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Abstract

We derive non-asymptotic spectral bands that bound the squared InfoNCE gradient
norm via alignment, temperature, and batch spectrum, recovering the 1/72 law and
closely tracking batch-mean gradients on synthetic data and ImageNet. Using ef-
fective rank R.g as an anisotropy proxy, we design spectrum-aware batch selection,
including a fast greedy builder. On ImageNet-100, Greedy-64 cuts time-to-67.5%
top-1 by 15% vs. random (24% vs. Pool-P3) at equal accuracy; CIFAR-10 shows
similar gains. In-batch whitening promotes isotropy and reduces 50-step gradient
variance by 1.37x, matching our theoretical upper bound.

1 Introduction

Contrastive learning is a label-efficient paradigm for representation learning: it pulls together positive
views of the same instance while pushing apart negatives in the mini-batch, uncovering latent structure
without class labels. Yet this tug-of-war is delicate: weak positives stall learning, whereas overly
similar negatives drive gradients toward zero, even in frameworks that rarely collapse in practice such
as SimCLR (Chen et al.,[2020a) and MoCo (He et al., | 2020b)). Most prior work tackles this at the
pair level (e.g., hard-negative mining and debiased losses), but overlooks a batch-level signal: the
spectrum of the embedding cloud. If that cloud is too narrow (high anisotropy; low effective rank),
negatives become redundant; if too wide (near-isotropic with uniformly small pairwise similarities),
the softmax distribution flattens. Empirically, we find training is fastest inside a moderate-diversity
window—rich enough to avoid collapse, yet narrow enough to preserve directional signal.

We formalise and exploit this observation via three contributions:

1. Gradient-norm spectral band. We derive sharp, non-asymptotic bounds on the squared
InfoNCE gradient norm, decomposing contributions from positive alignment, finite-sample
variance, and batch anisotropy. The band depends only on in-batch (or queue) second
moments, making the analysis—and the resulting diagnostics—agnostic to whether negatives
are drawn in-batch (SimCLR) or from a queue (MoCo).

2. Diversity-aware batch construction. We propose two lightweight samplers that keep
training inside the diversity window: (i) a pool selector that targets high effective rank Rg;
and (ii) a streaming Greedy-m builder that adds the sample with the largest spectral-diversity
gain. In our measurements, Greedy-m adds < 1% on-GPU overhead, while large host-side
pools can incur ~ 8 ms/iteration on a V100 (see §B.3).

3. Experiments from 100 to 1000 classes. On ImageNet-100 our samplers reduce wall-clock
time to 67.5% top-1 by ~ 15% with no accuracy loss. On ImageNet- 1k, linear-eval accuracy
increases with R.g and plateaus once Rog/C = 0.9, consistent with the RankMe view that
diversity gains saturate near this threshold (§B).
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1.1 Notation

Let batch size n > 2 and embedding dimension d. Each embedding z; € S*~! C R has a designated
positive z;+. Write the set of others as S; := {1,...,n} \ {i}, |S;| =n—1,and the negatives
as N, =8\ {i"}, N, |=n—2.LetZ = [21;...;2,] € R" 9 collect rows z,, and define
pairwise similarities s;; = z;' z; € [—1, 1] with softmax temperature T > 0.

Second moments. Define the batch second moment and the per-anchor “others”/*negatives-only”

moments: 3 := %Z?:l zjij, ¥ = ﬁzje& zjij7 IR ﬁzje/\ﬁ* ZJZ]T Under
unit norms, tr(3) = tr(3;) = tr(X;) = 1. Exact relations: 3; = #(ﬁl - %zy;j) , X7 =
P (f] — Lz + 2+ zﬁ)) . Hence the spectral bounds used later:
~ n ~ ~ n ~
)\max Z’L < )\max % ) )\max X < — )\max b))
(£ € " hae(®), Aa(E7) € 5 Aa()

We write 6 = Amax(2), 00 = Amax(2i), o = Amax(2;) € [1/d, 1] (minimum at
isotropy).

1.2 Bounding ||V, £;||> — Spectral Gradient Band

We show that the per-sample InfoNCE gradient is confined to a spectral band whose width is governed
by alignment, finite-sample noise, batch anisotropy, and temperature.

Setup & assumptions. Let N~ =n—2, ¥ := % ZjeN'._ zjz] . and ol = )\max(Z ). With
unit norms and the Lowner order, f)f (nZ —z +zT ) < ﬁi = 0, () < - 0’ where
Y= 1%z and 6 = Apax(2). InfoNCE. ,c,, = —logp;+ with p;; o< e%i4/7, sw = 2] 2,
€ = 1 — P+, and M; = Zk DikZk SO VL = T_l(Mi — z;+). Expectations are over the

mini-batch/augmentations. Assumptions: (A1) unit norms; (A2) negatives i.i.d. within the batch and
independent of z; (no assumption on the positive pair).

Theorem 1.1 (Gradient-Norm Spectral Band). Under (A1)—(A2), for a softmax-smoothness constant

c>0,
3 Bl(1-p, )%\ , SE[( —pit)’]on | 3cE[(1 = pi+)?] oF
2 2 Py
E[V..£:)17) < (Bl + 2zl 4 - + - .M
1— 2
E[||V..Li|?] > %, p=E[(M;, z+)], 2
where o, := IE[ ] (or use the per-anchor form).

Sketch. Decompose d; := M; — z;+ = A; + B; + C; with A, = —¢;2;+, By = (1 — py+ )z, ,
Z = % Zje/\/i‘ zj,and Oy = (1 — py+) Z (qij — 1 ~=)%; where g;; = p;j/(1 — p;+). Then
16:[1 < 3(I[A:l1* + | B:l|* + ICslI?), EllAs||* = E[€7], IEIIBZII2 = E[(1 — p;+)?]/N_ by (A2),
and a first-order Taylor of the negatives-only softmax around uniform logits (App. [A3) gives
E[CV|2 < 772E[(1 — psi+)? }g* and E|C?|2 < ¢74E[(1 — p;i+)?]o2. For the lower band,
| M;]| < 1implies |[M; — z;+||* > (1 — (M;, z+))?; apply Jensen. Full details in App.[A.1]

Variants. (i) Bounded spectrum: if o, @ < Omax, replace o, by opax. Using O',E R < 50 gives
a batch-measurable ceiling. (ii) High probability: if z; are ii.d. sub-Gaussian w1th trZ =1,

matrix concentration (App. yields /\max(f)) < 5 + O(4/ logd) and hence 0’£ 2 < ﬁ)\max(i);
substitute into (T).

Interpretation. Softmax error ¢; and the sampling term 1/N ~ set a baseline that decays with batch
size. Anisotropy enters via o, at orders 7—% and 77%; pushing toward isotropy (e.g., larger Reg,
whitening) tightens the ceiling. Higher alignment p shrinks the floor (1 — p)? /72 without implying
collapse.



1.3 Spectral Batch Selection

The upper band in Thm. depends on the per—anchor negatives-only spectrum afﬁ = )\max(i; )
with £ = 5= Y. c\- 22, » N~ = n — 2. Computing ol

use the batch second moment 33 = LS iz (trace one under ||z;||=1) and its top eigenvalue

for every anchor is costly, so we

& = Amax(2) as a proxy. By Lowner order,
ST = ﬁ(nﬁ] — 2z — zl+z;) <% o o< -5,

i —2
so lowering & tightens a uniform ceiling on all cn(f).

Effective rank. Let Reg := 1/tr(3?) = (3, )\i)_l (eigs A, of 3). Since Y, A, = 1 and
> & )\i < G, we get & > 1/Reg: higher R (more isotropy) = smaller 6 and a tighter band.
Policies. Given a candidate pool P, = {Z (m)}fnzl with ranks R(™): PI (stability) picks
arg max,, R("™ to minimize &; P2 (update-magnitude) picks arg min,, R("™ to allow larger steps
(higher variance risk); P3 (balanced) picks arg min,,, |R(7”) — R, | with R, set by running 10th/90th
percentiles (App.[A.5)). In practice: use P1 early (collapse risk), switch to P3 once Reg stabilizes,
and deploy P2 sparingly to escape flats.

1.4 Greedy Element-—Wise Spectral Builder

We assemble a batch incrementally to decrease the trace of the squared second moment, thereby
increasing Reg = 1/ tr(X?). Assume unit-norm rows.

Objective. For a partial batch B of size b, let
Sp=13 Z 22T, tp = tr(X%), qp(2) =z'Spz =1 Z(z,z’}Q.
z'eB z'eB
Lemma[A.3](App.[A.6) gives the one—step update for a unit-norm candidate z:
_ bty +2bgp(2) +1 _ 2b(gp(2) —tp) + (1 —tp)

2 . 2
tr(zBu{z}) - (b + 1)2 , = A= tr(ZBU{Z})_tB - (b + 1)2

Thus smaller ¢p(z) yields smaller (more negative) At.

Greedy rule (Greedy—m). At each step select
2" = argmingp(2),

where C is a probe set of size m (from a pool or stream). For unit-norm rows this is equivalent to
maximizing the Frobenius diversity Ap(z | B) = |85 — 227||% = tp — 2¢p(2) + 1.

Cost. With cached dot products against B, evaluating ¢z (z) costs O(b) per candidate; a probe of
size m costs O(mb) per step (or O(mbd) without caching). We update ¢z via Lemma[A.3]in O(1)
after each selection. A practical Greedy—m realisation (initial seeds, Gram maintenance, streaming)

is given in Algorithm 2] (App.[A.6).

