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Abstract

Artificial intelligence (AI) has played an increasingly important role in chemical
research. However, most models currently used in chemistry are specialist models
that require training and tuning for specific tasks. A more generic and efficient
solution would be an AI model that could address many tasks and support free-form
dialogue in the broad field of chemistry. In its utmost form, such a generalist AI
chemist could be referred to as Chemical General Intelligence. Large language
models (LLMs) have recently logged tremendous success in the general domain
of natural language processing, showing emerging task generalization and free-
form dialogue capabilities. However, domain knowledge of chemistry is largely
missing when training general-domain LLMs. The lack of such knowledge greatly
hinders the performance of generalist LLMs in the field of chemistry. To this end,
we develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens
from chemical literature and textbooks, and fine-tuned using 2.7M instructions.
As a result, it can understand and reason with chemical knowledge in free-form
dialogue. Quantitative evaluations show that ChemDFM significantly surpasses
most representative open-source LLMs. It outperforms GPT-4 on a great portion
of chemical tasks, despite the substantial size difference. We have open-sourced
the inference codes, evaluation datasets, and model weights of ChemDFM on
Huggingface3.

1 Introduction

With the rapid development of artificial intelligence (AI), utilizing AI to assist chemical research
has garnered increasing attention [Wang et al., 2023b, Back et al., 2024]. Various AI models have
been developed for tasks such as property prediction [Zhou et al., 2022, Wu et al., 2023b, Chen et al.,
2023], molecular captioning and generation [Xu et al., 2021, Edwards et al., 2022, Perron et al., 2022,
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Du et al., 2024, Lu et al., 2024], and reaction predictions [Schwaller et al., 2020, Wang et al., 2021,
Han et al., 2024]. Since BERT [Devlin et al., 2019] and GPT [Radford et al.], efforts have been made
to fine-tune pre-trained models for specific chemical tasks [Zhou et al., 2022, Edwards et al., 2022,
Liu et al., 2023, Luo et al., 2023, Zhang et al., 2024]. However, these models are typically trained on a
meticulously curated dataset to solve a designated task in a particular scenario, leading to a one-to-one
relationship between models and tasks. Once out of that specific scenario, they are often not useful,
even for highly related tasks. A more attractive and practical AI system should be capable of handling
a wide range of chemical tasks under real-world scenarios and conducting free-form human-AI
collaborations. Such an AI system necessitates a comprehensive array of chemical competencies,
coupled with the ability to comprehend and reason in both chemical and natural languages. This
would enable it to work as a research assistant or even collaborator alongside human researchers.
This could be an essential step towards eventually achieving Chemical Artificial General Intelligence.

In pursuit of a highly integrated AI system for a broad range of chemical challenges, recent advance-
ments in large language models (LLMs) [Du et al., 2022, Touvron et al., 2023a, Xu et al., 2023]
brought great new hopes. Numerous studies have demonstrated the remarkable competencies of
LLMs in natural language understanding and task generalization [Wei et al., 2021, Xu et al., 2023],
deductive reasoning [Wei et al., 2022, Kojima et al., 2022], and tool utilization [Schick et al., 2023,
Qin et al., 2024]. These made LLMs shine in traditional natural language processing tasks and accom-
plish problems that were previously unimaginable and unsolvable, such as handling tasks in unknown
scenarios or conducting free-form dialogues with humans. These inherent strengths underscore the
viability of employing LLMs as AI-driven research collaborators in the field of chemistry.

Different from general domains, tasks in chemical domains necessitate models to possess additional
chemical comprehension capabilities for understanding and reasoning over chemical-specialized
language and knowledge. This hinders general domain LLMs from excelling in chemical tasks as
they often lack in-depth chemical knowledge [Kristiadi et al., 2024]. For example, molecules are
a vital component of the chemical world. Although molecules can be conveyed through natural-
language-like notations such as SMILES (Simplified Molecular Input Line Entry System), IUPAC
names, and molecular formulas, their meanings and intrinsic structures are entirely different from
those in natural language. CO represents carbon monoxide in chemistry, not Colorado, while Co
represents Cobalt, not a company, and (CO) as part of a SMILES typically represents the carbonyl
group. The lack of understanding of these molecular notations severely limits the applicability and
performance of general domain LLMs in solving chemistry problems. Therefore, we believe that
equipping general-domain LLMs with rich chemical knowledge of task-specific chemical models, as
illustrated in Figure 1, is vital for developing LLMs useful in the field of chemistry.

Figure 1: Scheme to obtain an LLM for chemistry,
through using chemical domain knowledge to train
a general-domain LLM.

In this work, we propose ChemDFM, a
Dialogue Foundation Model for Chemistry.
ChemDFM takes advantage of the pre-trained
LLaMa-13B model [Touvron et al., 2023a],
an open-source general-domain LLM, and is
further specialized in chemistry through two
phases: 1) Domain Pre-training, where the
model harvests the chemical knowledge from
research articles and textbooks, and 2) Instruc-
tion Tuning, where the model familiarizes itself
with chemical language and patterns, especially
molecule notations. Each phase uses an exten-
sive and diverse collection of chemical data: 1)
nearly 34B tokens from over 3.8M chemical pa-
pers and 1.4K textbooks in chemistry used in Phase I, and 2) over 2.7M instructions crafted from
various chemical databases in Phase II. Apart from chemical data, we also incorporated a substantial
amount of general-domain data in both phases to make sure that ChemDFM maintains comprehension
and reasoning capabilities of natural language while acquiring new chemical knowledge. As a result,
ChemDFM can simultaneously handle a wide range of chemical tasks and convey free-form dialogues
using the language of chemists, enabling human-AI collaboration in chemical research.

A series of experiments have been conducted to evaluate the prowess of ChemDFM, including
molecule recognition, molecule design, molecular property prediction, and reaction analysis. The
results show that ChemDFM achieves advanced performances, surpassing typical open-source LLMs.
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Figure 2: a) Two-step training procedure to obtain ChemDFM. The icons are generated by the SDXL
model provided by Stability AI5. b) Various types of tasks ChemDFM is capable of.

It even outperforms GPT-4 on most tasks, despite the notable difference in model size. We further
compared the performance between ChemDFM and the baseline LLMs in free-form unseen scenarios
analogues to real-world scenarios. The test examples were constructed based on the latest chemical
papers to avoid possible data leakage. The results show that ChemDFM can generate answers that are
more accurate and relevant to the specific questions. These findings suggest that ChemDFM, capable
of handling a broad range of chemical tasks and reasoning in both chemical and natural languages,
can indeed serve as an AI assistant in chemical research.

2 ChemDFM

As outlined in Figure 2, ChemDFM is trained based on LLaMa, a general domain LLM. Domain
knowledge of chemistry is instilled in ChemDFM in two steps: Domain Pre-training and Instruction
Tuning. Through this two-stage specialization process, ChemDFM “learned” chemistry and gained
abilities such as molecule recognition and reaction prediction. The training process is presented
below and evaluations of ChemDFM’s capability are elaborated in the next section.

2.1 Domain Pre-training

Data used to train general-domain LLMs must contain knowledge covering a wide range of topics.
Such broadness is often accompanied by sacrifices of deepness in each field. While models trained on
such data have successfully gained strong natural language understanding and reasoning capabilities,
they often fall short when it comes to in-depth specialized knowledge. The lack of domain knowledge
is partially responsible for the well-known “hallucination” problem [Huang et al., 2023]. To alleviate
this problem, we collected a corpus of data rich in chemical knowledge for domain pre-training,
primarily from the two most authoritative sources for chemical knowledge: textbooks and published
papers. Textbooks represent the widely accepted knowledge and basic principles of chemistry while
published papers offer more details and more up-to-date chemical knowledge, some of which have not
been incorporated into textbooks. Specifically, we selected 1.4K chemistry books from LibreTexts6

and Gold Books7 and collected 3.9M open-access papers in chemistry-related topics before January
2022. After further pre-processing and deduplication, we obtained 49M tokens from the textbooks and
34B tokens from the published research articles. To maintain the LLM’s general-domain knowledge
and capabilities, we also included highly selective data in the general field, including Wikipedia,
Arxiv, Books, StackExchange, GitHub code, WuDao Corpora [Yuan et al., 2021], etc. More details
of domain pre-training are available in Appendix Section A.1.

5https://stability.ai/
6https://libretexts.org/
7https://goldbook.iupac.org/
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2.2 Instruction Tuning

The data for the chemical instruction tuning dataset comprises two main categories: chemical knowl-
edge presented in natural language and specialized molecular notations. A dataset containing over 1M
question-answering pairs specialized in chemistry was constructed for instruction turning to enhance
the model’s capability to process chemistry-related natural language. These data were generated
from two sources. The first one is established question-answering datasets, including ARC [Clark
et al., 2018], PIQA [Bisk et al., 2020], SciQ [Welbl et al., 2017], and HendrycksTest [Hendrycks
et al., 2021]. The other source of questions is middle school exams. We collected open-source exam
questions from the Internet and constructed question-answer pairs (with key points or problem-solving
strategies when available) for the instruction tuning of ChemDFM.

While natural languages such as English or German are generally descriptive and highly versatile, they
are often not the best media to convey chemical knowledge. For example, it is often much easier and
more comprehensible to draw the molecular structure of a complicated organic molecule than to de-
scribe it using natural language. Generations of chemists have developed many specialized notations,
such as molecular formulas and Simplified Molecular Input Line Entry System (SMILES) [Weininger,
1988] notation. This represents a key challenge for LLMs to understand chemistry. A key goal of the
instruction tuning stage was to tackle this challenge by familiarizing ChemDFM with the specialized
notations. In training ChemDFM, we chose SMILES, one of the most popular notations of molecules,
as the main representation for molecules. It uses a sequence of letters to present a molecule, retaining
rich structural information such as molecular configuration and chirality in most cases. In addition,
its text-like data structure makes it highly compatible with LLMs.

Table 1: Itemized list of our instruction tuning dataset. MD:
Molecule Description, TBMD: Text-Based Molecule Design,
MPP: Molecular Property Prediction, RC: Reaction Comple-
tion, MNA: Molecular Notation Alignment.

Data Type # samples Data Source

QAs from Datasets 131K ARC, PIQA, SciQ
HendrycksTest

QAs from Exam 915K Internet
MD 576K PubChem

TBMD 576K PubChem
MPP 102K MoleculeNet
RC 300K USPTO

MNA 120K PubChem

To help the model comprehend
SMILES, three kinds of molecular
data were used: 1. Molecule descrip-
tion (MD) and text-based molecule
design (TBMD). Our dataset in-
cludes all the SMILES-description
pairs from PubChem8, a web-scale
chemical database that contains more
than 100M compounds. The model
was instructed to generate descrip-
tions of given molecules or reversely,
generate molecule(s) that match a de-
scription. We duplicated samples
with descriptions longer than two sen-
tences to further enhance the data
quality. 2. Molecular property pre-
diction (MPP). The model was in-
structed to predict the properties of a
given molecule. This data was con-
structed based on the widely used
molecular property prediction bench-
mark, MoleculeNet [Wu et al., 2018].
3. Reaction completion (RC). The
model was also instructed to complete
chemical reactions in which one or
more reactants/products were masked
randomly. The reactions were sam-
pled from USPTO [Lowe, 2012], the
largest open-source chemical reaction
database.

c1ccc2c(c1)CCC2.O=C(Cl)CCCl.[Al+3].[Cl-].[Cl-].[Cl-].Cl>___>O=C1CCc2cc3c(cc21)CCC3

[Round 0]

Human:  Chemical reaction equations are typically presented as follows: 
"reactant1.reactant2.reactant3...>reagent1.reagent2.reagent3...>product1.product2.product3...". 
Each substance, be it a reactant, reagent, or product, is represented using the SMILES notation. 
You will be given an incomplete chemical reaction equation with missing parts showcased as 
"___". These voids may stand for one or several substances. Based on the available information 
in the equation, please predict what the missing substances could be. In your response, list only 
the missing elements without introducing any additional information.

