
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCORE-BASED PULLBACK RIEMANNIAN GEOMETRY

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-driven Riemannian geometry has emerged as a powerful tool for inter-
pretable representation learning, offering improved efficiency in downstream
tasks. Moving forward, it is crucial to balance cheap manifold mappings with ef-
ficient training algorithms. In this work, we integrate concepts from pullback Rie-
mannian geometry and generative models to propose a framework for data-driven
Riemannian geometry that is scalable in both geometry and learning: score-based
pullback Riemannian geometry. Focusing on unimodal distributions as a first step,
we propose a score-based Riemannian structure with closed-form geodesics that
pass through the data probability density. With this structure, we construct a Rie-
mannian autoencoder (RAE) with error bounds for discovering the correct data
manifold dimension. This framework can naturally be used with anisotropic nor-
malizing flows by adopting isometry regularization during training. Through nu-
merical experiments on various datasets, we demonstrate that our framework not
only produces high-quality geodesics through the data support, but also reliably
estimates the intrinsic dimension of the data manifold and provides a global chart
of the manifold, even in high-dimensional ambient spaces.

1 INTRODUCTION

Data often reside near low-dimensional non-linear manifolds as illustrated in Figure 1. This mani-
fold assumption (Fefferman et al., 2016) has been popular since the early work on non-linear dimen-
sion reduction (Belkin & Niyogi, 2001; Coifman & Lafon, 2006; Roweis & Saul, 2000; Sammon,
1969; Tenenbaum et al., 2000). Learning this non-linear structure, or representation learning, from
data has proven to be highly successful (DeMers & Cottrell, 1992; Kingma & Welling, 2013) and
continues to be a recurring theme in modern machine learning approaches and downstream appli-
cations (Chow et al., 2022; Gomari et al., 2022; Ternes et al., 2022; Vahdat & Kautz, 2020; Zhong
et al., 2021).

Recent advances in data-driven Riemannian geometry have demonstrated its suitability for learning
representations. In this context, these representations are elements residing in a learned geodesic
subspace of the data space, governed by a non-trivial Riemannian structure1 across the entire am-
bient space (Arvanitidis et al., 2016; Diepeveen, 2024; Hauberg et al., 2012; Peltonen et al., 2004;
Scarvelis & Solomon, 2023; Sorrenson et al., 2024; Sun et al., 2024). Among these contributions,
it is worth highlighting that Sorrenson et al. (2024) are the first and only ones so far to use infor-
mation from the full data distribution obtained though generative models (Dinh et al., 2017; Song
et al., 2020), even though this seems a natural approach given recent studies such as Sakamoto et al.
(2024); Stanczuk et al. (2022). A possible explanation for the limited use of generative models
in constructing Riemannian geometry could lie in challenges regarding scalability of the manifold
mappings. Indeed, even though the generative models can be trained efficiently, Sorrenson et al.
(2024) also mention themselves that it can be numerically challenging to work with their induced
Riemannian geometry.

If the manifold mapping scalability challenges were to be overcome, the combined power of Rie-
mannian geometry and state of the art generative modelling could have profound implications on
how to handle data in general. Indeed, beyond typical data analysis tasks such as computing dis-
tances, means, and interpolations/extrapolations of data points as illustrated in Figures 2a to 2d, a
data-driven Riemannian structure also offers greater potential for representation learning and down-

1rather than the standard ℓ2-inner product

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Hemisphere (2,3) (b) Sinusoid (1,3) (c) Sinusoid (2,3)

Figure 1: Approximate data manifolds learned by the Riemannian autoencoder generated by score-
based pullback Riemannian geometry for three datasets. The orange surfaces represent the manifolds
learned by the model, while the blue points correspond to the training data. Each manifold provides
a convincing low-dimensional representation of the data, isometric to its respective latent space.

stream applications. For instance, many advanced data processing methods, from Principal Compo-
nent Analysis (PCA) to score and flow-matching, have Riemannian counterparts (Diepeveen et al.
(2023); Fletcher et al. (2004) and Chen & Lipman (2023); Huang et al. (2022)) that have proven
beneficial by improving upon full black box methods in terms of interpretability (Diepeveen, 2024)
or Euclidean counterparts in terms of efficiency (Kapusniak et al., 2024; de Kruiff et al., 2024).
Here it is worth highlighting that scalability of manifold mappings was completely circumvented by
Diepeveen (2024) and de Kruiff et al. (2024) by using pullback geometry. However, here learning a
suitable (and stable) pullback geometry suffers from challenges regarding scalability of the training
algorithm, contrary to the approach by Sorrenson et al. (2024).