2 Experiments

We evaluate on standard self-supervised benchmarks with SimCLR |[Chen et al.| (2020a)
and MoCo v2 He et al| (2020a). Unless noted, we follow the original hyperparame-
ters/architectures/augmentations; the only change is our spectrum-aware batch selection (§1.3HT.4).
Datasets: ImageNet-100 (main), CIFAR-10 / Oxford Pets (linear probe). Backbones: ResNet-18
(default), ResNet-50 (variant). Batch/Temp: n=256, 7=0.2 (SimCLR) unless stated. Metrics: final
top-1 and epochs to threshold (ImageNet-100: 67.5%/70%). Significance via paired ¢-tests (95% Cls).
Our main results use SimCLR; MoCo-v2 ablations and queue robustness are in App. Policy
details (P1-P3), the Greedy—m builder, pool sizing, and overheads are in App.[A.5HA.6} spectrum
metrics and evaluation protocols (e.g., RankMe, R.g) are in App.



2.1 Synthetic Gradient-Band Verification

We validate the analytical upper/lower bounds on ||V, £;|? (§1.2] Thm. on controlled syn-
thetic data, using a per-batch plug-in variant of the band (we replace expectations by measured
batch quantities). Draw z; ~ N(0,I;) and set z; := Hﬁ%\l’ A = UAYZ, A =
diag(Aq, . .. )\d) >_;jAj = 1, with U orthogonal, so ||z;|| = 1. The sample second moment
¥ =13 22/ satisfies tr(X) = 1 exactly. In high dimension (d=1024), the trace-one spectrum
emplrlcally concentrates tightly around (\;) (median deviation < 1% in our runs).

To control anchor—positive alignment, set zf = Pgen 2i +4/1 — szen u, , where v is a random unit

vector orthogonal to z;; then ||2;"|| = 1 and (2;, 2;7) = pgen-

Quantities and band. Compute s;; = le z;j, softmax weights p;; over {i*} U N,
M; = 3 ;pijzj, and g; = 7 H(M; — z;+). We vary 7 € {0.05,0.1,0.2,0.3}, A €
{1/d, 0.3, 0.6, 1.0}, Pgen = 0.6 4 0.4 A1, to couple higher anisotropy with tighter positives.
For each setting we generate 10,000 batches (batch size n=256, dimension d=1024).

For the upper band, we use the negatives-only moment for each anchor

;= e Z zjz;-r, N~ =n-2, ol = Amax(Z7),
JENT
and plug a( ) into Thm. |1 .s spectral terms (per-anchor, no expectatlon) For the lower band, we

compute p; := (M;, z;+), L5, pi,and use (1 — p)? /72 as the plug-in lower bound (§.

Results. As shown in Fig. |1} across all 16 configurations, at least 99.9% of measured ||g;||? fall
within the predicted band, indicating that the bounds remain tight and predictive under wide variation
in temperature, alignment, and spectral concentration.
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Figure 1: Synthetic validation of the gradient-norm spectral band. Measured gradients g;
(blue) vs. plug-in lower (black) and upper (red) bounds. Example shown for 7 = 0.1; containment
(> 99.9%) held for all 16 settings.

2.2 Gradient-Norm Scaling with Temperature
With the batch geometry held ﬁxed 11 cosmes including a fixed anchor—posmve cosine), the

gradient-norm spectral band (Thm.|1.1} §1.2) predicts a leading 1/72 dependence for the squared
gradient, up to higher—order correctlons

B9 ] = 2 (Blel + ]E[(le)]> L0 O, )

where the prefactor depends on the softmax weights p through €; = 1 — p;;+. When relative logit
margins remain stable across the sweep, this yields the expected 1/72 scaling.



Setup. We use the synthetic construction of §- with batch size n=256, dimension d=1024,
and a fixed trace—one batch spectrum with ¢ = )\max( ) = 0.3 (here 3 is the batch second

moment). Positives have fixed cosine ¢ = 0.75 via zf =cz+V1—c2u, withu, L z;. We sweep
7 € {0.04, 0.063, 0.10, 0.15, 0.20} (log,,(1/7) € {1.40, 1.20, 1.00, 0.82, 0.70}), generate 5,000
batches per setting, and compute

i = ||Vzi£i||2 =L |M; — 27, Nr = %Z% (batch mean).
i

Result. Figure shows 7, versus 1/7 on log—log axes. A least-squares fit gives slope 2.02 4 0.03
(95% CI; R? = 0.999), matching the 1 /72 prediction in (3). In this sweep, p;;+ varies modestly with
T, so the prefactor is effectively stable. At extremes, deviations are expected: as 7 — 0, p;;+ — 1
(e; — 0) and the band shrinks faster than 1/ 72 as T — 00, p approaches uniform and the 1/ 72 trend
reappears with a different constant.

Temperature sweep: g scaling with 1/t2
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Figure 2: Gradient scaling with temperature. Log—log plot of the batch-mean squared gradient
7, versus 1/7 with spectrum and geometry held fixed. Blue points: mean =+ s.e.m. over 5,000 runs
per 7. Orange line: fitted slope; green dashed: 1/72 prediction. Higher—order O(7~*) and O(779)
terms are negligible over this range.

2.3 Real-Data Band Validation

We test whether the gradient—norm spectral band (Thm. [IT} §T.2) predicts gradient magnitudes during
large-scale contrastive training. We train SIMCLR on ImageNet-1k with a ResNet-50 backbone,
global batch size n=4096, temperature 7=0.1, for 90 epochs. Every 100 steps we record: (i) the

batch-mean squared gradient
n
o= g Ve,
i=1

(i) the batch anisotropy proxy 6; := Amax(3:¢) with 3, = L5 2z (embeddings are (o-
normalized, so trY; = 1) (iii) the mean alignment p; := %ZAMM zj ), and (iv) the mean

squared softmax error €2, := = 3~ (1 — p;;+ )2
Lower/upper bands. From the per-sample lower bound ||g; ¢[|* > (1 — p;.+)?/72 we obtain, by

averaging and JCHSCH,
z : (1— pI 1-p
"}/t > pos +) ( zt) =: [JBt

For the upper band, we use the negatlves—only version of Thm. [I.T]at the batch level by replacing
expectations with instantaneous batch means, setting N ~=n—2, and upper-bounding each per-anchor
spectrum via the deterministic batch proxy

(4) noo.
oy’ < n_2ata = max( Zzz )7




(cf. §1.3). This yields a conservative ceiling U B, that includes the 7=* and 7~% terms from the
theorem; we take the softmax-smoothness constant ¢q, = 0.5 (App.[A.§). For visual clarity, we
clamp UB; <+ max{UB;, LB;} and plot an EMA of 7;; bounds remain unsmoothed and use
instantaneous batch statistics.

Spectral Band (batch mean) — 1=0.1, n=4096
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Figure 3: Real-data spectral band on ImageNet-1k. Batch-mean squared gradient 7; (orange, EMA
with a=0.10; log scale), lower bound LB; = (1 — p;)?/72 (black, dashed), and upper bound U B,
from Thm. (red). The upper bound uses the negatives-only form with N ~=n—2 and the batch-

level spectrum proxy e < 86y, where 6y = Amax(3¢) and 3 = LSzl (sotr 3 =1).
Shaded region: theoretical band [LB;, U By]. Settings: 7 = 0.1, n = 4096. Bounds are unsmoothed,
only the orange curve is EMA-smoothed. We set ¢, = 0.5 in the 77 term (results are qualitatively
insensitive for csy, €[0, 1]). The 1/N~ sampling term assumes negatives-only independence; spectral

terms are deterministic.

Findings. Across checkpoints, all measured batch-mean gradients lie within the theoretical band
[LB¢, UB;]; no point exceeds U B; or falls below LB;. The band tracks ¥; closely, and its width
shrinks as alignment improves and the spectrum becomes more isotropic (decreasing ), making it a
useful online diagnostic for instability or collapse.

Independence caveat (and empirical replacement). Negatives-only independence is used only
for the sampling term 1/N ~. With correlated negatives, this term inflates and U B; becomes more
conservative; spectral contributions via 5, are unaffected. As a robustness check, replacing 1/N~ by
the empirical mean of per-anchor averages yields the same qualitative containment:

1 1 " 12 __ 1
o A e T e
=1 je_/\/':t
2.4 Diversity manipulation via in-batch whitening

We study how pushing the batch spectrum toward isotropy affects gradient variability. Unlike the
mean—squared band in Theorem 1.1} here we control the per-sample variance of the squared gradient,

2 3 1 _
vi = ||V L Var(y;) < N_T4<1—N_) -0 + B;, N~ ==n-2, (V)
A(N~—,7)
where 37 == 1= jeN- zjz] and o, := E[Amax(X;)] (or the per-anchor value), and
1
B, = E[¢]] + FE[E?], € :=1—p;+.

Both A(N—,7) and B; inherit a mild 7—dependence through the softmax weights (via ei)E]

Derivation in App. m Independence is only used to identify the 1/N~ sampling term; see also App.|A.4



Why whitening helps. Let 3, := LS | zz] (trace—one under ||z;][2=1) and 6; := Apax(24).

3

Perfect in-batch whitening pushes ; — 1/d. Using the deterministic batch proxy
- n
Arna,x(zi ) S n—

the leading term A(N~,7) o, in shrinks by roughly a factor d (the factor n/(n—2) = 1 for large
n). Thus whitening primarily suppresses anisotropy-driven fluctuations.

