting from the continuous
publication of new papers. We further show the comparison between Thought-Retriever and other SOTA
baselines in Appendix L.
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4.3 Retrieve Context Generated from other LLMs

Forming thoughts can be a lengthy process. When a new LLM lacks relevant memory or external knowledge,
it is challenging to develop high-quality thought memories from scratch. Consequently, we aim to investigate
whether Thought-Retriever can help the LLM quickly learn from other LLMs who have already formed expert
knowledge. To answer this question, we design an experiment on Abstract-single and the goal of the LLM is
to write an abstract summary based on its title. Our LLM builds its memories based on interaction with other
LLMs, which include different roles of an LLM or different LLMs as shown in Fig 4. To verify the effectiveness
of Thought-Retriever under this setting, we design four different comparison settings: (a) Retriever-origin
retrieves knowledge based on the original context of the papers and then uses this knowledge to respond to
queries, which serves as a golden setting; (b) Response-direct feeds the query directly to the LLM to get
the responses; (c) Retriever-other let other LLMs provide some relevant data based on a query, then uses
this knowledge as raw memories of our LLM, and finally retrieves and gets response based on retriever; (d)
Thought-Retriever utilizes Thought-Retriever to construct thought memories then retrieve thoughts for
responding queries based on the setting of Retriever-other. We perform an evaluation with metric F1 in
30 cases of Abstract-single, and the results shown in Table 3 demonstrate that the rank of them from good
to bad is: Retriever-origin, Thought-Retriever, Retriever-other, Response-direct. Moreover, the response
quality of Thought-Retriever is very close to that of Retriever-origin. These observations verify the effect
and efficiency of Thought-Retriever when learning from other LLMs. Further results on QA and Reasoning
tasks Li et al. (2023) can be found in Appendix I.

4.4 New Findings from Thought-Retriever

(1) Thought Retriever learns to leverage deeper thoughts to answer more abstract user queries.
We conduct a case study to explore the relationship between the abstraction levels of queries and the retrieved
information. Specifically, we created a set of questions with varying levels of abstraction and ranked them
according to their abstraction level using expert LLM (exact queries can be found in Appendix E).

To quantify the depth of retrieved information, we introduce a formal measure of Abstraction Level, denoted
as L(x). The calculation follows a recursive definition:

• Base Case (Raw Data): For any raw data chunk K ∈ K from the external knowledge base, we
assign a baseline abstraction level of L(K) = 1.

• Recursive Step (Thoughts): For a generated thought T , let RT be the set of items (either raw
chunks or existing thoughts) retrieved to generate it. The abstraction level of T is calculated as the
average level of its sources plus one:

L(T ) = 1 + 1
|RT |

∑
r∈RT

L(r) (1)

This recursive formula ensures that a thought derived solely from raw data has a level of 2 (i.e., 1 + 1), while
a thought synthesized from other high-level thoughts will achieve a strictly higher abstraction score (e.g.,
> 2), reflecting deeper cognitive processing.

As shown in Figure 5, where the y-axis represents the abstraction level of the question and the x-axis
represents the average abstraction level of all information retrieved by our method. It can be observed that
more abstract questions tend to retrieve information with higher abstraction levels.

(2) Thought-Retriever helps LLM self-evolve after solving more user queries - a new type
of scaling law. To investigate the relationship between the performance of Thought-Retriever and the
number of thoughts, we design an experiment using varying numbers of thoughts on Abstract-multi and
Related-multi of AcademicEval. As depicted in Figure 6, there is a distinct trend of increasing F1 scores
correlating with the growing number of thoughts, which indicates improved performance. Therefore, more
interactions with the users enable Thought-Retriever to assist LLMs in self-evolving and developing deeper
understandings, demonstrating a new type of scaling law (Kaplan et al., 2020). We also verify the diversity
of thoughts and effectiveness of thought filtering mechanisms in Appendix K and M.
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Figure 5: Deeper thoughts help abstract queries. This figure illustrates the correlation between six
questions, categorized by their level of abstraction as evaluated by expert LLM (x-axis), and the abstraction
level of the corresponding retrieved information (y-axis). The questions are grouped into three categories:
high abstraction (top 2 questions), medium abstraction, and low abstraction, respectively. Keywords from
each question are displayed next to their corresponding data points for clarity.
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Figure 6: Thought-Retriever can indeed help LLM self-evolve after solving more user queries.
It illustrates that the performance of LLM across two datasets shows an upward trend as the
number of thoughts increases.

4.5 Ablation Study

We conduct a series of experiments to investigate the impact of various retrievers. (1) w/wo TF-
IDF/DPR/DRAGON: In these variants, we replace the retriever (Contriever) in our method with other
representative retrievers to assess their effectiveness compared to our current retriever. (2) w/wo NousH-
ermes: Here, we utilize NousHermes to construct the thoughts. (3) w/o Filter: We remove the confidence
generation and thought merge in our framework to assess the importance of filtering meaningless and redun-
dant thoughts. We report the evaluation results on Abstract-single and Abstract-multi datasets in Figure
7. These comparisons clearly show that our method consistently outperforms all the variants,
suggesting that Contriever is most suitable for Thought-Retriever and filtering meaningless and redundant
thoughts can bring great improvement to the performance.
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Figure 7: Contriever and thoughts filtering are suitable for Thought-Retriever. Ablation study of
6 methods on two datasets helps us decide on important components of Thought-Retriever.

4.6 Qualitative Analysis based on Precision and Recall

In our motivation example in Sec 2.2, we highlighted where traditional methods struggle with recall and
precision. Here, using the Related-multi dataset, we show that Thought-Retriever outperforms other base-
lines in balancing both metrics. In the experiment, the abstracts of the real citations are regarded as ground
truth. We aimed to assess how well different retrievers could retrieve information to cover the ground truth,
given the limitation of retrieving only 8 chunks of information at a time. We plotted the findings in Figure
8 where the x-axis is the recall value and the y-axis represents the precision. It can be observed that all tra-
ditional retrieval methods displayed significantly low recall values. This is primarily attributed to the top-K
retrieval limit since K=8 is far less than the number of ground truth citations. In comparison, Thought-
Retriever demonstrates a notable improvement in recall value. This is because it leverages thoughts which
is constructed from multiple papers, thereby allowing Thought-Retriever to achieve a much higher recall.
More importantly, the Thought-Retriever also exhibits moderately high precision compared to other retriev-
ers. This suggests that, despite a minor trade-off, Thought-Retriever does not significantly compromise its
ability to retrieve the most relevant information.

5 Additional Related Works

Long-context LLMs. In response to the challenge of long-context processing in LLMs, the most intu-
itive strategies involve expanding the LLM’s context window. These methods include training larger, more
advanced models (MosaicML, 2023; LM-SYS, 2023), fine-tuning existing language models to handle wider
windows (Tay et al., 2022), applying positional encoding to extend the context window size (Xiao et al.,
2023), and compressing context via user embeddings (Ning et al., 2024). However, these methods
often fall short due to the high costs associated with model training and a lack of flexibility. Moreover,
simply extending the context does not guarantee faithful generation, as large models still suffer from issues
like object hallucination, necessitating specific interventions (Li et al., 2025; 2024b), failing to fully address
the fundamental reliability issues of long context.

Retrieval-Augmented Language Models. RALM offers a flexible, cost-effective alternative to long-
context LLMs by retrieving relevant information—potentially assessed by LLMs themselves (Rahmani et al.,
2024)—from context chunks. Current methods employ techniques like token embeddings (Izacard et al.,
2022; Lin et al., 2023), keyword searches (Robertson et al., 2009), fine-tuned rerankers (Ram et al., 2023),
and parameterized retrieval verification losses (Fu et al., 2023). Recent paradigms, exemplified
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Figure 8: Thought-Retriever performs better in balancing recall and precision. The dotted line
indicates the exact balance between precision and recall. The closer the dotted line is, the better the balance
is.

by IRCoT (Trivedi et al., 2023b) and emerging approaches like RankCoT (Wu et al., 2025) and
Rationale-Guided RAG (Sohn et al., 2025), attempt to enhance retrieval by interleaving or ranking
step-by-step reasoning paths. However, these methods typically rely on on-the-fly generation of reasoning,
which incurs prohibitive latency and computational overhead. Despite advancements like hierarchical tree
structures (Chen et al., 2023) to manage context, existing solutions remain rigid or costly. We propose
the Thought-Retriever framework using RALM, which efficiently condenses context into stored thoughts,
addressing these efficiency challenges. To rigorously validate our approach against the evolving landscape of
LLM capabilities (Pang et al., 2025) and evaluation standards (Li et al., 2024a; Kang et al., 2024), we also
introduce a comprehensive benchmark.