Motivated by the above, this work aims to address the following question: How to strike a good
balance between scalability of training a data-driven Riemannian structure and of evaluating its
corresponding manifold mappings?

(a) Barycentre (b) Geodesic (c) Logarithm (d) Exponential

Figure 2: Proposed Riemannian geometry from a toy probability density, visualized by its level sets.

1.1 CONTRIBUTIONS

In this paper, we take first steps towards striking such a balance and propose a score-based pull-
back Riemannian metric assuming a relatively simple but generally applicable family of probability
densities, which we show to result in both scalable manifold mappings and scalable learning algo-
rithms. We emphasize that we do not directly aim to find the perfect balance between the two types
of scalability. Instead we start from a setting which has many nice properties, but will allow for
generalization to multimodal densities, which we reserve for future work.

Specifically, we consider a family of unimodal probability densities whose negative log-likelihoods
are compositions of strongly convex functions and diffeomorphisms. As this work is an attempt to
bridge between the geometric data analysis community and the generative modeling community, we
break down the contributions in two ways. Theoretically,

• We propose a score-based pullback Riemannian metric such that manifold mappings re-
spect the data distribution as illustrated in Figures 2a to 2d.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We demonstrate that this density-based Riemannian structure naturally leads to a Rieman-
nian autoencoder2 and provide error bounds on the expected reconstruction error, which
allows for approximation of the data manifold as illustrated in Figure 1.

• We introduce a learning scheme based on adaptations of normalizing flows to find the
density to be integrated into the Riemannian framework, which is tested on several synthetic
data sets.

Practically, this work showcases how two simple adaptations to the normalizing flows framework
enable data-driven Riemannian geometry. This significantly expands the potential for downstream
applications compared to the unadapted framework.

1.2 OUTLINE

After introducing notation in Section 2, Section 3 considers a family of probability distributions,
from which we obtain suitable geometry, and Section 4 showcases how one can subsequently con-
struct Riemannian Autoencoders with theoretical guarantees. From these observations Section 5 dis-
cusses the natural limitations of standard normalizing flows and how to change the parametrisation
and training for downstream application in a Riemannian geometric setting. Section 6 showcases
several use cases of data-driven Riemannian structure on several data sets. Finally, we summarize
our findings in Section 7.

2 NOTATION

Here we present some basic notations from differential and Riemannian geometry, see Boothby
(2003); Carmo (1992); Lee (2013); Sakai (1996) for details.

Let M be a smooth manifold. We write C∞(M) for the space of smooth functions over M. The
tangent space at p ∈ M, which is defined as the space of all derivations at p, is denoted by
TpM and for tangent vectors we write Ξp ∈ TpM. For the tangent bundle we write T M and
smooth vector fields, which are defined as smooth sections of the tangent bundle, are written as
X (M) ⊂ T M.

A smooth manifold M becomes a Riemannian manifold if it is equipped with a smoothly varying
metric tensor field (· , ·) : X (M) × X (M) → C∞(M). This tensor field induces a (Rieman-
nian) metric dM : M × M → R. The metric tensor can also be used to construct a unique affine
connection, the Levi-Civita connection, that is denoted by ∇(·)(·) : X (M)×X (M) → X (M).
This connection is in turn the cornerstone of a myriad of manifold mappings. One is the notion of
a geodesic, which for two points p,q ∈ M is defined as a curve γp,q : [0, 1] → M with minimal
length that connects p with q. Another closely related notion to geodesics is the curve t 7→ γp,Ξp(t)
for a geodesic starting from p ∈ M with velocity γ̇p,Ξp(0) = Ξp ∈ TpM. This can be used to
define the exponential map expp : Dp → M as

expp(Ξp) := γp,Ξp(1) where Dp ⊂ TpM is the set on which γp,Ξp(1) is defined. (1)

Furthermore, the logarithmic map logp : exp(D′
p) → D′

p is defined as the inverse of expp, so it is
well-defined on D′

p ⊂ Dp where expp is a diffeomorphism.

