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Abstract

Generative modeling of symmetric densities has a range of applications in Al for science,
from drug discovery to physics simulations. The existing generative modeling paradigm for
invariant densities combines an invariant prior with an equivariant generative process. How-
ever, we observe that this technique is not necessary and has several drawbacks resulting
from the limitations of equivariant networks. Instead, we propose to model a learned slice
of the density so that only one representative element per orbit is learned. To accomplish
this, we learn a group-equivariant canonicalization network that maps training samples
to a canonical pose and train a non-equivariant generative model over these canonicalized
samples. We implement this idea in the context of diffusion models. Our preliminary ex-
perimental results on molecular modeling are promising; demonstrating improved sample
quality and faster inference time.

Keywords: Generative modeling, equivariance, symmetry, deep learning.

1. Introduction

Equivariant models have emerged as a popular family of models for generative modeling
tasks with symmetry, see e.g. (Kohler et al., 2020; Shi et al., 2021; Hoogeboom et al.,
2022a; Vignac et al., 2023; Bose et al., 2024). These models are especially prevalent in
physical domains, which are subject to Euclidean symmetries (rotations and translations)
and permutation symmetries.

However, equivariant models have some limitations. One issue is computational com-
plexity, as specialized operations like group convolutions or spherical harmonics are expen-
sive (Kondor et al., 2018; Cohen et al., 2018; Weiler and Cesa, 2019b). Additionally, there
are expressivity constraints, since limiting models to equivariant functions may restrict their
ability to capture complex patterns not perfectly aligned with the symmetry group (Maron
et al., 2019a; Ravanbakhsh et al., 2017; Zhou and Feng, 2020). There are generally trade-
offs between expressivity and computational cost with equivariant models (Maron et al.,
2019b; Ravanbakhsh, 2020; Joshi et al., 2023; Xie et al., 2024). Furthermore, they can be
cumbersome to design and utilize. More flexible models with fewer rigid assumptions are
expected to scale better as available compute grows.

Despite these shortcomings, we see two common motivations for imposing equivariance
in generative models. First, using an equivariant generator guarantees that we model an
invariant distribution if we start from an invariant prior distribution (Kéhler et al., 2020; Xu
et al., 2022b). Second, equivariance can serve as a useful inductive bias for the generator:
if a data distribution over X is invariant to a group G, then an equivariant model can
generalize what it learns for sample z € X to ¢g-z,Vg € G making it more sample efficient.

For many tasks, having an invariant output distribution isn’t necessary. Consider
molecules: generating novel and stable molecules is more important than ensuring molecules

© 2024 .



Figure 1: Left: A distribution px that’s invariant to the group of rotations G. Right: a) A non-equivariant
generative model must learn the whole distribution px. b) A fixed canonicalization method
outputs group elements that map different samples of px onto a single slice (red), which may
be learned by a generative model. ¢) A learned canonicalizer can map samples onto a slice that
yields a simpler distribution for the generative model to learn.

can be generated in all orientations. Instead of modelling the density on X, it suffices to
model over X/G, the set of orbits of X with respect to a group G. To do this we need a
map c¢: X — X/G. Then, we can model a distribution on X/G using any non-equivariant
denoiser, giving the added benefit of increased flexibility and speed. Following recent works
(Kaba et al., 2023; Kim et al., 2023; Mondal et al., 2024; Allingham et al., 2024), we accom-
plish this by using a canonicalization function, which transforms data into a standardized
or “canonical” form, which is a representative element in its orbit under the group. By pa-
rameterizing ¢ as a neural network, the model can discover an optimal way to standardize
data, leading to improved representations and performance. This maintains the inductive
bias benefit of equivariance by ensuring similarly structured data is oriented similarly for
the generator.

We demonstrate this approach in our experiments using denoising diffusion models (Ho
et al., 2020). We show on a molecular dataset that using a simple non-equivariant denoising
network along with a learned canonicalizer results in higher-quality samples than using an
equivariant network, while halving inference time.

2. Methods

Our goal is to learn a distribution over the orbits X/G instead of directly learning a dis-
tribution over X. For this, we define the quotient map ¢ : X — X/G as ¢ (z) = h(z) " a,
following Bloem-Reddy and Teh (2020). The function A : X — G is a relaxed equivari-
ant canonicalization function Kaba and Ravanbakhsh (2023). The invariant quotient map
chooses a representative from the orbit G - x of any sample z.

Given the quotient map ¢ and a data distribution px(z), we then consider modelling
the distribution over the orbit representatives as px/q (c(z)).

