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ABSTRACT

Smart factories use advanced technologies to optimize production and increase ef-
ficiency. To this end, the recognition of worker activity allows for accurate quan-
tification of performance metrics, improving efficiency holistically while con-
tributing to worker safety. OpenMarcie is, to the best of our knowledge, the
biggest multimodal dataset designed for human action monitoring in manufactur-
ing environments. It includes data from wearables sensing modalities and cameras
distributed in the surroundings. The dataset is structured around two experimental
settings, involving a total of 36 participants. In the first setting, twelve participants
perform a bicycle assembly and disassembly task under semi-realistic conditions
without a fixed protocol, promoting divergent and goal-oriented problem-solving.
The second experiment involves twenty-five volunteers (24 valid data) engaged in
a 3D printer assembly task, with the 3D printer manufacturer’s instructions pro-
vided to guide the volunteers in acquiring procedural knowledge. This setting also
includes sequential collaborative assembly, where participants assess and correct
each other’s progress, reflecting real-world manufacturing dynamics. OpenMar-
cie includes over 37 hours of egocentric and exocentric, multimodal, and multi-
positional data, featuring eight distinct data types and more than 200 independent
information channels. The dataset is benchmarked across three human activity
recognition tasks: activity classification, open vocabulary captioning, and cross-
modal alignment. The dataset and code are available at OpenMarcie.

1 INTRODUCTION

The advancement of smart factories depends on the integration of human intelligence into automated
systems, promoting a more efficient, adaptive, and human-centered industrial paradigm. A funda-
mental component of this integration is human activity recognition (HAR), which enables systems
to understand, support, and optimize human motion within complex industrial workflows. Typically,
video data has served as a rich source of valuable information for HAR. As a result, extensive re-
search efforts are dedicated to developing innovative vision-based methods and video-based datasets
to support the community (Caba Heilbron et al., 2015; Contributors, 2020), including event cameras
(Wang et al., 2024). Table 1 presents a comparison with state-of-the-art dataset for HAR in indus-
trial environments. Despite recent advances, existing HAR datasets in industrial contexts suffer from
three major limitations: (1) a lack of truly multimodal data combining wearable sensors, vision, and
audio in a synchronized manner, (2) a reliance on highly constrained, protocol-driven tasks, which
do not reflect the open-ended, procedural nature of real-world industrial work, and (3) limited de-
mographic diversity or task complexity. In general, most datasets focus on short, isolated actions,
failing to capture the extended, multi-step activities typical of human workflows in manufacturing.

Furthermore, human action is inherently multimodal, integrating sensory, cognitive, and motor pro-
cesses. Actions depend on visual, auditory, tactile, while cognitive and emotional states shape move-
ment, speech, and expression (Schmidt & Cohn, 2001). Variability in motion, context dependence,
and environmental interactions add further complexity, making multimodal analysis essential for
accurate interpretation (Bello et al., 2023; Bello, 2024). To effectively understand and replicate hu-
man activity, AI and robotics must process diverse data sources, including video, audio, and motion
sensors. Wearable and multipositional data sources and synchronized visual information (egocentric
and exocentric) have proven to be highly valuable (Yoshimura et al., 2024; Dallel et al., 2020; Zheng
et al., 2023). This is especially true in industrial environments, where vision-only-based methods
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Figure 1: OpenMarcie is an open dataset for multimodal action recognition in industrial environ-
ments. Top Its applications include industrial process optimization, human activity understanding,
and context awareness. Middle two assembly scenarios represent ad-hoc goal-oriented action and a
procedural scenario to promote natural knowledge acquisition. Bottom multimodal data is collected
with more than 200 independent channels, and a validation with three different benchmarks is done.

Table 1: Comparative table of human action recognition datasets in the industrial domain. Multi-
actions indicates whether the dataset supports concurrent action labeling (e.g., walking while car-
rying), based on overlapping verb–object–tool annotations. Only OpenMarcie unifies wearables,
egocentric + exocentric multiview video, multi-action labels, and full industrial coverage.

Dataset Industrial Wearables Ego Exo Multiview Multi-Act. Scale / Focus
InHARD (Dallel et al., 2020) ✓ ✓ x ✓ ✓ x HRC assembly, RGB+IMU
LARa (Niemann et al., 2020) ✓ ✓ x ✓ x x Logistics, IMU+mocap
OpenPack (Yoshimura et al., 2024) ✓ ✓ x ✓ x x Logistics, 50h+ IMU/IoT
Assembly101 (Sener et al., 2022) ✓ x ✓ ✓ ✓ x Vision-only, procedural assembly
IKEA-ASM (Ben-Shabat et al., 2021) ✓ x x ✓ ✓ x Exo RGB-D, furniture assembly
HA4M (Cicirelli et al., 2022) ✓ x x ✓ x x Exo RGB-D+IR+pose
HA-ViD (Zheng et al., 2023) ✓ x x ✓ ✓ x Rich semantic labels, multi-route
IndustReal (Schoonbeek et al., 2024) ✓ x ✓ x x x PSR, ego-only, error modeling
Ego-Exo4D (Grauman et al., 2024) (∼6% ind.) ✓ ✓ ✓ ✓ x 1,200h skilled activities
OpenMarcie (ours) (100%)✓ ✓ ✓ ✓ ✓ ✓ Industrial multitasking, 8 modalities

may raise privacy concerns and increase the risk of technology leakage (Bello et al., 2025). Accord-
ingly, we present OpenMarcie (see Figure 1). Our contributions are threefold. First, we introduce
OpenMarcie, a multimodal dataset with eight sensing modalities, including LiDAR depth, multi-
view pose estimation, object detection, and precise positioning. Second, the dataset captures realis-
tic industrial assembly and disassembly tasks where participant decisions shape alternative routes,
enabling the study of procedural knowledge acquisition. Third, we provide rich metadata from 36
volunteers, synchronized wearable sensing streams, speech-to-text narrations, and detailed manual
annotations that capture overlapping, multi-primitive actions—supporting fine-grained analysis of
complex workflows.

2 OPENMARCIE DATASET

This section presents the process of building OpenMarcie and provides essential statistics. Two pri-
mary experimental settings are defined: Ad-hoc and Procedural scenarios, featuring bicycle and 3D

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

printer assembly/disassembly, respectively, as shown in Figure 1. The scenarios involved a diverse
set of skills, including: Mechanical competencies, such as tool usage, component alignment, and fas-
tening procedures; Cognitive processes, including interpretation of visual instructions or schematics
and problem-solving when inconsistencies arise; Fine motor skills, essential for manipulating small
or intricate components with precision. We select two contrasting tasks: bicycle assembly, a famil-
iar, goal-oriented scenario with open-ended actions, and 3D printer assembly, a highly procedural
task requiring interpretation of detailed instructions and unfamiliar components. Together, they cap-
ture unscripted repair and structured production-line assembly while incorporating broader activities
such as wiring, cable routing, pulley installation, unpacking, and part organization. This diversity,
enables benchmarking across real-world industrial workflows. Current benchmarks focus on activity
classification, open-vocabulary captioning, and cross-modal alignment, establishing strong baselines
for the dataset’s scope and utility. For both scenarios, 3 ZED X AI stereo cameras without polariz-
ers are distributed as best as possible to cover the entire view of the experiment’s room. Figure 2
depicts the experimental room setting with example views of the exocentric cameras for the sce-
nario (a) ad-hoc bicycle assembly and (b) procedural scenario 3D printer experiment. ZED stereo
cameras come with a rich SDK and allow customized AI methods to be included in the pipeline.
In Table 2 the recorded sensing modalities for both scenarios are presented. In total, the number of
raw channels available is around 282. This includes various sensor placements. Furthermore, each
participant reviewed and signed an ethical agreement for each scenario, ensuring compliance with
the Declaration of Helsinki.