Assistant:  ClCCl

dialogue format instruction sample input expected return

Prompts Returns

Figure 3: Representative question used in instruction tuning.
In addition to SMILES, we indirectly
include two other widely used notations of molecules, IUPAC names and molecular formulas. We
instructed the model to translate between the three notations, e.g. predicting SMILES of a molecule

8https://pubchem.ncbi.nlm.nih.gov/
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given its IUPAC name and vice versa, allowing it to understand these alternatives. This kind of data
is called Molecular Notation Alignment (MNA) in this work.

Table 1 lists the itemized entries of our instruction tuning dataset. All the data samples take the form
of (prompt, returns) tuples, where the prompt is composed of the dialogue format, instructions,
and example inputs, and the returns are the expected outputs. Such an example is presented in
Figure 3. To diversify the natural language instructions, we used GPT-4 to rephrase instructions for
all tasks. The number of different instructions for each task ranges from 20 to 200.

To maintain the advanced natural language comprehension abilities, we also included a substantial
amount of general domain data for the instruction-tuning of ChemDFM. The ratio of data from the
chemical domain to the general domain is roughly 1:2. The instruction tuning of ChemDFM is a
full-parameter tuning process with more details in Appendix Section A.2.

3 Evaluations

To assess ChemDFM’s capability in chemistry, we compared its performance against several generalist
LLM models: GPT-4 [OpenAI, 2023], LLaMa-2 [Touvron et al., 2023b] and Galactica [Taylor et al.,
2022], as they represent very large generalist LLMs, medium-sized generalist LLMs and LLMs tuned
for science, respectively. We used ChemLLMBench [Guo et al., 2023] for quantitative evaluation of
ChemDFM’s ability in chemistry and then carried out qualitative analyses of ChemDFM’s free-form
collaboration capacity, focusing on its superior chemistry-related conversation processing power.

3.1 Quantitative Evaluation

ChemLLMBench is made of a series of chemical tasks covering a wide range of chemistry-related
topics. The standard form of evaluation was conducted on 100 instances randomly sampled from the
respective test sets of the tasks. To ensure a fair comparison, we used the same 100 samples when
comparing different LLMs, unless otherwise specified. Some non-LLM task-specific models were
used for comparisons when available. Detailed explanations of the tasks and the prompt format for
ChemDFM can be found in Appendix Section B. Specifically, the quantitative evaluation tasks can be
categorized into the following four groups.

Table 2: Accuracy scores in name prediction tasks. Baseline
results are from Guo et al. [2023]. S2I: SMILES to IUPAC
names translation, I2S: IUPAC names to SMILES translation,
S2MF: SMILES to molecule formulas translation, I2MF:
IUPAC names to molecule formulas translation.

Model S2I↑ I2S↑ S2MF↑ I2MF↑
Task-specific specialist models

STOUT 55.0 70.0 - -

LLM-based generalist models
GPT-4 0 1.2 8.6 8.4
LLaMa2-13B-chat 0 0 1.0 0
Galactica-30B 0 0 0 0
ChemDFM-13B 4.0 11.0 73.0 51.0

1) Molecule recognition. There are
two series of tasks in ChemLLM-
Bench that directly assess the capa-
bility to recognize molecules: name
prediction and molecule captioning.
In the name prediction tasks, a model
is asked to translate between dif-
ferent notations for molecules, in-
cluding SMILES, IUPAC name, and
molecular formula. Specifically, it
consists of four tasks: SMILES
to IUPAC name translation (S2I),
IUPAC name to SMILES transla-
tion (I2S), SMILES to Molecular For-
mula translation (S2MF), and IUPAC
name to Molecular Formula transla-
tion (I2MF). For IUPAC names and SMILES, we normalized the predictions before calculating the
accuracy scores, while for molecular formulas, only exact matches are considered correct answers.
The molecule captioning tasks further require LLMs to not only recognize the molecule present
by a given SMILES notation but also generate a brief description of it using natural language. In
these tasks, traditional captioning metrics like BLUE, ROUGE, and METEOR are used to assess the
model’s performance on a test set of ChEBI-20 [Edwards et al., 2021].

Benchmark performance of different models on these two molecule recognition tasks is reported
in Table 2 and Table 3, respectively. Table 2 shows that most LLMs, including GPT-4, can hardly
complete name prediction tasks, indicating a limited understanding of molecules and ChemDFM
outperforms open-source LLMs by a significant margin across all these tasks. This outstanding

5



Table 3: Benchmark results of different models in molecule captioning tasks. †: results from Guo
et al. [2023]. *: reproduced results.

Model BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
Task-specific specialist models

Text+Chem T5 [Christofidellis et al., 2023] 0.625 0.542 0.682 0.543 0.622 0.648
MolXPT [Liu et al., 2023] 0.594 0.505 0.660 0.511 0.597 0.626
InstructMol [Cao et al., 2023a] 0.475 0.371 0.566 0.394 0.502 0.509
Mol-Instruction [Fang et al., 2023] 0.249 0.171 0.331 0.203 0.289 0.271

LLM-based generalist models
GPT-4 (10-shot)† 0.464 0.365 0.545 0.362 0.459 0.519
GPT-4 (0-shot)† 0.062 0.013 0.192 0.040 0.125 0.209
LLaMa-2-13B-chat (10-shot)† 0.197 0.140 0.331 0.193 0.265 0.372
Galactica-30B (10-shot)* 0.114 0.055 0.334 0.189 0.330 0.187
Galactica-30B (0-shot)† 0.008 0.002 0.019 0.004 0.015 0.043
ChemDFM-13B (0-shot) 0.321 0.265 0.490 0.374 0.483 0.402

Table 4: Benchmark results of different models in text-based molecule design tasks. †: results from
Guo et al. [2023]. *: 10-shot results

Model Exact↑ BLEU↑ Dis↓ Validity↑ MACCS↑ RDK↑ Morgan↑
Task-specific specialist models

MolXPT [Liu et al., 2023] 21.5 - - 98.3 0.859 0.757 0.667
Text+Chem T5 [Christofidellis et al., 2023] 32.2 0.853 16.87 94.3 0.901 0.816 0.757
Mol-Instruction [Fang et al., 2023] 0.2 0.345 41.4 100 0.412 0.231 0.147

LLM-based generalist models
GPT-4†* 17.4 0.816 21.2 88.8 0.867 0.738 0.672
LLaMa-2-13B-chat†* 2.0 0.626 34.0 78.2 0.679 0.568 0.454
Galactica-30B† 0.0 0.004 2738 95.6 0.233 0.109 0.053
ChemDFM-13B 45.0 0.874 9.9 98.0 0.922 0.871 0.798

performance of ChemDFM proves its robust molecule recognition capabilities and validates the
effectiveness of our specialization process.

In molecule captioning tasks (as shown in Table 3), ChemDFM also performs far superior to
open-source LLMs. The results denote that ChemDFM not only recognizes molecules but also
infers their underlying chemical essence and nature. It is worth noting the drastic drop in GPT-
4’s performance from the ten-shot setting to the zero-shot setting, which indicates that GPT-4
thrives mostly on its extraordinary natural language capabilities to learn from given exemplars
while its inherent molecule recognition capability is relatively fragile. Comparatively, ChemDFM
achieves comparable performance without the help of exemplars, demonstrating its intrinsic molecule
recognition capability.

2) Text-based molecule design. To evaluate LLM’s efficiency in making qualified molecule
designs, ChemLLMBench reverses the molecule captioning tasks and asks the models to generate
molecules based on their descriptions. Specifically, in the text-based molecule design task, models
are asked to predict the SMILES of the molecule that fits the given description. Two sets of
metrics are utilized to measure the performance of these tasks. The first set measures the text-based
similarity of the predicted SMILES compared to the golden SMILES, which includes exact match,
BLUE, and Levenshtein distance. The second set of metrics measures the chemical similarity of the
predicted molecules to the golden molecules, including the validity of the predicted SMILES and the
FTS (fingerprint Tanimoto Similarity) [Tanimoto, 1958] in terms of MACCS [und David Metzener,
1988], RDK9, Morgan [Morgan, 1965].

As shown in Table 4, ChemDFM outperforms not only the generalist LLMs but also the traditional
task-specific specialist models across almost all metrics, which is both surprising and promising.
Considering that task-specific specialist models were evaluated on the entire test set, whereas
the performance of ChemDFM was initially assessed on only 100 samples, we further evaluated
ChemDFM on the complete test set to align with the task-specific models for a fair comparison. The
results, shown in Table 7 of the Appendix, further validate the advantage of ChemDFM. The results
from Table 4 and 7 unveil two key superiorities of ChemDFM over other models. On the one hand,
ChemDFM has effectively established a relationship between SMILES notations and the chemical

9https://www.rdkit.org/
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Table 5: AUC-ROC scores [Bradley, 1997] of different models in molecular property prediction tasks.
Avg: average. †: reproduced results (The results of GPT-4 were obtained in January 2024).

Model BACE↑ BBBP↑ ClinTox↑ HIV↑ Tox21↑ Avg↑
Task-specific specialist models

Uni-Mol [Zhou et al., 2022] 85.7 72.9 91.9 80.8 79.6 82.2
MolXPT [Liu et al., 2023] 88.4 80.0 95.3 78.1 77.1 83.8
InstructMol [Cao et al., 2023a] 85.9 64.0 - 74.0 - -

LLM-based generalist models
GPT-4† 62.5 61.5 51.6 65.9 55.2 59.3
LLaMa-2-13B-chat† 26.0 60.3 45.7 29.0 51.7 42.5
Galactica-30B [Taylor et al., 2022] 72.7 59.6 82.2 75.9 68.5 71.8
ChemDFM-13B 78.4 66.7 89.9 73.6 79.8 77.7

Table 6: Accuracy scores of different models in reaction prediction and retrosynthesis tasks. B-H:
Buchwald-Hartwig dataset [Ahneman et al., 2018]. Suzuki: Suzuki-Miyaura dataset [Reizman et al.,
2016]. YP: Yield Prediction, RP: Reactant Prediction, RS: Reagent Selection, Retro: Retrosynthesis.
†: results from Guo et al. [2023]. Please refer to Table 9∼12 in the Appendix for complete results.

Model YP↑ RP↑ Retro↑ RS↑
task-specific specialist models

UAGNN [Kwon et al., 2022] 96.1 - - -
Chemformer [Irwin et al., 2022] - 93.8 53.6 -

LLM-based generalist models
GPT-4† 78.2 23.0 11.4 45.3
LLaMa-2-13B-chat† 0.7 3.2 0.0 16.0
Galactica (30B)† 0.4 3.6 1.6 8.0
ChemDFM-13B 81.0 49.0 12.0 23.7

nature of compounds in our model, which other LLMs lack. On the other hand, ChemDFM benefits
from the solid natural language comprehension capabilities inherited from LLaMa, which task-
specific specialist models lack. Altogether, ChemDFM constructs a more comprehensive knowledge
system in chemistry, which helps it surpass both generalist and task-specific specialist models.

3) Molecular property prediction. The molecular property prediction tasks in ChemLLMBench
consist of five tasks from the MoleculeNet [Wu et al., 2018], including BACE, BBBP, HIV, ClinTox,
and Tox21. Among them, BACE and BBBP each contain a single balanced binary classification
task. HIV contains a single unbalanced binary classification task. ClinTox and Tox21 comprise
two and twenty-one unbalanced binary classification tasks, respectively. To address the severe label
imbalance in these tasks, the Area Under the Curve of the Receiver Operating Characteristic (AUC-
ROC) metric [Bradley, 1997] was introduced. To better assess the molecular property prediction, we
adopted a scaffold-vertical manner for data splitting. Specifically, the molecules from the DeepChem
library [Ramsundar et al., 2019] were first grouped based on their Bemis-Murcko scaffold [Bemis
and Murcko, 1996] representations. The datasets were then split into training and test sets according
to these groups. This method ensures that no molecule sharing the same scaffold would appear in
both the training set and the test set. While avoiding information leaking due to mere similarity of
molecules, this method also significantly increases the difficulty of the tasks, making the assessment
more challenging and meaningful. The results listed in Table 5 show that ChemDFM consistently
outperforms other LLMs in all but one molecular property prediction task.