Finally, if (M, (·, ·)) is a d-dimensional Riemannian manifold, N is a d-dimensional smooth mani-
fold and ϕ : N → M is a diffeomorphism, the pullback metric

(Ξ,Φ)ϕ := (D(·)ϕ[Ξ(·)], D(·)ϕ[Φ(·)])ϕ(·), (2)

where Dpϕ : TpN → Tϕ(p)M denotes the differential of ϕ, defines a Riemannian structure on N ,
which we denote by (N , (·, ·)ϕ). Pullback metrics literally pull back all geometric information from
the Riemannian structure on M. In particular, closed-form manifold mappings on (M, (·, ·)) yield
under mild assumptions closed-form manifold mappings on (N , (·, ·)ϕ). Throughout the rest of the
paper pullback mappings will be denoted similarly to (2) with the diffeomorphism ϕ as a superscript,
i.e., we write dϕN (p,q), γϕp,q, expϕp(Ξp) and logϕp q for p,q ∈ N and Ξp ∈ TpN .

2in the sense of Diepeveen (2024)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 RIEMANNIAN GEOMETRY FROM UNIMODAL PROBABILITY DENSITIES

We remind the reader that the ultimate goal of data-driven Riemannian geometry on Rd is to con-
struct a Riemannian structure such that geodesics always pass through the support of data probability
densities. In this section we will focus on constructing Riemannian geometry that does just that from
unimodal densities p : Rd → R of the form

p(x) ∝ e−ψ(φ(x)) (3)

where ψ : Rd → R is a smooth strongly convex function and φ : Rd → Rd is a diffeomorphism,
e.g., such as the density in Figure 23. In particular, we will consider pullback Riemannian structures
of the form

(Ξ,Φ)∇ψ◦φx := (Dx∇ψ ◦ φ[Ξ], Dx∇ψ ◦ φ[Φ])2, (4)
which are related to the Riemannian structure obtained from the score function ∇ log(p(·)) : Rd →
Rd if φ is close to a linear ℓ2-isometry on the data support, i.e., Dxφ is an orthogonal operator:

(Dx∇ log(p(·))[Ξ], Dx∇ log(p(·))[Φ])2 = (Dx∇(ψ ◦ φ)[Ξ], Dx∇(ψ ◦ φ)[Φ])2
= (Dx((D(·)φ)

⊤ ◦ ∇ψ ◦ φ)[Ξ], Dx((D(·)φ)
⊤ ◦ ∇ψ ◦ φ)[Φ])2

≈ (Dx∇ψ ◦ φ[Ξ], Dx∇ψ ◦ φ[Φ])2 = (Ξ,Φ)∇ψ◦φx . (5)

For that reason, we call such an approach to data-driven Riemannian geometry: score-based pull-
back Riemannian geometry. Since we find ourselves in a pullback setting4, this allows to construct
pullback geometry with closed-form manifold mappings.

What remains to be shown is that such geodesics and other manifold mappings pass through the data
support (like in Figures 2a to 2d). The following result, which is a direct application of (Diepeveen,
2024, Prop. 2.1) and (Diepeveen, 2024, Cor. 3.6.1), gives us closed-form expressions of several
important manifold mappings under (·, ·)∇ψ◦φ and makes a connection with (·, ·)φ if we choose

ψ(x) =
1

2
x⊤A−1x, (6)

where A ∈ Rd×d is symmetric positive definite.