Ot,

Numerical scale (ImageNet-1k). For n=4096 (N ~=4094) and 7=0.1,
_ 3 1
ANTT) = Joos (1 N 4094) ~ 138
In our runs B, ~0.02, so the A o, term dominates. Under (V), full whitening reduces the right-hand
side by at most

A+B, 7.33

AJd+ B, ~ 7.33/256 +0.02
below the naive d=256 multiplier—consistent with (V) being a safe upper bound.

~ 150,

Protocol. Starting at epoch 70 of SIMCLR on ImageNet-1k (n=4096, 7=0.1), we alternate 100
raw and 100 whitened batches:

n
Et = %Zzlz;r, Es = Et+€I, 621075, 21 = 2;1/222', 21 = ZA'Z/”?:’ZH
i=1

At each step we log: (i) 6; = )\max(it), (ii) the batch-mean squared gradient y; = % >; Vi» and (iii)
the 50—step rolling variance Varso (7). Whitening keeps 6; ~ 1/d and reduces Vargo(7) to ~ 0.73x
the raw level (raw/whitened =~ 1.37 x), comfortably within the conservative ceiling in (V). For visual
comparison, we overlay the per-sample variance bound scaled by 1/n; this matches the usual

1 & 1, _
Var <n 2%> =—oy (1 + (n—1) Pv)
i=
template and is conservative when inter-sample correlations p, > 0.

Effect of whitening on gradient-norm variance (synthetic) — Raw/Whitened = 1.37x
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Figure 4: In-batch whitening suppresses gradient noise. Alternating raw and whitened batches
(grey spans) pushes the trace—one spectrum toward isotropy (6, ~ 1/d) and reduces the 50—step rolling
variance of the batch-mean squared gradient to ~ 0.73x the raw level (raw/whitened ~ 1.37 x).
Dashed lines: regime averages.

Assumptions and caveats.

1. Independence. Negatives-only independence is invoked only for the 1/N~ factors in A(N~, 7)
and B,. With correlated negatives these terms inflate; a fully deterministic variant replaces le
by the empirical ||Z; ||? (looser but valid).

2. Softmax dependence on 7. Both A and B, depend on 7 viae; = 1 — p;;+. In our toggles p;;+ is
stable, so the dominant reduction comes from shrinking o,.

3. Re-normalization. Because we re-normalize Z;, whitening is not exactly linear; empirically &
lands near 1/d, which suffices for the d—fold suppression heuristic.




2.5 Spectral Pool-Policy Comparison

We compare the three spectrum-aware batch selection policies from §T.3P1 (stability-first), P2
(update-magnitude), and P3 (balanced window)—against a vanilla SimCLR baseline with uniform
batch sampling. Unless noted, runs use a single V100 GPU, a ResNet-18 encoder with a 2-layer
projection MLP, ImageNet-100 for 200 epochs, LARS (fixed learning rate), global batch size n=512,
temperature 7=0.1, and candidate pool |P;|=5120 (10x the batch). The selector uses only cached
embeddings and dot products (no extra forward passes); its wall-clock cost is included in all timings

(App.[B3).

Metrics. Per epoch we log: (i) training loss £;, summarized by the area under the loss—epoch curve
AULC (lower is better; computed over all 200 epochs); (ii) the batch anisotropy proxy 6 := Apax(2)
with X = % > | ziz; (trace one under unit-norm embeddings); and (iii) a proxy effective rank 1/6
(a lower bound on Reg = 1/ tr(f]Q) since & > 1/ Reg). Trace-based Rog and RankMe are reported
in App. [B]

Across five seeds on a single V100, all methods reach similar final top-1 on ImageNet-100 (69.0% +
0.2; paired t-test vs. vanilla, p>0.05). Differences are in convergence speed and spectral conditioning.
P2 achieves the lowest AULC (fastest) but the highest peak anisotropy. P1 yields the lowest anisotropy
(safest) but is slowest. P3 is within ~5% of P2’s speed while keeping anisotropy between P1 and

vanilla. Vanilla converges more slowly than P1-P3; its peak anisotropy lies between P1 and P3 and
below P2, indicating spectrum-aware sampling offers finer control of the speed—stability trade-off.

Table 1: Speed-stability trade-off on ImageNet-100 (5 seeds). & = Amax(X) is the batch, trace-one
top eigenvalue. “Peak” reports the per-run maximum, then averaged over seeds. No run exceeded the
empirical collapse margin (6=0.99; Fig.3).

Policy AULC | (x10%) 6 (peak) Runs 6 >0.99
P1 (stability) 1.384+0.03 0.87£0.02 0/5
P3 (balanced) 1.30+0.02 0.94+0.03 0/5
P2 (update-mag) 1.2440.04 0.97£0.02 0/5
SimCLR (vanilla) 1.46+0.05 0.92+0.03 0/5

Spectral anisotropy Omax

BT TE5 Vanila
P3 == collapse threshold (o= 0.99)
— P2 x P2crossings

0 25 EY 75 100 125 150 175 200
Epoch

Figure 5: Training dynamics on ImageNet-100 (5 seeds). Top: Training loss (thick = seed mean;
faint = individual seeds). Middle: Batch anisotropy proxy &; red dashed line marks the 0.99 safety
margin. In separate sweeps, exceeding 0.99 reliably preceded collapse (rank/variance spike) within
~3K steps. Bottom: Proxy effective rank 1/&. Spectrum-aware policies accelerate loss reduction: P1
improves conditioning vs. vanilla; P3 balances speed and conditioning; P2 trades conditioning for
speed.



Summary. P2 is fastest but least stable; P1 is safest but slowest; P3 offers the best balance. Vanilla
SimCLR underperforms spectrum-aware variants in convergence speed and offers less control over
anisotropy.

2.6 Greedy vs. Pool-Based Spectral Selection

We test whether the Greedy Element—Wise Builder (Alg.[2) can match pool-based spectral selection
(P3) while reducing compute. P3 operates on a pool of £=5,120 unlabeled augmentations per step
and proposes k;, candidate batches from this pool (e.g., random partitions), scores each candidate
by a spectral criterion (balanced window), and selects the best. In contrast, Greedy incrementally
assembles a batch from a small probe set m € {16, 64, 256}, selecting one element at a time to
maximize spectral diversity (equivalently, minimize tr(X%)).

Setup. ResNet—18 with a 2-layer projection head (128 — 128 — 128), CIFAR-10, InfoNCE (7=0.2),
batch size n=>512, cosine LR decay over 400 epochs. Each step draws k=>5,120 augmentations. We
compare RANDOM, P3 (balanced window R.g € [1.05, 1.15]), and Greedy—m for m € {16, 64, 256}.
Single NVIDIA V100; three seeds per method. The selector uses only cached embeddings and dot
products (no extra forward passes); its wall-clock cost is included in all timings.

Logged quantities. (i) Top-1 validation accuracy. (ii) Mean training loss. (iii) Batch effective rank

~ n2 1
Reg(B) = = » =l§ T
ort(B) HZZTH% tr@%)7 § nzeBzz

(unit-norm rows; identity in App. [B.1). (iv) Batch anisotropy 65 := Amax(X5). We flag collapse if
6 > 0.99; a secondary flag triggers if the mean alignment p = %EKMM z) > 0.98.

Evaluation metrics. (i) Final accuracy at epoch 400. (ii) Time-to-accuracy: wall-clock time to
reach 90% of P3’s final accuracy. (iii) AUAC: area under the accuracy curve over the first 200 epochs
(higher is better). (iv) Collapse rate.

Complexity. Per selected element, Greedy—m evaluates m Rayleigh scores using | B| inner products:
O(m |B| d) naively, or O(m |B|) with cached (squared) dot products; building a batch amortizes to
O(m n?) with caching. P3’s scoring of k;, candidate batches is O(k;, n) with maintained sufficient
statistics (or O(ky n?) if forming Grams explicitly). Empirically this yields up to ~ 25% runtime
savings for Greedy—m at comparable accuracy.

Results. As shown in Figs. Greedy—-64 reaches > 90% of P3’s accuracy faster than Random,
and Greedy-256 closely tracks P3 in AUAC and final accuracy while matching its spectral diversity.
Greedy-16 underperforms, indicating that too-small probe sets compromise batch diversity. No
collapse events were observed.

Accuracy vs. Epoch
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Figure 6: Training loss and spectral anisotropy under Greedy—64 and Pool-P3. Greedy—64
attains P3-like convergence and stability, with slightly lower variance in 0.
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Figure 7: Validation accuracy and effective rank over training. Greedy—256 closely tracks P3 in
accuracy and R.g; Greedy—16 fails to maintain diversity.
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Figure 8: Final accuracy and time-to-accuracy. Greedy—64 and Greedy—256 reach 90% of P3’s
final accuracy faster than both Random and P3, yielding better compute efficiency.

3 Conclusion

We introduced a non-asymptotic spectral framework that tightly bounds the squared InfoNCE
gradient in terms of three interpretable factors: alignment (p), temperature (1), and the batch
spectrum/anisotropy (captured by &, on(f), with R.g as a practical proxy). The theory yields actionable
diagnostics: by monitoring the softmax error ¢;, alignment, temperature, and the batch covariance
spectrum, we can predict—and intervene on—collapse, instability, and gradient variance. Our bounds

are provided in expectation and high-probability forms, with a deterministic per-batch ceiling via
off) <;.%50, and are validated on synthetic settings and large-scale ImageNet.