This essentially corresponds to projecting the distributions over slices defined by orbit-
representatives, as shown in Figure 1. The distribution px,g is then modelled using a
non-equivariant generator network ¢. The resulting training procedure for a denoising
diffusion model is described in Algorithm 1.



Algorithm 1: Training a denoiser to produce canonical samples.

Input: Data point x, denoising network ¢, equivariant network A ;
Define canonicalizer ¢ : X — X/G by c(z) = h(x) ta;
While not converged:

Sample t ~ U(0,...,T),e ~ N(0,1);

Compute z; = aye(x) + o€ ;

Update h, ¢ to minimize |e — ¢(2, )%
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Figure 2: a) Output of the learned canonicalizer on RotMNIST after training showing aligned digits. b)
Select molecules generated from canon+GDM in a near-canonical pose.

The central hypothesis of our framework is that projecting the distribution over orbits
should result in a considerably simpler learning problem compared to modelling the full
distribution. Furthermore, learning the quotient map via the canonicalization function h,
should slice the distribution in a way that is easier to model for the generator ¢.

It is common practice to set the center of mass to be zero when modelling 3D molecules
in order to be invariant to translations, as one cannot define a translationally-invariant
prior distribution in Euclidean space (Kéhler et al., 2020). Our method can be seen as a
generalization of the center of this mass removal procedure to any group, and we therefore
similarly circumvent the issue of needing an invariant prior.

3. Experiments

3.1. Rotated MNIST Generation

We start with a simple task on images to demonstrate our framework. A UNet (Ronneberger
et al., 2015) is trained to denoise rotated MNIST digits (Larochelle et al., 2007), a common
classification benchmark for equivariant architechtures. We then train the same network
with discrete image canonicalization using an ESCNN (Weiler and Cesa, 2019a) with 8,
16 and 32 discretizations. Results in Table 2 (appendix B) show an improved loss on the
test set after canonicalization is applied. This method gives some visual intuition for what
canonicalization is doing. Figure 2 shows the output of a trained canonicalization network.
Digits across all classes are aligned, resulting in an easier task for the denoiser.



Table 1: QM9 Results.

Model NLL Mol stable At stable Valid Unique s/sample
GDM —105.8 70.6 97.5 88.6 99.8 0.55
EDM —-110.7+1.7 82.0+04 98.7+0.1 91.9+05 90.7+06 1.16
canon(fr)+GDM —104.1 82.1 97.8 92.9 99.5 0.55
canon+GDM -117.4 +£1.2 84.6 04 984+ 0.2 944 +0.3 99.7+ 0.2 0.55

3.2. QM9 Molecule Generation

Experiment Setup. Models are trained to generate molecules in the QM9 dataset (Ra-
makrishnan et al., 2014). As baselines, an Equivariant Diffusion Model (EDM) (Hoogeboom
et al., 2022a) and non-equivariant GNN Diffusion Model (GDM) with identical hyperpa-
rameters are trained on the task. Then, a multi-channel EGNN (Levy et al., 2023; Satorras
et al., 2021) is introduced as the canonicalization network, outputting a rotation matrix
that is applied to the molecule before denoising with the GDM backbone (canon+GDM).
We show that even an unlearned canonicalizer with frozen weights (canon(fr)+GDM) aids
the GDM in producing stable molecules.

Evaluation Setup. A similar evaluation setup to Satorras et al. (2022) and Hoogeboom
et al. (2022a) is used. We report the test NLL in addition to a number of desirable features
of generated molecules relevant to the drug discovery pipeline: atom stability, molecule
stability, validity, uniqueness and inference time.

Results. Our findings (Table 1) show that canon+GDM outperforms EDM across
several metrics while halving inference time. Additionally, the unlearned canonicalizer,
canon(fr)+GDM, is still able to generate stable molecules with results similar to EDM.
Figure 2 showsf samples from the canon+GDM model. These molecules are generated in
a near-canonical orientation: planar molecules are entirely confined to the xy plane while
other oblong molecules are primarily horizontal rather than vertical. This supports the
notion that the canonicalizer is able to learn to transform to poses that make denoising
easier and that the denoiser is able to generate molecules in such poses.

Although we used a simple non-equivariant counterpart of the equivariant generative
model from Hoogeboom et al. (2022b) as a denoising network in this experiment, our flexible
method can accommodate any arbitrarily expressive non-equivariant model.