This special case highlights why, in general, we expect to obtain geodesics and manifold mappings
that pass through the data support. For instance, in the scenario depicted in Figure 2b, where the
correct form (3) is used, geodesics are computed by first reversing the effect of the diffeomorphism
– transforming the data distribution to resemble a Gaussian, then drawing straight lines between
the morphed data points, and finally applying the diffeomorphism again. This approach results
in geodesics that traverse regions of higher likelihood between the endpoints, due to the strong
convexity of the quadratic function, which aligns perfectly with our objectives.

For the proof of the result below and a more general statement and proof related to geodesics passing
through the data support as in explanation above, we refer the reader to Appendix A.
Proposition 1. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a smooth
strongly convex function, whose Fenchel conjugate is denoted by ψ⋆ : Rd → R. Next, consider the
ℓ2-pullback manifolds (Rd, (·, ·)∇ψ◦φ) and (Rd, (·, ·)φ) defined through metric tensor fields

(Ξ,Φ)∇ψ◦φx := (Dx∇ψ ◦ φ[Ξ], Dx∇ψ ◦ φ[Φ])2, and (Ξ,Φ)φx := (Dxφ[Ξ], Dxφ[Φ])2. (7)

Then,

(i) length-minimising geodesics γ∇ψ◦φx,y : [0, 1] → Rd on (Rd, (·, ·)∇ψ◦φ) are given by

γ∇ψ◦φx,y (t) = (φ−1 ◦ ∇ψ⋆)((1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y)). (8)

In addition, if ψ is of the form (6)

γ∇ψ◦φx,y (t) = γφx,y(t) = φ−1((1− t)φ(x) + tφ(y)). (9)
3Here, ψ(x) := 2x2

1 +
1
8
x2
2 and φ(x) := (x1 − 1

9
x2
2,x2).

4This is generally not true when using the score itself for probability densities of the form (3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(ii) the logarithmic map log∇ψ◦φx (·) : Rd → TxRd on (Rd, (·, ·)∇ψ◦φ) is given by

log∇ψ◦φx y = Dφ(x)φ
−1[D(∇ψ◦φ)(x)∇ψ⋆[(∇ψ ◦ φ)(y)− (∇ψ ◦ φ)(x)]]. (10)

In addition, if ψ is of the form (6)

log∇ψ◦φx y = logφx y = Dφ(x)φ
−1[φ(y)− φ(x)]. (11)

(iii) the exponential map exp∇ψ◦φx (·) : TxRd → Rd on (Rd, (·, ·)∇ψ◦φ) is given by

exp∇ψ◦φx (Ξx) = (φ−1 ◦ ∇ψ⋆)((∇ψ ◦ φ)(x) +Dφ(x)∇ψ[Dxφ[Ξx]]). (12)

In addition, if ψ is of the form (6)

exp∇ψ◦φx (Ξx) = expφx(Ξx) = φ−1(φ(x) +Dxφ[Ξx]). (13)

(iv) the distance d∇ψ◦φRd : Rd × Rd → R on (Rd, (·, ·)∇ψ◦φ) is given by

d∇ψ◦φRd (x,y) = ∥(∇ψ ◦ φ)(x)− (∇ψ ◦ φ)(y)∥2. (14)

In addition, if ψ is of the form (6)

d∇ψ◦φRd (x,y) = ∥φ(x)− φ(y)∥A−2 := ∥A−1(φ(x)− φ(y))∥2. (15)

(v) the Riemannian barycentre x∗ ∈ Rd of the data set {xi}Ni=1 on (Rd, (·, ·)∇ψ◦φ) is given by

x∗ := argmin
x∈Rd

{ 1

2N

N∑
i=1

d∇ψ◦φRd (x,xi)2
}
= (φ−1 ◦ ∇ψ⋆)

(1

N

N∑
i=1

∇ψ(φ(xi))
)
. (16)

In addition, if ψ is of the form (6)

x∗ := argmin
x∈Rd

{ 1

2N

N∑
i=1

dφRd(x,x
i)2

}
= φ−1

(1

N

N∑
i=1

φ(xi)
)
. (17)

Remark 1. We note that ℓ2-stability of geodesics and the barycentre are inherited by (Diepeveen,
2024, Thms. 3.4&3.8), if we have (approximate) local ℓ2-isometry of φ on the data distribution.