Beyond analysis, we demonstrate interventions that follow directly from the framework: in-batch
whitening suppresses gradient noise by pushing the spectrum toward isotropy, and spectrum-aware
batch selection improves the stability—convergence trade-off by shaping R.g (including a fast Greedy
element-wise builder). Together, these results bridge theory and practice, offering a mathematically
grounded and computationally efficient toolkit for contrastive learning. Future work includes extend-
ing the spectral band to non-contrastive objectives, LLMs, and sequence models where anisotropy is
a known bottleneck.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the goal of bounding InfoNCE
gradient norms via a spectral framework, which is then carried out in the theoretical analysis
and validated empirically in Sections 2—4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section A.5 discusses the assumption of batch-level isotropy and explicitly
evaluates the degradation of spectral bounds under increasing anisotropy, showing that the
method is robust to mild violations but degrades in extreme cases.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions (A1)—(A3) are clearly stated, and the full derivation of the bounds
appears in Appendix A.1. A proof sketch is also provided in the main paper for clarity.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sections 4.1-4.6 provide sufficient details on experimental setups, such as
datasets, architectures (ResNet-18, ResNet-50), batch sizes, and hyperparameters (e.g.,
temperature values), to allow replication of all key results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: While the experiments use standard datasets (ImageNet, CIFAR-10), the code
was not released at submission time to preserve anonymity. Code will be released upon
acceptance.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental sections describe data splits, architectures, optimizers,
hyperparameters (e.g., learning rates, temperature), and compute budgets, either in the main
text or in Appendix A.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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11.

12.

13.

14.

Justification: All empirical plots include shaded error bands representing +1 standard error
over multiple seeds (typically 3 or 5), and statistical variations are reported in tables.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sections 4.4 and 4.5 specify compute types (V100, A100 GPUs), training time
(e.g., 200 epochs), and approximate runtime overheads (e.g., 18.6

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves theoretical analysis and standard benchmark datasets,
with no ethical risks identified.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While the work is primarily theoretical and does not involve direct deployment
or sensitive data, its findings may influence how contrastive learning is used in large-scale
training pipelines. A discussion of potential downstream impacts—such as efficiency
improvements in resource-intensive models or unintended consequences of aggressive batch
selection—would strengthen the paper’s ethical reflection. We recommend including a brief
broader impact section in future revisions.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk assets are released; the work focuses on contrastive learning
theory and batch selection.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets (ImageNet, CIFAR-10) and methods (SimCLR, MoCo) used are
cited in the references with proper attribution.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new datasets or pretrained models are introduced.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: No human subjects or crowdsourcing were involved.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The study did not involve human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [NA]
Justification: LLMSs were not used in the development or evaluation of the proposed methods.

15



A Appendix / Supplemental Material

A.1 Complete Proof of Theorem 1

Expectation convention. Unless stated otherwise, E[-] is over mini-batch sampling and data aug-
mentations (conditioning on z; when convenient).

Step 1: Loss and weights. Let z; € S?~! C R be the anchor and z;+ its positive. Define the set
of others S; := {1,...,n} \ {i} and the negatives-only set N, := S; \ {i*} withsize N~ :=n — 2.
The InfoNCE loss (Oord et al., 2018)) is

exp(sii+ /T) , 8ij = ZZTZ]. c [_1, 1]7 >0,
D kefityun €xXP(sik/T)

L; = —log

_ . exp(si; /T . .
with softmax weights p;; := P(sis/7) and positive-miss €; := 1 — p;;+.

2kefityun XP(sin/7)

Step 2: Moments, spectrum, and assumptions. Let

IEES %szij, Y= e Z zjij, ol = Amax(27) € [1/d,1].
J=1 -

Under unit norms, tr 3= tr fl; = 1. We assume:

(A1) Unit norm: ||z;||2 = 1 forall j.
(A2) Zero mean & negatives-only independence: E[z] = 0; for j € N, negatives are i.i.d. and
independent of z; (no independence is assumed for the pair (7,:)).

The spectral quantity af) is deterministic per batch/anchor. A useful batch-level proxy is

. 1 . . i o -
E;:F(HE—ZiZ;F_Zi+Z;5_) = niZ 2 = o)< %0’, G = Amax(2). (4)

Step 3: Gradient. Since V_,s;; = z;,

Rl

V. Li=1 Yo bz =z | =2 (My—z0) =
ke{it JUN

50 [V, Li[* = 772 6|

8y M= pinzk,
k

Step 4: Exact decomposition. Let ¢;; := 1_”;;+ for j € N (so ZjGN; ¢i; = D and z; =
1

~= 2 jen- Z- Then

6 = (pi+ — Dzie + (L=pig+) Y 4ijzy = Ai+ Bi + Ci,

JEN,
with
A = —€ 2, B, :=(1—py+) zZ; , Ci = (1 —py+) Z (Qij — ﬁ)z]
JEN;

We use ||z +y + 2[|? < 3(||«]|? + ||y]|? + ||2]|?) (source of the factor 3 below).
Step 5: Bounding the components. (A) Sofimax error. Since ||z;+ || = 1, E||A;]|? = E[¢Z].

. . —_— 1
(B) Sampling noise. By (A2), E[|z; ||* = 5=, hence

1
IE||Bi||2 = N- E[(l - pzﬁ)Q]-
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Remark (independence vs. correlation). If negatives are correlated (mean zero, unit norm), then

_ 1 N~ -1 )
Esz ||2 = N— Tﬂcorrv Hecorr = ]E[ijZk] (J # k),
so the sampling term inflates with positive correlation; the spectral terms below are deterministic in
(4)

Ox .

(C) Adaptive fluctuations. Linearizing the negatives-only softmax around uniform logits on N~

(App.[A.3] Lem.[A.T) gives

1 Sij—S8; s — .1
Gij — 5= = e+ Ry, 5 == ) sy,
JEN

and C; = Ci(l) + Ci(Z) with (App. Cor.

1 7 Csm 7
ElCV|? < S E(1-pi)?ol”],  EICP|P < ERE - pis)? (01)7],
T T

where cg, > 0 is a softmax-smoothness constant (using ||V215e Iz < i implies cgy < %).

Step 6: Upper band (exact and proxy forms). Combining (A)—(C) and ||6;||* < 3(||4:]|* +
[ Bi||2 + ||Ci||?) yields

— iy )? ,
E|V..Li° < T?;(]E[e?} + ]E[(lN_”]> + %E[(l —pi )2 o] s
3 sm i
+ SR B[ - pi)? (0.

Applying the deterministic proxy @) per batch and then taking expectations gives the convenient
ceiling

E|V..Li|° < f’Q(E[&] + w)

1 N7
B0 pe /=2 ©)
{ Seen Bl pue 1) /(0 = D'0?,

Step 7: Lower band. Since || M;]|| < 1,
1M = 2 |* = | MGIJ° +1 = 2(Mi, 250) > (1= (M, 24+))°

By Jensen,

1— 2
E|V..Lil" > (T—f) p=E[(M;, 2+)]. )

Conclusion. The bounds (3)—(7) define a spectral gradient band whose width scales with the

positive-miss (¢;), finite-sample noise (1/N ~), batch anisotropy (via o’,(f) or &), and temperature (7).

Remarks. (i) Independence vs. correlation. Assumption (A2) is used only to obtain E||z; || =
1/N~ for the sampling term; with correlated negatives this term inflates as in the remark in Step 5(B),
while the spectral contributions and the lower band are unaffected (see App. [A.4). (ii) Batch
proxy and concentration. The proxy (@) provides a per-batch computable ceiling for ou(f). High-
probability control of & follows from standard matrix concentration for second moments (App.|A.2).
(iii) Smoothness constants. The constant ¢y, comes from log-sum-exp smoothness (App. [A.3));
empirically, choices in [0, 1] give nearly identical band tracking.
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A.2 Matrix concentration for second moments

Assume (z;)_; are ii.d. mean—zero sub—Gaussian vectors in R? with proxy k; that is,
SUD|y =1 |uTz1p, < k. Let ¥ := E[z12{ ] satisfy tr ¥ = 1, and define the (uncentered) em-

pirical second moment 2 := 2 3™ | 2,27, Since E[z] = 0, ¥ is the covariance.

There exists a universal constant C' > 0 such that, with probability at least 1 — 6,

IS—3l, < Ck? M’ Amax(D) < Amax(E) + C &2 M.
n n

(See, e.g.,|Vershynin, 2018al Thm. 5.39; see also Tropp| [2015|for matrix Bernstein.)

Trace constraints and clamping. If, in addition, each sample is unit-norm (||z; ||z = 1), then
tr2 = 13 11%]13 = 1 exactly, hence Ayax(2) < 1. More generally, when norms are not fixed,
tr X concentrates around 1 at a dimension—free rate:

R log(1/6
[tre—1] < ¢’k log(1/9) with probability at least 1 — 4,
n

and passing to the trace—one normalization 3 := ) /tr 3 ensures )\max(f}) < 1 by construction.

Isotropic and effective-rank specializations. In the isotropic spherical case ¥ = I/d, we have
Amax(X) = 1/d, giving
d + log(1/0)

n

A 1
Amax(X) < min{L a—i—CmQ } w.p. >1-—9,

which is the high—probability clamp used in the corollary. More generally, bounds with effective rank
r(X) = tr(X)/||Z]l2 = 1/ Amax(2) < d yield (up to constants)

IS -l < ﬁ( r(X) log(1/9) log(1/5)>

n n

which can be substantially tighter when the spectrum is low—rank; see, e.g., Koltchinskii & Lounici
(2017alb).