2.1 AD-HOC SCENARIO (A): BICYCLE DISASSEMBLY/ASSEMBLY

The assembly and disassembly of a bicycle is proposed as structured, goal-oriented tasks that al-
low participants to autonomously determine their approach. It reflects the nature of many practical,
outcome-driven scenarios encountered in both industrial and experimental settings. Common errors,
such as improperly tightened bolts or misaligned brakes, are generally straightforward to detect and
rectify, contributing to the task’s safety and pedagogical value. Due to the widespread familiarity
and accessibility of bicycles, this task is especially relevant for use in training environments, educa-
tional contexts, and research applications, including studies on human-robot collaboration and task
planning. The volunteers were equipped with the wearable sensor suite illustrated in Figure 3. The
setup includes inertial measurement units (IMUs) and barometric pressure sensors mounted on both
hands and on the head (integrated into a glasses frame). Additionally, thermal and spectrometer
sensors are positioned on the chest and shoulder. The system is complemented by an egocentric
RGB-D camera, which includes LiDAR-based depth sensing. Figure 3 also presents sample visual-
izations of the multimodal sensor data collected during the task. For ground truth, we selected the
most informative exocentric view (typically the door-side camera in bicycle assembly; Figure 2) and
we (humans) manually annotated it using an intent-aware verb–object–tool scheme (Figure 4). This
yields semantically meaningful segments aligned with task intent, including multi-label cases (e.g.,
walking while carrying). Each annotation (Verb, Tools, Object, Remarks) is temporally aligned
across all modalities (egocentric video, inertial, thermal, audio). We additionally generate concise
natural-language descriptions with GPT-4o (Achiam et al., 2023), providing soft labels that improve
consistency and interpretability while preserving human-created ground truth.

2.2 PROCEDURAL SCENARIO (B): 3D PRINTER ASSEMBLY/DISASSEMBLY

Building a 3D printer requires significant cognitive effort to interpret written and video instructions.
Additionally, it involves handling both small components, such as screws, and larger hardware parts
like the metal main frame. Therefore, this scenario provides an ideal setting for monitoring human
action recognition, closely resembling tasks commonly seen in industrial assembly lines. The As-
semble Yourself 3D printer original Prusa i3 MK3S+ kit is used for this scenario. The creators offer
a detailed set of assembly instructions, with each plastic part accompanied by its 3D model STL file
for easy reprinting. This also means that the 3D models, combined with OpenMarcie’s egocentric
videos, can enhance object detection through a predefined dictionary of parts. This approach intu-
itively monitors the printer’s assembly status and guides the builder toward the correct next step,
accelerating the construction process.

Before the experiment, each volunteer is required to watch a 30-minute video of the com-
plete Prusa assembly guide, available online at https://www.youtube.com/watch?v=
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Bicycle Experiment

3D Printer Experiment 3D Printer Experiment

Bicycle Experiment

Exo View Door Exo View Window

Exo View Table

Figure 2: Experiment room setting with example views of the exocentric RGBD cameras.

Table 2: Sensing modalities information for each scenario
Scenario Modality Position Total Channels

Ad-Hoc (a): Bicycle Assembly

IMU Wrists and Forehead 21
Magnetometer Wrists and Forehead 9

Barometer Wrists and Head 3
Temperature Wrists and Forehead 3
Spectrometer Chest and Right Shoulder 24

Thermal Camera Chest and Right Shoulder (8x8)x2
RGB-Lidar Chest 4

Stereo Sound Chest 2
RGBD 2 Exocentric cameras 8

Procedural (b): 3D Printer Assembly

IMU Wrists 20
Magnetometer Wrists 6

Barometer Wrists 2
Temperature Wrists, Forehead and Chest 4
RGBD-IMU Forehead and Chest 28
RGB-LiDar Chest and Table 8

Stereo Sound Chest and Table 4
RGBD 2 Exocentric cameras 8

Both Scenarios 17 9 282

uToqSlh64R4. This ensures they understand the key aspects of the task without needing further
clarification or instructions from the observer, allowing them to assemble the printer independently.
The idea is for one volunteer to start the assembly using only out-of-the-box instructions and set-
tings, with approximately one hour to build as much as possible. The next volunteer would then
continue from where the previous participant left off, and this process would repeat sequentially.
This setup requires each subsequent participant to assess the current assembly status, understand the
previous volunteer’s progress, and determine how best to proceed, increasing the cognitive challenge
to the task. The participants wore 4 ZED 2 - AI Stereo Cameras. Two ZEDs were on both wrists,
and one ZED on the forehead by using a helmet, and another one on the chest by the use of a strap.
On the person’s chest, an iPhone 15 Pro is set up with a cellphone cover with the camera and the
Lidar sensor facing the front. The data is transferred by USB cables to a Jetson Orin AGX, which
is placed inside a backpack together with a Green Cell Powerbank 26800mAh 128W to seamlessly
record the data for one hour by a volunteer. During the experiment, an external human observer
provided real-time narration of the participants’ actions and contextual details of the scene. The au-
dio recordings of these narrations were subsequently transcribed using faster-whisper (v1.1.1) and
ctranslate2 (v4.4.0), employing the ”large-v3” model configuration (Radford et al., 2022). Exam-
ples of the soft labels generated using the methods are depicted in Figure 4 Scenario (b). The hard
labels were then obtained via a two-stage pipeline. The process involves iteratively identifying and
refining discrete action classes using Deepseek-r1 (Guo et al., 2025), then using GPT-4o (Achiam
et al., 2023) with prompt engineering to convert soft-label sentences into persistent hard labels for
model training. This process—consisting of human annotation followed by a two-stage LLM-based
translation—yields our final hard labels for downstream model training. In Scenario (b), we adopt
a two-stage pipeline leveraging transcribed narration, unlike Scenario (a). Despite this methodolog-
ical difference, both yield a consistent multimodal annotation format. To validate LLM-generated
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Figure 3: Participant wearable setup and example sensor signals. (a)Participant in the ad-hoc Sce-
nario (a): bicycle assembly. (b) Participant in the procedural Scenario (b): 3D printer assembly.
Sensor placements were adapted to suit the specific ergonomics and task demands of each scenario.

labels, we perform bidirectional consistency checks (structured→caption→structured), achieving
strong alignment (Macro F1 = 0.715 in Scenario a; METEOR = 0.531 in Scenario b; see supple-
mentary). These results support the reliability of LLMs as structured translators in our partially
supervised pipeline.

Moreover, sensor placements were adapted to suit the specific ergonomics and task demands of each
scenario. While this design results in some variation—particularly between Scenario (a) (bicycle as-
sembly) and Scenario (b) (3D printer assembly)—key wearable modalities remain consistent across
both tasks. Most notably, inertial measurement units (IMUs) are placed on the wrists, wearable Li-
DAR units are mounted on the chest, and stereo microphones are consistently used. These shared
sensor positions enable meaningful multimodal comparisons, particularly for HAR and captioning
benchmarks. As illustrated in 3, this overlap is visually evident and supports comparative analysis
despite scenario-specific adaptations.

3 STATISTIC

The study involved a diverse group of participants whose demographic and professional characteris-
tics are summarized in Figure 5. In terms of height, participants ranged from 150 to 193 cm, with the
largest group (31%) falling within the 181–193 cm range. The age distribution was skewed toward
younger individuals, with 47% aged 22–24, 25% aged 25–29, and 28% aged 30–37. Participants
self-reported their experience levels in assembly-related tasks: 57% identified as beginners, 37%
as intermediate, and 6% as advanced. Regarding academic and professional background, engineers
represented the majority at 72%, followed by computer scientists (14%), biologists (8%), physi-
cists (3%), and managers (3%). This composition reflects a technically oriented, predominantly
early-career participant pool with varying levels of practical experience in assembly tasks.

The international diversity of the participants, who come from more than 20 countries, contributes
to the cultural and experiential diversity of the study. Moreover, the majority of participants (31 in-
dividuals) were right-handed, while a smaller subset (5 individuals) identified as left-handed. While
the participant cohort predominantly comprises right-handed individuals with engineering back-
grounds—potentially limiting demographic generalization—this demographic reflects the typical
industrial workforce, thus enhancing ecological validity.
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Hard Label:
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“different boxes bring two
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up amanual reading the”

Hard Label:
“9”Reading

Ego View Chest Exo View Exo View Table

Scenario (a) Scenario (b) Annotations

Figure 4: Egocentric and exocentric views of activity examples, accompanied by annotations. These
include both soft and hard labels for two scenarios: (a) the ad-hoc bicycle assembly/disassembly
task, and (b) the procedural 3D printer construction task.

161-170 cm
22%

171-180 cm
25%181-193 cm

31%

150-160 cm​
22% Age 25-29

25%

Age 22-24
47%

Age 30-37
28%

Level 1:
Beginner 57%

Level 2: 
Intermediate 37%

Level 3: Advanced 6%

Engineer 72%

Biologist 8%

Physicist 3% Manager 3%

C. Scientist
14%

Participants Self-Rated Experience Level Participants Academic Level

Participants Height Distribution Participants Age Distribution

Figure 5: Participants statistic. Top left Height distribution ranging from 150 to 193 cm. Top
right Age distribution spanning 22 to 37 years. Bottom left Self-reported experience levels in
assembly tasks, categorized as beginner, intermediate, and advanced. Bottom right academic level
of participants, with engineers representing the majority and managerial roles accounting for only
3% of the sample.
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Figure 6: Participants’ ownership and usage habits related to bicycles and 3D printers.