4 RIEMANNIAN AUTOENCODER FROM UNIMODAL PROBABILITY DENSITIES

The connection between (·, ·)∇ψ◦φ and (·, ·)φ begs the question what ψ could still be used for if
it is of the form (6). We note that this case comes down to having a data probability density that
is a deformed Gaussian distribution. In the case of a regular (non-deformed) Gaussian, one can
compress the data generated by it through projecting them onto a low rank approximation of the
covariance matrix such that only the directions with highest variance are taken into account. This is
the basic idea behind PCA. In the following we will generalize this idea to the Riemannian setting
and observe that this amounts to constructing a Riemannian autoencoder (RAE) (Diepeveen, 2024),
whose error we can bound by picking the dimension of the autoencoder in a clever way, reminiscent
of the classical PCA error bound.

Concretely, we assume that we have a unimodal density of the form (3) with a quadratic strongly
convex function ψ(x) := 1

2x
⊤A−1x for some diagonal matrix A := diag(a1, . . .ad) with positive

entries5. Next, we define an indexing uw ∈ [d] := {1, . . . , d} for w = 1, . . . , d such that

au1
≥ . . . ≥ aud

, (18)

and consider a threshold ε ∈ [0, 1]. We then consider dε ∈ [d] defined as the integer that satisfies

dε :=

{
min

{
d′ ∈ [d− 1]

∣∣∣ ∑d
w=d′+1 auw

≤ ε
∑d
u=1 au

}
, if aud

≤ ε
∑d
u=1 au,

d, otherwise.
. (19)

5Note that this is not restrictive as for a general symmetric positive definite matrix A the eigenvalues can
be used as diagonal entries and the orthonormal matrices can be concatenated with the diffeomorphism.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, we define the mapping Eε : Rd → Rdε coordinate-wise as

Eε(x)w := (logφφ−1(0) x, D0φ
−1[euw])φφ−1(0)

(11)
= (φ(x), euw)2, w = 1, . . . , dε, (20)

and define Dε : Rdε → Rd as

Dε(p) := expφφ−1(0)

(dε∑
w=1

pwD0φ
−1[euw]

)
(13)
= φ−1

(dε∑
w=1

pwe
uw

)
, (21)

which generate a Riemannian autoencoder and the set Dε(Rdε) ⊂ Rd as an approximate data man-
ifold as in the scenario in Figure 1.

As hinted above, this Riemannian autoencoder comes with an error bound on the expected approx-
imation error, which is fully determined by the diffeomorphism’s deviation from isometry around
the data manifold. For the proof, we refer the reader to Appendix B.
Theorem 1. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a quadratic
function of the form (6) with positive definite diagonal matrix A ∈ Rd×d. Furthermore, let p :
Rd → R be the corresponding probability density of the form (3). Finally, consider ε ∈ [0, 1] and
the mappings Eε : Rd → Rdε and Dε : Rdε → Rd in (20) and (21) with dε ∈ [d] as in (19).

Then,

EX∼p[∥Dε(Eε(X))−X∥22] ≤ ε inf
β∈[0, 12)

{C1
β,φC

2
β,φC

3
β,φ

1− 2β

(1 + β

1− 2β

) d
2
} d∑
i=1

ai + o(ε), (22)

where
C1
β,φ := sup

x∈Rd

{∥Dφ(x)φ
−1∥22e−

β
2 φ(x)

⊤A−1φ(x)}, (23)

C2
β,φ := sup

x∈Rd

{| det(Dxφ)|e−
β
2 φ(x)

⊤A−1φ(x)}, (24)

and
C3
β,φ := sup

x∈Rd

{|det(Dφ(x)φ
−1)|e−

β
2 φ(x)

⊤A−1φ(x)}. (25)

Remark 2. Note that the RAE latent space is interpretable as it is ℓ2-isometric to the data manifold
if φ is an approximate ℓ2-isometry on the data manifold. In other words, latent representations
being close by or far away correspond to similar behaviour in data space, which is not the case for
a VAE (Kingma & Welling, 2013).