A.3 Negatives-Only Softmax: First-Order Expansion & Remainder Bounds

Lemma A.1 (Negatives-only softmax linearization). Let g;; be the negatives-only softmax weights
over N~ with logits {;; := sij /T and ;. := 5= 3\ Lij. Then, for each anchor i and j € Ny,

G~ 5= = =+ R, Ryl < o (b - 6)%
Equivalently, in vector form, with 11 .= I — ﬁll—'—,
-1 = =106 + Ry, |Rillo < 2T06%.

Proof. First-order Taylor of softmax = V Ise around uniform logits; use 0 < VZlse(u) < %I
(spectral norm bound of the softmax covariance).

Corollary 1 (Bounds for C’i(l) and 02(2)). With C’Z.(l) = 1;{% Zje/\/; (sij — 5, )z; and Oi(?) —
(1 = pii+) 2o jepn— Rijzj, we have

1 % Csm 7
EICVIP < SE(-pir)*el’],  EICPIP < ZRE[-pi)’ (02))7),

where a,(f) = /\max(f};) and ¢y < é. Sketch. For C’Z-(l), apply Cauchy—Schwarz across j

and Var;—(s;5) < 2] By 2z < o\, For Ci(z), combine Lemmawith >l — )t <
ITL€:]|3|[T1: |, and |[T1€:(|3 < & N~ ol
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A.4 Effect of Correlated Negatives on the Sampling Term

This appendix refines Step 5(B) of §A.T] There, the independence assumption is used only to obtain
E|z || = 1/N~ for the sampling term in the upper band (5)—(6). Here we quantify how correlation
among negatives alters that term; the spectral contributions remain deterministic in O'Sf) and are
unchanged.

Let \; be the negatives for anchor i, N~ := [N |, and z; := - D jen— %

Lemma A.2 (Sampling term under pairwise correlation). Assume unit norm ||z;||2 = 1 and mean
zero E[z;] = 0. Define the (common or batch-averaged) pairwise correlation

1
’ucorr = m Z E[ZJTZ]J

JkEN
Jj#k
Then
o 1 N~ -1 1 N~ -1
Elz |I* = N- + N Heorrs E|Bi|l* = E[(1 - p;+)?] (N— + N- Ncorr) .

Relative to the independent case, the sampling term is inflated by a factor 1 + (N~ — 1) corr-

Proof. Expand ||z || = ﬁ Dok ijzk, take expectations, and group diagonal versus off-
diagonal terms. O
Corollary 2 (Operator-norm control). Let Cj, := E[zjz;—] for j # k and set n :=
SUD|jy /=1 |u" Cjru| = ||Cjkllop (common across pairs). Then picorr = m 2k t1(Cik) <

dn, and hence

- 1 N™ -1
Ellz; |I* < F+ N

dn.
Thus a small cross-sample operator norm implies a small inflation of the sampling term.

Synthetic validation. Let g; := V. £;. We generate correlated negatives via a shared-component

model: z; oc au + /1 — a&; with u ~ Unif(S?71), ¢; < N0, 1), then renormalize to unit

norm. This yields ficory &~ « in high dimension. We sweep o € [0,0.1], N~ € {62,254,1022},
2

HZ (1=pi)

between the lower bound T

d = 256, 7 = 0.1 and, for each batch, check coverage of ||g;
and the upper band in Thm. (using per-anchor O'Sf)). Coverage remains within a 5% tolerance
up to ficorr &~ 0.02 for all N~. Beyond this, deviations are driven exclusively by the sampling-term

inflation predicted by Lemmal[A.2} the spectral terms track as before.

MoCo queue note. Queue-based methods (e.g., MoCo v2) can induce weak correlation among
nearby keys due to momentum updates. In practice, correlation decays with queue lag; averaging
over all negative pairs in /\/[ yields a small effective jicorr < 1073, so the global inflation factor
14+ (N~ — 1)[icorr remains close to 1 for N~ <1024. Our coverage checks in match this
prediction.
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A.5 Balanced Spectral Picker (Policy P3)

Algorithm 1 Balanced Spectral Batch Selection (Policy P3)

Require: Candidate pool B;, target rank R, (e.g., running median/percentile; cap by min{n, d});
flag ROWSUNITNORME {TRUE, FALSE}
1: A* < 400, Z* &

2: for all batches Z € B; do > Z € Rnxd
3: if ROWSUNITNORM then > Assume ||z;||2 = 1 as in (A1)
4: G+ 277 > nxn Gram; cost O(n?d)
5: s+ ||G||% > = ||ZT Z||%; no eigendecomp needed
6: R <+ n?/s b=1/tr(X?) for ¥ = 12T Z withtr ¥ =1
7: else

8: H+Z7Z'Z > dxd Gram; cost O(d?n)
9: s+ |H|%, t+ tr(H)

10: R+ t?*/s > =1/tr(32) with & = H/t (trace—one normalization)
11: end if

12: R < clip(R, 1, min{n, d}) > numeric guard; R lies in this interval
13: if |[R — R.| < A* then

14: A*« |R-R,, Z*+ Z

15: end if

16: end for

17: return Z*

Notes on cost. Use the G = ZZ " branch when n < d (typical for vision), and the H = Z T Z
branch when d < n. Both routes avoid eigendecompositions; they require only Frobenius norms and
traces.

Computational tip (choose ZZ T vs. ZT Z). Given Z € R™**?, use the smaller Gram:

* Option A (rows unit-normalized). G := ZZ " € R™*", Rog = n?/||G||% (since |ZZ 7|2 =
|ZT Z||%). Prefer when n < d.

« Option B (general norms). H := Z'Z € R™4 Ry = (tr H)2/|H|2 = 1/tr(32) with
3> = H/tr H. Prefer when d < n.

In both cases, form the Gram with BLAS and then a Frobenius norm. Memory is O(min{n?, d*}).

Sanity checks. (i) All rows identical = G = 117, ||G||2 = n? so Reg = 1. (ii) Rows
near—orthogonal (and n < d) = G ~ I,,, ||G||% = n, s0 Reg ~ n.
A.6 Second-Moment Update and Trace Reduction

We analyze how adding a single sample changes the batch second moment’s trace—square, which
controls the effective rank Ry = 1/tr(X2). Here ¥ denotes the batch second moment (not
negatives-only).

Lemma A.3 (One-step trace update). Let B = {z1,...,2p} C RY be unit vectors with ¥ =

b
1 T :
z g ziz; . For a unit vector z, define
i=1

b
qp(z) == 2'Tpz = %Z(%ZQQ, tp = tr(Xh).

<.
[

Then

b tp +2bqp(z) +1
2 _ B qB 2 _
tr(EBU{Z}) = (b+ 1)2 ) tr(EBU{Z}) 7tB - (b+ 1)2




If ||2|| # 1, replace the terminal 1 by ||z||*. Moreover; a first-order expansion in 1/b gives
2
tr(EQBU{Z}) =tp+ 3 [qB(z) - tB] + O(b72). ®)

Range. Since tr X p = 1 and | X g2 < 1,
tp = tr(X}) € [1/rank(Xp), 1],
so decreasing t g increases Rog = 1/tp.

Greedy-builder rationale. For a fixed partial batch B (size b), the one—step change after adding z
is

At = tY(Z‘QBu{z}) —tp = 2 (qB(Z)(—biBl));i- 0-to) ) ap(2) = 3 Z (2,2)%.

z'eB

Hence tr(X% () < tp whenever

To minimize At at a step, select
z* = argmin ¢p(z) = argmin } E (2,22
z z B
z'e

Intuitively, g5 (2) is the Rayleigh quotient of z w.r.t. ¥ g; low—gp choices spread mass away from
current principal directions, reducing tp.

Relation to Frobenius diversity. Define Ap(z | B) := |5 — 22" |2 =tr(X%) — 22 Xpz +
||zz T ||%. For unit 2, |2z |2 = 1, so

argmax Ap(z | B) = argmingp(z).
z z

(If ||z|| # 1, replace the trailing 1 by ||z||*.)

Algorithm 2 Greedy Spectral Batch Builder (balanced window)

Require: Pool D, target size n, probe size m, window [Rp,in, Rmax] With 1 < Ry < Rpax <
min{n, d}

1: Initialize B with two seeds (cf. ; compute tp = tr(¥%), R=1/tp
2: while |B| < nand R ¢ [Ruyin, Rmax| do
3: Sample m candidates C C D \ B
4: forall z € C do > Cost per candidate O(bd), or O(b) with cached dot products
S ale) e Yen(e )
6: end for
7: 2* « argmin,ec q(2)
8: B <+ BU{z*}; update t g via Lemmal[A.3} set R < clip(1/tp, 1, min{n, d})
9: end while
10: return B

Complexity & implementation. Evaluating gp(z) needs b inner products (O(bd)). With m
candidates, a step costs O(mbd). Maintaining the Gram of selected points Kp = [{2y, Zy)]u,veB
allows gp(2) in O(b) per candidate and updates ¢ via a running || K g||%. (no eigendecomposition).
Precomputing squared inner products avoids an extra square in the loop.