Unlabeled Walk Stand Up
Lie Down Move Screw/Unscrew
Cycle Sit Pump
Inspect Hammer Kneel Down

Unlabeled Pick Move Lift
Walk Sit Adjust Stand
Read Throw Drink Bent Down

ACTIVITIES DISTRIBUTION FOR AD-HOC SCENARIO: 
BICYCLE ASSEMBLY

ACTIVITIES DISTRIBUTION FOR PROCEDURAL SCENARIO: 
3D PRINTER ASSEMBLY

Figure 7: OpenMarcie activities distribution for the ad-hoc scenario and the procedural scenario.

Participants reported their ownership and usage habits related to bicycles and 3D printers (see Fig-
ure 6). A majority indicated that they owned a bicycle, while only a small fraction owned a 3D
printer. Usage patterns reflected this ownership disparity: bicycles were used more frequently than
3D printers, with participants reporting daily, weekly, or monthly use. In contrast, the majority of
participants reported either very infrequent use or no use of 3D printers. These differences highlight
a greater familiarity and hands-on experience with bicycles among participants, making bicycle-
related tasks more intuitive for the group, while 3D printer tasks likely required more instruction or
exploration due to limited prior exposure. The participant characteristics provide valuable context
for interpreting task performance and interaction behavior observed during the study. The combina-
tion of technical backgrounds, varied assembly experience levels, and broad international represen-
tation contributes to a rich and diverse dataset. Furthermore, the participants’ greater familiarity with
bicycles compared to 3D printers offers a natural contrast between ad-hoc and procedural tasks, re-
inforcing the relevance of the chosen scenarios for studying goal-oriented activities across different
levels of prior knowledge and skill.

Figure 7 represents an example of activity distribution within OpenMarcie. These actions represent
a diverse set of activities that humans are expected to perform in industrial scenarios, specifically
during assembly tasks. The dataset focuses on two distinct scenarios. Fig. 7 Left is the distribution
of activities for the ad-hoc bicycle scenario (Scenario (a)). The most frequent activities are screw-
ing/unscrewing and inspecting, as these actions are an integral part of handling bicycle parts. In
contrast, hammering or lying down occurred at more defined stages of the assembly process. Fig. 7
Right shows the distribution of activities for the 3D printer assembly procedural scenario. Moving
objects (”Move”), Adjust, and Read are the dominant categories. In contrast to the ad-hoc scenario,
the Unlabeled class is less prominent in the 3D printer assembly case.

4 VALIDATION BENCHMARKS

To assess the utility and versatility of OpenMarcie, we establish validation benchmarks across three
core tasks: Human Activity Recognition (HAR), Open Vocabulary Captioning, and Cross-Modal
Alignment. These tasks are chosen to reflect key challenges in industrial and task-driven environ-
ments. HAR supports downstream applications like safety monitoring, skill assessment, and robotic
imitation. Open vocabulary captioning enables procedural documentation and naturalistic human-

7
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Table 3: Human activity recognition results for Scenario (a): Bicycle Assembly and Scenario (b):
3D Printer Assembly, including macro F1 scores with and without the null class.

Modality Scenario (a) Scenario (b)
Macro F1 (↑)

Without Null With Null Without Null With Null
Inertial 0.834±0.007 0.811±0.007 0.750±0.015 0.674±0.003
Acoustic 0.489±0.018 0.469±0.017 0.425±0.004 0.432±0.005
Vision 0.757±0.011 0.729±0.011 0.705±0.004 0.655±0.003
Inertial + Acoustic 0.803±0.012 0.782±0.010 0.744±0.004 0.666±0.003
Acoustic + Vision 0.739±0.016 0.714±0.013 0.695±0.003 0.646±0.003
Inertial + Vision 0.882±0.009 0.851±0.009 0.773±0.000 0.685±0.000
Inertial + Acoustic + Vision 0.859±0.010 0.831±0.011 0.763±0.003 0.676±0.003

robot interaction. Cross-modal alignment is essential for sensor substitution, retrieval, and transfer
in environments where sensing modalities may be limited or asynchronous. These tasks also address
known gaps in prior datasets—such as short action windows, lack of verbal grounding, and limited
sensor diversity—positioning OpenMarcie as a testbed for real-world, multimodal intelligence.

Human Activity Recognition HAR in industrial settings is challenging due to procedural, goal-
driven, and concurrent activities. Unlike prior datasets (Yoshimura et al., 2024) with short, scripted
actions, OpenMarcie captures long, unsegmented sequences with natural variation, tool use, and
diverse action paths. Its rich multimodal setup with multipositional sensors, synchronized ego/exo
views, and verbal narrations offers a realistic testbed for human-centered automation. We evalu-
ate HAR using three modalities: egocentric video, right-hand IMU, and instrumental sound. Each
is tested independently with a modality-specific model, ViT (Dosovitskiy et al., 2020) for video,
DeepConvLSTM (Singh et al., 2020) for IMU, and EnCodec (Défossez et al., 2022) with a temporal
classifier for audio on a 12-class activity task with subject-disjoint splits. For multimodal evalua-
tion, we explore all pairwise combinations and full three-way fusion using a late-fusion transformer
(Pandeya & Lee, 2021) that integrates temporally encoded embeddings from each stream. This
setup quantifies both the individual discriminative power and the complementarity across modali-
ties. Table 3 shows Macro F1 scores across modalities for two scenarios (a, b) with and without
null class inclusion. Inertial + Vision consistently outperforms all other combinations, achieving the
highest Macro F1 scores. Multimodal fusion generally improves performance over unimodal inputs,
especially over Acoustic alone, which performs the worst across conditions.

Open Vocabulary Captioning Open vocabulary captioning generates free-form descriptions of
actions and scenes, crucial for industrial tasks like documentation, operator feedback, and human-
machine handovers. Unlike prior datasets focused on short, generic activities with templated labels
(Liu et al., 2020), OpenMarcie provides unscripted spoken narrations aligned with visual and au-
dio streams. This enables grounded language generation in fine-grained, goal-oriented settings and
allows investigation of how multimodal context, especially verbal intent, enhances captioning per-
formance. Similar to HAR, we use modality-specific encoders to regress sentence embeddings de-
rived from participant narrations as proposed in OV-HAR (Ray et al., 2025). Captioning is framed
as embedding prediction, with outputs decoded via Vec2Text (Morris et al., 2023) using embed-
ding retrieval. We evaluate unimodal, pairwise, and fused setups. This approach enables efficient,
open-vocabulary captioning without large language models. Table 4 reports cosine similarity scores
for captioning, showing trends similar to HAR. Inertial + Vision achieves the best performance
across both datasets, while Acoustic alone performs the worst. Adding Acoustic to other modalities
provides marginal or no improvement, indicating its limited contribution compared to Inertial and
Vision.

Cross Modal Alignment Cross-modal alignment aims to learn a shared representation across sen-
sory modalities, enabling retrieval, recognition, and transfer. While models like CLIP (Radford
et al., 2021), Multi³Net (Fortes Rey et al., 2024) succeed on web-scale data, they lack structured,
sensor-rich recordings. OpenMarcie offers a realistic testbed with synchronized video, audio, and
IMU from goal-driven tasks, supporting alignment studies in complex, real-world settings beyond
internet-scale benchmarks. Inspired by ImageBind (Girdhar et al., 2023), we use contrastive learning
to align egocentric video, IMU, audio, and language into a shared embedding space. Each modal-
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Table 4: Open vocabulary captioning results for Scenario (a): Bicycle Assembly and Scenario (b):
3D Printer Assembly, including cosine similarity values with and without the null class.