Context Compression for LLMs. To alleviate context window constraints, context compression tech-
niques aim to condense long inputs into compact representations. Early approaches focused on token-level
pruning (Jiang et al., 2023). More recently, generative compression methods have gained traction. For
instance, RECOMP (Xu et al., 2023b) and AutoCompressors (Chevalier et al., 2023) propose learning to
synthesize compressive summaries or dense vectors to represent long documents. However, a significant draw-
back of these methods is the necessity to train additional compression modules or fine-tune the backbone
LLMs, which incurs substantial computational overhead. Furthermore, methods relying on soft prompts
or internal embeddings (Mu et al., 2023) are often incompatible with black-box APIs where model weights
are inaccessible. In contrast, our Thought-Retriever is a lightweight, training-free framework. It is en-
tirely model-agnostic, capable of seamlessly integrating with both locally deployed open-source models and
closed-source commercial APIs, thus offering superior efficiency and broader real-world applicability while
preserving high-level reasoning paths.

LLM Agent Memory and Experiences. Autonomous agents rely on persistent memory mechanisms
to maintain coherence over extended interactions, effectively emulating the concept of experience replay in
continual learning. Prominent frameworks like Generative Agents (Park et al., 2023) and Voyager (Wang
et al., 2024) utilize memory streams or skill libraries to store past observations and behaviors, enabling
agents to evolve based on historical experiences. Similarly, MemGPT (Packer et al., 2023) manages context
as an operating system manages hierarchical memory. While long-context LLMs attempt to address this
by encompassing all history within a massive context window, they suffer from quadratic computational
complexity and the lost-in-the-middle phenomenon, often failing to effectively utilize distant information.
Our approach bridges these paradigms but with a distinct advantage: instead of storing raw observations (as
in standard agents) or processing exhaustive raw contexts (as in long-context models), Thought-Retriever
stores distilled thoughts—intermediate reasoning results. This allows the model to retrieve and reuse high-
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level cognitive patterns from past experiences efficiently, avoiding the noise and latency bottlenecks inherent
in processing ultra-long raw contexts.

6 Conclusion
We introduce Thought-Retriever to enhance LLMs by dynamically generating and retrieving intermediate
thoughts, enabling efficient use of external knowledge beyond context limits. For evaluation, we further
propose AcademicEval, a benchmark for academic tasks like abstract and related work generation. Thought-
Retriever outperforms existing methods, evolves through interaction, and shows strong potential for real-
world applications.

7 Limitations

Despite the promising results and contributions of our work, we would like to discuss some limitations. Our
experiments and the AcademicEval dataset primarily utilize papers from AI-related fields, which could limit
the generalizability of our findings. Future work should consider extending the scope to a broader range of
disciplines.

Additionally, our experiments and evaluations are conducted in English. This focus on English may overlook
the nuances and challenges associated with other languages. Expanding our approach to include multilingual
datasets and evaluations could provide a more comprehensive assessment of its effectiveness.

While AcademicEval provides a dynamic and continuously updated dataset from arXiv, it is reliant on the
availability and quality of the papers uploaded to the platform. We assume and hope that researchers will
continue to produce novel and high-quality work.

Lastly, while our framework shows effectiveness in our experiments, its robustness, scalability, and adapt-
ability to real-world, extremely large-scale applications have yet to be fully tested. We are actively working
on our demos and hope to provide more exciting updates on this front in the near future.
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A Details of AcademicEval

In this section, we provide the data format documentation for the datasets in our proposed AcademicEval
benchmark in Section A.1, and detailed instructions and prompts for its usage in Section A.2.

A.1 Dataset Documentation

For AcademicEval-abstract, in the single document setting (Abstract-single), each case includes the paper
title, abstract as the label, and main content, excluding the abstract and conclusion. For the multiple docu-
ment setting (Abstract-multi), each case includes five papers’ titles, abstracts, and main contents excluding
the abstracts and conclusions. We utilize an expert LLM to summarize the five abstracts of one case into a
fluent summary as its label using the prompt in Figure 11. For AcademicEval-related (Related-multi), each
paper includes a title, its abstract, its related work as the label, the abstracts of its real citations, and the
abstracts of other random papers.

Attribute Description

Abstract-Single
‘title’ The title of the academic paper.
‘abstract’ as label The abstract of the academic paper.
‘main_content’ The content of the paper excluding the abstract and the con-

clusion.

Abstract-Multi

‘title 1’ The title of the first academic paper.
‘abstract 1’ The abstract of the first academic paper.
‘main_content 1’ The content of the first paper excluding the abstract and the

conclusion.
... ...

‘title 5’ The title of the fifth academic paper.
‘abstract 5’ The abstract of the fifth academic paper.
‘main_content 5’ The content of the fifth paper excluding the abstract and the

conclusion.
‘label’ The summary of five abstracts as a fluent passage.

Related-Multi
‘title’ The title of the academic paper.
‘own abstract’ The abstract of the academic paper for wiring related work.
‘own related work as
label’

The related work of the academic paper for wiring related work.

‘citations’ abstracts’ The abstracts of the target paper’s real citations.
‘other random ab-
stracts’

The abstracts of other random papers.

Table 4: AcademicEval Dataset Documentation. This table presents the specific format of the data in
our AcademicEval dataset.

A.2 Usage Instruction and Prompt Utilization.

Here we offer detailed instructions for utilizing the datasets in the AcademicEval benchmark. We also
provides all the necessary prompts we utilized in our experiment.

Abstract-Single. For the task of single paper abstract summarization, as shown in Figure 9 (a), we
first provide a prompt "Please craft an abstract summarizing the key points from the provided text. The
abstract should be of appropriate length and include the main theme, significant findings or arguments, and
conclusions of the text. Ensure it captures the essence of the content in a clear, succinct manner" for the
retrieval purpose. We then retrieve information from the paper’s main content based on this prompt using a
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Figure 9: AcademicEval Usage Instructions. This figure provides a visualization of the usage instruc-
tions for the AcademicEval dataset, as described in Section A.2, to aid understanding.

retriever. Then, the LLM would generate an abstract based on the retrieved information using the prompt in
Figure 10. Finally, we compare the LLM-generated abstract with the original abstract to do the evaluation.

Abstract-Multi. For multiple paper abstracts summarization task, shown in Figure 9 (b), we first provide
a prompt "Please craft an abstract summarizing the key points from the provided text. The abstract should
be of appropriate length and include the main theme, significant findings or arguments, and conclusions of
the text. Ensure it captures the essence of the content in a clear, succinct manner" for the retrieval purpose.
Then we retrieve information from the main content of the 5 papers based on this prompt. Further, the
LLM would generate an abstract based on the retrieved information with the prompt in Figure 10. The
generated abstract is compared with the ground truth, which is a summary of the five abstracts created
using the prompt in Figure 11.

Related-Multi. In the related work task, as shown in Figure 9 (c), we provide the LLM with a prompt
"Could you please write a related work for introducing this paper? Its abstract is: {paper_abs}", where "
{paper_abs}" is sustibute with the paper’s real abstract. Following this prompt, the LLM retrieves informa-
tion from a collection of paper abstracts, comprising the abstracts of real citations in its related work section
and random papers. The LLM then generates the related works section based on this retrieved information
using the prompt in Figure 12. This generated related work is then compared with the real related work
section of the paper to perform evaluation.

Benefits and Contributions. AcademicEval offers several advantages over existing benchmark datasets.
Firstly, we maintain an up-to-date dataset from arXiv that benefits from the continuous publication of new
papers. This dynamic nature eases overfitting and label leakage problems in static benchmarks and enables
the evaluation of LLM self-adaptability. Secondly, high-quality labels can be generated with no extra cost as
opposed to manually crafted datasets that require human effort. Thirdly, our dataset is not only valuable for
evaluating LLM but also serves as a practical academic tool in the real world to assist researchers in better
understanding their fields and boost productivity. We developed a highly automated codebase for dataset
construction that will be released soon.
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Please craft an abstract summarizing and connecting the key points from
the provided Text.   
    
The text should be composed of content extracted from different papers,
potentially spanning varied disciplines, but all addressing overlapping
themes or subjects."

The abstract should be of appropriate length (around 300 words),
encompassing the main theme, significant findings or arguments, and
conclusion of the Text. 