Centroid proxy (heuristic). The score A(z | B) :=1— (z,zp) with Zp = § >, 5 2/ satisfies

() < ase)

z'eB

so it correlates with ¢p but can select different points; we therefore prefer gg when feasible.
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MoCo compatibility. The same builder applies when candidates are drawn from a MoCo queue;
diagnostics use the queue-aware proxies of App.|A.11|(replace & by min{1, ¢ + ek }), while the
greedy objective ¢ and update in Lemma[A.3]are unchanged.

A.7 Variance band for per-sample squared gradients

We bound Var(v;) withy; := ||V, L;||%. Recall V., £; = 7718;, 6; := M;—2;+, and the decomposi-
tiond; = A;+B;+C; with A; = —€;z;+, B; = (1—py+) z;,Ci = (1— plﬁ)ZJeN,. (4ij— )7

(§1.2). Then
v =120l < F (1A + 1Bal” + 1C:)1%).
Using Var(X) < E[X?] and applying the same bounds termwise:

(A) Softmax error. || A;]|? = €2, so Var(||A;|?) < E[¢}] < E[€Z].
(B) Sampling term. Under negatlves only independence (A2), z; = = >_ jen— % has Bz |? =
1/N~ and Var(||z; ||?) = 5= (1 — 5= ) (unit-norm, mean-zero), so

Var(|[Bi[]?) < [(1 = pas )] Var(l5 1) < (1- 5=) ¥=EL(L = pis).

(C) Spectral fluctuation. Linearizing the negatives-only softmax (App. yields C; = Ci(l) + C’i@)
with
EICVIP < HE((1-pi)? ol BICT|® < 2 E[(1 - pis)” (01)?)

Thus Var(||C;||?) < E||C;||* is controlled by o and (aii))2 terms; grouping these into B, keeps
the leading sampling—spectral term explicit.

Combining (A)—~(C) and the 7~2 prefactor yields
3 1
Var(yi) < ——— (1 — —_) 0y + B,

N—T N
A(N—,7)
with 0, := E[Amax(X; )] (or per-anchor) and B, := E[e?] + <=E + o(r~ —pi+)2o.]) +

O(t7*E[(1 — pi;+)?0?]). A deterministic proxy follows from )\max( ;)< _20 (Cf. .

A.8 Exact upper-band expression for real-data validation

For a batch {z;}1_, at temperature 7, define
n

2 —
€ = 1—p;+, %Ze” N™ :=n-2.
i=1
Let the negatives—only second moment for anchor i be ; := = 3.\ 22 with ol =

)\max(ii)~

Per-anchor (exact) upper band. Averaging the negatives—only form of Thm. [I.T|across anchors
yields

. 3 (=, € 3 1 IR ;
yi= 2 Y IVl < T2<e2+§_> =RPBLS EoY @) o
i=1 i=1

—6 remainder.

where ¢ > 0 is a softmax smoothness constant controlling the 7
Batch—proxy upper band (used in Fig. @) If U,E ") are not computed per—anchor, use the batch
second moment 3 := Ly Ziz] witho = = Amax () and the conservative bound
(4 n :
oy < ¢ for all 7,
n—2

_ 3 (= € 3¢2 n . 3ce? n 2A2
7 < Tz<€2+zv—>+74n_2” 5 (n_z) i (1o
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Implementation note.  All quantities in (T0) come from the training batch: p;;+ from the InfoNCE

softmax, €2 by averaging (1 — p;;+)?, and 6 as the top eigenvalue of 3 (trace one under unit-norm
embeddings). We clip p;;+ € [0, 1]. In plots we set ¢=0.5; results are stable for ¢ € [0, 1].

A.9 Empirical deviation from isotropy (diagnostic)

Our theoretical results in ~ rely only on a bounded—spectrum condition )\max(f]) < Omax (assump-
tion (A3)); they do not require isotropy. Nevertheless, it is informative to track how real mini-batches
approach isotropy during training.

We train SIMCLR (ResNet-50) on ImageNet. After every optimization step we collect the {o-
normalized projection-head outputs z; € R?%% for a mini-batch (n=1024) and form the batch second
moment

v = L1z72z, Zy =215 .52

Here Y, is the per-step analogue of ¥ used in the main text. Because ||z;||o = 1 for all 4, tr(%;) = 1
exactly. To quantify deviation from the isotropic matrix é] , we compute the relative Frobenius
deviation

S = M

5 = 100
13 1le

= 100Vd |2 - 41 .
since || 11| p = d=1/2.

Figure 9] plots ¢, for the first 500 updates, averaged over ten independent seeds (solid line; shaded
band = =+ 1 s.e.m.). Deviation starts just below 8% and decays rapidly, stabilizing around 3.7%. The
dashed horizontal line (8%) is a visual guide only, not a theoretical threshold.

Batches move quickly foward isotropy, but a non-negligible anisotropy (3—4%) persists even after early
convergence. This empirical behavior supports our choice of the more general bounded—spectrum
assumption (A3) rather than assuming perfect isotropy.

Batch-level deviation from isotropy during early training

—— Empirical 6; (mean of 10 runs)
+1 std. error
—=- 8% threshold

Deviation &¢ (%)

0 100 200 300 400 500
Training step

Figure 9: Deviation from isotropy during early training. Batch-level Frobenius deviation d; over
the first 500 steps (SimCLR on ImageNet; n=1024, d=256). Solid curve: mean over 10 seeds;
shaded band: +1 s.e.m. The dashed line at 8% is a visual reference only.

A.10 Empirical sensitivity of the spectral band under anisotropy

The gradient—norm band in depends on the negatives-only top eigenvalue o, := )\max(f]i),

where
3 = N Z zjij, N~ =n-2
J¢{iit}
For batch-level reporting we also use the full-batch proxy 6 := Apax(X) with ¥ := % > ziz]
(trace-one under unit-norm embeddings); they satisfy

n

o <

n—2
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To sweep spectral skew, we synthesize unit-norm embeddings by sampling x; ~ N(0, I;) and setting
2 = ”2722” with A = UAY2, A = diag(\1, ..., Aa), >, A = 1, and U orthogonal. This yields
tr(32) = 1 exactly while letting the trace-one spectrum vary with (Ag).

We fix n=256, d=1024, and construct positives with target cosine ¢ € (0,1) via 2 =z +

V1 —c?u,; (Gram-Schmidt for u ). For each batch we compute softmax weightslpij, M; =
>_;Pijzj, the alignment p; := (M;, z;+), and the negatives-only spectrum oV = Amax (2).
Across spectral-spread settings (controlled by (\x)) we generate 5,000 batches and, for every anchor,
check whether ||g;||? falls within the theoretical band [(172")2 , UB(J@)] from Theorem

T

Spectral Band Coverage vs. Batch Anisotropy

Gradient norm violations (%)

2 10

) ¢
Anisotropy level & (%)

Figure 10: Spectral-band coverage vs. batch anisotropy. Out-of-band rate for gradient norms as a
function of Frobenius deviation §(%) = 100vV/d | = — 1 I|| . Each marker aggregates 5,000 synthetic

batches (n= 256, d= 1024, 7=0.1); bounds use per-anchor p; and O',Ei) (or the proxy o, < nllz o
when used). Dashed line: 5% tolerance. Coverage remains within tolerance up to d ~ 6%, with mild

upper-bound overshoots beyond that level.

Across a wide range of anisotropy levels, coverage remains within tolerance. The few violations
are mild upper overshoots at high o, consistent with conservative constants on higher-order terms
(notably the 7 =% piece). These results support replacing isotropy assumptions with a top-eigenvalue
control that better matches modern contrastive regimes.

A.11 MoCo v2: Queue-based evaluation and robustness

We assess the generality of the spectral band and spectrum-aware selection in a queue-based con-
trastive setup using MoCo v2 (He et al., |2020a; (Chen et al., [2020b)). Unlike SimCLR, MoCo samples
negatives from a memory queue of momentum-encoded keys, which changes the negatives distribution
and calls for queue-aware proxies of the band parameters.

Setup. Dataset: ImageNet-100. Backbones: ResNet-18 (default), ResNet-50 (variant). Batch:
n=256. Temperature: 7=0.2. EMA momentum: m.,,=0.999. Projection: 128—128. Queue
size: K € {16,384, 32,768, 65,536}. Selection pool: k=2n=>512. Policies: RANDOM, POOL-P3
(balanced target R, € {0.3,0.5,0.7}, default 0.5), and GREEDY-64. We report top-1 accuracy,
epochs to 70% top-1, and paired ¢-tests over seeds (3 seeds to match our SimCLR setting; 10 seeds
for ClIs).

Queue-aware band proxies. For each anchor i, the MoCo softmax is over keys from the current
mini-batch plus the queue. We estimate a negatives-only second moment from a random subset (); of
K queue keys:

~ - . ~
Yo = %Z zjzj 60 = Amax(Zq)-
JEQ;
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Let X7, = E[zzT] denote the second moment of queue keys. By matrix concentration (App. ,
with probability > 1 — 4,

S X _ 2 [rertlog(1/6) _ E(EG)
HZQ_ZQHZ < ek, ek = Ok K.  Teff = TEEl2 <d,

o = Xnax(57) € Amax(T) < min{1, 6 + ek}

hence

Alignment p; = (M;, z;+) is computed with the MoCo softmax over queue-+batch keys. These
substitutions instantiate the spectral band of Thm. [I.T] in the queue setting. Correlation note:
localized queue correlations inflate only the sampling term as in App.[A.4} the spectral terms remain
deterministic given 6.