Modality Scenario (a) Scenario (b)
Cosine Similarity (↑)

Without Null With Null Without Null With Null
Inertial 0.518±0.023 0.501±0.022 0.642±0.002 0.640±0.002
Acoustic 0.361±0.030 0.341±0.018 0.316±0.003 0.323±0.004
Vision 0.479±0.016 0.463±0.014 0.632±0.002 0.631±0.003
Inertial + Acoustic 0.512±0.021 0.493±0.020 0.644±0.002 0.641±0.003
Acoustic + Vision 0.466±0.025 0.444±0.012 0.626±0.003 0.625±0.004
Inertial + Vision 0.561±0.016 0.531±0.014 0.655±0.000 0.655±0.000
Inertial + Acoustic + Vision 0.547±0.020 0.519±0.017 0.647±0.001 0.646±0.003

Table 5: Cross-modal alignment results for Scenario (a): Bicycle Assembly and Scenario (b): 3D
Printer Assembly, including recall@5, recall@1, and top-1 metrics.

Modality Scenario (a) Scenario (b)
Recall@1 (↑) Recall@5 (↑) Top-1 (↑) Recall@1 (↑) Recall@5 (↑) Top-1 (↑)

Inertial + Text 0.324±0.016 0.655±0.025 0.481±0.018 0.312±0.016 0.642±0.026 0.468±0.019
Acoustic + Text 0.241±0.014 0.583±0.025 0.342±0.016 0.227±0.013 0.567±0.022 0.329±0.015
Vision + Text 0.437±0.015 0.768±0.017 0.556±0.016 0.421±0.013 0.751±0.018 0.541±0.014

Inertial + Acoustic + Text 0.347±0.014 0.679±0.019 0.495±0.017 0.334±0.015 0.663±0.017 0.479±0.018
Acoustic + Vision + Text 0.412±0.013 0.740±0.020 0.533±0.015 0.395±0.014 0.723±0.019 0.517±0.014
Inertial + Vision + Text 0.485±0.014 0.803±0.019 0.587±0.016 0.467±0.013 0.787±0.015 0.570±0.016

Inertial + Acoustic + Vision + Text 0.470±0.015 0.795±0.019 0.579±0.016 0.453±0.014 0.779±0.018 0.563±0.016

ity is encoded with a dedicated backbone and trained with a multi-modal InfoNCE loss over syn-
chronized positive pairs. We evaluate all 2, 3, and 4 modality combinations, enabling fine-grained
analysis of alignment and shared information across modalities. As given in Table 5, for both scenar-
ios, combining inertial and vision modalities with text yields the strongest alignment performance.
Vision and text perform well alone; while acoustic features contribute less individually, their perfor-
mance improves when combined with other modalities. Overall, richer modality fusion improves
alignment, though gains taper with full combinations. Embedding-based approaches enable effi-
cient, scalable evaluation across tasks, highlighting OpenMarcie’s value for studying real-world,
sensor-rich human activity understanding. Across all tasks, HAR, open vocabulary captioning, and
cross-modal alignment, multimodal fusion consistently outperforms unimodal inputs, with inertial
and visual modalities providing the strongest signal. Audio alone provides limited information but
contributes meaningfully when combined with other modalities. Moreover, because data was col-
lected in a test-bench rather than a real factory, it lacks authentic industrial noise (e.g., machinery,
vibrations). While constrained, the modality remains useful in multimodal fusion and highlights op-
portunities for privacy-preserving sensing under realistic conditions. Additional experiments further
probing the causes of audio’s limited performance are provided in the supplementary material.

5 CONCLUSION

OpenMarcie is a large-scale multimodal dataset for human activity recognition, cross-modal learn-
ing, and industrial automation. It captures both ad-hoc and procedural assembly tasks with syn-
chronized egocentric/exocentric video, wearable sensors, anonymized audio, and textual narration,
enabling robust benchmarking for embodied AI. The dataset reflects realistic industrial workflows
through sequential, collaborative activities involving error correction and task monitoring. While
participants are predominantly right-handed engineers—limiting demographic generalization—this
aligns with typical industrial workforces, enhancing ecological validity. Annotations cover only
part of the dataset’s potential, as its multi-view recordings support future labeling of objects, ac-
tions, interactions, and poses. Sensor placements were ergonomically adapted per scenario but key
modalities (e.g., wrist IMUs, chest-mounted LiDAR, stereo microphones) remain consistent, allow-
ing multimodal comparisons. Overall, it provides a flexible foundation for research in fine-grained
activity recognition, human–robot collaboration, and context-aware AI in industrial settings.
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6 ETHICS STATEMENT

This work complies with the Declaration of Helsinki. All participants provided informed consent
and retained the right to withdraw at any time. To mitigate privacy risks, faces were blurred, speech
was excluded, and only anonymized instrumental audio was released. External narrations were pro-
vided by an observer, transcribed, and used in place of participants’ private speech. Comprehensive
demographic metadata is included to support fairness and bias analysis. Compensation was limited
to voluntary vouchers in Scenario (b).

7 REPRODUCIBILITY STATEMENT

We release the OpenMarcie dataset, all annotations, and benchmark splits to ensure reproducibility.
The benchmark baselines use publicly available architectures and libraries, with hyperparameters,
training protocols, and evaluation metrics fully described in the main text and supplementary ma-
terial. Extended audio-only experiments, model configurations, and preprocessing details are also
documented in the supplementary for transparency. Together, these resources allow other researchers
to replicate our experiments and build upon our benchmarks. As ICLR explicitly lists datasets and
benchmarks as a core subject area, our contribution is aligned with this scope, providing both re-
producible baselines and a foundation for future research in multimodal representation learning and
industrial AI.
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SUPPLEMENTAL MATERIAL FOR OPENMARCIE: DATASET FOR MULTIMODAL
ACTION RECOGNITION IN INDUSTRIAL ENVIRONMENTS

This supplementary document contains additional information about OpenMarcie. Section A com-
pares in detail the prior datasets with OpenMarcie. Section B presents the metadata information
about each participant independently. Section C declares the ethical consideration and societal im-
pact of the OpenMarcie dataset with emphasis in user privacy and anonymization. Section D de-
scribes how a large language model semantically transforms human-written descriptions and vice-
versa, serving as a structured translator rather than a primary labeling agent. Section E shows the
object distribution for both experimental scenarios and illustrates example scenes with object seg-
mentation and human skeleton poses. Section F details the implementation of the proposed bench-
marks and presents the evaluation metrics used. Section G reports additional audio-only experiments
designed to probe the modality’s limitations under different conditions. Specifically, we (1) evaluate
the full pipeline with pre-anonymized (raw) audio streams to isolate the effect of the anonymiza-
tion process, and (2) replace Encodec embeddings with a non–ML-based mel-spectrogram classifier
to disentangle the influence of the embedding method from the content itself. Section H outlines
several research directions that extend beyond the benchmarks presented in this work.

A DETAILED COMPARISON TO PRIOR DATASETS

To provide a clearer perspective, we include a narrative comparison of each cited dataset, high-
lighting how their design choices converge with or diverge from OpenMarcie in terms of industrial
fidelity, sensing breadth, and suitability for advanced research tasks.

• InHARD Dallel et al. (2020), developed for human–robot collaboration, integrates three
exocentric RGB views with wearable inertial mocap, making it one of the few industrial
datasets to include wearable sensing. Its scope, however, is limited to single-action recog-
nition in fixed exocentric settings. In contrast, OpenMarcie extends beyond this by pair-
ing wearables with synchronized egocentric and exocentric video and by providing multi-
action labels, thereby capturing overlapping activities that more faithfully reflect real-world
industrial workflows.

• LARa Niemann et al. (2020) captures logistics activities using IMUs, optical mocap, and
a single RGB camera, providing valuable insight into worker variability in warehouse set-
tings. Its scope, however, is primarily exocentric and lacks the multimodal depth of Open-
Marcie. In the absence of egocentric streams or concurrent multi-action labels, LARa is
best suited for controlled HAR scenarios. OpenMarcie advances this space by integrating
egocentric video, wearable sensing, and multi-route task design, thereby enabling richer
supervision for collaborative and multitasking contexts.

• OpenPack Yoshimura et al. (2024) is a large-scale logistics dataset comprising 53.8 hours
of recordings that integrate IMUs, 2D keypoints, depth, and IoT data. Its primary strength
lies in combining wearable sensing with process-level logging, though its perspective re-
mains exclusively exocentric. OpenMarcie addresses these gaps by providing egocentric
multimodal video aligned with exocentric multiviews and by introducing explicit multi-
action annotation. This design enables models not only to classify activities but also to
reason about simultaneity and task intent.