4. Conclusion

We show that contrary to previous work, modelling the entire invariant distribution px
is unnecessary and simply modeling px/¢ via canonicalization is a more tractable task.
Using a learned canonicalizer allows us to maintain the inductive bias benefit of equivariant
neural networks while gaining flexibility and efficiency by the use of a fast expressive non-
equivariant generator. In future work, we expect the flexibility of this method will allow
for the use of even more powerful generators for generative modelling tasks across domains
with symmetry.
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Appendix A. Related Work

Equivariant neural networks Equivariant neural networks have been successfully ap-
plied in fields such as image processing Cohen and Welling (2016); Worrall et al. (2017);
Weiler and Cesa (2019b), 3D data processing Thomas et al. (2018); Fuchs et al. (2020);
Weiler and Cesa (2018); Deng et al. (2021); Esteves et al. (2018), graph analysis Maron
et al. (2019a); Keriven and Peyré (2019); Chen et al. (2020), physical simulations Finzi
et al. (2020); Han et al. (2019); Brandstetter et al. (2022), and AI for science applications
such as molecular modeling and computational chemistry Schiitt et al. (2017); Anderson
et al. (2019); Schiitt et al. (2021); Satorras et al. (2021); Gilmer et al. (2017); Unke and
Meuwly (2019), leading to improved generalization and sample efficiency. Despite their ben-
efits, existing techniques to build equivariant neural networks face several challenges. One
significant issue is computational complexity, as specialized operations like group con-
volutions or spherical harmonics are computationally expensive Fuchs et al. (2020); Kondor
et al. (2018); Weiler and Cesa (2019b); Cohen et al. (2018). Additionally, there are ex-
pressivity constraints, since limiting models to equivariant functions may restrict their
ability to capture complex patterns not perfectly aligned with the symmetry group Maron
et al. (2019a); Ravanbakhsh et al. (2017); Zhou and Feng (2020). Moreover, the design of
these networks inherently presents significant complexities and challenges, necessitat-
ing tailored architectural solutions that add layers of difficulty to both development and
practical implementation.
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Canonicalization for architecture-agnostic equivariance Canonicalization offers an
alternative approach to designing specialized neural networks by transforming data into a
standardized or “canonical” form, effectively removing symmetry-related variability. The
canonicalization function maps each data point to a representative element in its orbit
under the group. Recent works propose learning the canonicalization function jointly with
the main task-specific network Kaba et al. (2023); Kim et al. (2023); Mondal et al. (2024);
Allingham et al. (2024). By parameterizing ¢ as a neural network, the model can discover
an optimal way to standardize data, leading to improved representations and performance.

Equivariance and Diffusion Models Diffusion models have emerged as a powerful class
of generative models, achieving remarkable success in generating high-fidelity samples across
various domains Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021). These
models learn data distributions by reversing a diffusion process that incrementally adds
Gaussian noise to the data. Incorporating equivariance into diffusion models can enhance
their performance on data with inherent symmetries Hoogeboom et al. (2022b); Xu et al.
(2022a); Falorsi et al. (2018); Wang et al. (2022). Equivariant diffusion models ensure
that the generative process respects the symmetries of the data, leading to more efficient
learning and better generalization. However, integrating equivariance into diffusion models
also inherits the challenges associated with equivariant neural networks.

Appendix B. Experimental Detalils
B.1. RotMNIST Dataset

A denoising U-Net is trained with a base dimension of 64. The discrete image canonicalizer
is implemented using EquiAdapt (Mondal et al., 2023). An Equivariant Steerable Neural
Network (ESCNN) (Weiler and Cesa, 2019a) with 16 channels, 5 layers and kernel size 5
is used for canonicalization. Both networks are trained for 1000 epochs on an NVIDIA
A100-SXM4-80GB over roughly 9 hours.

Table 2: RotMNIST Results: reconstruction L2 distance of denoising model over the test
set with randomly sampled noising timesteps.

Model Test Reconstruction Loss
UNet 0.0312
canon(p32)+UNet 0.0264
canon(pl6)+UNet 0.0255
canon(p8)+UNet 0.0264
canon(pl6, fr)+UNet 0.0264

B.2. QM9 Dataset

The Equivaraint Diffusion Model (EDM) and Graph Diffusion Model (GDM) are trained
with hyperparameters equivalent to Hoogeboom et al. (2022b), namely 1000 diffusion steps
with polynomial noise schedule and precision le-5. An L2 denoising loss is used with batch

10



size 64. The denoiser has 256 node features and 9 layers. An EMA decay of 0.9999 is used.
For the canonicalization network, a multi-channel EGNN (Levy et al., 2023; Satorras et al.,
2021) is used to output two rotation vectors which are then orthonomalized into a rotation
matrix via modified Gram-Schmidt. The network has 9 layers and 64 node features. A
single run on a Quadro RTX 8000 takes roughly 4 days.
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