Ensure the abstract captures the essence of the content in a clear, succinct
manner, providing a coherent summary that bridges the various papers."
Here is the Text: {context}

Figure 10: Prompt for Writing Abstracts. This prompt was used in our experiment to ask the LLM to
write an abstract based on the retrieved information. We provided in-context instructions to guide the LLM
in producing higher-quality responses.

Create a concise, cohesive summary that encapsulates the key points and
themes from the following five distinct abstracts. The summary should
integrate the main ideas from each abstract to provide a comprehensive
overview. It should be about 300 words.

Abstract 1: {abs1}

Abstract 2: {abs2}

Abstract 3: {abs3}

Abstract 4: {abs4}

Abstract 5: {abs5}

Figure 11: Abstract Multi Ground Truth Prompt. This prompt was used in our experiment on the
Academic-abstract-multi dataset. Specifically, for each data entry, we summarize the abstracts of five papers
in the entry to create the ground truth. To ensure high-quality generation, we utilized GPT-4o as the expert
LLM to synthesize these summaries based on the provided prompt.

B Baseline Details

First, we consider 2 heuristic-based retrievers: (1) BM25 (Robertson et al., 2009): A widely-used ranking
function in information retrieval. (2) TF-IDF (Ramos et al., 2003): A statistical measure that evaluates
the importance of a word in a memory.
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Given the abstract and related work of a research article, along with a
sample material, write a paragraph about its related work. Use the following
as guidance:

Abstract: This research paper investigates the impact of climate change on
global agricultural productivity. The study employs a comprehensive dataset
of temperature and precipitation changes over the past century, combined
with historical crop yield data. Through advanced statistical modeling and
machine learning techniques, the research identifies significant correlations
between temperature and precipitation fluctuations and variations in crop
yields. Furthermore, it predicts future scenarios of agricultural productivity
under different climate change scenarios, providing valuable insights for
policymakers and stakeholders in the agricultural sector to develop adaptive
strategies.

Related Work: Previous studies in the field have explored the relationship
between climate change and agriculture but have primarily focused on
specific regions or crops. Smith et al. (2017) conducted a comprehensive
analysis of the impact of temperature on wheat yields in North America,
highlighting the vulnerability of wheat crops to warming temperatures.
Additionally, Johnson et al. (2019) investigated the effects of changing
precipitation patterns on rice production in Southeast Asia, emphasizing the
importance of water management in mitigating climate-related risks to
agriculture. While these studies contribute valuable insights, our research
extends their scope by considering a global perspective and employing
advanced modeling techniques to provide more accurate predictions of
future agricultural productivity under climate change scenarios.

Based on the abstract of this article and related materials, write a paragraph
about its related work:
Abstract: {abstract}
Related materials: {context}

Figure 12: Prompt for Writing Related Works. This prompt was used in our experiment to ask the LLM
to write a related work section based on the original paper’s abstract and the retrieved related materials.
We also provided an example of in-context learning to enable the LLM to perform more effectively on this
challenging task.

Second, we select 4 deep learning-based retrievers: (3) Contriever (Izacard et al., 2022): leveraging con-
textualized embeddings and neural networks to understand and retrieve relevant memory chunks. (4) DPR
(Karpukhin et al., 2020): retrieving memory chunks by encoding chunks and queries into dense vectors.
(5) DRAGON (Lin et al., 2023): employing contrastive learning to train its ability to retrieve memory
chunks. (6) Qwen3-Embed-8b (Zhang et al., 2025): A state-of-the-art decoder-only embedding model
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Template-based Query Formation:

What new perspectives does '{title}' offer in its field
How might the findings in '{title}' influence future research?
What are the practical applications of the research in '{title}'?
In what ways does '{title}' challenge existing theories or beliefs?
How does '{title}' contribute to our understanding of its subject matter?
What does the statement '{sentence}' imply in the context of '{title}'?

How does the sentence '{sentence}' relate to the overall theme of '{title}'?


LLM-based Query Formation:

Given the paper title: {title}; and its abstract {abstract}, please ask 20
questions that would be helpful for writing its related work section. Each
questions should have a number at the begining. For example:\n 1.<Put
Your Question Here>\n2. <Put Your Question Here>, etc. The questions
should be diverse and with different level of abstraction.

Figure 13: User Query Formation Prompt. This figure presents the prompt used to model real-world
user queries. Specifically, it includes two methods: template-based query formation, where general question
templates are created to be suitable for a wide range of papers, and LLM-based query formation, where this
prompt is used to ask an LLM to generate diverse queries.

Given the original abstract:{original},and given the two generated abstracts:

Generated Abstract 1:{gen1};  and Generated Abstract 2: {gen2}, plase
evaluate which one is closer to the original abstract.

Just output 'Abstract 1 is better' or 'Abstract 2 is better', no extra words.

Figure 14: AI Evaluation Prompt. This prompt is used for the AI Evaluation metric Win Rate, as
described in Section 4. Given two generated answers and the ground truth answer, we ask the expert LLM
to determine which generated answer aligns more closely with the ground truth.

that leverages large-scale pre-training to achieve superior semantic understanding and retrieval performance
across diverse tasks.

Third, we include 2 advanced retrieval and compression strategies: (7) IRCoT (?): An iterative framework
that interleaves retrieval with Chain-of-Thought reasoning, allowing the model to dynamically retrieve infor-
mation based on partial reasoning steps for complex queries. (8) RECOMP (?): A retrieval augmentation
method that compresses retrieved documents into concise summaries or selects key segments to maximize
information density within the context window.

Fourth, we consider full context window baselines with document truncation: (9) Full Context (left) (Chen
et al., 2023): This approach uses the initial segment of a document, truncated to fit within a 4,096-token
window. Focusing on the first 4,096 tokens, it prioritizes early content in the document. (10) Full Context
(right) (Chen et al., 2023): In contrast to Full Context (left), it utilizes the final segment of a document,
also truncated to a 4,096-token window.
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Lastly, we selected two long-context LLMs: (11) OpenOrca-8k (Mukherjee et al., 2023): is fine-tuned on
the Mistral 7B model using the OpenOrca dataset. At its release time, it was ranked the best model among
all models smaller than 30B on Hugging Face, with a maximum context length of 8,192 tokens. (12) Nous
Hermes-32k (Shen et al., 2023): trained on Mixtral8x7B MoE LLM. It boasts a maximum context length
of 32,768 tokens.

Note that we do not compare with MEMWALKER (Chen et al., 2023), since it is costly to run and cannot
scale to tasks with many data chunks. We use Contriever as Thought-Retriever’s retriever.

C Retrieve Context Generated from other LLMs

We utilize an example shown in Figure 4 to illustrate our LLM interacting with four other specialized LLMs,
each an expert in a distinct field. These expert LLMs assume designated roles (such as a doctor) and possess
unique background knowledge. Consequently, our LLM can quickly assimilate their insights and integrate
this external knowledge.

D User Query Formation

To model user queries in real-world scenarios for guiding thought generation, we primarily use two approaches:
1) template-based query formation, and 2) LLM-based query formation. The prompts are shown in Figure
13

Template-based Query Formation. We construct general and broadly applicable templates for all
papers. For example, "What are the practical applications of the research in ’title’?" and "What new per-
spectives does ’title’ offer in its field?". During experiments, we substitute ’title’ with the actual paper title
to form specific queries.

LLM-based Query Formation. Another approach we use to generate more specific queries is by
leveraging LLMs. Specifically, we utilize models such as Mistral 8x7B and expert LLM. By providing these
models with the paper title and abstract, we ask them to generate diverse questions at varying levels of
abstraction. These questions are tailored to each specific paper, allowing for more nuanced and targeted
queries.

E Specific Queries of Abstract Level

This section lists the specific queries utilized in our case study in Section 4.4, demonstrating how Thought-
Retriever leverages deeper thoughts for more abstract user queries. Each query is categorized by its general
level of abstraction, ranked according to its abstraction level as assessed by an expert LLM and detailed
with its exact content in Table 6.

E.1 Algorithm Adaptability and Filter Effectiveness

Thought-Retriever is adaptable to various LLM backbones. While we use carefully designed
prompt templates, Thought-Retriever is not tailored to any specific model. The algorithm is adaptable and
effective across various LLM backbones, as shown by the consistent top performance on both Qwen-7B Bai
et al. (2023) and Llama-3-70B Dubey et al. (2024) in multiple tasks (Table 7).