• Assembly101 Sener et al. (2022) offers multi-view egocentric and exocentric video with
dense procedural annotations, establishing a strong benchmark for vision-based activity
understanding. However, it does not incorporate wearable sensing or overlapping activ-
ity labels. OpenMarcie extends this direction by retaining ego–exo coverage while adding
wearable IMUs, audio, thermal, and spectrometer signals, and by explicitly modeling con-
current actions. These additions make OpenMarcie particularly well-suited for advancing
cross-modal learning.

• IKEA-ASM Ben-Shabat et al. (2021) is a furniture assembly dataset that provides RGB-D
multiview recordings with annotations for atomic actions and manipulated objects. Its main
strength is the inclusion of depth and pose data from multiple exocentric Kinect sensors,
but it lacks egocentric perspectives and wearable sensing. OpenMarcie complements this
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resource by combining egocentric video with wearables and additional non-visual sensors,
thereby supporting cross-modal transfer beyond RGB-D alone.

• HA4M Cicirelli et al. (2022) focuses on gear-train assembly and provides six modalities
captured with Azure Kinect, including RGB, depth, IR, and skeleton data. While it em-
phasizes vision-rich multimodality, it is restricted to exocentric viewpoints and does not
include wearable sensing. OpenMarcie advances this space by integrating egocentric and
exocentric cameras with wearables and multi-action labels, thereby supporting more real-
istic multitasking scenarios in industrial workflows.

• HA-ViD Zheng et al. (2023) provides fine-grained multi-view assembly recordings with
detailed annotations covering subjects, verbs, objects, tools, and collaboration cues. It
offers rich semantic supervision and supports alternative task routes. However, it does not
include wearable sensing or egocentric perspectives. OpenMarcie complements HA-ViD
by incorporating egocentric video, wearable streams, and explicit concurrent multi-action
labels, thereby extending applicability to multitasking and multimodal alignment.

• IndustReal Schoonbeek et al. (2024) is designed for Procedure Step Recognition (PSR),
using egocentric video to capture procedural errors and flexible subgoals. Its distinctive
contribution is its focus on error modeling, though it remains limited to ego-only record-
ings without wearable sensing or multiview exocentric support. OpenMarcie, while cur-
rently benchmarked on HAR, captioning, and cross-modal alignment, integrates egocentric
and exocentric video with wearables and multi-action labels, providing a complementary
foundation for PSR and error modeling—both of which are included in our staged roadmap.

• Ego-Exo4D Grauman et al. (2024) is a large-scale dataset comprising over 1,200 hours
of skilled activities, captured with synchronized egocentric and exocentric video, audio,
IMU, gaze, and language streams. It is unmatched in scale and modality breadth, yet
only a small portion of the recordings are industrial. OpenMarcie takes a complementary
approach by focusing exclusively on industrial workflows, augmenting them with multi-
action annotations and specialized wearables. In this way, OpenMarcie serves as a domain-
focused counterpart to Ego-Exo4D, prioritizing depth over scale in factory settings.

OpenMarcie is the only dataset to jointly provide wearables, egocentric and exocentric multiview
recordings, explicit concurrent multi-action labels, and complete industrial coverage (see Table 1).
While prior datasets emphasize individual strengths—such as rich semantic annotations (HA-ViD),
large scale (Ego-Exo4D), wearable integration (InHARD, LARa, OpenPack), or multi-view video
(Assembly101, IKEA-ASM)—none combine all of these elements within an industrial setting. This
unique positioning makes OpenMarcie particularly well-suited for the advanced benchmarks out-
lined in our roadmap, including procedural planning, skill assessment, intent prediction, fine-grained
segmentation, pose reasoning, cross-modal transfer, and cross-modal generation.

B USER METADATA

Based on Figure 8, Table 6, and Table 7, the participant data across the two scenarios—bicycle as-
sembly (Scenario (a)) and 3D printer assembly (Scenario (b))—reflects a diverse and well-balanced
cohort in terms of demographics and professional backgrounds. Scenario (a) includes 12 partici-
pants, while Scenario (b) features 24, offering a broader basis for analysis. Males form the majority
in both groups, although Scenario (b) exhibits greater gender diversity, with a higher number of
female participants.

The majority of participants are right-handed, with only four identifying as left-handed, as shown in
the summarized visualization, indicating a strong dominance of right-handed individuals across the
dataset. Participants range in age from their early 20s to late 30s, and most hold academic degrees
in engineering. Additional disciplines represented include computer science, biology, physics, and
management, demonstrating multidisciplinary relevance.

Geographically, the dataset includes participants from multiple continents—South America, Asia,
Europe, Africa, and North America—highlighting broad international representation. Scenario (b)
shows particularly rich demographic variety, with over 15 distinct national origins. Experience
levels, self-reported on a scale from 1 to 3, vary across participants, with most indicating beginner
to intermediate familiarity with the task domain.
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Overall, the metadata illustrates the inclusiveness and diversity of the participant pool, supporting
the dataset’s utility for developing generalizable models in embodied AI, human-robot interaction,
and vision-based behavior analysis.
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Figure 8: Distribution of participants by nationality, dominant hand and self identified sex.

Table 6: Participants’ metadata information for the Ad-hoc Scenario (a).
ID Sex Age Height Dominant Hand Academic Level Demographic Experience Level (1-3)

P1-B F 33 160 R Engineer South America (Venezuela) 2
P2-B F 26 176 R Engineer Europe (Poland) 3
P3-B M 29 175 R Computer Scientist Europe (Germany) 1
P4-B M 26 175 L Engineer South Asia (India) 1
P5-B M 33 189 R Computer Scientist South America (Brazil) 1
P6-B M 36 188 R Engineer East Africa (Rwanda) 1
P7-B M 25 168 R Engineer South Asia (India) 1
P8-B M 37 178 R Engineer East Asia (South Korea) 2
P9-B M 27 176 R Engineer Middle East (Iran) 2

P10-B M 27 174 R Engineer South Asia(India) 1
P11-B M 34 193 R Engineer South America (Venezuela) 1
P12-B M 30 160 R Engineer South East Asia (China) 1

Figure 9 presents a comparative analysis between range of motion (Left) and motion diversity
(Right) across two distinct assembly scenarios: Scenario (a), Bicycle assembly, and Scenario (b),
3D Printer assembly. Each metric is broken down by body region: Full Body, Left Hand, Right
Hand, and Lower Body. Scenario (b) exhibits a greater range of motion compared to Scenario (a),
particularly for the full body as well as the left and right hands. This increased movement may be at-
tributed to the multiple instances of searching around the table, shelf, and floor observed in Scenario
(b). Scenario (a) involves kneeling, lying on the ground, and standing up to inspect specific areas
of the bicycle. Consequently, it demonstrates a greater lower body range of motion and movement
diversity compared to the 3D printer scenario (Scenario b).

Table 8 presents a list of acronyms used to represent various activities and objects involved in Sce-
nario (a): Bicycle assembly. The activities are denoted by single-letter acronyms such as W for
Walking, M for Move (manipulating an object before the next action), U for Screw/Unscrew, and
C for Cycling. Other physical actions include S for Sitting down, P for Pumping air into the tires,
I for Inspecting with hands or eyes, H for Hammering, K for Kneeling down, A for Standing up, L
for Lying down, and T for Cutting. Additionally, object-related acronyms are listed, including hx
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Table 7: Participants metadata information for the procedural Scenario (b).
ID Gender Age Height Dominant Hand Academic Level Demographic Experience Level (1-3)

P1-D M 37 178 R Engineer East Asia (South Korea) 2
P2-D F 25 159 R Engineer South East Asia Pacific (Nepal) 2
P3-D M 34 193 R Engineer South America (Venezuela) 1
P4-D F 26 165 R Engineer Europe (Italy) 1
P5-D F 33 160 R Engineer South America (Venezuela) 2
P6-D F 25 164 R Engineer South Asia (India) 1
P7-D M 24 175 R Engineer Middle East (Iraq) 3
P8-D M 25 168 R Engineer South Asia (India) 1
P9-D F 25 162 R Physicist South America (Colombia) 2

P10-D F 27 155 R Engineer South East Asia (Indonesia) 2
P11-D F 24 160 R Engineer South Asia (India) 1
P12-D M 36 188 R Engineer East Africa (Rwanda) 1
P13-D M 24 168 R Biologist North America (USA) 2
P14-D M 22 187 R Management Middle East (Syria) 2
P15-D F 24 150 R Engineer Caucasus Asia (Azerbaijan) 1
P16-D M 25 165 R Engineer South Africa (Zimbabwe) 1
P17-D M 22 167 R Engineer South East Asia Pacific (Nepal) 2
P18-D M 29 175 L Computer Scientist Europe (Germany) 1
P19-D F 23 161 R Biologist East Asia (Japan) 1
P20-D M 26 175 L Engineer South Asia (India) 1
P21-D M 27 182 R Computer Scientist East Asia (South Korea) 2
P22-D M 24 183 L Engineer South East Asia Pacific (Nepal) 2
P23-D F 24 156 R Microbiologist South America (Colombia) 1
P24-D M 25 178 L Computer Scientist Middle East (Turkey) 1
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Figure 9: Comparison of range and diversity of body motions across Scenario (a): bicycle assembly
and Scenario (b): 3D printer assembly.

for Hex key, wr for Wrench, sd for Screwdriver, hm for Hammer, sc for Scissors, pl for Plier, pu
for Pump, and bh for Bare Hands. This table helps clarify shorthand notations used to describe the
detailed steps and tools involved in the bicycle assembly process.