4) Reaction prediction and retrosynthesis. ChemLLMBench includes four types of tasks tar-
geted at evaluating models’ capability of reaction understanding: Yield Prediction (YP), Reaction
Prediction (RP), Reagent Selection (RS), and Retrosynthesis (Retro). The yield prediction tasks ask
models to predict whether the given reaction is a high-yield reaction and are constructed based on
two High-Throughput experimentation (HTE) datasets: the Buchwald-Hartwig dataset [Ahneman
et al., 2018] and the Suzuki-Miyaura dataset [Reizman et al., 2016]. The reaction prediction tasks
ask models to predict the product of the given reaction. The USPTO-MIT dataset [Jin et al., 2017]
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Q1: Please briefly introduce the effect of norbornene in Catellani-type reactions.
Q2: What is the use of NaH in the reaction between 

O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 and CC(P(OCC)(OCC)=O)C(OCC)=O?
[Yin et al., 2023] 

Q3: I want to enhance the acidity of catalyst 
C=C[C@@H]1C[N@@]2CC[C@@H]1C[C@H]2[C@@H](NC(=S)NCc1cc(C(F)(F)F)cc(C(F)(F)

F)c1)c1ccnc2ccc(OC)cc12. How should I modify the catalyst?
[Dargo et al., 2023]
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Norbornene plays a crucial role in Catellani-type reactions as a mediator or a template. It helps to 
control the ortho-alkylation and palladation steps, enabling the palladium to move from one ortho 
position to another. This movement allows for the selective functionalization of arenes at the ortho 
and ipso positions. Without norbornene, the reaction would not proceed in the desired manner, 
leading to different products. Therefore, norbornene is essential for the success of Catellani-type 
reactions.

NaH, or Sodium Hydride, is a strong base that is often used in organic chemistry as a 
deprotonating agent. In the reaction between O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 
and CC(P(OCC)(OCC)=O)C(OCC)=O, NaH would likely be used to deprotonate one of the 
reactants, making it more nucleophilic and therefore more reactive. This would allow it to react 
more readily with the other reactant, facilitating the overall reaction.

To enhance the acidity of a catalyst, you can introduce more electronegative atoms or functional 
groups that can donate protons. In your case, you can consider the following modifications:
1. Introduce more sulfonic acid groups (-SO3H):[…]
2. Add more halogen atoms:[…]
3. Introduce carboxylic acid groups (-COOH):[…]
4. Introduce phosphoric acid groups (-PO3H2):[…]
Remember, the modification should not affect the catalyst's ability to catalyze the reaction. It's 
always a good idea to consult with a chemist or a chemical engineer before making any 
modifications to a catalyst.
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30
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The norbornene is used to generate a 7-membered palladacycle.  The norbornene is not a substrate in 
the reaction, but rather a reagent that is used to generate the catalyst.  The norbornene is not 
consumed in the reaction, and is not a product.

The use of $\ce{NaH}$ is to deprotonate the carboxylic acid. The resulting carboxylate is a 
better leaving group than the carboxylic acid.

The catalyst you have is a [Brønsted acid](https://en.wikipedia.org/wiki/Br%C3%B8nsted_acid).  
The acidity of the catalyst is determined by the strength of the conjugate base.  The stronger the 
conjugate base, the stronger the acid.  The conjugate base of your catalyst is the carbanion on the 
nitrogen.  The stronger the carbanion, the stronger the acid.  The carbanion is stabilized by the 
adjacent double bond.  The more electron-withdrawing the double bond, the stronger the acid.  The 
double bond is conjugated with the nitrogen lone pair.  The more electron-withdrawing the nitrogen 
lone pair, the stronger the acid.  The nitrogen lone pair is stabilized by the adjacent double bond.
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[…]
In general, norbornene acts as a "cage" around the reacting molecules, facilitating their interaction 
and promoting the formation of the desired products. The cyclic structure of norbornene also allows 
for the formation of complexes with the reacting molecules, which can enhance the reaction rate and 
selectivity.
The specific effects of norbornene in Catellani-type reactions can vary depending on the reaction 
conditions and the nature of the reacting molecules. However, some common effects include:
1. Enhanced reaction rate: […]
2. Improved selectivity: […]
3. Increased yield: […]
4. Control over product distribution: […]
[…]

NaH is used as a reducing agent in the reaction between 
O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 and CC(P(OCC)(OCC)=O)C(OCC)=O. The 
reaction is a conjugate addition of the alkene O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 to 
the alkynyl CC(P(OCC)(OCC)=O)C(OCC)=O.
The NaH acts as a reducing agent by donating a pair of electrons to the carbon-carbon triple bond 
of the alkynyl group, reducing it to a carbon-carbon double bond. This process is known as 
hydrogenation. The resulting double bond is then attacked by the alkene 
O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1, leading to the formation of a new carbon-carbon 
single bond.
The use of NaH as a reducing agent in this reaction is advantageous because it allows for the 
formation of a stable, saturated product, which is important for many organic synthesis reactions. 
Additionally, NaH is a mild reducing agent, which means that it can reduce the alkynyl group 
without causing unwanted side reactions or over-reduction of the alkene. […]

The catalyst you provided is a complex molecule with multiple functional groups, and enhancing its 
acidity may require careful modification. Here are some strategies that may help:
1. Introduction of acidic functional groups:[…]
2. Substitution with acidic groups:[…]
3. Increase the number of acidic sites:[…]
4. Use of acidic additives:[…]
5. Modification of the support:[…]
It is important to note that modifying the catalyst to enhance its acidity can also affect its other 
properties, such as its stability and selectivity. Therefore, it is important to carefully optimize the 
modification of the catalyst to achieve the desired balance of properties. Additionally, the optimal 
modification of the catalyst may depend on the specific reaction conditions and the substrate being 
used, so it may be necessary to perform experiments under different conditions to find the best 
modification strategy.
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Norbornene is a key component in Catellani-type reactions, which are a class of palladium-catalyzed 
cross-coupling reactions that allow for the efficient formation of carbon-carbon bonds. In these 
reactions, norbornene serves as a transient directing group, which helps to control the 
regioselectivity of the reaction and enables the formation of challenging cross-coupled products 
that are difficult to access using traditional cross-coupling methods. Specifically, norbornene 
undergoes oxidative addition to a palladium(0) catalyst to form a palladium(II) complex, which can 
then react with an organic halide and a boronic acid or ester to form the cross-coupled product. The 
norbornene group is then removed from the product under acidic conditions, regenerating the 
palladium(0) catalyst and completing the catalytic cycle.

The use of NaH in the reaction between O=C1[C@@]2(C)C1 and 
CC(P(OCC)(OCC)=O)C(OCC)=O is to deprotonate the acidic alpha-hydrogen of the keto group 
in CC(P(OCC)(OCC)=O)C(OCC)=O, resulting in the formation of an enolate anion. This anion can 
then react with the enol group of O=C1[C@@]2(C)C1 to form a new C-C bond and produce the 
product.

To enhance the acidity of the catalyst, you could consider introducing electron-withdrawing 
groups on the aromatic ring of the 
[C@@H](NC(=S)NCc1cc(C(F)(F)F)cc(C(F)(F)F)c1)c1ccnc2ccc(OC)cc12 moiety. This could draw 
electron density away from the amino group and increase its acidity. Some examples of such groups 
could be fluoro, chloro, or bromo substituents. However, it is important to note that the introduction 
of these groups could also affect the binding affinity of the catalyst to its target, so careful 
optimization would be required.

Figure 4: Examples of paper reading. Answers from ChemDFM are compared with GPT and the
base model LLaMa. Correct and relevant information in the replies is marked in green, correct but
irrelevant information in yellow, and wrong information in red. Key points of the answer are marked
in bold. Full details and more examples are elaborated in Appendix Section C.1.

was used to construct these tasks. The retrosynthesis tasks focus on predicting the reactants of the
given reactions and are constructed based on the USPTO-50K dataset [Schneider et al., 2016]. The
reagent selection tasks focus on selecting the appropriate reactants, solvents, or ligands that lead to a
higher yield of the reaction from a list of candidates based on the dataset proposed by Perera et al.
[2018]. Accuracy is utilized to measure the performance.

As depicted in Table 6, ChemDFM’s performance significantly exceeds open-source LLMs in all the
reaction-related tasks. When compared to GPT-4, ChemDFM achieved superior performances on 3
out of 4 tasks, but lagged behind on reagent selection tasks. A closer inspection reveals that these
reagent selection tasks are multiple-choice questions where models are asked to directly copy the
correct SMILES from the candidates listed in the questions. Compared with generative questions
such as reaction prediction and retrosynthesis, multiple-choice questions alleviate the models’ burden
of generating molecules from scratch. It seems that GPT-4 can indeed better follow the instructions
and directly copy corresponding SMILES, while ChemDFM often tries to generate new answers.

3.2 LLM-Based Research Assistant

Round 1

To achieve selective oxidation of the carbonyl group in the five-membered ring within the molecule 
CC1(C)C2C(CC(C3C4=CC(=O)C(C)(C)C4CC3C(C)C)(CC3)C2CC2=O)C1, you can use an oxidizing agent such as DDQ (2,3-
dichloro-5,6-dicyano-1,4-benzoquinone) in the presence of a catalyst such as cerium ammonium nitrate (CAN). This will 
selectively oxidize the carbonyl group in the five-membered ring to the corresponding enone, while leaving the carbonyl group in 
the six-membered ring unaffected.

I aim to protect the carbonyl group located on the six-membered ring while selectively ONLY oxidizing the carbonyl group 
in the five-membered ring within the molecule CC1(C)C2C(CC(C(C3C)C4=O)(CC4)C2CC3=O)(C)CC1. How can I achieve this?

Round 2

To prevent oxidation of the carbonyl group on the six-membered ring, you can try using a less powerful oxidizing agent or adjust 
the reaction conditions to be less oxidizing. For example, you could try using a weaker oxidizing agent such as tert-butyl 
hydroperoxide (TBHP) or a catalytic amount of oxidant such as molecular oxygen with a catalyst such as copper. Additionally, you 
could try adjusting the reaction temperature or solvent to be less oxidizing. It may also be helpful to perform the reaction in the 
presence of a protecting group on the carbonyl group in the six-membered ring to prevent its oxidation.

The selective oxidation has not been achieved, and the carbonyl group on the six-member ring has been oxidized. What should I 
do to prevent oxidation of the carbonyl group on the six-member ring?

Round 3

To protect the carbonyl group on the six-membered ring, you can use a protecting group such as a ketal or a methyl group. A 
typical example of a protecting group for a carbonyl group is a ketal, which is a cyclic acetal formed by reaction of a carbonyl 
compound with a diol. For example, you could protect the carbonyl group in the six-membered ring of 
CC1(C)C2C(CC(C3C4=CC(=O)C(C)(C)C4CC3C(C)C)(CC3)C2CC2=O)C1 by forming a ketal with a diol such as ethylene 
glycol. This would prevent the carbonyl group from being oxidized while still allowing the oxidation of the carbonyl group in the 
five-membered ring to proceed.

Using a protecting group sounds like a good idea. What reactant should I use to protect the carbonyl group on the six-membered 
ring to prevent its oxidation? Please give me a typical example.

Figure 5: Example showing ChemDFM as an assistant researcher
in the design of experiment through free-form dialogue. Key
points of the answer are marked in bold. More examples can be
found in Appendix Section C.2.

To function as a competent AI as-
sistant researcher, an LLM needs
not only strong chemistry skills,
but also language skills to com-
prehend, reason, and communi-
cate with human researchers, pri-
marily in natural language. In the
following, we test ChemDFM
in two typical scenarios faced
by chemistry researchers: read-
ing papers and designing exper-
iments, both of which demand
expertise in chemical and natural
language skills.