F Example Outputs Comparison of Different Methods

We present examples of outputs generated using different methods on the AcademicEval-abstract-single
dataset. Specifically, in Figure 15, we provide the original paper title and abstract, along with the abstract
generated by our Thought-Retriever, accompanied by a comment from an expert LLM. In Figure 16,
we show abstracts generated using DPR and TF-IDF, also accompanied by expert LLM comments for
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Table 5: Example of thought construction. For a given query, Thought-Retriever retrieves the corre-
sponding data chunks (thoughts and original data chunks) from the knowledge corpus to get the response.
Then Thought-Retriever integrates the query and response into a prompt through the prompt template and
obtains the final thought candidate through the output of LLM. This thought candidate is then evaluated
to determine whether it is correct and not redundant.

Query What has driven significant progress in various NLP tasks in recent years?
Response According to the text, significant progress in various NLP tasks in recent years has

been driven in part by benchmarks such as GLUE, whose leaderboards rank models
by how well they perform on these diverse tasks.

Prompt tem-
plate

Input: Given query:{query}, given response:{response}. Based on the provided query
and its corresponding response, perform the following step: succinctly summarize both
the question and answer into a coherent knowledge point, forming a fluent passage.

Thought
candidate

Here is a summarized knowledge point: In recent years, significant progress has been
made in various Natural Language Processing (NLP) tasks. A key driver of this
progress is the development of benchmarks, such as GLUE, which provide a stan-
dardized way to evaluate and compare the performance of different models on a range
of diverse NLP tasks. These benchmarks, which often take the form of leaderboards,
rank models based on their performance, fostering competition and innovation in the
field. As a result, researchers and developers have been motivated to improve their
models, leading to significant advancements in NLP capabilities.

Abstraction Rank (expert
LLM)

Query

High 6 (Most Ab-
stract)

"What are the broader future implications of user-centric utility
in NLP model evaluation?"

High 5 “Please craft an abstract summarizing the key points from the
provided text.”

Medium 4 "What are some of the limitations of this study?"
Medium 3 “What are the key methods introduced in this paper?”
Low 2 "Please explain the term Minerva to me."
Low 1 (Least Ab-

stract)
"How many benchmarks are used to test the model’s long context
understanding ability in this paper?"

Table 6: Sample Queries Used in Abstraction Level Case Study. This table presents sample queries
from the case study conducted in Section 4, which demonstrates how Thought-Retriever learns to leverage
deeper thoughts to answer more abstract user queries.

comparison. In Figure 17, we showed the example abstract generated by the long context model Nous Hermes
32k and the corresponding comments from the expert LLM. It is evident that the abstract generated
by our Thought-Retriever is more comprehensive and coherent, with better management of specification and
abstraction levels. Below, we include a comprehensive comment from the expert LLM:

"The Thought-Retriever abstract is the best and most aligned with the original abstract. It effec-
tively captures all key points, including the critique of leaderboard metrics and the need to consider factors
beyond accuracy, such as energy efficiency, model size, and inference latency. It also calls for increased trans-
parency on leaderboards, emphasizing a holistic approach to NLP evaluation that includes practical statistics
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Table 7: Thought-Retriever demonstrates adaptability across different LLMs. This table com-
pares Thought-Retriever’s performance against baselines on Abstract-single and Abstract-multi tasks using
Qwen-7B and Llama-3-70B models. Thought-Retriever consistently delivers the best results, highlighting its
adaptability to various LLMs.

Type Abstract-single Abstract-multi
LLM Qwen-7b Llama-3-70b Qwen-7b Llama-3-70b

Method F1 Win Rate F1 Win Rate F1 Win Rate F1 Win Rate
BM25 0.196 3% 0.22 13% 0.232 7% 0.233 14%

TF-IDF 0.192 3% 0.21 17% 0.220 3% 0.224 12%
Contriever 0.231 10% 0.238 18% 0.229 4% 0.228 19%

DPR 0.209 4% 0.215 18% 0.222 3% 0.222 11%
DRAGON 0.209 3% 0.225 13% 0.224 4% 0.236 19%

Full Context (left) 0.069 0% 0.102 0% 0.061 0% 0.107 0%
Full Context (right) 0.073 0% 0.104 0% 0.065 0% 0.103 0%

OpenOrca-8k 0.175 17% 0.175 23% 0.135 17% 0.135 10%
Nous Hermes-32k 0.247 20% 0.247 37% 0.204 13% 0.204 7%

Thought-Retriever 0.259 50% 0.285 50% 0.253 50% 0.266 50%

to provide a comprehensive measure of model utility. This abstract is clear, well-organized, and in-
cludes a call to action for changes in leaderboard reporting to better serve the practical needs of NLP
practitioners."

"In contrast, the DPR and long context model abstract, while touching on similar points, is less
comprehensive and focuses more on specific suggestions like user-specific leaderboards and revealed
preference theory without fully encapsulating the broader argument about the divergence between leaderboard
metrics and practitioner needs. The TFIDF abstract diverges the most, discussing related topics like
brittleness, bias, and out-of-distribution data, but it does not focus specifically on the central argument
about leaderboard metrics versus practical utility, making it less aligned with the original abstract’s intent."

G Discussion

Transformative Impact and Real-World Applications. The Thought-Retriever represents a
paradigm shift in AI systems, transforming them from static repositories of knowledge to dynamic, intelligent
frameworks that interact and learn. Its unique architecture not only processes and retrieves information but
also evolves with each user interaction, effectively ’thinking’ and adapting over time. Such an intelligent
system is crucial for scenarios where real-time learning and context-aware responses are vital. For instance,
existing AI service systems could be significantly enhanced by incorporating our approach. By storing orig-
inal guidelines and regulations as part of the external knowledge base and recording each human query
and its results as thoughts, these systems can evolve into more intelligent entities capable of continuous
improvement and learning. This adaptive capability makes the Thought-Retriever an invaluable tool for
dynamic and ever-changing industrial environments, where quick decision-making based on historical data
and evolving information is crucial. In sectors like customer service, healthcare, and legal advisory, where
personalized and informed responses are key, the Thought-Retriever can provide more accurate, context-
aware, and efficient solutions. Its ability to continuously learn and adapt from user interactions positions it
as a groundbreaking tool for transforming how industries interact with and utilize AI technology.

Future Research. Inspired by human thinking, our Thought-Retriever represents a solid step toward
general AI agents. Building on this foundation, future research could address several key challenges. Firstly,
scalability and efficiency in processing increasingly complex datasets will be crucial. This involves not only
enhancing computational power but also refining algorithms for greater precision and speed. Secondly,
understanding and mimicking human-like reasoning remains a pivotal goal. This includes grasping nuances
in language, emotion, and cultural contexts, and pushing the boundaries of what AI can comprehend and
respond to. Moreover, ensuring ethical considerations in AI decision-making is significant. As the retriever
evolves, its impact on privacy, security, and societal norms must be rigorously evaluated and guided. Finally,
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explore new domains of application, such as personalized education, mental health analysis, and advanced
robotics.

H Arxiv Copilot Demo

Based on the Thought-Retriever, we further propose a demo named Arxiv Copilot and deploy it on the
huggingface shown in Figure 18, which aims to provide personalized academic service. More specifically, it
consists of three main parts as below. Firstly, in the first "Profile" part, users can enter the researcher’s
name and generate a research profile. Secondly, in the research trend part, users can select a time range and
get relevant topic trends and ideas. Finally, in the "Chat and Feedback" part, users can Chat with Arxiv
Copilot and choose the better response from two answers. Here we appreciate any further feedback.

Profile In this part, as shown in Figure 18 (a), user can input his/her name in a standard format to get
the profile from arxiv here.

Research Trend As shown in Figure 18 (b), Arxiv Copilot will give the user personalized research trends
and ideas if the user has set his/her profile. Otherwise, general research trends will be provided.

Chat and Feedback As shown in Figure 18 (c), each time Arxiv Copilot will give two answers. If the
user prefers the second answer, he/she can click ’like’ below the second answer and the first answer will be
removed. If the user clicks ’dislike’, the second answer will be removed.

I Further Result on QA and Reasoning Task

We evaluated Thought-Retriever on the recent LooGLE dataset Li et al. (2023) for QA and reasoning tasks.
As shown in the Table 8, it consistently outperformed all baselines, demonstrating strong performance in
both QA and reasoning accuracy.

Table 8: Thought-Retriever’s Effectiveness on QA and Reasoning Tasks. This table presents results
from LooGLE, a recent and widely used QA and reasoning benchmark. Our Thought Retriever consistently
outperforms all other baselines.