C ETHICAL CONSIDERATION AND SOCIETAL IMPACT

The OpenMarcie dataset was developed with a strong emphasis on ethical research practices and so-
cietal responsibility. All participants provided informed consent in compliance with the Declaration
of Helsinki. Participants were informed about the nature of data being collected—including egocen-
tric video, wearable sensor data, and external audio narration, and retained the right to withdraw at
any time. Participants received a 15-euro Amazon voucher for voluntary participation in Scenario
(b). No compensation was provided for participation in Scenario (a).

To mitigate privacy risks, egocentric recordings were deliberately framed to capture task execution
while minimizing exposure of participant identities. Verbal narrations were provided by an external
observer to avoid capturing participants’ private speech. These narrations were then transcribed
using faster-whisper (v1.1.1) and ctranslate2 (v4.4.0), employing the ”large-v3” model configuration
Radford et al. (2022), and only the resulting text descriptions were used in the benchmark tasks and
released in OpenMarcie.
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Table 8: Activities and objects acronyms for the Scenario (a): Bicycle assembly.
Acronym Meaning

W Walking
M Move: Manipulating an object until the next action
U Screw/Unscrew
C Cycling
S Sitting down
P Pump: Pumping air into the bicycle tires
I Inspect: Inspecting an object with hand/eyes
H Hammering
K Kneeling down
A Standing up
L Lie Down
T Cutting
hx Hex key
wr Wrench
sd Screwdriver
hm Hammer
sc Scissors
pl Plier
pu Pump
bh Bare Hands

Facial features and biometric identifiers were excluded from all labeling and analysis processes. A
two-stage anonymization procedure was applied to the video data. First, participant faces were au-
tomatically detected and blurred using the open-source deface Python package (threshold set at 0.7)
Xu et al. (2019); ORB-HD. Second, all videos were manually reviewed, and any remaining visible
facial features were fully obscured using DaVinci Resolve Design. For audio, only the instrumen-
tal components were released. Voices were intentionally removed from the audio tracks using the
OpenVINO Music Separation plugin in Audacity Intel, which separates recordings into vocal and
instrumental stems. OpenMarcie includes only the instrumental tracks.

OpenMarcie is designed not only to advance research in human activity recognition but also to sup-
port transparency and fairness in machine learning. The dataset includes comprehensive metadata
on participants’ demographics, academic background, dominant hand, and self-assessed skill levels,
enabling researchers to perform subgroup analyses and audit for potential biases. This supports the
development of equitable multimodal systems in industrial and embodied AI applications.

From a broader societal perspective, OpenMarcie has the potential to benefit applications such as
human-robot collaboration, workplace safety, ergonomic assessment, and adaptive training systems.
Its real-world, goal-driven scenarios are ideal for advancing models that interpret human actions in
complex environments. However, such systems may also carry risks if misused—for example, for
excessive surveillance or performance monitoring without consent.

We encourage researchers using OpenMarcie to explicitly assess fairness, document performance
across diverse subgroups, and consider the downstream implications of deploying human action
recognition systems in human-centered settings. OpenMarcie aims to support the responsible devel-
opment of AI by providing a rich yet ethically grounded testbed for real-world multimodal learning.

D LLM-BASED ANNOTATION TRANSLATION

D.1 LLM GENERATED LABEL VALIDATION

Our pipeline employs GPT-4o to translate human-authored soft activity descriptions into standard-
ized formats—either discrete activity classes (hard labels) or continuous representations (soft la-
bels). Importantly, the LLM is not used to generate annotations directly from visual input, but rather
to semantically convert existing human-written annotations. Thus, it acts as a structured translator
rather than a primary labeling agent.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Crucially, this translation process is not fully automated. Human oversight is incorporated through-
out, particularly during the mapping of soft-label sentences to discrete classes. Annotators refine
LLM prompts, inspect outputs for ambiguous cases, and resolve semantic inconsistencies. This
human-in-the-loop approach helps ensure the accuracy and consistency of final labels used for model
training.

To validate the quality of LLM-generated annotations, we perform a bidirectional consistency anal-
ysis under the two scenarios:

• Ad hoc scenario (Hard labels → Captions → Hard labels): Human-annotated discrete
classes are transformed by the LLM into natural-language captions, then back-translated
by the LLM into discrete labels.

• Procedural scenario (Captions → Hard labels → Captions): Human written soft label
sentences are transformed into discrete classes by the LLM, then regenerated into captions.

We measure the consistency between original and recovered labels/captions using Macro F1 Score
and METEORBanerjee & Lavie (2005). In both settings, we observe strong alignment between the
classification and regression outputs having 0.715 Macro F1 score for Scenario (a) and 0.531 ME-
TEOR score for Scenario (b) respectively, suggesting that LLM-generated labels preserve semantic
consistency and structural fidelity. This indirect validation supports the utility of LLMs as reliable
semantic intermediaries within a partially supervised annotation pipeline.

D.2 AD-HOC SCENARIO (A): BICYCLE DISASSEMBLY/ASSEMBLY

For example, given:

Verb: Moving Object and Walking
Tools: Bare Hand
Manipulated Object: Hex Key
Remarks: "Moving object from Table towards Bike"

we issue the following prompt:

% System message to define assistant role and style
System:
You are an expert activity-description assistant.
Always produce a single declarative sentence
in present continuous tense,
third person, starting with a capital letter and ending
with a period.

% User message with the annotation payload and example
User:
Convert the following structured annotation into
one clear sentence.

Annotation:
{ Verb: Moving Object and Walking
{ Tools: Bare Hand
{ Manipulated Object: Hex Key
{ Remarks: Moving object from Table towards Bike

Now, please convert the above annotation.

GPT-4o then output:

\He is moving the hex key using a bare hand and walking."

This generated sentence is used as the soft label target for downstream model training.
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D.3 PROCEDURAL SCENARIO (B): 3D PRINTER ASSEMBLY/DISASSEMBLY

In the first stage, we used reasoning model DeepSeeker1 Guo et al. (2025) on all soft-label sentences
to predict candidate activity classes. We iteratively extracted the set of unique predicted classes, re-
running the pipeline until convergence (i.e., no new classes appeared). Next, we manually verified
and merged semantically similar classes to produce the final discrete set: Pick, Move, Lift, Walk,
Sit, Adjust, Stand, Read, Throw, Drink, Bent Down.

For example, given the soft label:

\The person bends down to pick something off the floor."

we construct a prompt to DeepSeeker1 that encourages open-ended reasoning about the described
action, such as:

System:
You are a reasoning assistant tasked with extracting
activity-related
verbs or action phrases from natural language
descriptions of human behavior.
User:
Extract the key activity-related labels
from the following sentence:
\The person bends down to pick something off the floor."

DeepSeeker1 may then return:

["Pick", "Bend", "Grab"]

Each returned label is treated as a candidate activity class. We check each one against the current
working set of known classes. If a label is not already in the set, we add it. This iterative procedure
continues over the entire dataset of soft-label sentences. After each pass, we re-run DeepSeeker1
on any newly discovered or ambiguous phrases to catch any missed classes. The process continues
until convergence, meaning no new unique classes are added in a full iteration.

In our example, if ”Pick” and ”Grab” are already in the working set but ”Bend” is not, we would
update the set as:

Existing class set: ["Pick", "Grab", ...]
Updated class set: ["Pick", "Grab", "Bend", ...]