Reading literature and other tech-
nical papers is an indispensable
part of a researcher’s daily rou-
tine. Oftentimes, researchers
come across new concepts or ex-
pressions that can hinder their un-
derstanding of the material. An
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LLM-based reading partner or assistant can provide instant explanations and answers to such ques-
tions. In Figure 4, we compare the answers generated by ChemDFM with those from other LLMs.
We have provided three example questions, with more examples in Appendix Section C.1, which
are generally consistent with the analysis below. To prevent information leakage, the questions
were constructed from chemistry papers published in 2023 only. Since ChemDFM only learned
from papers published before 2022, this approach ensures ChemDFM has not learned the answers
during training and simulates ChemDFM’s performance as a reading partner or tutor when reading
new papers. Q1 represents a question of widely known domain knowledge. All LLMs including
ChemDFM provide good answers. However, when questions involve new molecules and reactions
(Q2 [Yin et al., 2023] & Q3 [Dargo et al., 2023]), the performances differ. Specifically, LLaMa-2
and Galactica primarily rely on retrieving knowledge from memory, which can result in numerous
knowledge points that are correct but irrelevant or even misleading in the context of the questions.
GPT-4 shows a primary level of ability to answer questions based on the provided molecules and/or
reactions. It effectively answers Q2 but struggles with more complex questions involving complicated
molecules such as Q3. In Q3, GPT-4 fails to fully recognize the underlying chemical aspects of
the question and proposes methods that could violate the molecule’s catalytic activity. It is also
worth noticing that as GPT-4 is a closed-source LLM, it is uncertain whether the literature used
to construct the questions is included in GPT-4’s training corpus. Therefore, these "new papers"
may not be new to GPT-4. In contrast to other LLMs, ChemDFM shows the ability to integrate
memory-based knowledge while considering the situation described in the questions, providing key
points that are highly relevant to the question. In terms of accuracy, relevance, and overall quality of
the answers, ChemDFM largely outperforms other LLMs including GPT-4, demonstrating a better
understanding of molecules and reactions, especially in the example of Q3. Apart from presenting
key points, ChemDFM also endeavors to expand on its explanation and elaborate on the mechanism
of the queried reactions or the proposed solutions, although this occasionally leads to inaccurate
answers, as seen in the cases of Q1 and Q2. Please refer to Appendix Section C.1 for a more detailed
analysis.

A knowledgeable discussion partner who is always available and patient would be invaluable for
researchers, particularly in the stage of hypothesis generation and design of experiment (DOE).
Figure 5 illustrates a scenario inspired by Yin et al. [2023] that showcases ChemDFM’s potential to
assist researchers in free-form dialogues as an AI research partner. In this example, a human researcher
aimed to selectively oxidize one of the two carbonyl groups of a molecule. The initial solution given
by ChemDFM would lead to the oxidation of both carbonyl groups. However, after being alerted
and challenged by the human researcher, ChemDFM acknowledged the mistake and proposed two
possible strategies: using a weaker oxidation agent/condition or introducing a protecting group. Upon
the researcher’s decision to use a protecting group, ChemDFM provided detailed recommendations,
including a feasible agent and reaction condition. Throughout the dialogue, ChemDFM exhibited
promising capabilities in comprehension (Round 1), error correction (Round 2), and detailing (Round
3), showcasing its efficacy in mastering both chemical and natural language. More examples can be
found in Appendix Section C.2.

4 Related Work

There have been several pioneering studies focusing on leveraging LLMs to solve chemical problems.
These works typically adopt one of two general strategies. The first one treats LLMs as powerful base
models for multi-task training, neglecting their greatest strength in natural language understanding
and reasoning [Christofidellis et al., 2023, Fang et al., 2023, Cao et al., 2023a, Zheng et al., 2023, Kim
et al., 2024, Yu et al., 2024]. Consequently, the models devised under this framework are confined
to solving the specific tasks on which they were trained, losing the ability to tackle unseen tasks
or conduct free-form human-AI collaborations. The other strategy exploits LLMs’ strong natural
language understanding and reasoning abilities, using them directly to handle complex chemical
tasks described in natural language [Hatakeyama-Sato et al., 2023, Cao et al., 2023b, Boiko et al.,
2023, Yoshikawa et al., 2023, M. Bran et al., 2024, Ruan et al., 2024]. However, most of them
suffer from the fact that generalist LLMs lack an inherent understanding of chemical language and
knowledge [Kristiadi et al., 2024]. We argue that an LLM useful in chemistry must learn and reason
with both general-domain knowledge and chemical knowledge. In this work, we tried to achieve this
by equipping general-domain LLMs with rich chemical knowledge of task-specific chemical models
and obtained promising results.
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Notably, this strategy has been successfully applied to develop specialist LLMs for several other
scientific domains. For example, Med-PaLM [Singhal et al., 2023] and PMC-LLaMa [Wu et al.,
2023a] are specialized LLMs for biology and medicine. Similarly, ChatDoctor [Li et al., 2023] and
DrugChat [Liang et al., 2023] also offer LLMs specifically for the medicine field but focus on medical
inquiries and drug discoveries. Other domain-specific LLMs have endeavored include education [Dan
et al., 2023], materials science [Xie et al., 2023], and geography [Deng et al., 2023]. It is worth
noting that most of these works only focus on natural language. Domain-specific languages, which
differ significantly from natural languages, such as SMILES in chemistry, are often overlooked.

5 Conclusion

In summary, this paper introduces ChemDFM, a specialist LLM that evolves from a generalist LLM
through pre-training and instruction tuning using domain knowledge in chemistry. Quantitative evalu-
ations show ChemDFM’s strong comprehension of molecular notations and reasoning capabilities for
chemical knowledge, resulting in excellent performance in a wide range of chemical tasks such as
molecular design and reaction analysis. In scenarios such as paper reading and experimental design,
ChemDFM shows great potential in wielding chemical and natural languages to assist researchers
through dialogue-based, free-form human-AI collaborations.
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A Experimental Setups

A.1 Domain Pre-training

ChemDFM is pre-trained using the popular framework Megatron-DeepSpeed10 with Zero-2 [Ra-
jbhandari et al., 2020] optimization technique based on LLaMa-13B [Touvron et al., 2023a]. We
train ChemDFM using AdamW [Loshchilov and Hutter, 2019] with (β1, β2) = (0.9, 0.95). During
training, our model deals with 4M tokens per batch with a maximum sequence length of 6K. The
maximum learning rate is 5e-5 under the cosine learning rate scheduler.

10https://github.com/microsoft/Megatron-DeepSpeed?tab=readme-ov-file
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Human:  Please give the IUPAC name of the molecule given by SMILES: 
CC(C)(C)OC(=O)NC1CCN(C(=O)CN2CCOCC2C(=O)Nc2cc(Cl)cc3c2[nH]c2cnccc23)CC1.

[Round 0]

Assistant:  tert-butyl N-[1-[2-[(3R)-3-[(6-chloro-9H-pyrido[3,4-b]indol-8-
yl)carbamoyl]morpholin-4-yl]acetyl]piperidin-4-yl]carbamate", "task_name": "chem-smiles-to-
iupac-cllm

dialogue format instruction sample input expected return

Prompts Returns

Figure 6: Prompt format of the name prediction tasks

A.2 Instruction Tuning

To fully exploit the capabilities of the pre-trained model, we employed full-parameter tuning during
the instruction tuning stage. The popular framework Deepspeed-Chat [Yao et al., 2023] is leveraged
with the Zero-3 optimization technique. We set the learning rate to 1e-5 with a global batch size of
256. To encourage the model to focus more on responding to the requirements rather than memorizing
the patterns in prompts, we performed gradient back-propagation only on the tokens of the returns.
Specifically, the loss function of our instruction tuning is

L = − 1

|D|

|D|∑
i=1

ni∑
j=1

logP(rj |prompti, r1, r2, ..., rj−1),

where |D| is the size of the instruction tuning dataset and retunrsi = (r1, r2, ..., rni
). We train

ChemDFM using AdamW with (β1, β2) = (0.9, 0.95) and a cosine learning rate scheduler.

B More Details about ChemLLMBench Evaluations

B.1 Molecule Recognition

B.1.1 Task Introduction

The name prediction tasks take advantage of the different notations of molecules, including SMILES,
IUPAC name, and molecular formula, and ask the models to translate between them. Specifically,
it consists of four tasks: SMILES to IUPAC name translation (S2I), IUPAC name to SMILES
translation (I2S), SMILES to Molecular Formula translation (S2MF), and IUPAC name to Molecular
Formula translation (I2MF). For IUPAC names and SMILES, we normalized the predictions before
calculating the accuracy scores, while for molecular formulas, only exact matches are considered
correct answers.

The molecule captioning tasks further require the LLMs to not only recognize what the molecule
given by SMILES is but also understand the basic chemical nature of the molecule so as to generate a
brief description of it. Specifically, ChemLLMBench leverages the test set of ChEBI-20 [Edwards
et al., 2021] for this task. To measure the performance of this task, ChemLLMBench utilizes a series
of traditional captioning metrics, including BLUE, ROUGE, and METEOR.

B.1.2 Prompt Format

For the name prediction tasks, we use a simpler prompt compared with that introduced in Guo et al.
[2023]. An example is shown in Figure 6

For the molecule captioning task, we use the same prompt introduced in Guo et al. [2023].
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Table 7: Benchmark full test-set evaluation results of different models in text-based molecule design
tasks. The best results among specialist and generalist models are highlighted in bold, respectively. †:
reproducing results.

Model Exact↑ BLUE↑ Dis↓ Validity↑ MACCS↑ RDK↑ Morgan↑
task-specific specialist models

MolXPT [Liu et al., 2023] 21.5 - - 98.3 0.859 0.757 0.667
Text+Chem T5 [Christofidellis et al., 2023] 32.2 0.853 16.87 94.3 0.901 0.816 0.757
Mol-Instruction [Fang et al., 2023] 0.2 0.345 41.4 100 0.412 0.231 0.147

LLM-based generalist models
Galactica-30B (10-shot)† 0.3 0.295 64.3 82.2 0.356 0.239 0.186
ChemDFM-13B 43.2 0.839 16.9 97.6 0.901 0.829 0.759

B.2 Text-Based Molecule Design

B.2.1 Task Introduction

The test set of ChEBI-20 is also exploited for this task in ChemLLMBench. Models are asked to
predict the SMILES of the molecule that fits the given description. Two kinds of metrics are utilized
to measure the performance of this task. The first set of metrics measures the text-based similarity of
the predicted SMILES compared to the golden SMILES, which includes exact match, BLUE, and
Levenshtein distance. The second set of metrics measures the chemical similarity of the predicted
molecules compared to the golden molecules. That is mainly composed of the validity of the predicted
SMILES and the FTS (fingerprint Tanimoto Similarity) [Tanimoto, 1958] in terms of MACCS [und
David Metzener, 1988], RDK11, Morgan [Morgan, 1965].

B.2.2 Prompt Format

We use the same prompt introduced in Guo et al. [2023].

B.2.3 Additional Results

To achieve a fair comparison with task-specific specialist models, we evaluate the performance
of ChemDFM on the full test set of ChEBI-20 on this task. The results are illustrated in Table 7.
ChemDFM surpasses the performance of the advanced specialist models on the major metrics while
achieving comparable performance on others. Specifically, ChemDFM outperforms the special-
ist models on exact match scores and all three FTS-based similarity scores, which indicates that
ChemDFM can make more reliable predictions based on the descriptions compared with specialist
models.

B.3 Molecular Property Prediction

B.3.1 Task Introduction

The molecular property prediction tasks in ChemLLMBench consist of five tasks from MoleculeNet
benchmark [Wu et al., 2018], including BACE, BBBP, HIV, ClinTox, and Tox21. Among them,
BACE and BBBP are each a balanced binary classification task. HIV is an unbalanced binary
classification task. ClinTox and Tox21 comprise two and twenty-one unbalanced binary classification
tasks, respectively.

B.3.2 Prompt Format

We use the same prompts introduced in Guo et al. [2023].