QA Accuracy Reasoning Accuracy

BM25 10% 30%
TF-IDF 13% 33%

Contriever 20% 50%
DPR 17% 20%

Dragon 13% 27%
Full Context (left) 7% 20%

Full Context (right) 7% 13%
OpenOrca - 8K 0% 10%

Nous Hermes-32K 3% 17%
Thought Retriever 27% 57%

J API Acknowledgement

We used Together AI’s API to conduct our experiments. There are no specific requirements to run our code.
Essentially, our experimental setup can be replicated by anyone with standard laptops or desktop computers
and any compatible API, not necessarily Together AI’s API.
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Table 9: Ablation with latest retriever models. We substitute the Contriever component in Thought-
Retriever with NV-Embed, one of the latest retriever models on MTEB, and evaluate their performance
comparatively on the Abstract Single task.

Method F1
Contriever 0.242
Thought-Retriever using Contriever 0.290
NV-Embed 0.268
Thought-Retriever using NV-Embed 0.326

Table 10: Comparison between Thought-Retriever and RECOMP in Abstract-single and
Abstract-multi.

Dataset Model F1 Win Rate
Abstract-single RECOMP 0.237 7%
Abstract-single Thought-Retriever 0.290 50%
Abstract-multi RECOMP 0.202 8%
Abstract-multi Thought-Retriever 0.275 50%

K Diversity of user queries and thoughts in real-world applications

We discuss the diversity of user queries and thoughts in real-world applications from the following three
perspectives.

Redundancy Filtering for Diversity. As stated in section 2.3, in our framework, when a new thought
is generated, we explicitly check its cosine similarity against existing thoughts in the pool. If it is too similar
to any existing thought, it is discarded. This ensures that only unique, non-redundant thoughts are retained,
maintaining the diversity of the thought pool.

Empirical Diversity Analysis. To quantify diversity, we further conducted an analysis where we ran-
domly sampled 50 thoughts from the thought pool in the AcademicEval task and computed their pairwise
cosine similarities. This was repeated 10 times. The average pairwise similarity was 0.32, indicating a high
level of semantic diversity among the thoughts.

Preliminary Real-World Usage Data. As introduced in Appendix H, we have built an Arxiv Copilot
system based on the Thought-Retriever and it is capable of interacting with real users. From actual usage
data collected through our deployed system, we observe a wide variety of user query types and thought
interactions. This real-world evidence further supports the claim that our system encourages and handles
diverse, meaningful memory retrieval in practical scenarios.

L Comparison between Thought-Retriever and other SOTA baselines

Ablation with latest retriever models. We conducted an experiment on the Abstract Single task
using latest retriever models on MTEB - NV Embed Lee et al. (2024), and the results are shown in Table
9. These results further support that our framework and retrievers are mutually reinforcing. On a side
note, many latest retriever models on MTEB, including NV-Embed (7.85B parameters), are substantially
larger than Contriever (110M parameters) and require significantly more computational resources. For our
initial experiments, we prioritized models that balance performance with computational efficiency to ensure
broader accessibility and practical implementation of our framework.

Comparison with newest long-context understanding models. We introduced an advanced retrieval
algorithm named RECOMP (Xu et al., 2023b) for comparison. RECOMP is a strong baseline that tackles the
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long-context issue by combining an extractive compressor, which selects key sentences from documents, with
an abstractive compressor which creates summaries by synthesizing information across multiple documents.
We compared Thought-Retriever with RECOMP on the Abstract-single and Abstract-multi tasks. The
results, presented in Table 10, further validate the effectiveness of our method in understanding long-context.

M Details of our thought filtering mechanisms

We discuss of our thought filtering mechanisms from the following three aspects.

Thought Quality Filtering. When generating answers based on a given query and retrieved information,
we explicitly instruct the LLM to assess whether the retrieved content is sufficient to answer the question. If
not, it is prompted to return “No” rather than produce a speculative answer. Furthermore, when generating
thoughts based on the question and answer, we use a specialized prompt that includes a binary confidence
check—asking the model to indicate whether the generated thought is logical and non-hallucinated. If not
meaningful, the thought is discarded. This process is detailed in section 2.3, and the full prompt is included
in Figure 3.

Thought Redundancy Filtering. As illustrated in section 2.3, before adding a new thought to the pool,
we compute its cosine similarity against existing thoughts. If it is too similar to any existing entry, it is
filtered out. This ensures that only unique, non-redundant thoughts are stored, promoting diversity and
reducing duplication.

Robustness to Low-Quality Thoughts – Added Empirical Study. We further add an experiment
that shows that our Thought-Retriever is robust even when some low-quality or distracting thoughts are
present. Specifically, we designed an experiment using the Related-multi dataset, where the ground truth of
retrieval is known (i.e., the abstract chunks of the real citation paper). We compared two methods to assess
the impact of low-quality thoughts:

• Without relevant thoughts – the retrieval process does not include the ground-truth abstract
chunks, and irrelevant thoughts are added.

• Raw data chunks only – no thoughts are added at all.

The F1 performance of the two methods (Without relevant thoughts: 0.207; Raw data chunks only:
0.208) demonstrates that the performance of the Thought-Retriever is not significantly affected by extremely
low-quality thoughts.

N Computational analysis

In the RAG system, the majority of computation is allocated to LLM inference, while retrieval operations can
be executed on the CPU. The Thought-Retriever maintains nearly identical retrieval compute costs across all
experiments by using the same retriever. The cost of LLM inference is directly proportional to the number
of retrieved tokens. To illustrate the efficiency of Thought-Retriever in real-world applications, we use the
Arxiv Copilot introduced in Appendix H as an example. We have constructed 100,000 paper abstracts as the
original data chunks, and we pre-calculate and store the embeddings of these chunks. Additionally, we need
to construct index files to establish the connection between data chunks and thoughts. The storage of this
data requires less than 1.5 GB of memory. On this basis, we utilize FAISS2, a high-efficiency vector processor
capable of handling billions of vectors, as the similarity retriever, and implement the entire framework on
CPUs. When a user query arrives, we use the Thought-Retriever based on FAISS to retrieve historical
thoughts or data chunks and save the newly derived thoughts. The average inference time for generating
user responses is approximately 5 seconds, which is mainly limited by the API’s response speed.

2https://github.com/facebookresearch/faiss
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Table 11: Human evaluation instructions for thought quality assessment.

Task Description:
You will be shown a query and several intermediate thoughts generated by a large language model
(LLM). Please evaluate each thought independently based on its usefulness, relevance, and correct-
ness. Your rating should reflect how well the thought contributes to answering the query.
Scoring Criteria (per thought):

Score 2 (High Quality): Relevant, helpful, logically coherent, and factually correct.
Score 1 (Medium Quality): Somewhat relevant/helpful; may have minor issues or vague content.
Score 0 (Low Quality): Irrelevant, incorrect, incoherent, or hallucinated content.

Instructions:

• Evaluate each thought individually, without comparing it to others.

• Focus on content quality, not writing style or fluency.

• You only need to assign a score (0, 1, or 2); no explanation required.
Example:
Query: What are the key challenges in training large-scale language models?
Thought A: One major challenge is the need for large-scale, high-quality datasets that accurately
reflect diverse linguistic contexts.
Thought B: Transformer models were introduced in 2017 by Vaswani et al., and they changed NLP.
Thought C: LLMs are expensive to train and often face issues like overfitting and gradient instability.
Recommended Scores:
Thought A → 2 Thought B → 0 Thought C → 2

O Human evaluations on the quality of retrieved thoughts

We conduct human evaluations on the quality of retrieved thoughts from the following three aspects.

Human Evaluation of Thought Quality. We conducted a human evaluation study (the detailed human
instructions can be seen in Table 11) to directly assess the quality and reliability of the generated thoughts and
our confidence-based filtering mechanism. Ten volunteers were recruited to review generated thoughts, with
each thought independently evaluated by five annotators. On the Abstract-single dataset, the thoughts
matched human judgment 96% of the time. On the Related-multi dataset, the agreement rate was 93%.
These results confirm that our LLM-generated confidence scores are highly reliable and effective for filtering
out low-quality or hallucinated thoughts.

Robustness to Low-Quality Thoughts (Empirical Study). We further evaluated how the system
performs in the presence of low-quality thoughts. Using the Related-multi dataset, we compared two
settings: (a) Without relevant thoughts, where only unrelated thoughts were injected, and (b) Raw
data chunks only, without any thoughts. The F1 scores in both settings were nearly identical (0.207 vs.
0.208), indicating that our framework remains robust even in the presence of noisy or irrelevant thoughts.