5 LEARNING UNIMODAL PROBABILITY DENSITIES

Naturally, we want to learn probability densities of the form (3), which can then directly be inserted
into the proposed score-based pullback Riemannian geometry framework. In this section we will
consider how to adapt normalizing flow (NF) (Dinh et al., 2017) training to a setting that is more
suitable for our purposes6. In particular, we will consider how training a normalizing flow density
p : Rd → R given by

p(x) :=
1

Cψ
e−ψ(φ(x))|det(Dxφ)|, (26)

where Cψ > 0 is a normalisation constant that only depends on the strongly convex function ψ,
yields our target distribution (3).

From Sections 3 and 4 we have seen that ideally the strongly convex function ψ : Rd → R cor-
responds to a Gaussian with a parameterised diagonal covariance matrix A ∈ Rd×d, resulting in
more parameters than in standard normalizing flows, whereas the diffeomorphism φ : Rd → Rd is
regularized to be an isometry. In particular, A ideally allows for learnable anisotropy rather than
having a fixed isotropic identity matrix. The main reason is that through anisotropy we can con-
struct a Riemannian autoencoder (RAE), since it is known which dimensions are most important.

6We note that the choice for adapting the normalizing flow training scheme rather than using diffusion
model training schemes is due to more robust results through the former.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Moreover, the diffeomorphism should be ℓ2-isometric, unlike standard normalizing flows which are
typically non-volume preserving, enabling stability (Remark 1) and a practically useful and inter-
pretable RAE (Theorem 1 and remark 2). In addition, ℓ2-isometry (on the data support) implies
volume-preservation, which means that |det(Dxφ)| ≈ 1 so that (26) reduces to the target distribu-
tion (3)7.

This leads to learning the density through minimizing the following adapted normalizing flow loss

L(θ1, θ2) := EX∼pdata [− log pθ1,θ2(X)]

+ λvolEX∼pdata

[
log(|det

(
DXφθ2

)
|)2

]
+ λisoEX∼pdata

[
∥(DXφθ2)

⊤DXφθ2 − Id∥2F
]

(27)

where λvol, λiso > 0 and the negative log likelihood term reduces to

EX∼pdata [− log pθ1,θ2(X)] =
1

2
EX∼pdata

[
φθ2(X)⊤A−1

θ1
φθ2(X)

]
− EX∼pdata

[
log(|det

(
DXφθ2

)
|)
]
+

1

2
tr(Aθ1) +

d

2
log(2π), (28)

where Aθ1 is a diagonal matrix and φθ2 is a normalizing flow with affine coupling layers8 (Dinh
et al., 2017).

6 EXPERIMENTS

We conducted two sets of experiments to evaluate the proposed scheme from Section 5 to learn suit-
able pullback Riemannian geometry. The first set investigates whether our adaptation of the standard
normalizing flow (NF) training paradigm leads to more accurate and stable manifold mappings, as
measured by the geodesic and variation errors. The second set assesses the capability of our method
to generate a robust Riemannian autoencoder (RAE).

For all experiments in this section, detailed training configurations are provided in Appendix E.

6.1 MANIFOLD MAPPINGS

As discussed in Diepeveen (2024), the quality of learned manifold mappings is determined by two
key metrics: the geodesic error and the variation error. The geodesic error measures the average
deviation form the ground truth geodesics implied by the ground truth pullback metric, while the
variation error evaluates the stability of geodesics under small perturbations. We define these error
metrics for the evaluation of pullback geometries in Appendix D.

Our approach introduces two key modifications to the normalizing flow (NF) training framework:

1. Anisotropic Base Distribution: We parameterize the diagonal elements of the covariance
matrix Aθ1 , introducing anisotropy into the base distribution.