After convergence, we manually verify and merge semantically similar or redundant labels (e.g.,
merging ”Bend” and ”BentDown”) to finalize a clean, discrete set of activity classes:

Final class set: ["Pick", "Move", "Lift", "Walk", "Sit",
"Adjust", "Stand", "Read", "Throw",
"Drink", "Bent Down"]

In the second stage, we used GPT-4o Achiam et al. (2023) with prompt engineering to convert each
soft-label sentence into one of these classes, employing a “sticky” logic so that the predicted class
persists until a new class is detected at a later timestamp.

For example, given the soft label: “The person is sitting in the chair, in front of the table.”

we issue the following prompt:

System:
You are an activity-classification assistant.
Candidate classes: Pick, Move, Lift, Walk, Sit, Adjust,
Stand, Read, Throw, Drink, BentDown, Others.
Sticky logic: retain previous label unless a new one is predicted.
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User:
Classify the following sentence into one of the candidate classes:
\The person is sitting in the chair, in front of the table."

GPT-4o then outputs: “10 (Sit)”

where the integer “10” refers to the class Sit. where the integer “10” refers to the class Sit. This
two-stage approach yields our final hard labels for downstream model training.

E OBJECT TRACKING

OBJECTS DISTRIBUTION BICYCLE 
ASSEMBLY SCENARIO

CellPhone Laptop: Bicycle
Person SportsBall Bag
Dog Others

OBJECTS DISTRIBUTION 3D PRINTER 
ASSEMBLY SCENARIO

Laptop Person Bag
CellPhone SportsBall Boxes
Others

Figure 10: Object distributions in the bicycle and 3D printer scenarios from exocentric views, ac-
companied by scene visualizations illustrating object segmentation (masks) and human pose estima-
tion in both environments.

OpenMarcie provides object segmentation and tracking data from multiple viewpoints, including
an exocentric camera and two egocentric positions (head- and chest-mounted wearable cameras)
for the 3D assembly experiment (Scenario (b)). Figure 10 Top shows the distribution of detected
objects in the Scenario (a): bicycle, and Scenario (b): 3D printer assembly from exocentric views.
In both cases, ”Person” is the most frequently observed category, reflecting the consistent presence
of participants during task execution. Common objects such as laptops, cellphones, and bags appear
in both settings, likely reflecting typical work-related accessories.

Scenario-specific items highlight contextual differences: for example, the bicycle is unique to the
bicycle assembly scenario, while boxes—potentially representing packaging or components—are
exclusive to the 3D printer setup. Less relevant or incidental objects like sports balls and dogs are
detected infrequently. Figure 10 Bottom presents example frames with object masks and human
skeleton poses for both scenarios.

Overall, the figure underscores context-dependent variations in object presence, providing insights
valuable for computer vision and robotics applications.
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Figure 11: Architectures for classification and regression in human activity recognition and open-
vocabulary captioning benchmarks.
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Figure 12: Architecture for cross-modal alignment benchmark.

F BENCHMARK ARCHITECTURE

As shown in Figure 11, we segment data into synchronized 1-second windows and evaluate different
modality combinations for human activity recognition. For each modality, input data is encoded
independently: 3 video frames {xt

v}3t=1 are processed via a Vision Transformer Dosovitskiy et al.
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(2020) Ev , IMU signals xi ∈ R100×6 via a DeepConvLSTM Singh et al. (2020) encoder Ei, and
1-second audio xa ∈ R16000 via EnCodec Défossez et al. (2022) Ea, producing embeddings zv =
Ev({xt

v}), zi = Ei(xi), and za = Ea(xa), respectively. For unimodal models, a classification head
C maps each zm to logits ŷ = C(zm), where m ∈ {v, i, a}. For multimodal combinations (e.g.,
video+IMU, video+audio, or all three), embeddings are fused via a late-fusion transformer Pandeya
& Lee (2021) F : z = F(zm1 , zm2 , ...), followed by ŷ = C(z). All models are trained using
cross-entropy loss:

LCE = −
C∑

c=1

yc log ŷc (1)

where C = 12 is the number of activity classes and y is the one-hot ground truth label.

We formulate open vocabulary captioning as a sentence embedding regression task, where models
predict language representations from multimodal sensory inputs. Each modality is processed inde-
pendently: 3 sampled video frames {xt

v}3t=1 are passed through a Vision Transformer Ev , 1-second
audio xa ∈ R16000 through EnCodec Ea, and IMU signals xi ∈ R100×6 through DeepConvLSTM
Ei, producing embeddings zv = Ev({xt

v}), za = Ea(xa), and zi = Ei(xi). For unimodal or mul-
timodal combinations, embeddings are fused via a transformer F to yield a shared representation
z = F(zm1 , zm2 , . . . ). A regression head R maps z to a predicted sentence embedding ŝ = R(z).
Ground truth sentence embeddings s are obtained from a pretrained language encoder. Models are
trained to minimize mean squared error (MSE):

LMSE = ∥ŝ− s∥22 (2)

we perform caption retrieval using a Vec2Text Morris et al. (2023) decoder. This embedding-
inversion approach enables scalable, low-latency caption generation without autoregressive decod-
ing.

For cross-modal alignment (see Figure 12), we adopt a self-supervised contrastive learning approach
using InfoNCE loss to map embeddings from different modalities into a shared representation space
similar to ImageBind Girdhar et al. (2023). Using the same modality-specific encoders as before, we
compute embeddings zm = Em(xm) for each modality m ∈ {video, audio, IMU, text}. For each
temporally aligned pair (zm, zm′), we apply a projection head and compute similarity with other
samples in the batch. The InfoNCE loss is given by:

LInfoNCE = − log
exp(sim(zm, zm′)/τ)∑

z−
exp(sim(zm, z−)/τ)

(3)

where sim() is cosine similarity, τ is a temperature parameter, and z− are negative samples.

F.1 BENCHMARK METRICS

We use task-specific metrics suited to the structure and goals of each benchmark:

HAR (Macro F1 Score): To account for class imbalance in multi-class activity recognition, we
report macro-averaged F1 across all classes:

F1macro =
1

C

C∑
c=1

2 · Precisionc · Recallc
Precisionc + Recallc

(4)

This gives equal weight to each class regardless of frequency.

Captioning (Cosine Similarity): We evaluate caption quality via cosine similarity between pre-
dicted and ground truth sentence embeddings:

sim(ŝ, s) =
ŝ · s

∥ŝ∥ · ∥s∥
(5)

This reflects how well the model captures semantic similarity in the shared embedding space, with-
out relying on exact lexical matches.
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Table 9: Computational Resources for Joint Latent Representations Across Modality Combinations.
Combination Parameters MACs FLOPS
Text + Audio 781,568 783,616 2.70× 109

Text + Video 2,098,432 2,100,480 7.37× 109

Text + IMU 712,512 22,797,312 2.07× 1010

Text + Video + IMU 2,351,552 24,437,376 2.00× 1010

Audio + Video + Text 2,420,608 2,423,680 5.91× 109

Audio + Text + IMU 1,034,688 23,120,512 1.89× 1010

Table 10: Computational Resources for Classification Models Across Modality Combinations.
Combination Params MACs FLOPS
Audio only 339,200 340,224 2.72× 109

Video only 1,656,064 1,657,088 1.38× 1010

IMU only 270,144 22,353,920 2.39× 1010

Audio + Video 2,092,928 3,307,392 1.89× 1010

Audio + IMU 707,008 24,004,224 2.44× 1010

Video + IMU 2,023,872 25,321,088 2.57× 1010

Audio + Video + IMU 2,362,432 26,316,032 2.67× 1010

Cross-Modal Alignment (Retrieval Metrics): We assess alignment by retrieving the correct paired
modality using Recall@k and Top-1 accuracy:

Recall@k =
1

N

N∑
i=1

1 [yi ∈ Top-k (ŷi)] (6)

Top-1 =
1

N

N∑
i=1

1 [argmax (ŷi) = yi] (7)

These metrics quantify retrieval quality in the shared embedding space, indicating how well modal-
ities are aligned.

To validate the fidelity of our bidirectional annotation transforms, we compare original and recov-
ered annotations using two complementary text-generation metrics, Macro F1 score for discrete
labels and METEOR for captions.

Soft-Label Evaluation(METEOR Banerjee & Lavie (2005)): We compare user-annotated cap-
tions s and LLM-generated captions ŝ using the METEOR metric:

METEOR(s, ŝ) = Fα(s, ŝ)
(
1− Pen(s, ŝ)

)
(8)

F.2 COMPUTATIONAL RESOURCES AND MODEL EFFICIENCY

All experiments were conducted on an NVIDIA RTX 4090 GPU with 32GB VRAM. To as-
sess the computational footprint of our models, we report the total number of parameters, multi-
ply–accumulate operations (MACs), and FLOPs (floating-point operations per inference) for each
experiment, along with the corresponding inference speed (see Table 9, Table 10, and Table 11).