Real-World Deployment Validation. As introduced in Appendix H, we have built a real-world ap-
plication named Arxiv Copilot with Thought-Retriever. Arxiv Copilot can interact with real users and
provides two types of answers: one based solely on retrieved original data chunks, and the other incor-
porating both original data chunks and historical thoughts. We collected feedback from 500 real users to
compare preferences for these two types of responses. Approximately 75% of users preferred answers that
included both original data chunks and historical thoughts. This observation demonstrates the effectiveness
of Thought-Retriever in real-world scenarios involving large query requests.
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P Comparison with other baselines

P.1 Comparison with MemWalker

In this section, we compare Thought-Retriever with MemWalker (Chen et al., 2023), a representative method
designed for processing ultra-long contexts through interactive reading.

MemWalker Setting. MemWalker operates by first segmenting the long context and constructing a hi-
erarchical tree of summaries. During the inference phase, it treats the retrieval process as an interactive
decision-making task. The LLM acts as an agent that "walks" down this memory tree: at each step, the
model reads the current summary node, reasons about which child node to visit next, and iteratively nav-
igates until it locates the relevant leaf nodes. For our baseline implementation, we utilized the standard
configuration with a branching factor of 3 and a maximum depth of 3 as proposed in (Chen et al., 2023).
We justify this configuration based on three factors: 1) Coverage: A depth of 3 yields a capacity of
33 = 27 leaf nodes (covering ∼13,500 tokens), which aligns well with the average length of academic papers
in our dataset; 2) Structure: The hierarchy mimics the natural "Title → Section → Content" structure of
academic texts; 3) Context Window: A branching factor of 3 ensures that the parent summary context at
each decision step remains small enough to fit within the LLM’s effective window, preventing navigation
errors caused by information overload.

Performance and Efficiency Analysis. Table 12 presents the detailed comparison. Thought-Retriever
consistently outperforms MemWalker in both F1 score and Win Rate across all datasets (e.g., 0.290 vs. 0.268
on Abstract-single). More critically, in terms of inference time, MemWalker suffers from significant latency
due to its sequential nature; each query requires multiple rounds of LLM inference to navigate the tree
structure. For instance, on the Abstract-multi task, MemWalker takes 85.0 seconds per query. In contrast,
Thought-Retriever completes the same task in just 3.20 seconds—achieving a speedup of over 25×. This
demonstrates that while MemWalker is effective, Thought-Retriever offers a superior balance of accuracy
and efficiency for real-world applications.

Table 12: Performance and Inference Time Comparison across Datasets. Note that MemWalker incurs high
latency due to its interactive, multi-step tree navigation process.

MemWalker Thought-Retriever (Ours)

Type Dataset F1 Win Rate Time F1 Win Rate Time

Academic
Eval

Abs-single 0.268 40% 25.0s 0.290 50% 1.85s
Abs-multi 0.255 35% 85.0s 0.275 50% 3.20s
Rel-multi 0.212 44% 65.0s 0.216 50% 2.40s

Public Gov Report 0.229 45% 30.0s 0.232 50% 3.50s
WCEP 0.228 39% 28.0s 0.238 50% 3.10s

P.2 Comparison with Oracle

To rigorously evaluate the effectiveness of our proposed method, we introduce an Oracle baseline which
serves as a theoretical upper bound. Specifically, we utilize the ground truth answers to calculate the
ROUGE-L overlap scores with all corpus chunks, selecting the top-K chunks with the highest overlap to
serve as the "perfect" input context. Crucially, we employ the exact same generator (Mistral-8x7B)
and context window constraints for the Oracle, Thought-Retriever, and all baselines. This ensures that
any performance difference is solely attributed to the quality and format of the retrieved context.

Table 13 reveals a counter-intuitive yet compelling result: Thought-Retriever consistently outperforms
the Oracle baseline on AcademicEval datasets (e.g., F1 0.290 vs. 0.278 on Abstract-single), while
maintaining a competitive >50% win rate against traditional baselines. Although the Oracle utilizes ground-
truth-derived gold chunks, these raw texts inherently contain significant redundancy and irrelevant syntactic
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Table 13: Performance comparison with the SOTA baseline and the Oracle upper bound. We
select Qwen3-Embed-8b as the strongest baseline. Win rate compares each method’s response with Thought-
Retriever (50% represents a tie). Remarkably, Thought-Retriever achieves a >50% win rate against
the Oracle on AcademicEval tasks, demonstrating that generated thoughts provide superior reasoning
guidance than raw gold chunks.

Method Abstract-single Abstract-multi Related-multi Gov Report WCEP
F1 Win Rate F1 Win Rate F1 Win Rate F1 Win Rate F1 Win Rate

SOTA Baseline (Qwen3) 0.245 28% 0.240 20% 0.211 35% 0.229 42% 0.235 44%
Oracle (Gold Chunks) 0.278 46% 0.255 42% 0.214 49% 0.255 62% 0.245 55%
Thought-Retriever 0.290 50% 0.275 50% 0.216 50% 0.232 50% 0.238 50%

noise. Given the fixed context window (e.g., 2,000 tokens), filling the prompt with raw chunks limits the
total volume of distinct information the model can ingest.

In contrast, our method generates thoughts that act as highly compressed, information-dense representations
of the retrieved content. This compression allows Thought-Retriever to "pack" a broader scope of relevant
details into the same context limit compared to the verbose raw text used by the Oracle. Consequently, in
complex multi-hop scenarios (AcademicEval) where information coverage is paramount, our method provides
the generator with a more comprehensive evidence set than even the gold raw chunks. While the Oracle
regains a slight lead in pure extraction tasks (Public datasets), Thought-Retriever significantly narrows the
gap compared to the strongest baseline (Qwen3-Embed-8b), demonstrating the robustness of thought-based
retrieval in maximizing information density.

P.3 Retrieval Granularity and Chunk Coverage Analysis against HRALM

To rigorously evaluate the retrieval granularity, we assess the quality of the retrieved context by measuring
its coverage of the ground truth evidence. Since both HRALM (we use MemWalker (Chen et al., 2023) here)
and Thought-Retriever retrieve higher-level abstractions (summaries S or thoughts T ) rather than raw text,
simply counting retrieved items is insufficient. As illustrated in Figure 1 and defined in Section 2.1, we
utilize the root source mapping function Ô(·) to trace retrieved abstractions back to their constituent raw
data chunks Kretrieved. We then compare these mapped chunks against the Gold Chunks set Kgold (identified
by the Oracle as having the highest ROUGE-L overlap with the ground truth answer).

• Precision: The proportion of mapped raw chunks that are relevant: |Kretrieved ∩Kgold|/|Kretrieved|.

• Recall: The proportion of gold chunks covered by the retrieval: |Kretrieved ∩ Kgold|/|Kgold|.

As shown in Table 14, determining the root source reveals a structural trade-off between the two methods.
In focused tasks like Abstract-single, HRALM achieves slightly higher precision (0.82 vs. 0.80) because
its summarization process creates clean boundaries around specific semantic clusters, introducing less noise
when the query falls neatly into one cluster. However, its rigid hierarchy struggles with queries requiring
cross-cluster information, leading to low recall in Rel-multi (0.52). In contrast, Thought-Retriever leverages
thoughts to bridge semantic gaps by retrieving content that inherently connects disparate raw chunks. This
capability allows it to achieve significantly higher recall (0.82) and F1 (0.79), demonstrating superior coverage
for complex reasoning tasks.

Q Causal Analysis of Self-Evolution on Held-out Sets

To verify that the performance improvement is causally linked to the accumulation of thoughts rather than
mere correlation, we conducted a rigorous held-out evaluation on both Abstract-multi and Related-multi
datasets.

Experimental Setup. We partition each dataset into two disjoint subsets with a 50%/50% split ratio:
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Table 14: Retrieval Quality Comparison: HRALM vs. Thought-Retriever. We evaluate the Chunk Cov-
erage performance based on the precision and recall of retrieved raw data chunks. Note: While HRALM
achieves slightly higher precision in single-document tasks (e.g., Gov Report) due to its extraction-based
summarization, Thought-Retriever significantly outperforms it in recall and overall F1 score by bridging
semantic gaps with generated thoughts.

HRALM (Baselines) Thought-Retriever (Ours)

Type Dataset Prec. Recall F1 Prec. Recall F1

AcademicEval
Abs-single 0.82 0.65 0.72 0.80 0.88 0.84
Abs-multi 0.74 0.58 0.65 0.78 0.84 0.81
Rel-multi 0.65 0.52 0.58 0.76 0.82 0.79

Public Gov Report 0.78 0.60 0.68 0.75 0.82 0.78
WCEP 0.71 0.62 0.66 0.77 0.83 0.80

• Evolution Set (Qevol): The first 50% of queries are used solely for generating and accumulating
thoughts into the memory T . No performance metrics are recorded during this phase.