Main result (ImageNet-100, ResNet-18, K'=65,536). Table[2] summarises convergence and accu-
racy. With a small on-GPU screening pool (k=512), POOL-P3 accelerates time-to-70% by +9.2%
(3 seeds) without harming final accuracy; GREEDY-64 yields +5.9%. Across 10 seeds, POOL-P3
achieves a statistically significant +9.4% =+ 1.3% speedup (95% CI,; paired ¢-test, p<0.01), with
equal or slightly higher top-1. Wall-clock profiling on an A100 shows < 1% selection overhead
because screening uses a small pool and runs on-GPUj; thus runtime gains closely track the epoch
reduction (contrast with §B.3] where large host-side pools incurred nontrivial latency).

Table 2: MoCo v2 on ImageNet-100 (ResNet-18, queue K=65,536, n=256, k=512, 7=0.2).
Means =+ s.e.m. over seeds. Speedup is the relative reduction in epochs to 70% top-1.

Method Top-1(%) Epochsto70% Speedup (%)
3 seeds (SimCLR-matched)

Random 74.24+0.3 146.3 £ 2.5 —
Greedy—64 (Ours) 74.0+04 137.7+ 1.8 +5.9
Pool-P3 (Ours) 74.5+0.2 132.8 +2.1 +9.2

10 seeds (Cls and significance)

Random 74.19+0.23 146.3 + 2.7 —

Pool-P3 (Ours) 74.52 £0.19 1326 £1.9 +9.4+1.3

Robustness. Across queue sizes K € {16k, 32k, 65k}, the ResNet-50 backbone, and rank targets
R, € {0.3,0.5,0.7}, POOL-P3 consistently reduces epochs to target accuracy with no loss in final
performance. Frozen-feature linear evaluation (SGD, 90 epochs, LR 0.03) shows no regression:
relative to RANDOM, POOL-P3 improves top-1 by +0.5% on CIFAR-10 and +0.3% on Oxford Pets.

A.12 Comparison to stronger baselines

To ensure our spectrum-aware selection improves over established curricula, we compare against
three strong alternatives under the same MoCo v2 protocol as App.[A.11|(ImageNet-100, ResNet-18,
batch n=256, queue K=65,536, temperature 7=0.2). The selection pool size is k=512 and our
greedy variant uses m=~64.

* Hard Negative Mixing (HNM) Kalantidis et al.|(2020): for each anchor we mix its positive with
the hardest queue negatives (cosine via the key encoder); the mix ratio is fixed across runs.

* Distance-Weighted Sampling (DWS) Wu et al. (2017): negatives are drawn from the queue with
probabilities inversely proportional to a norm-adjusted distance, re-normalised each step.

* SupCon Khosla et al.|(2020): a supervised contrastive upper bound that uses labels; included as
an oracle reference.

All methods share the same backbone and augmentations. SupCon is fully supervised; the others
are unsupervised. As shown in Table |3} POOL—P3 is both faster and slightly more accurate than
HNM and DWS. SupCon attains the best absolute accuracy—as expected, given supervision—but
PooL-P3 closes a substantial portion of the gap without labels.
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Table 3: Strong baselines on ImageNet-100 (MoCo v2, ResNet-18, n=256, K=65,536, 7=0.2,
k=512). Means =+ s.e.m. over 5 seeds. Bold indicates best among unsupervised methods. SupCon
uses labels (oracle).

Method Supervised? Top-1Acc. (%) Epochs to 70%
Random Sampling No 74.2+£0.3 146.3 £ 2.5
Hard Negative Mixing No 74.4£0.3 139.6 £2.1
Distance-Weighted No 74.3£0.3 140.2 +2.0
Greedy—64 (Ours) No 74.0+ 0.4 137.7+ 1.8
PooL-P3 (Ours) No 74.5 1+ 0.2 132.8 £ 2.1
SupCon (Oracle) Yes 75.94+0.2 125.1+£1.9

Across five seeds, POOL—P3 outperforms both hard-negative curricula in convergence speed and
final accuracy (paired ¢-test vs. Random; p < 0.05), while remaining fully unsupervised. SupCon
provides an upper bound with label supervision.

A.13 Influence of augmentation strength

To verify that our conclusions are not sensitive to the augmentation recipe, we ablate the strength of
the two most impactful transforms—color jitter and Gaussian blur—by +50% around the default
SimCLR settings. We use the same setup as §B.3| (ImageNet-100, ResNet-18, batch n=>512, single
V100), and report wall-clock time to reach 67.5% top-1. Selection overhead is included. (MoCo v2
shows the same trend; see App.[A.T1})

Table 4: Wall-clock time (hours) to reach 67.5% top-1 on ImageNet-100 (mean=+s.e.m., 5 seeds).
Augmentation strength scales the color-jitter and blur coefficients by —50%, 0% (default), or +50%:;
all other transforms unchanged. We report A = W (positive = faster). Greedy—64

consistently saves 14-15% wall-clock vs. Random (paired ¢-test; p < 0.05).

Augmentation Random (h) Greedy—64 (h) A (gain)
Weak (—50%) 7.05+0.10 6.05 £ 0.08 +14%
Default (baseline)  7.20 £ 0.11 6.10 = 0.09 +15%
Strong (+50%) 7.35+£0.12 6.30 £0.10 +14%

Across all three settings, Greedy—64 cuts time-to-accuracy by roughly one-seventh, confirming that
our gains are not an artifact of a particular augmentation choice. The speed-up is slightly larger under
stronger augmentations, suggesting spectral batch selection is especially helpful when aggressive
views amplify gradient heterogeneity.

A.14 Positive alignment and vanishing gradients

In §1.2) we noted that very high anchor—positive alignment can shrink contrastive gradients and slow
optimisation. This is a vanishing—gradient effect, not representational collapse; contrastive methods
with negatives (e.g., SimCLR) are empirically robust in this regard (Oord et al., 2018} (Chen et al.,
2020a)) (see also|Grill et al., 20205 |Chen & Hel [2021|for collapse—avoidance in non—negative settings).
Prior work has discussed a similar tension between strong positive alignment and optimisation
dynamics (Wang & Isolal 2020; Robinson et al., 2021; Huang et al., [2022)).

From the per-sample squared lower bound,
(1—pi)?
||VZi£i||2 2 2 pi = <Mivzz+>v

we obtain the /5 version

1—pi
IV..Lif| > —2 |
T

(11)

which makes the role of anchor—positive alignment explicit (higher—order corrections are negligible
in our regime).
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Measurement. We train SimCLR on ImageNet-100 (batch size n=>512, temperature 7=0.2, 5

seeds). During the first 200 optimisation steps we record per-sample gradient norms ||V, £;]|,
normalise them by their step-1 value, and bin by the anchor—positive cosine p; = cos(z;, zf ), used
here as a proxy for p; = (M;, ;). Results are in Fig.

i

Gradient norm vs. positive alignment
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Figure 11: Normalised gradient scale vs. alignment. Mean ||V, £;||/||V ., L;||sep 1 as a function of
the anchor—positive cosine j. Gradients remain well scaled for 5 < 0.3 (early training) and decrease
approximately linearly in 1 — p; beyond p 2 0.8 they are effectively vanishing, consistent with the
trend implied by (IT). Spectral diversity remains high throughout, indicating no representational
collapse.

Take-away. High positive alignment does not induce collapse in SimCLR, but it does reduce
gradient magnitudes roughly in proportion to 1 — p, hindering optimisation. Inequality (TT)) quantifies
the effect; Fig. [TT] validates the predicted trend empirically.

B ImageNet-1k: Effective Rank vs. Accuracy

We pre—train SimCLR with a ResNet—50 backbone (global batch size 4096, temperature 7 = 0.1,
200 epochs) and log the batch second moment every 5 epochs. Unless stated otherwise, values in
Table 5| are final-epoch means + s.e.m. over 5 seeds. The effective rank R.q is computed with the

RankMe estimator (Garrido et al.| 2023)) on the embedding second moment 3= % > i % ZZT after

trace—one normalisation (tr ) = 1 under unit-norm embeddings), i.e., from the eigenvalues of 3.
After pre—training, the encoder is frozen and a linear classifier is trained for 90 epochs (SGD, learning
rate 0.03).

Table 5: Effective rank of embeddings and downstream linear evaluation accuracy on ImageNet—1k.
Higher Reg/C (with C=1000) correlates with improved accuracy; Pool-P3 yields the strongest
gains. Reported numbers are final-epoch means =+ s.e.m. over 5 seeds.

Policy Reg R.g/C  Linear top-1 (%)
Random 790 £ 6 0.79 69.8 + 0.3
Pool-P1 925 +5 0.93 71.1+0.3
Pool-P3 960 + 4 0.96 71.44+0.3
Greedy—64 930=£5 0.93 71.0 £ 0.3

Table 5|and Figure[T2]reveal a clear monotonic link between spectral diversity and accuracy. Random
batches achieve only Reg/C'=0.79 and reach 69.8% linear top-1, while Pool-based selection raises
the rank to 0.93-0.96 and improves accuracy by 1.2—-1.6 points. Greedy—64 matches most of
Pool-P1’s gains at lower cost, confirming it as a practical alternative. Accuracy plateaus once
Rest/C 2 0.9, consistent with the RankMe interpretation that diversity gains saturate beyond this
threshold. Pool-P3 delivers the highest effective rank (0.96 C') and the strongest linear accuracy
(71.4%), but Greedy—64 achieves nearly identical performance once the batch rank is past the 0.9
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Accuracy vs. Effective Rank on ImageNet-1k
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Figure 12: Accuracy vs. effective rank on ImageNet-1k. Each marker shows mean= s.e.m. over 5
seeds at the final epoch. Grey dashed line marks the RankMe plateau (R.g/C = 0.9 with C'=1000).

plateau. In short, Reg is a strong predictor of downstream accuracy: lifting R.g up to the plateau
yields significant improvements, while pushing beyond brings only marginal returns.