B.3.3 Additional Results

During evaluations, we leverage a popular and more challenging dataset split provided by DeepChem
library [Ramsundar et al., 2019]. We reproduce the results of the baseline models, including GPT-4,
LLaMa-2-13B-chat, and Galactica (30B). Apart from the results in the Quantitative Evaluation

11https://www.rdkit.org/
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Table 8: AUC-ROC scores [Bradley, 1997] of different models under different settings in molecular
property prediction tasks. †reproducing results (The results of GPT-4 were obtained in January 2024).

Model BACE↑ BBBP↑ ClinTox↑ HIV↑ Tox21↑
LLM-based generalist models

GPT-4 (0-shot)† 62.5 61.5 51.6 65.9 55.2
GPT-4 (8-shot)† 45.9 61.8 59.3 50.8 60.6
LLaMa-2-13B-chat (0-shot)† 26.0 60.3 45.7 29.0 51.7
LLaMa-2-13B-chat (8-shot)† 72.9 52.3 42.1 70.8 45.9
Galactica-30B [Taylor et al., 2022] 72.7 59.6 82.2 75.9 68.5
ChemDFM-13B (0-shot) 78.4 66.7 89.9 73.6 79.8
ChemDFM-13B (8-shot) 81.7 67.9 85.3 73.3 76.7

Assistant:  CN=C=O.Nc1nc(NCc2ccc3c(c2)OCO3)c2cc(Cl)ccc2n1

Incomplete equation: ___>>CNC(=O)Nc1nc(NCc2ccc3c(c2)OCO3)c2cc(Cl)ccc2n1
Completion:

Human:  Chemical reaction equations are typically expressed in the following form: 
reactant1.reactant2.reactant3...>>product. In this form, each substance(reactant/product) is 
represented using the SMILES notation. Now we will provide you with an incomplete chemical 
reaction equation, where the missing part will be represented by \"___\". The missing parts could 
be one or more substances. Based on the remaining portions of the reaction equation, please 
infer what the missing part could be. Please only provide the missing part in your response, 
without any additional content.

[Round 0]

dialogue format instruction sample input expected return

Prompts Returns

Assistant:  C1CCOC1

Human:  You are an expert chemist. Here is an incomplete chemical reaction: 
Clc1ccc2ncccc2c1.Cc1ccc2c(cnn2C2CCCCO2)c1B(O)O>CC(C)(C)P(C(C)(C)C)C(C)(C)C.[OH
-].[Na+].___>Unknown product.

Please fill in the blank (\"___\") using the optimal solvent from the CHOICE LIST to maximize 
the yield of the reaction.
---
CHOICE LIST: (Choose from below!)
> C1CCOC1
> CN(C)C=O
> CO
Answer: (Choose from the CHOICE LIST!)

[Round 0]

dialogue format instruction sample input expected return

Prompts Returns

Assistant:  COc1cccc(-c2ccc3c(c2)C(=O)N(Cc2cccnc2)C3=O)c1

Incomplete equation: C1CCOC1.CC(=O)[O-].CC(=O)[O-
].CCOC(C)=O.COc1cccc([Mg+])c1.O.O=C1c2ccc(OS(=O)(=O)C(F)(F)F)cc2C(=O)N1Cc1cccn
c1.[Br-].[Cl-].[Cl-].[Pd+2].[Zn+2]>>___
Completion:

Human:  Chemical reaction equations are typically expressed in the following form: 
reactant1.reactant2.reactant3...>reagent1.reagent2.reagent3...>product. In this form, each 
substance(reactant/reagent/product) is represented using the SMILES notation. Now we will 
provide you with an incomplete chemical reaction equation, where the missing part will be 
represented by \"___\". You should complete the missing part with the SMILES of the proper 
molecule. Based on the remaining portions of the reaction equation, please infer what the 
missing part could be. Please only provide the missing part in your response, without any 
additional content.

[Round 0]

dialogue format instruction sample input expected return

Prompts Returns

[Round 0]

Human:  You are an expert chemist, your task is to predict the yield of reaction using your experienced chemical yield prediction knowledge.
Please strictly follow the format, no other information can be provided. Given the SMILES string of a Buchwald-Hartwig reaction, the task focuses on predicting reaction yield, specifically whether a reaction is High-yielding (Yes) or Not High-yielding (No), based on the SMILES string representation of 
each Buchwald-Hartwig reaction. The reactants are separated by '.', which are separated from the product by '>>'. High-yielding reaction means the yield rate of the reaction is above 70. You will be provided with several examples molecules. Please answer with only Yes or No.

Assistant:  Yes

Reaction: Clc1ccccn1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N-1)C(F)(F)F.COc1ccc(OC)c(P([C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)[C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)c1-
c1c(C(C)C)cc(C(C)C)cc1C(C)C.CCN=P(N=P(N(C)C)(N(C)C)N(C)C)(N(C)C)N(C)C.Cc1cc(C)on1>>Cc1ccc(Nc2ccccn2)cc1
High-yielding reaction:

Reaction: CCc1ccc(I)cc1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N-1)C(F)(F)F.CC(C)c1cc(C(C)C)c(-c2ccccc2P(C2CCCCC2)C2CCCCC2)c(C(C)C)c1.CN1CCCN2CCCN=C12.Cc1cc(C)on1>>CCc1ccc(Nc2ccc(C)cc2)cc1
High-yielding reaction: No
······
Reaction: Brc1cccnc1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N-1)C(F)(F)F.COc1ccc(OC)c(P(C(C)(C)C)C(C)(C)C)c1-c1c(C(C)C)cc(C(C)C)cc1C(C)C.CN(C)C(=NC(C)(C)C)N(C)C.Cc1cc(C)on1>>Cc1ccc(Nc2cccnc2)cc1
High-yielding reaction: No

dialogue format instruction few-shot exemplar expected return

Prompts Returns

sample input

(a) The prompt format of the yield prediction tasks

(b) The prompt format of the reaction prediction task (c) The prompt format of the reagent selection tasks (d) The prompt format of the retrosynthesis task

Figure 7: Prompt format of the reaction prediction and retrosynthesis tasks

Section of the main text, we also conduct few-shot experiments. The results are shown in Table 8. It
is worth noticing that the performances under the few-shot setting are not always better than those
under the zero-shot setting. That may be a result of the scaffold-vertical dataset split we use in our
experiments. Because under the scaffold-vertical setting, the exemplars provided by the training split
may be less helpful for the test samples.

B.4 Reaction Prediction and Retrosynthesis

B.4.1 Task Introduction

In ChemLLMBench, there are four types of tasks targeted at evaluating models’ capabilities of
reaction understanding. The yield prediction tasks ask models to predict whether the given reac-
tion is a high-yield reaction and are constructed based on two High-Throughput experimentation
(HTE) datasets: the Buchwald-Hartwig dataset [Ahneman et al., 2018] and the Suzuki-Miyaura
dataset [Reizman et al., 2016]. The reaction prediction task asks the model to predict the product
of the given reaction. ChemLLMBench utilizes the USPTO-MIT dataset [Jin et al., 2017] for this
task. The reagent selection tasks focus on selecting the reagent that can maximize the yield of the
reaction from a list of candidates. ChemLLMBench constructs three reagent selection tasks based
on the dataset proposed by Perera et al. [2018]. The retrosynthesis task focuses on predicting the
reactants of the given reactions and is constructed based on the USPTO-50K dataset [Schneider et al.,
2016]. Accuracy is utilized to measure the performances except for the ligand selection task which
uses top 50% accuracy.
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Table 9: Accuracy scores of different models in yield prediction tasks. B-H and Suzuki stand for the
Buchwald-Hartwig dataset and the Suzuki-Miyaura dataset, respectively. †: results from Guo et al.
[2023]. *: 8-shot results

Model B-H Suzuki

task-specific specialist models
UAGNN [Kwon et al., 2022] 96.5 95.7

LLM-based generalist models
GPT-4†* 80.0 76.4
LLaMa-2-13B-chat† 0.8 0.6
Galactica-30B† 0.0 0.8
ChemDFM-13B 82.7 79.3

Table 10: Benchmark results of different models in reaction prediction tasks. †: results from Guo
et al. [2023].

Model Accuracy Validity

task-specific specialist models
Chemformer [Irwin et al., 2022] 93.8 100
Mol-Instruction [Fang et al., 2023] 4.5 100
InstructMol [Cao et al., 2023a] 53.6 100

LLM-based generalist models
GPT-4 (20-shot)† 23.0 93.0
LLaMa-2-13B-chat (20-shot)† 3.2 72.2
Galactica-30B (5-shot)† 3.6 94.8
ChemDFM-13B (0-shot) 49.0 98.0

B.4.2 Prompt Format

We reformat the prompt provided by Guo et al. [2023] using the SMILES notations for reactions.
Specifically, the examples of our prompts are illustrated in Figure 7.

B.4.3 Additional Results

The complete results for the yield prediction tasks, the reaction prediction task, the reagent selection
tasks, and the retrosynthesis tasks are shown in Table 9, Table 10, Table 12, and Table 11, respectively.

C More Qualitative Analysis

C.1 Paper Reading

We first test the models with questions that only involve known knowledge (Figure 8).

Q-S1 (Q1) is an example of knowledge-intense questions. Models only need to memorize the details
and mechanisms of Catellani-type reactions [Catellani et al., 1997] to answer the question correctly.
The key point of the answer to this question is “regioselectivity”. While Galactica can hardly answer
the question and LLaMa-2 misses the key point of the answer, ChemDFM accurately captures the
key point to answer the question and provides a comprehensive answer. GPT-4 gives the best reply as
it not only points out “regioselectivity” but also gives the result of the regioselectivity of norbornene.
ChemDFM is the only model that tries to provide a detailed description of the mechanism behind the
reaction. However, it makes minor mistakes when doing so.

Q-S2 asks for the regioselectivity of the Diels-Alder reaction [Kloetzel, 1948]. Only ChemDFM
successfully answers the key points to this question, which is the result of the regioselectivity. GPT-4
provides a detailed introduction to the Diels-Alder reaction and regioselectivity but fails to answer
the specific regioselectivity of the Diels-Alder reaction, while LLaMa-2 only gives the factors that
could influence the regioselectivity. They do not answer the question.
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Q-S1 (Q1): Please briefly introduce the effect of norbornene in Catellani-type reactions. Q-S2: What is the regioselectivity of Diels-Alder reaction? Q-S3: What is Dess-Martin periodinane used for?

G
PT

-4
Norbornene plays a crucial role in Catellani-type reactions as a mediator or a template. It helps to 
control the ortho-alkylation and palladation steps, enabling the palladium to move from one ortho 
position to another. This movement allows for the selective functionalization of arenes at the ortho 
and ipso positions. Without norbornene, the reaction would not proceed in the desired manner, 
leading to different products. Therefore, norbornene is essential for the success of Catellani-type 
reactions.

Regioselectivity in the Diels-Alder reaction refers to the preference for formation of one 
constitutional isomer over another. It is determined by the relative stability of the transition state 
leading to the different products. The reaction is typically controlled by the electronic and steric 
properties of the diene and dienophile. The most common outcome is the formation of a product 
where electron-rich areas of the diene interact with electron-poor areas of the dienophile. This is 
often referred to as the "normal electron demand" Diels-Alder reaction.

Dess-Martin periodinane is a chemical reagent used primarily for the oxidation of primary and 
secondary alcohols to aldehydes and ketones, respectively. It is popular in organic chemistry 
due to its high selectivity, mildness, and ease of use.

G
al

ac
tic

a-
30

B

The norbornene is used to generate a 7-membered palladacycle.  The norbornene is not a substrate in 
the reaction, but rather a reagent that is used to generate the catalyst.  The norbornene is not 
consumed in the reaction, and is not a product.

The regioselectivity of the Diels-Alder reaction is determined by the stability of the diene and the 
dienophile. The diene is usually the more stable of the two.

Dess-Martin periodinane is used to oxidize alcohols to aldehydes or ketones. It is also used to 
oxidize primary alcohols to carboxylic acids.
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Norbornene is a cyclic molecule that has been widely used as a catalyst in Catellani-type reactions. 
The presence of norbornene in these reactions has been found to have a significant effect on the 
reaction mechanism and the final product distribution.