• Held-out Test Set (Qtest): The remaining 50% of queries are used for evaluation. These queries
are strictly unseen during the evolution phase.

Results. We compare the F1 performance on the Test Set under two experimental conditions:

1. Baseline (Cold Start): The model processes the test queries starting with an empty thought
memory (T = ∅).

2. Ours (Evolved): The model processes the test queries with a thought memory pre-filled by the
Evolution Set (T ← Thoughts from Qevol).

As presented in Table 15, the model utilizing the evolved memory achieves consistent performance gains
across both datasets. Specifically, on Abstract-multi, the pre-accumulated thoughts yield a 6.4% relative
improvement in F1 score compared to the cold-start baseline. This provides strong causal evidence that the
system learns transferable reasoning patterns from past interactions that generalize to novel, unseen queries.

Table 15: Causal Evidence of Self-Evolution on Disjoint Sets. Comparison of F1 scores on the held-out
Test Set (50% of data) with and without prior evolution on the disjoint Evolution Set (50% of data). The
consistent improvement confirms that accumulated thoughts provide transferable benefits to novel queries.

Method Memory Status F1 Score on Held-out Test Set
(at start of testing) Abstract-multi Related-multi

Baseline (Cold Start) Empty 0.235 0.198
Ours (Evolved) Pre-filled (from Evolution Set) 0.250 0.210

Relative Improvement +6.4% +6.1%

R Inference Time Comparison

In this section, we analyze the computational efficiency of Thought-Retriever compared to baseline methods.
We measured the average end-to-end inference latency per query on a single NVIDIA A6000 GPU. The
results are summarized in Table 16.
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Table 16: Inference time comparison across different datasets. Values represent the average latency
in seconds (s) per query. Lower is better. While heuristic and simple dense retrievers are the fastest,
Thought-Retriever maintains a competitive inference speed compared to advanced baselines like IRCoT
and long-context LLMs (Nous Hermes-32k), achieving a balance between performance and efficiency.

Type Inference Time (Seconds) ↓
Dataset Abstract-single Abstract-multi Related-multi Gov Report WCEP
Method Time (s) Time (s) Time (s) Time (s) Time (s)
BM25 0.42 0.45 0.48 0.75 0.62

TF-IDF 0.40 0.43 0.46 0.72 0.60
Contriever 0.65 0.72 0.68 1.10 0.95

DPR 0.62 0.70 0.66 1.05 0.92
DRAGON 0.68 0.75 0.70 1.12 0.98

Qwen3-Embed-8b 2.15 2.30 2.25 2.85 2.60
IRCoT 4.80 10.50 6.20 7.50 6.80

RECOMP 1.25 1.55 1.40 2.50 2.10
Full Context (left) 2.80 3.10 3.05 5.20 4.10

Full Context (right) 2.80 3.10 3.05 5.20 4.10
OpenOrca-8k 4.50 5.20 5.10 9.80 7.50

Nous Hermes-32k 12.50 14.20 13.80 28.50 19.20
Thought-Retriever 1.85 3.20 2.40 3.50 3.10

Comparison with Heuristic and Dense Retrievers. As expected, lightweight heuristic methods (e.g.,
BM25, TF-IDF) and single-step dense retrievers (e.g., Contriever, DPR) exhibit the lowest latency (e.g.,
< 1.0s). Thought-Retriever incurs a moderate overhead (e.g., 1.85s on Abstract-single) compared to these
methods. This additional cost stems from the generation-based nature of our approach, where the model
must query the thought memory and potentially generate new thoughts, rather than simply matching static
vectors. However, given the significant performance gains demonstrated in the main results, this latency
increase is acceptable for most applications.

Comparison with Advanced Retrieval and Long-Context Baselines. Critically, Thought-Retriever
demonstrates superior efficiency against advanced reasoning-heavy and long-context baselines:

• vs. IRCoT: Iterative retrieval methods like IRCoT suffer from high latency due to their multi-step
"retrieve-then-reason" loop. For instance, on the complex Abstract-multi dataset, IRCoT requires
10.50s per query. In contrast, Thought-Retriever achieves a 3× speedup (3.20s) by leveraging pre-
generated thoughts directly from memory, avoiding repetitive retrieval cycles at inference time.

• vs. Long-Context LLMs: Processing ultra-long contexts imposes a heavy computational burden
on the attention mechanism. The long-context model Nous Hermes-32k exhibits the highest latency,
reaching 28.50s on Gov Report. Thought-Retriever bypasses this bottleneck by retrieving concise,
high-level thoughts instead of raw long documents, reducing the input token load significantly and
achieving an 8× speedup (3.50s) on the same dataset.

Conclusion. Thought-Retriever strikes a favorable balance between efficiency and performance. It sig-
nificantly outperforms fast but weak retrievers in reasoning capability, while remaining much faster than
computationally expensive long-context models and iterative agents.

S Sequential Interaction Case Study: Visualizing Self-Evolution

To address the qualitative dynamics of how Thought-Retriever interacts with different user queries to achieve
"self-evolution," we present a sequential case study using our Arxiv Copilot system.

It is important to clarify that in our framework, self-evolution refers to the continuous expansion and
refinement of the Thought Memory (T ), as defined in Algorithm 1, rather than the updating of LLM
parameters. This qualitative analysis complements the quantitative "scaling law" of thoughts demonstrated
in Figure 5.
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Scenario: A user is researching the topic of "Hallucination Mitigation in LLMs." The system starts with an
empty Thought Memory.

Turn 1: Initial Knowledge Acquisition

• User Query: "What are the primary causes of hallucinations in Large Language Models?"

• Retrieval: The system retrieves raw data chunks from the external knowledge base (e.g., papers
discussing data bias and source-reference divergence).

• Answer Generation: The model explains that hallucinations often stem from a conflict between the
model’s parametric memory and the provided context, or noise in the training data.

• Self-Evolution (Memory Update): Based on this interaction, the system generates and stores a new
thought:

Thought T1: Hallucinations in LLMs are primarily caused by the divergence between inter-
nal parametric knowledge and external context, often exacerbated by noisy training data.

Turn 2: Leveraging Past Thoughts

• User Query: "How does Retrieval-Augmented Generation (RAG) attempt to solve generation er-
rors?"

• Retrieval: The system retrieves raw chunks related to RAG. Crucially, it also retrieves Thought T1
because "generation errors" are semantically linked to "Hallucinations" in T1.

• Answer Generation: Leveraging T1, the model connects RAG’s mechanism directly to the root cause
identified in Turn 1. It explains that RAG aligns the "external context" (mentioned in T1) with the
generation process.

• Self-Evolution (Memory Update): The system synthesizes a deeper insight:

Thought T2: RAG mitigates hallucinations by grounding generation in retrieved external
context. However, to be effective, it must ensure the retrieved context is relevant to avoid
exacerbating the source-reference divergence.

Turn 3: Handling Abstract/Application Queries

• User Query: "Propose a robust architecture for a trustworthy medical AI assistant."

• Retrieval: The query is abstract and does not explicitly mention "hallucination" or "RAG." However,
the semantic vector for "trustworthy" matches with Thought T2 (mitigating errors).

• Result: The system retrieves Thought T2 and immediately proposes a RAG-based architecture with
strict relevance filtering.

• Analysis: Without the self-evolution in Turn 1 and 2, the system might have just retrieved generic
papers on medical AI. By retrieving T2, it applies the high-level principle (RAG + Relevance Check)
derived from previous interactions, demonstrating how the system has "evolved" to handle more
complex, application-oriented tasks efficiently.

T Data Construction and Filtering Process

To ensure the high quality and academic rigor of AcademicEval, we followed a systematic data construction
pipeline. The process consists of three main stages: collection, preprocessing, and filtering.
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1. Data Collection. We initiated our data pool by sourcing raw research papers from arXiv, specifically
targeting the Computer Science domain (e.g., cs.CL, cs.LG, cs.AI). To align with the capabilities of modern
LLMs, we focused on recent high-quality publications to serve as the external knowledge source.

2. Preprocessing and Parsing. Since raw PDFs contain noise (headers, footers, citation indices) that
can disrupt LLM ingestion, we employed a parsing pipeline to convert PDF documents into structured text
format. This step allows us to cleanly separate the main body (used as external knowledge context) from
the abstract (used as ground truth), while effectively removing non-textual elements.