G AUDIO EXTENDED EXPERIMENTS

Given the acoustic modality’s limited standalone contribution, we provide additional experiments
to better understand its behavior under different conditions. In particular, we analyze the impact of
privacy-preserving anonymization (speech removal and replacement with instrumental textures) and
feature extraction choices (Encodec embeddings vs. mel-spectrograms) across three tasks: human
activity recognition, open-vocabulary captioning, and cross-modal alignment. These comparisons
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Table 11: Computational Resources for Regression Models Across Modality Combinations.
Combination Params MACs FLOPS
Audio only 746,624 744,000 5.95× 109

Video only 1,952,768 1,952,000 1.63× 1010

IMU only 566,848 22,648,832 2.42× 1010

Audio + Video 2,270,080 2,268,992 1.30× 1010

Audio + IMU 884,160 22,965,824 2.33× 1010

Video + IMU 2,090,368 24,173,824 2.45× 1010

Audio + Video + IMU 2,407,616 24,490,816 2.49× 1010

Table 12: Human activity recognition results for Scenario (a): Bicycle Assembly and Scenario (b):
3D Printer Assembly, including macro F1 scores with and without the null class for Audio Extended
Experiments.

Modality Scenario (a) Scenario (b)
Macro F1 (↑)

Without Null With Null Without Null With Null
Acoustic-Anonymized Encoder 0.489±0.018 0.469±0.017 0.425±0.004 0.432±0.005
Acoustic-Non-Anonymized Encoder 0.509±0.002 0.488±0.001 0.460±0.002 0.453±0.003
Acoustic-Anonymized Mel-Spectrum 0.492±0.003 0.473±0.002 0.434±0.003 0.430±0.003
Acoustic-Non-Anonymized Mel-Spectrum 0.517±0.004 0.493±0.002 0.466±0.003 0.455±0.002

allow us to quantify how anonymization reduces semantic richness, whether alternative represen-
tations can recover useful signal, and to what extent audio still contributes in multimodal settings.
The following tables report these extended results, clarifying both the challenges and the potential
of acoustic data for privacy-preserving multimodal learning.

Across human activity recognition (Table 12), open-vocabulary captioning (Table 13), and cross-
modal alignment (Table 14), a consistent trend emerges: non-anonymized audio outperforms
anonymized variants, with Mel-spectrograms yielding the strongest results. For activity recogni-
tion, non-anonymized Mel-spectrograms achieve the highest macro F1 (0.517/0.493 in Scenario (a),
0.466/0.455 in Scenario (b)). In captioning, the same representation reaches the best cosine simi-
larity (0.381/0.359 in Scenario (a), 0.330/0.340 in Scenario (b)). Finally, in cross-modal alignment,
non-anonymized Mel-spectrograms again lead with recall@1/5 and top-1 scores (0.254/0.613/0.360
in Scenario (a); 0.238/0.597/0.345 in Scenario (b)). Scenario (b) consistently yields lower ab-
solute performance, reflecting its greater procedural complexity. The performance gap between
anonymized and non-anonymized streams ( 0.01–0.03 across metrics) highlights the trade-off be-
tween privacy and informativeness: anonymization systematically removes semantic richness, re-
ducing discriminative power across all tasks. Still, audio retains complementary cues, particu-
larly for grounding text, as seen in the stable improvements in cross-modal alignment even under
anonymization.

The modality’s limitations arise from four main factors:

• Privacy constraints: Speech removal and replacement with generic instrumental textures
strip away contextual and semantic information.

• Feature extraction choices: Encodec embeddings, while general-purpose, may not capture
fine-grained task-specific cues, especially on anonymized signals.

• Task-inherent challenges: Assembly sounds are subtle or intermittent, making them harder
to discriminate.

• Environmental factors: Data collection in a test-bench environment lacks authentic indus-
trial acoustics (e.g., machinery noise, vibrations), further constraining informativeness.

In sum, while acoustic data underperforms in isolation and can even introduce noise in classification
tasks, it contributes positively in multimodal fusion and joint representation learning, and provides
a testbed for exploring privacy-preserving sensing. The current experiments confirm both the utility
of richer acoustic content and the limitations imposed by anonymization and feature choice.
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Table 13: Open vocabulary captioning results for Scenario (a): Bicycle Assembly and Scenario (b):
3D Printer Assembly, including cosine similarity values with and without the null class for Audio
Extended Experiments.

Modality Scenario (a) Scenario (b)
Cosine Similarity (↑)

Without Null With Null Without Null With Null
Acoustic-Anonymized Encoder 0.361±0.030 0.341±0.018 0.316±0.003 0.323±0.004
Acoustic-Non-Anonymized Encoder 0.375±0.001 0.354±0.001 0.328±0.001 0.338±0.002
Acoustic-Anonymized Mel-Spectrum 0.364±0.003 0.348±0.002 0.326±0.002 0.322±0.001
Acoustic-Non-Anonymized Mel-Spectrum 0.381±0.002 0.359±0.002 0.330±0.001 0.340±0.001

Table 14: Cross-modal alignment results for Scenario (a): Bicycle Assembly and Scenario (b): 3D
Printer Assembly, including recall@5, recall@1, and top-1 metrics.

Modality Scenario (a) Scenario (b)
Recall@1 (↑) Recall@5 (↑) Top-1 (↑) Recall@1 (↑) Recall@5 (↑) Top-1 (↑)

Acoustic + Text (Anonymized Encoder) 0.241±0.014 0.583±0.025 0.342±0.016 0.227±0.013 0.567±0.022 0.329±0.015
Acoustic + Text (Non-Anonymized Encoder) 0.251± 0.001 0.605±0.002 0.355±0.002 0.237±0.001 0.589±0.001 0.341 ±0.001
Acoustic + Text (Anonymized Mel-Spectrum) 0.246 ± 0.001 0.595 ±0.002 0.350±0.001 0.233±0.001 0.578± 0.002 0.336 ±0.001

Acoustic + Text (Non-Anonymized Mel-Spectrum) 0.254±0.001 0.613 ±0.002 0.360±0.001 0.238±0.001 0.597±0.001 0.345±0.001

H FUTURE RESEARCH DIRECTIONS

Beyond the benchmarks presented in this work, our dataset opens several promising directions for
the research community:

1. Procedural Planning and Task Decomposition Modeling the hierarchical structure of
long-horizon industrial workflows, enabling systems to learn task graphs and segment com-
plex sequences. Future work may explore methods for inferring workflow dependencies,
optimizing decompositions, or generalizing across task variants.

2. Skill Assessment and Expertise Modeling Participant variability provides opportunities
for modeling proficiency, efficiency, and learning progression. For example, future direc-
tions include automatic skill classification, modeling expertise transfer between agents, and
designing adaptive training interventions guided by behavioral signals.

3. Intent Prediction and Early Action Forecasting Anticipating upcoming actions or goals
from partial multimodal observations is essential for proactive assistance and collaboration.
Potential research includes multimodal fusion strategies for early prediction, goal inference
in partially observed sequences, and real-time assistive systems.

4. Fine-Grained Action Segmentation and Role Understanding Overlapping and concur-
rent actions offer a challenging testbed for segmentation and role inference. Open problems
include modeling multi-label temporal boundaries, learning role dynamics in multi-agent
or multi-phase tasks, and connecting segmentation to downstream planning.

5. Pose Estimation and Body-Language Reasoning With synchronized RGB-D and iner-
tial data, future studies can advance full-body pose estimation, activity-conditioned pose
forecasting, and non-verbal intent recognition in realistic industrial settings.

6. Cross-Modal Knowledge Transfer The dataset supports transfer learning across modali-
ties—for instance, using vision or language to supervise inertial or acoustic models. This
is especially relevant for privacy-sensitive or sensor-limited scenarios. Promising avenues
include cross-modal distillation, modality dropout robustness, and unsupervised alignment.

7. Cross-Modal Generation and Simulation Generating one modality from another (e.g.,
IMU traces from instructions or reconstructing missing video) enables robust imitation
learning and simulation. Future work may investigate generative modeling, simulation-to-
reality transfer, and synthetic data augmentation for industrial tasks.
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