In general, norbornene acts as a "cage" around the reacting molecules, facilitating their interaction 
and promoting the formation of the desired products. The cyclic structure of norbornene also allows 
for the formation of complexes with the reacting molecules, which can enhance the reaction rate and 
selectivity.

The specific effects of norbornene in Catellani-type reactions can vary depending on the reaction 
conditions and the nature of the reacting molecules. However, some common effects include:

1. Enhanced reaction rate: The presence of norbornene can increase the reaction rate by providing a 
more efficient pathway for the reacting molecules to interact.
2. Improved selectivity: Norbornene can help to selectively promote the formation of the desired 
products by inhibiting the formation of unwanted byproducts.
3. Increased yield: The use of norbornene can lead to higher yields of the desired products, as it can 
help to improve the reaction efficiency and reduce the formation of byproducts.
4. Control over product distribution: The type and amount of norbornene used can be tailored to 
control the product distribution in Catellani-type reactions.

Overall, the use of norbornene in Catellani-type reactions can provide a powerful tool for controlling 
the reaction mechanism and the final product distribution, allowing for the synthesis of a wide range 
of complex organic molecules with high precision and selectivity.

The regioselectivity of the Diels-Alder reaction is a critical aspect of the reaction, as it determines 
which carbon atoms of the diene participate in the reaction and which ones remain unreacted. The 
regioselectivity of the Diels-Alder reaction is influenced by several factors, including the type of 
diene and the type of dienophile used, as well as the reaction conditions.

In general, the Diels-Alder reaction is highly regioselective, meaning that it preferentially forms 
one or a few major products over a wide range of possible minor products. This is due to the fact 
that the diene and dienophile molecules have a high degree of complementarity, which allows them 
to form a stable and energetically favorable complex.

There are several factors that influence the regioselectivity of the Diels-Alder reaction:

1. Electronic effects: The electronic properties of the diene and dienophile molecules can influence 
the regioselectivity of the reaction. For example, if the diene has a high degree of electronegativity, 
it may preferentially form bonds with the more electronegative atoms of the dienophile.
2. Steric effects: The size and shape of the diene and dienophile molecules can also influence the 
regioselectivity of the reaction. For example, if the diene is bulky, it may have difficulty forming 
bonds with the more sterically hindered atoms of the dienophile.
3. Solvent effects: The solvent in which the Diels-Alder reaction is carried out can also influence 
the regioselectivity of the reaction. For example, some solvents may favor the formation of one 
particular product over others.
4. Temperature and pressure: The reaction conditions, such as temperature and pressure, can also 
influence the regioselectivity of the reaction. For example, higher temperatures and pressures may 
favor the formation of more highly substituted products.

In general, the regioselectivity of the Diels-Alder reaction is influenced by a combination of these 
factors, and the exact regioselectivity of the reaction can vary depending on the specific diene and 
dienophile molecules being used. However, the reaction is highly regioselective, and the major 
product is usually formed with high yield and purity.

Dess-Martin periodinane (DMP) is a highly effective and versatile reagent used in organic synthesis 
for the oxidation of various functional groups. It is a combination of periodinane (H2C=CH-O-O-H) 
and 4-dimethylaminopyridine (DMAP), which enhances the reactivity of the periodinane moiety.

DMP is commonly used for the following reactions:

1. Epoxidation: DMP is a powerful oxidizing agent for the epoxidation of unsaturated compounds, 
such as alkenes and alkynes. It can introduce an epoxide group at the carbon-carbon double bond, 
which is useful for further synthetic modifications.
2. Hydroxylation: DMP can hydroxylate various substrates, including aromatic and aliphatic 
compounds, at the positions bearing an electron-withdrawing group. This reaction is particularly 
useful for the synthesis of alcohols, carboxylic acids, and amides.
3. Alkylation: DMP can alkylate various substrates, including aromatic and aliphatic compounds, at 
the positions bearing an electron-rich group. This reaction is useful for the synthesis of alkylated 
compounds, which are important intermediates in the production of pharmaceuticals and other 
chemicals.
4. Cyclization: DMP can induce cyclization reactions, such as the formation of lactones and lactams, 
by oxidizing the substrate at the carbon-carbon double bond. This reaction is useful for the 
synthesis of complex molecules, such as natural products and pharmaceuticals.
5. Fluorination: DMP can also be used for the fluorination of various substrates, including aromatic 
and aliphatic compounds. This reaction is useful for the synthesis of fluorinated compounds, which 
are important in the production of pharmaceuticals and other chemicals.
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Norbornene is a key component in Catellani-type reactions, which are a class of palladium-catalyzed 
cross-coupling reactions that allow for the efficient formation of carbon-carbon bonds. In these 
reactions, norbornene serves as a transient directing group, which helps to control the 
regioselectivity of the reaction and enables the formation of challenging cross-coupled products 
that are difficult to access using traditional cross-coupling methods. Specifically, norbornene 
undergoes oxidative addition to a palladium(0) catalyst to form a palladium(II) complex, which can 
then react with an organic halide and a boronic acid or ester to form the cross-coupled product. The 
norbornene group is then removed from the product under acidic conditions, regenerating the 
palladium(0) catalyst and completing the catalytic cycle.

The Diels-Alder reaction is a [4 + 2] cycloaddition reaction between a diene and a dienophile. 
The regioselectivity of this reaction depends on the structure of the diene and dienophile, as well as 
the substituents present. Generally, the reaction proceeds with the substituents on the diene and 
dienophile being located at the 1- and 4-positions of the resulting cyclohexene. However, in 
some cases, other regioisomers may be formed.

Dess-Martin periodinane is a reagent commonly used in organic chemistry for the oxidation of 
alcohols to aldehydes and ketones. It is particularly useful for the oxidation of secondary 
alcohols to ketones, which can be challenging to achieve with other oxidizing agents. Dess-Martin 
periodinane is a relatively mild reagent, which makes it useful for the oxidation of sensitive 
compounds. It is also used in the synthesis of complex natural products and pharmaceuticals.

Figure 8: Examples of paper reading where only widely known domain knowledge is involved.
correct and relevant information in the replies is marked in green, correct but irrelevant information
in yellow, and wrong information in red. Key points of the answer are marked in bold.
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s Q-S4 (Q2): What is the use of NaH in the reaction between 

O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 and CC(P(OCC)(OCC)=O)C(OCC)=O?
[Yin et al., 2023] 

Q-S5: What is the use of DIBAL-H to react with 
C=C1C2C(C)(C)CCC2(C)CC12CCC(OCOC)C2CC#N?

[Yin et al., 2023] 

Q-S6: How does C[C@@H](c1cccc2ccccc12)N1C(=O)CC[C@@]12CCC[C@H]2N react with 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)CC(=O)C2)c2ncccc12 to form 

COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)C=C(N[C@@H]3CCC[C@@]34CCC(=O)N4[C@
@H](C)c3cccc4ccccc34)C2)c2ncccc12?

[Wang et al., 2023] 
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NaH, or Sodium Hydride, is a strong base that is often used in organic chemistry as a 
deprotonating agent. In the reaction between O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 and 
CC(P(OCC)(OCC)=O)C(OCC)=O, NaH would likely be used to deprotonate one of the reactants, 
making it more nucleophilic and therefore more reactive. This would allow it to react more readily 
with the other reactant, facilitating the overall reaction.

DIBAL-H (Diisobutylaluminium hydride) is a reducing agent commonly used in organic 
chemistry. It is particularly useful for the reduction of esters, carboxylic acids, and amides to 
aldehydes.

In the case of the compound you provided, DIBAL-H would likely be used to reduce the ester 
group (OCOC) to an aldehyde. This would result in the formation of an aldehyde group (-CHO) and 
an alcohol group (-OH) in place of the ester.

However, the structure you provided seems to be a bit complex and may not be entirely accurate. It 
would be helpful to have a more accurate structure to provide a more precise answer.

This reaction is a complex organic synthesis involving multiple steps. Here is a simplified version 
of the reaction:

1. The first step is a nucleophilic attack by the nitrogen atom of the amine group on the 
carbonyl carbon of the second molecule. This forms a tetrahedral intermediate.

2. The intermediate then undergoes a rearrangement, leading to the formation of a new carbon-
nitrogen bond and the release of a water molecule.

3. The newly formed amide undergoes a cyclization reaction, forming a new ring structure.

4. The final step is a dehydration reaction, where a water molecule is removed, leading to the 
formation of the final product.

Please note that this is a simplified version of the reaction and the actual mechanism may involve 
additional steps and intermediates. The stereochemistry of the reaction is also not detailed in this 
explanation.
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The use of $\ce{NaH}$ is to deprotonate the carboxylic acid. The resulting carboxylate is a better 
leaving group than the carboxylic acid. The use of DIBAL-H is to reduce the double bond.

The first step is the formation of a [carbene](https://en.wikipedia.org/wiki/Carbene). The carbene is 
then attacked by the oxygen of carbon monoxide. The resulting 
[acyl](https://en.wikipedia.org/wiki/Acyl_group) is then attacked by the nitrogen of the amide.
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NaH is used as a reducing agent in the reaction between 
O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 and CC(P(OCC)(OCC)=O)C(OCC)=O. The 
reaction is a conjugate addition of the alkene O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 to the 
alkynyl CC(P(OCC)(OCC)=O)C(OCC)=O.

The NaH acts as a reducing agent by donating a pair of electrons to the carbon-carbon triple bond of 
the alkynyl group, reducing it to a carbon-carbon double bond. This process is known as 
hydrogenation. The resulting double bond is then attacked by the alkene 
O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1, leading to the formation of a new carbon-carbon 
single bond.

The use of NaH as a reducing agent in this reaction is advantageous because it allows for the 
formation of a stable, saturated product, which is important for many organic synthesis reactions. 
Additionally, NaH is a mild reducing agent, which means that it can reduce the alkynyl group without 
causing unwanted side reactions or over-reduction of the alkene.

Overall, the use of NaH in the reaction between O=C1[C@@](C(C)(C)CC2)([H])[C@@]2(C)C1 and 
CC(P(OCC)(OCC)=O)C(OCC)=O is essential for the formation of the desired product, which is a 
saturated alkane.

DIBAL-H (diisobutylaluminum hydride) is a strong reducing agent that is commonly used to 
react with carbon-carbon double bonds (C=C) and carbon-carbon triple bonds (C=C=C) in organic 
compounds.

In the case of the molecule you provided, C=C1C2C(C)(C)CCC2(C)CC12CCC(OCOC)C2CC#N, 
DIBAL-H can be used to react with the carbon-carbon triple bond (C=C=C) and the carbon-carbon 
double bond (C=C) present in the molecule.

The reaction of DIBAL-H with the C=C=C triple bond in the molecule would proceed through the 
formation of a metal complex, where the aluminum center of DIBAL-H coordinates with the 
carbon atoms of the triple bond. This would result in the reduction of the triple bond to a double 
bond, leading to the formation of a new C=C double bond.

Similarly, the reaction of DIBAL-H with the C=C double bond in the molecule would also proceed 
through the formation of a metal complex, where the aluminum center of DIBAL-H coordinates 
with the carbon atoms of the double bond. This would result in the reduction of the double bond to 
a single bond, leading to the formation of a new C-C single bond.

Overall, the use of DIBAL-H to react with C=C1C2C(C)(C)CCC2(C)CC12CCC(OCOC)C2CC#N 
would result in the reduction of the carbon-carbon triple bond and the carbon-carbon double bond 
present in the molecule, leading to the formation of a new C-C single bond and a C=C double bond. 
This reaction would be a key step in the synthesis of the molecule, as it would allow for the 
formation of the desired C-C and C=C bonds.

The reaction of C[C@@H](c1cccc2ccccc12)N1C(=O)CC[C@@]12CCC[C@H]2N with 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)CC(=O)C2)c2ncccc12 is a complex process that 
involves multiple steps and reactions. Here's a simplified outline of the major steps involved in the 
reaction:

Step 1: Formation of a carbon-carbon bond

The first step in the reaction is the formation of a carbon-carbon bond between the carbon atom of 
C[C@@H](c1cccc2ccccc12)N1C(=O)CC[C@@]12CCC[C@H]2N and the carbon atom of 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)CC(=O)C2)c2ncccc12. This forms a new carbon-
carbon bond, which is shown in the figure as a double-headed arrow.