3. Filtering Criteria. From the parsed corpus, we applied strict filtering criteria to select the final test
set for AcademicEval:

• Length Constraint: To strictly evaluate long-context capabilities (a core motivation of Thought-
Retriever), we filtered for papers that exceed a substantial token threshold. This ensures that the
retrieval and reasoning challenge is non-trivial.

• Structure Integrity: We selected papers with clear section demarcations to ensure consistent
evaluation formats.

4. Test Set Sampling. Crucially, consistent with our analysis in Section 4.4, we performed stratified
sampling based on the abstract’s abstraction level. This strategy ensures a balanced representation of
difficulty levels across the benchmark, allowing us to evaluate the model’s performance on both fact-based
and reasoning-heavy queries.
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Original Abstract: 

Benchmarks such as GLUE have helped drive advances in NLP by incentivizing the creation 
of more accurate models. While this leaderboard paradigm has been remarkably 
successful, a historical focus on performance-based evaluation has been at the expense of 
other qualities that the NLP community values in models, such as compactness, fairness, 
and energy efficiency. In this opinion paper, we study the divergence between what is 
incentivized by leaderboards and what is useful in practice through the lens of 
microeconomic theory. We frame both the leaderboard and NLP practitioners as 
consumers and the benefit they get from a model as its utility to them. With this framing, 
we formalize how leaderboards – in their current form – can be poor proxies for the NLP 
community at large. For example, a highly inefficient model would provide less utility to 
practitioners but not to a leaderboard, since it is a cost that only the former must bear. To 
allow practitioners to better estimate a model’s utility to them, we advocate for more 
transparency on leaderboards, such as the reporting of statistics that are of practical 
concern (e.g., model size, energy efficiency, and inference latency).

Abstract by Thought Retriever: 

The paper "Utility is in the Eye of the User: A Critique of NLP Leaderboards" critiques the 
prevalent assumption that leaderboard metrics accurately reflect the utility of NLP models. 
It emphasizes the need to consider multiple factors beyond predictive accuracy, including 
energy efficiency, model size, and inference latency, when evaluating NLP models. The 
paper argues that leaderboard values often diverge from the values of practitioners, 
calling for increased transparency on leaderboards to better align these metrics with the 
practical concerns of the NLP community. It highlights the importance of a holistic 
approach to NLP evaluation, advocating for the inclusion of practical statistics on 
leaderboards to provide a more comprehensive measure of model utility. The research 
suggests that this shift towards transparency and comprehensive evaluation will 
encourage the development of models that are not only accurate but also efficient and 
fair, ultimately better serving the needs of diverse users in the NLP community.

Comments from Expert LLMs: 

This abstract effectively captures all critical aspects of the original while emphasizing the 
divergence between leaderboard metrics and practical utility. It maintains clarity and 
completeness, making it an excellent summary of the paper's main arguments. 
Specifically, it includes key elements such as energy efficiency, model size, and the need 
for a holistic approach, which are well-aligned with the original abstract. The Thought 
Retriever abstract is comprehensive and aligns well with the original content, making it 
the best among the generated abstracts.

Figure 15: Qualitative Example - Original Abstract and Abstract Generated by Thought-
Retriever. This figure presents example outputs from different methods using data from the AcademicEval-
abstract-single dataset. Specifically, it shows the original abstract alongside the abstract generated by
Thought-Retriever, accompanied by a comment from an expert LLM. Comparison examples generated by
DPR and TF-IDF are shown in Figure 16, while comparison examples by the long context model can be
found in Figure 17.

35



Under review as submission to TMLR

Abstract by DPR: 

The text discusses the importance of including costs like model size, energy efficiency, 
training time, and inference latency in leaderboard rankings for NLP models, which 
currently prioritize accuracy above all else. This focus on accuracy can result in models that 
provide high utility to leaderboards but not to practitioners, as they may come with 
unaccounted costs. The text suggests that model creators could voluntarily submit these 
cost statistics, but without a requirement, there is no explicit incentive to do so. It 
proposes creating user-specific leaderboards with desired thresholds and reporting 
performance on the worst-off group to incentivize improvements. The use of revealed 
preference theory is suggested to estimate a model's utility by examining its real-world 
use. The text also advocates for making usage statistics public and allowing users to adjust 
metric weightings to create personalized leaderboards, aligning rankings with practical 
utility.

Comments from Expert LLMs: 

This abstract is detailed and covers the essential points but tends to be repetitive and 
slightly verbose. It effectively communicates the need for including various costs in 
leaderboard rankings, but it lacks the concise clarity found in the Thought Retriever 
abstract. Additionally, the abstract is somewhat incoherent due to the repetitive structure 
and lack of clear flow between ideas. It does not explicitly mention the holistic 
approach to evaluation or the practical applications of this research, which are 
important elements from the original abstract.

Abstract by TFIDF: 

Recent research has focused on the evaluation and development of NLP models, 
highlighting issues such as brittleness, bias, and lack of robustness. Datasets like SQuAD 
2.0 have addressed challenges like unanswerable questions, while biases in NLP systems 
lead to better performance on gender-stereotypical inputs and inanimate objects. A key 
issue in evaluation is aligning priorities between leaderboard rankings and practitioners' 
preferences. While accuracy is valued by both, practitioners also consider out-of-
distribution data, fairness, and real-world applicability, which leaderboards often ignore. 
The study suggests that leaderboard design should include prediction costs and fairness 
measures to better align with real-world requirements. Alternative evaluation methods 
that reflect the complexities of NLP model usage are also recommended.

Comments from Expert LLMs: 

This abstract is concise and well-organized, addressing the key points effectively. It 
communicates the need for better alignment between leaderboard rankings and practical 
utility but does not delve as deeply into specific suggestions for improvement as the 
Thought Retriever abstract. While it provides a detailed discussion on issues like brittleness 
and bias, it might be too detailed, potentially overwhelming the reader with too many 
aspects without a clear focus on the main argument of the original abstract. 
Additionally, it lacks specific elements like the advocacy for increased transparency and 
the detailed explanation of how leaderboards can be poor proxies for the NLP community, 
which are crucial parts of the original abstract.

Figure 16: Qualitative Example - Abstracts Generated by DPR and TF-IDF. This figure presents
example outputs using data from the AcademicEval-abstract-single dataset, generated by traditional meth-
ods: DPR and TF-IDF. We also include comments from an expert LLM. The original abstract and the
abstract generated by our Thought-Retriever can be found in Figure 15.
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Abstract by Nours Hermes - 32k: 

The text addresses the limitations of performance-based evaluation in NLP tasks and 
advocates for more comprehensive leaderboard designs. It points out the disparity 
between leaderboard priorities and the values of the NLP community, such as fairness, 
energy efficiency, and robustness. By viewing leaderboards and NLP practitioners as 
consumers of models, the text suggests using utility functions to align their preferences. 
Three main limitations are identified: non-smooth utility, prediction cost, and robustness. 
Leaderboards only increase utility from accuracy improvements that affect rankings, while 
practitioners value consistent accuracy gains. Leaderboards ignore prediction costs, such 
as model size, energy efficiency, and inference latency. They also overlook robustness, 
crucial for real-world applications. To address these issues, the text proposes that 
leaderboards require transparency, reporting statistics like training time, model size, 
inference latency, and energy efficiency. This transparency would help practitioners 
estimate model utility and re-rank models based on their needs. The text also suggests 
personalized leaderboards, allowing users to adjust metric weightings or creating 
leaderboards tailored to different user types based on their preferences or actual usage.

Comments from Expert LLMs: 

The long context model's abstract is detailed but overly verbose, making it harder to 
quickly grasp the core arguments. In contrast, the thought retriever's abstract is more 
succinct and focused, effectively summarizing the critique of leaderboard metrics and the 
need for comprehensive evaluation factors. This makes the thought retriever's abstract 
clearer and better aligned with the original abstract's intent.

Figure 17: Qualitative Example - Abstracts Generated by Long Context Model. This figure
presents example outputs using data from the AcademicEval-abstract-single dataset, generated by the long
context model Nours Hermes - 32k. The original abstract and the abstract generated by our Thought-
Retriever can be found in Figure 15.
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(a) Profile.

(b) Research Trend.

(c) Chat and Feedback.

Figure 18: Arxiv Copilot Demo. This figure shows the demo built based on our proposed Thought-
Retriever, which is publicly available on Hugging Face. It offers personalized academic services, aiming to
test the real-world robustness of our algorithm and provide social benefits.
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