B.1 Equivalence of Two Effective—Rank Estimators

Lemma B.1. Let Z € R"*? collect a batch {zi}izy as rows. Define the (uncentred) second moment
Si=1 7 T Z and its trace—one normalisation 3. := /tr 3. Then

- 74 1 (27 7))
tr(X?) = ”7“172, hence — = (tx( = 2)
(27 2)) w2 | 1ZZT%
In particular, if | z;||2 = 1 for all i (so tr(Z T Z) = n), then
. ZZ7|2 ~ n? 1
tr(X?) = 7” ' — R := = —.
( ) n2 eff ||ZZT||%:‘ tI‘(EQ)

Proof. By definition,
tr(EQ) =tr((Z272)%)  w((Z272)?)

tr(X?) = 5 = 5
(tr2)® (Lw(Z272) (tr(Z272))
Since tr((Z7Z)?) = tr((ZZ7)?) = || ZZ " ||%. the stated identity follows. If additionally || z;||> = 1
for all 4, then tr(Z " Z) = Y, ||2i||3 = n, which yields the unit-norm corollary. O

B.2 Bounding the second-order remainder

Lemma B.2. Let the mini-batch satisfy (Al)~(A3) and use the negatives-only set N, := S; \ {i*}
of size N~ =n—2. With the notation of Step 7, the softmax Taylor remainder satisfies

5o B < (sij — 5;)° T
R’Lj . |R2J‘ ~ W, Z S”, slj = Z Zj,
JEN
and ) _
Cz() = (lfpu*) Z Rz] Zj
JEN
Assume a bounded fourth moment for s;;: E [(sm — 5;)4} < Cyo? with o, := /\max(ii) and a
universal constant Cy. Then
(2))12 Cy 21 2
ENICTI1] = = Bl —piur)] o (12)
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Proof. By Cauchy—Schwarz across j and ||z;]| = 1, |

2 - .
= ¥ a5 < N™ Y5, a2 witha == (1 -
pii+) Rij. Hence

E[CP)? < N™EY =N~ E[(1-pi)® 3 R2].
J J

Using |Rij| < (si; — 5, )%/ (2N~ 2),
- 1
2 ——\4
;Rij < 4(N-)2r4 ;(Sij -5 )"

Take expectations and apply the fourth-moment bound: E . (s;; — 5, )4 < N~C, 02. Combining
gives

_ 1 _ C4E 1—pii+20'3
E|C?|? < N 'E[(l—pm)Z]'W'N Ciol = — %

Absorb the 1/4 into C} to obtain (I2). O

Together with the leading term E |C\" |2 <E[(1 — py;+ )?]o /72, Lemma justiﬁes the O(E[(1 —
pii+)?]o2/(N~ 7*)) remainder used in Step 7.

B.3 Computational Efficiency and Wall-Clock Analysis

Spectrum-aware batch selection shortens training in epochs, but its practical value depends on wall-
clock time. We therefore compare four strategies on IMAGENET-100 (ResNet-18, global batch size
n=>b12, five seeds, single V100 GPU): Pool-P3, which draws each batch from a candidate pool of
k=5,120 images using the balanced policy (P3); and Greedy—64/Greedy—256, which construct the
batch element-wise with Greedy—m (§1.4)) using probe sizes m € {64, 256}E] Pool-P3 evaluates k
candidates on the host CPU while the GPU executes the current step. Although the extra O(kd) dot
products account for <3% of arithmetic FLOPs, we measure =~ 8 ms of host scheduling / kernel-
launch overhead per iteration on a V100, which is the primary source of the wall-clock penalty
reported below.

Table 6: Wall—clock time to reach 67.5% top-1 (~90% of Pool-P3’s plateau). Arjne is relative to
Random; positive = faster, negative = slower.

Method Epochs Time (hours) Arp,. Collapse
Random 1374+1.2 7.204+0.11 — 0/5
Pool-P3 (k = 5,120) 110+0.8 8.004+0.10 —11% 0/5
Greedy-64 1144+0.9  6.10£0.09 +15% 0/5
Greedy—256 1124+0.7  6.8040.10 +6% 0/5

Pool-P3 reaches the target in the fewest epochs, but is ~11% slower than Random in wall-clock time
due to CPU-side overhead. Greedy—64 delivers the best overall efficiency: it needs 23 fewer epochs
than Random yet reaches the target 15% faster in wall-clock time, and 24 % faster than Pool-P3.
Greedy-256 lies in between, trimming epochs slightly further than Greedy—64 while yielding a
smaller time gain (+6% vs. Random). No run collapsed in any setting.

Practical recipe. A brief warm—up with Pool-P1/P3 during the first ~15 epochs—when the
isotropy gap 4 is largest—is followed by a switch to Greedy—64 once § < 5%. Table [7|]summarises
the trade-offs

3The selector uses only cached embeddings and dot products (no extra forward passes). All wall—clock times
reported here include selector overhead.
*Icons require \usepackage{pifont}.
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Diminishing Returns from Increasing Pool Size k
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Figure 13: Diminishing returns with pool size k. Increasing k from 512 to 2,048 captures ~80% of
the total epoch reduction obtained when raising k to 5,120, while roughly halving CPU screening
cost; further increasing to 5,120 yields only marginal benefit.

Policy Stage Wall-Clock Overhead Stability
Pool-P1 (max Rer) Warm-up (<20 ep.) * %k Med-Low 2. 0.8,
Pool-P3 (balanced) Mid-late Kk High %k
Greedy—64 Post warm-up ok k Low 2.8, $¢
Random Ablations PAQX A Low PAR%S ¢

Table 7: Qualitative trade-offs (% better). Greedy—64 offers the best speed—stability balance after
warm-up.

Many-class setting. On IMAGENET-1K (C'=1000 classes) we observe the same pattern: Pool-P3

maximises Reg = 1/ tr(32) and linear-eval accuracy (71.4%), but host-side overhead widens the
time gap. Accuracy plateaus once Reg/C 2 0.9 (Fig.[12); see App. B|for details.

Pool-based selection delivers the strongest spectral conditioning per epoch, but large & can negate
those gains in wall—clock time. Greedy—64 captures most of the convergence benefit at negligible
runtime cost, making it a practical default once early-collapse risk is past.

C Related Work

Gradient Behavior in Contrastive Learning. Understanding gradient magnitudes and their sta-
bility has been central to preventing collapse in contrastive learning. Prior work has noted the
vanishing-gradient problem when negatives are not sufficiently diverse (Chen et al., | 2020a}; |Wang
& Isolal 2020). Theoretical studies have explored gradient norms from a statistical viewpoint (Wen
et al.,[2021)), though most focus on loss curvature or optimization dynamics rather than bounding
gradients explicitly. Our work provides the first tight non-asymptotic bounds on per-sample InfoNCE
gradient norms, linking them to spectral properties of batch embeddings.

Spectral Views and Isotropy. Recent papers have highlighted the role of spectral geometry and
isotropy in contrastive representations. [Ermolov et al.| (2021)) and [Hua et al.|(2021) advocate batch
whitening to improve feature isotropy, while Cai et al.|(2021) show that local embedding distributions
approach isotropy during training. Zimmermann & Geiger| (2021) and Jing et al.| (2022) explore the
alignment—uniformity trade-off, yet do not provide spectral control mechanisms. Our spectral-band
framework formalizes these intuitions and introduces a concrete tool (effective rank) for regulating
batch anisotropy.
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Batch Composition and Negative Sampling. Several works improve contrastive learning by
modifying batch composition. Hard-negative mining (Robinson et al., 2021} |Kalantidis et al., [2020)
selects the most informative negatives, but can introduce instability or collapse. Debiased contrastive
loss (Chuang et al., 2020) reweights negatives to avoid sampling bias. Distance-weighted sampling
(Wu et al.;,|2017) and curriculum-based methods (Robinson et al., [2020) modulate learning dynamics
but lack a spectral perspective. Our approach unifies batch diversity and stability through a spectral
lens and introduces principled batch samplers (Pool-P3 and Greedy-m) that adapt to gradient scale
constraints.

Spectral Diversity and Effective Rank. The use of effective rank as a proxy for diversity has
been studied in domains like matrix estimation (Roy & Vetterli, |2007), self-supervised learning (Jing
et al., [2022)), and Gaussian mixture recovery (Vershynin, [2018b). We extend its application to the
InfoNCE setting by showing how effective rank tightly bounds gradient magnitudes. Moreover, our
batch selection policies leverage this relationship to optimize learning efficiency and avoid collapse
without requiring supervision or loss reweighting.

Theory-Driven Batch Selection. Prior efforts to construct batches via theoretical surrogates
include batch norm-aware sampling (Zhao et al., 2020), importance sampling in metric learning
(Harwood et al.,[2017), and entropy-based selection (Du et al.,[2021). Our work distinguishes itself
by providing explicit upper and lower bounds on gradients, derived from spectral assumptions, and
by constructing lightweight, label-free policies to maintain training in a safe, stable zone.
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