Step 2: Formation of a nitrogen-carbon bond

The next step is the formation of a nitrogen-carbon bond between the nitrogen atom of 
C[C@@H](c1cccc2ccccc12)N1C(=O)CC[C@@]12CCC[C@H]2N and the carbon atom of the 
newly formed carbon-carbon bond. This forms a new nitrogen-carbon bond, which is shown in the 
figure as a single-headed arrow.

Step 3: Formation of a carbon-oxygen bond

The third step is the formation of a carbon-oxygen bond between the carbon atom of the newly 
formed carbon-carbon bond and the oxygen atom of 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)CC(=O)C2)c2ncccc12. This forms a new carbon-
oxygen bond, which is shown in the figure as a single-headed arrow.

Step 4: Formation of a nitrogen-oxygen bond

The final step is the formation of a nitrogen-oxygen bond between the nitrogen atom of 
C[C@@H](c1cccc2ccccc12)N1C(=O)CC[C@@]12CCC[C@H]2N and the oxygen atom of the 
newly formed carbon-oxygen bond. This forms a new nitrogen-oxygen bond, which is shown in the 
figure as a single-headed arrow.

Overall, the reaction of C[C@@H](c1cccc2ccccc12)N1C(=O)CC[C@@]12CCC[C@H]2N with 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)CC(=O)C2)c2ncccc12 results in the formation of a 
new carbon-carbon bond, a new nitrogen-carbon bond, a new carbon-oxygen bond, and a new 
nitrogen-oxygen bond. The resulting molecule is 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)C=C(N[C@@H]3CCC[C@@]34CCC(=O)N4[C@
@H](C)c3cccc4ccccc34)C2)c2ncccc12.
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The use of NaH in the reaction between O=C1[C@@]2(C)C1 and CC(P(OCC)(OCC)=O)C(OCC)=O 
is to deprotonate the acidic alpha-hydrogen of the keto group in CC(P(OCC)(OCC)=O)C(OCC)=O, 
resulting in the formation of an enolate anion. This anion can then react with the enol group of 
O=C1[C@@]2(C)C1 to form a new C-C bond and produce the product.

DIBAL-H is a reducing agent that can be used to reduce carbonyl groups to the corresponding 
alcohols. In the case of 2-[5-(methoxymethoxy)-2-methyl-1-oxo-10-azaspiro[5.5]undecan-4-
yl]ethylidene-1,1,3,3-tetramethylcyclohexane-6-carbonitrile, DIBAL-H can be used to reduce the 
carbonyl group of the nitrile to the corresponding aldehyde. This reduction is a key step 
in the synthesis of the anti-cancer drug, Pifidien.

The reaction involves the formation of a covalent bond between the ketone group of the 
benzenoid aromatic compound and the amino group of the (2S)-1-[(2R)-2-phenyl-2-
propyl]-3,4-dihydro-1H-isoquinoline-5-carboxamide. The stereochemistry of the resulting product 
is consistent with the reaction of the (E)-enol tautomer of the benzenoid aromatic compound with 
the (2S)-enantiomer of the (2R)-1-[(2R)-2-phenyl-2-propyl]-3,4-dihydro-1H-isoquinoline-5-
carboxamide.

Figure 9: Examples of paper reading where new molecules and reactions are involved. correct and
relevant information in the replies is marked in green, correct but irrelevant information in yellow,
and wrong information in red. Key points of the answer are marked in bold.
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Table 11: Benchmark results of different models in retrosynthesis tasks. †: results from Guo et al.
[2023].

Model Accuracy Validity

task-specific specialist models
Chemformer [Irwin et al., 2022] 53.6 100

LLM-based generalist models
GPT-4 (5-shot)† 11.4 89.0
LLaMa-2-13B-chat (20-shot)† 0.0 72.8
Galactica-30B (5-shot)† 1.6 94.8
ChemDFM-13B (0-shot) 12.0 91.0

Table 12: Benchmark results of different models in reagent selection tasks. We report the result in
accuracy scores except for Ligand Selection where we report the top 50% accuracy score. †: results
from Guo et al. [2023].

Model Reactant Solvent Ligand

LLM-based generalist models
GPT-4† 29.9 52.6 53.4
LLaMa-2-13B-chat† 14.5 5.0 28.4
Galactica-30B† 10.7 10.4 3.0
ChemDFM-13B 24.0 12.0 35.0

As for Q-S3, ChemDFM, Galactica, and GPT-4, all capture the key point to the answer (“the
oxidation of alcohols to aldehydes and ketones”), while ChemDFM and GPT-4 further answer
more properties of the Dess-Martin periodinane [Dess and Martin, 1983]. LLaMa-2, on the other
hand, gives numerous wrong arguments and misses the key points.

Then, we ask the models about new molecules and new reactions which are published after January
2022. In this way, we can ensure minimal risk of data leakage and evaluate the models’ capability to
handle unforeseen situations. The results are shown in Figure 9 and Figure 10.

Q-S4 (Q2) is constructed based on Yin et al. [2023]. Because the reaction mentioned in the question
is a novel instance, models need to correctly identify the reaction and discover the mechanisms of
it before answering the question. In practice, Galactica successfully identifies the key point of the
answer, “deprotonate”, but fails to provide other useful information. LLaMa-2, in its reply, fails
to identify the reaction mentioned in the question. Most of the information about NaH in its reply is
correct but irrelevant to the reaction. GPT-4 identifies the key point of the answer but only gives a
rough description of the mechanism of how it works. ChemDFM not only correctly identifies the key
point of the answer but also provides an almost correct description of the mechanism.

Q-S5 is also constructed based on Yin et al. [2023]. All the models can recognize the DIBAL-H as a
reducing agent, which is existing knowledge. However, only ChemDFM successfully identifies the
reaction site of the new molecule, indicating its strong capabilities to handle unforeseen situations
where new molecules and reactions are involved. The main mistake that ChemDFM makes is
providing the wrong IUPAC name, which is a challenging task for LLMs even as a separate task (see
Table 2 in the main text).

Q-S6 is constructed based on Wang et al. [2023a] and asks directly for the mechanism of the given
reaction. Among the answers, the answer of ChemDFM is the most precise. Galactica and LLaMa-2
give nearly no correct information. Although GPT-4’s answer contains the correct reaction process,
it also contains auxiliary processes that do not happen during the reaction, which masks the whole
mechanism predicted by GPT-4 wrong. ChemDFM answers the correct reaction process with no
excess. The only mistakes ChemDFM makes are again providing the wrong IUPAC names, which is
a challenging task for LLMs even as a separate task (see Table 2 in the main text).

We also ask several questions focusing more on molecules and less on reactions.
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s Q-S7 (Q3): I want to enhance the acidity of catalyst 

C=C[C@@H]1C[N@@]2CC[C@@H]1C[C@H]2[C@@H](NC(=S)NCc1cc(C(F)(F)F)cc(C(F)(F)F)
c1)c1ccnc2ccc(OC)cc12. How should I modify the catalyst?

[Dargo et al., 2023]

Q-S8: I want to change the chiral environment of catalyst 
CN1CCC(Nc2c(Nc3ccc4ccccc4c3/C(=C\c3ccccc3)c3c[nH]c4ccccc34)c(=O)c2=O)C1. How should 

I modify the catalyst?
[Hao et al., 2023] 

Q-S9: Which part of 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)C=C(N[C@@H]3CCC[C@@]34CCC(=O)N4[C@

@H](C)c3cccc4ccccc34)C2)c2ncccc12 has chance to connect with palladium?
[Wang et al., 2023] 
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To enhance the acidity of a catalyst, you can introduce more electronegative atoms or functional 
groups that can donate protons. In your case, you can consider the following modifications:

1. Introduce more sulfonic acid groups (-SO3H): Sulfonic acid groups are highly acidic and can 
significantly increase the acidity of your catalyst. You can replace some of the existing functional 
groups with -SO3H.

2. Add more halogen atoms: Halogens are highly electronegative and can increase the acidity of the 
catalyst. You already have fluorine atoms in your catalyst. You can consider adding more fluorine 
atoms or other halogens like chlorine or bromine.

3. Introduce carboxylic acid groups (-COOH): Carboxylic acid groups are also highly acidic. You can 
replace some of the existing functional groups with -COOH.

4. Introduce phosphoric acid groups (-PO3H2): Nitro groups are also highly electronegative and can 
increase the acidity of the catalyst.

Remember, the modification should not affect the catalyst's ability to catalyze the reaction. It's always 
a good idea to consult with a chemist or a chemical engineer before making any modifications to a 
catalyst.

The chiral environment of a catalyst can be modified by changing the chiral center or introducing a 
new chiral center. The chiral center is the atom in a molecule that is attached to four different 
groups, usually carbon.

In the given catalyst, the chiral center seems to be the carbon atom in the cyclohexane ring 
(CN1CCC). To modify the chiral environment, you can:

1. Change the groups attached to the chiral center: You can replace one or more of the groups 
attached to the chiral center with different groups. This will result in a different arrangement of 
groups around the chiral center, thus changing the chiral environment.

2. Introduce a new chiral center: You can add a new chiral center to the molecule by attaching a 
carbon atom to four different groups. This will create a new chiral environment in the molecule.

3. Use a different chiral catalyst: If modifying the existing catalyst is not feasible, you can consider 
using a different chiral catalyst that provides the desired chiral environment.

Remember, any changes to the catalyst should not affect its ability to catalyze the reaction. It's 
always recommended to consult with a chemist or a chemical engineer before making any changes 
to a catalyst.

The part of the molecule that has the chance to connect with palladium is the C=C double bond 
in the /C=C/ section. Palladium is often used as a catalyst in reactions involving double bonds, 
such as in the Heck reaction or Suzuki coupling.
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The catalyst you have is a [Brønsted acid](https://en.wikipedia.org/wiki/Br%C3%B8nsted_acid).  
The acidity of the catalyst is determined by the strength of the conjugate base.  The stronger the 
conjugate base, the stronger the acid.  The conjugate base of your catalyst is the carbanion on the 
nitrogen.  The stronger the carbanion, the stronger the acid.  The carbanion is stabilized by the 
adjacent double bond.  The more electron-withdrawing the double bond, the stronger the acid.  The 
double bond is conjugated with the nitrogen lone pair.  The more electron-withdrawing the nitrogen 
lone pair, the stronger the acid.  The nitrogen lone pair is stabilized by the adjacent double bond.

The catalyst you have is a 
[diaminomethylenemalononitrile](https://en.wikipedia.org/wiki/Diaminomethylenemalononitrile). 
[None](https://i.stack.imgur.com/00001.png) The chiral environment is created by the two amino 
groups. You can change the chiral environment by changing the amino groups.

The palladium catalyst is used to form the carbon-carbon bond between the two molecules. The 
carbon-carbon bond is formed between the carbon in the alkyne and the carbon in the arene. The 
carbon in the alkyne is the one that is attached to the nitrogen.
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The catalyst you provided is a complex molecule with multiple functional groups, and enhancing its 
acidity may require careful modification. Here are some strategies that may help:

1. Introduction of acidic functional groups:
You can introduce acidic functional groups such as carboxylic acids, sulfonic acids, or phosphoric 
acids into the catalyst molecule. These groups can increase the acidity of the catalyst and enhance its 
ability to activate the substrate.
2. Substitution with acidic groups:
You can substitute some of the non-acidic functional groups in the catalyst with acidic groups. For 
example, you can replace some of the hydrogen atoms with acidic groups such as hydroxyl (-OH), 
carboxyl (-COOH), or sulfonic acid (-SO3H) groups.
3. Increase the number of acidic sites:
You can increase the number of acidic sites in the catalyst by introducing more acidic functional 
groups or by increasing the number of existing acidic sites. This can be done by modifying the 
molecular structure of the catalyst to increase the number of carboxylic acid, sulfonic acid, or 
phosphoric acid groups.
4. Use of acidic additives:
You can add acidic additives such as sulfuric acid, hydrochloric acid, or acetic acid to the reaction 
mixture to enhance the acidity of the catalyst. These additives can increase the concentration of acidic 
sites in the reaction mixture and improve the catalytic activity of the catalyst.
5. Modification of the support:
The support material can also affect the acidity of the catalyst. You can modify the support material to 
increase its acidity. For example, you can use a support material that is more acidic, such as silica gel 
or alumina, or you can modify the support material with acidic functional groups such as carboxylic 
acids or sulfonic acids.

It is important to note that modifying the catalyst to enhance its acidity can also affect its other 
properties, such as its stability and selectivity. Therefore, it is important to carefully optimize the 
modification of the catalyst to achieve the desired balance of properties. Additionally, the optimal 
modification of the catalyst may depend on the specific reaction conditions and the substrate being 
used, so it may be necessary to perform experiments under different conditions to find the best 
modification strategy.

To change the chiral environment of the catalyst 
CN1CCC(Nc2c(Nc3ccc4ccccc4c3/C(=C\c3ccccc3)c3c[nH]c4ccccc34)c(=O)c2=O)C1, you could 
consider modifying the chiral substituents on the nitrogen atoms.

One approach could be to introduce a chiral auxiliary group, such as a quaternary amine or a chiral 
sulfonamide, on one of the nitrogen atoms. This would allow you to control the stereochemistry of 
the reaction and potentially improve the enantioselectivity of the catalyst.

Another approach could be to modify the ligand environment around the metal center. For example, 
you could introduce a chiral ligand, such as a chiral amine or a chiral phosphine, that coordinates to 
the metal center and influences the stereochemistry of the reaction.

It is also possible to modify the metal center itself to introduce chirality. For example, you could 
use a chiral metal such as a chiral transition metal or a chiral main group element, or you could 
introduce a chiral ligand that coordinates to the metal center.

It is important to note that modifying the catalyst can potentially affect its activity and selectivity, 
so it may be necessary to optimize the modified catalyst to achieve the desired properties. 
Additionally, the chiral environment of the catalyst may be sensitive to the conditions of the 
reaction, such as the solvent, temperature, and reaction time, so it may be necessary to optimize 
these conditions as well.

Overall, modifying the chiral environment of the catalyst can be a powerful way to improve the 
enantioselectivity of the reaction, but it requires careful consideration of the specific modifications 
and their potential effects on the catalyst's activity and selectivity.

The molecule you provided, 
COc1ccc(NC(=O)C/C=C/COCC2(Cc3ccccc3)C=C(N[C@@H]3CCC[C@@]34CCC(=O)N4[C@
@H](C)c3cccc4ccccc34)C2)c2ncccc12, contains several potential binding sites for palladium. Here 
are some possible ways that palladium could connect with this molecule:

1. Binding to the nitrogen atom: The nitrogen atom in the molecule is electronegative and could 
potentially form a coordinate covalent bond with a palladium center.
2. Binding to the carbon atoms: The carbon atoms in the molecule are sp3 hybridized and could 
potentially form a coordinate covalent bond with a palladium center.
3. Binding to the oxygen atom: The oxygen atom in the molecule is electronegative and could 
potentially form a coordinate covalent bond with a palladium center.
4. Binding to the sulfur atom: The sulfur atom in the molecule is electronegative and could 
potentially form a coordinate covalent bond with a palladium center.

It's difficult to predict the exact binding site for palladium on this molecule without knowing the 
specific conditions of the reaction, but these potential binding sites could be important for the 
catalytic activity of the palladium center.

It's worth noting that the molecule you provided is a complex molecule with many functional 
groups and atoms that could potentially participate in the catalytic process. The exact binding site 
for palladium may depend on the specific reaction conditions and the conformation of the molecule.
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To enhance the acidity of the catalyst, you could consider introducing electron-withdrawing 
groups on the aromatic ring of the 
[C@@H](NC(=S)NCc1cc(C(F)(F)F)cc(C(F)(F)F)c1)c1ccnc2ccc(OC)cc12 moiety. This could draw 
electron density away from the amino group and increase its acidity. Some examples of such groups 
could be fluoro, chloro, or bromo substituents. However, it is important to note that the introduction 
of these groups could also affect the binding affinity of the catalyst to its target, so careful 
optimization would be required.

To change the chiral environment of the catalyst, you will need to modify the structure of the 
N-aryl substituent. This can be done by introducing a chiral element into the aryl group, such as 
a chiral center or a chiral substituent. You may also need to adjust the connectivity of the aryl 
group to the indole moiety to achieve the desired chirality. It is important to note that 
changing the chiral environment of the catalyst may also affect its activity and selectivity, so you 
may need to optimize the new structure to achieve the desired results.

The part of the molecule that has the greatest chance of connecting with palladium is the amide 
bond between the aniline moiety and the rest of the molecule. This bond is formed between the 
carboxylic acid group of the aniline and the amino group of the rest of the molecule, and is a 
common site for coordination with palladium.

Figure 10: Examples of paper reading where new molecules and reactions are involved. correct and
relevant information in the replies is marked in green, correct but irrelevant information in yellow,
and wrong information in red. Key points of the answer are marked in bold.

Q-S7 (Q3), constructed based on Dargo et al. [2023], focus on the modification of catalyst molecules.
The molecule mentioned in the question is a novel instance and models need to infer the chemical
properties of that molecule to answer the question. The key point of the answer is “introducing
electron-withdrawing groups on the aromatic rings” as this method has the potential to increase
the acidity while keeping the catalytic ability of the molecule. Among the LLMs, only ChemDFM
successfully answers the key point, while others either fail to provide any specific solutions or give
wrong solutions which will damage the catalytic ability of the molecule.

Q-S8, constructed based on Hao et al. [2023], focus on the modification of chiral environment. In the
given molecule, there are two chiral centers. GPT-4 identifies the point chiral center and provides
candidate methods that are not all correct. The other three models identify the axial chirality which is
challenging to identify with only the SMILES notation. Among the three models, Galactica gives
almost no detailed method to change the chiral environment, LLaMa-2 gives one correct method with
more wrong ones, and ChemDFM provides two correct methods one of which is targeting specifically
the axial chirality.

Q-S9 is constructed on Wang et al. [2023a]. It asks for the coordinate sites between the given
molecule and palladium. There are a total of three coordinate sites. GPT-4 and ChemDFM each
identify one of them, while Galactica and LLaMa-2 fail to identify any.

C.2 Dialogue-Based Human-AI Collaboration

We demonstrate two more examples of dialogue-based human-AI collaboration based on ChemDFM
here. The dialogues are also inspired by the recently published papers to minimize the risk of
data leakage and evaluate ChemDFM’s capability to handle unforeseen situations during human-AI
collaboration.

The dialogue shown in Figure 11 is inspired by Yin et al. [2023]. During the dialogue, the human
researcher first asks for the role of LiCl in the given reaction. ChemDFM successfully identifies
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Round 1

The role of LiCl in this process is to act as a catalyst for the reaction. LiCl is added to a solution of the reactants in dry acetone, and 
it helps to facilitate the Diels-Alder reaction between the diene and dienophile moieties of the two starting materials. In this reaction, 
LiCl serves as a Lewis acid, coordinating with the carbonyl oxygen of one of the starting materials and increasing the 
electrophilicity of the dienophile. This makes it more reactive towards the diene, which is then able to add to the dienophile to form 
the final product

What is the role of LiCl in the process of generating O=C1C=C2C3(CCC2)CC4(C)CCC(C)(C)C4C31C from 
O=C1C(C(OC)=O)=C2C3(CCC2)CC4(C)CCC(C)(C)C4C31C?

Round 2

You are correct, I apologize for the mistake in my previous response. The process you described is not a Diels-Alder reaction, but 
rather a decarbonylation reaction. In this reaction, the LiCl catalyst helps to facilitate the loss of the carbonyl group from one 
of the starting materials, allowing the decarbonylated product to be formed. The exact mechanism by which LiCl promotes this 
reaction is not entirely clear, but it is believed to involve the formation of a carbanion intermediate that can undergo beta-
elimination to remove the carbonyl group.

But it is not Diels-Alder reaction. The ester group on reactant leaves to form product.

Round 3

After using LiCl to promote the decarbonylation reaction, the resulting intermediate product will contain a lithium salt. To obtain 
the final product, the lithium salt can be hydrolyzed by adding water to the reaction mixture. This will cause the lithium salt to 
precipitate out as a solid, and the resulting supernatant can be isolated and purified to obtain the final product. Alternatively, the 
lithium salt can be converted back into one of the starting materials by treating it with a proton source, such as acid.

After using LiCl, a lithium salt intermediate product was obtained. What should be added next to obtain the final product?

Figure 11: Example showing ChemDFM as an assistant researcher in the design of experiment
through free-form dialogue. Key points of the answer are marked in bold and wrong information in
red. The dialogue is inspired by Yin et al. [2023].

Round 1

When AIBN and Bu3SnH is added to 
CC(C)(C)[Si](C)(C)OC1(c2cc3c(cc2Br)OCO3)C(=O)N2CCCC23C=C(OC(=O)c2ccccc2)C(=O)C13, an intramolecular reaction 
will occur to form a new ring. The reaction involves the formation of a new C-C bond between the carbon adjacent to the 
carbonyl group and the carbon adjacent to the silicon group in the starting material. This reaction is called the "ene" reaction.

What intramolecular reactions will occur when AIBN and Bu3SnH is added to 
CC(C)(C)[Si](C)(C)OC1(c2cc3c(cc2Br)OCO3)C(=O)N2CCCC23C=C(OC(=O)c2ccccc2)C(=O)C13?

Round 2

You are correct, I apologize for the error in my previous response. The reaction between AIBN and Bu3SnH in the presence of 
CC(C)(C)[Si](C)(C)OC1(c2cc3c(cc2Br)OCO3)C(=O)N2CCCC23C=C(OC(=O)c2ccccc2)C(=O)C13 will result in a 
debromination reaction, not an ene reaction. The debromination reaction will occur at the beta-position of the enone moiety, 
resulting in the formation of a new C-C bond and the release of bromine.

But this is a radical debromination reaction.

Round 3

TBAF (tetrabutylammonium fluoride) is a source of fluoride ion and will be added to the reaction mixture after the debromination 
reaction. The purpose of adding TBAF is to hydrolyze the silicon-containing group in the product, thereby removing the 
protecting group and revealing the alcohol functional group. This step is necessary to allow for further functionalization of the 
molecule.

Subsequently, TBAF is added, and what is its purpose?

Figure 12: Example showing ChemDFM as an assistant researcher in the design of experiment
through free-form dialogue. Key points of the answer are marked in bold and wrong information in
red. The dialogue is inspired by Zhuang et al. [2023].
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the LiCl as a catalyst while misjudging the type of the reaction. To correct the answer, the human
researcher points out the key error in the answer with some important details of the reaction (which
can be easily discovered by comparing the product with the reactant). ChemDFM then corrects its
mistake with even more details about the reaction process. To further validate whether ChemDFM
fully understands the unforeseen reaction, we continue to ask about the post-processing procedure
which is necessary to get the final product. ChemDFM successfully captures the key point to the
question and gives the correct answer.

The dialogue shown in Figure 12 is inspired by Zhuang et al. [2023]. ChemDFM first gives a partially
correct answer to the question from the human researcher where it misjudges the position of the
newly formed C-C bond and the type of the reaction. With the help of human correction, ChemDFM
then realizes the mistakes and corrects them. Then the human researcher further asks about the next
reaction that is conducted in Zhuang et al. [2023] without clarifying the current molecule composition
of the system or restating the previous reaction. ChemDFM can infer this information from the
dialogue history and correctly answer the question.

In these dialogues, ChemDFM shows promising capabilities in handling unforeseen situations, error
correction, and inferring information from dialogue history. These capabilities can be attributed to
the fact that ChemDFM comprehends both natural language and chemical language. This allows
a universal language protocol established between ChemDFM and human researchers, enabling
meaningful human-AI collaborations.
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