2. ℓ2-Isometry Regularization: We regularize the flow φθ2 to be approximately ℓ2-isometric.

To assess the effectiveness of these modifications in learning more accurate and robust manifold
mappings, we compare our method against three baselines:

(1) Normalizing Flow (NF): Uses an NF with a standard isotropic Gaussian base distribution
N (0, Id) and no isometry regularization of the flow.

7We note that without these constraints (accommodating multimodality) the learned mappings can in prin-
ciple be used to construct Riemannian geometry and a RAE. However, from the theory discussed in this paper
we cannot guarantee stability of manifold mappings nor that the RAE has the right dimension.

8We note that the choice for affine coupling layers rather than using more expressive diffeomorphisms such
as rational quadratic flows Durkan et al. (2019) is due to our need for high regularity for stable manifold map-
pings (Remark 1) and an interpretable RAE (Remark 2), which has empirically shown to be more challenging
to achieve for more expressive flows as both first-and higher-order derivatives of φ will blow up the error terms
in theorem 1. For more details refer to appendix G.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Metric Our Method NF Anisotropic NF Isometric NF
Single Banana Dataset

Geodesic Error 0.0315 (0.0268) 0.0406 (0.0288) 0.0431 (0.0305) 0.0817 (0.1063)
Variation Error 0.0625 (0.0337) 0.0638 (0.0352) 0.0639 (0.0354) 0.0639 (0.0355)

Squeezed Single Banana Dataset
Geodesic Error 0.0180 (0.0226) 0.0524 (0.0805) 0.0505 (0.0787) 0.1967 (0.2457)
Variation Error 0.0631 (0.0326) 0.0663 (0.0353) 0.0661 (0.0350) 0.0669 (0.0361)

River Dataset
Geodesic Error 0.1691 (0.0978) 0.2369 (0.1216) 0.2561 (0.1338) 0.3859 (0.2568)
Variation Error 0.0763 (0.0486) 0.1064 (0.0807) 0.1113 (0.0863) 0.0636 (0.0333)

Table 1: Comparison of evaluation metrics for different methods across three datasets. Best-
performing results for each metric are highlighted in bold. Values are reported as mean (std). The
proposed method performs best in all metrics on each data set.

(2) Anisotropic Normalizing Flow: Uses an NF with the same parameterization of the diagonal
covariance matrix in the base distribution as in our method, but without regularization of
the flow.

(3) Isometric Normalizing Flow: Uses an NF with an isotropic Gaussian base distribution
N (0, Id) and regularizes the flow to be approximately ℓ2-isometric.

We conduct experiments on three datasets, illustrated in Figure 6 in Appendix C.1: the Single Ba-
nana Dataset, the Squeezed Single Banana Dataset, and the River Dataset. Detailed descriptions of
the construction and characteristics of these datasets are provided in Appendix C.1.

Table 1 presents the geodesic and variation errors for each method across the three datasets and
Figure 3 visually compares the geodesics computed using each method on the river dataset. Our
method consistently achieves significantly lower errors compared to the baselines, indicating more
accurate and stable manifold mappings.

Introducing anisotropy in the base distribution without enforcing isometry in the flow offers no sig-
nificant improvement over the standard flow. On the other hand, regularizing the flow to be approx-
imately isometric without incorporating anisotropy in the base distribution results in underfitting,
leading to noticeably worse performance than the standard flow. Our results demonstrate that the
combination of anisotropy in the base distribution with isometry regularization (our method) yields
the most accurate and stable manifold mappings, as evidenced by consistently lower geodesic and
variation errors.

(a) Ground Truth (b) Our Method (c) Standard NF (d) Anisotropic NF (e) Isometric NF

Figure 3: Comparison of geodesics computed using different methods on the river dataset. The
geodesics generated by the proposed method have least artifacts, which is in line with our expecta-
tions from Table 1.

6.2 RIEMANNIAN AUTOENCODER

To evaluate the capacity of our method to learn a Riemannian autoencoder, we conducted experi-
ments on two synthetic datasets across various combinations of intrinsic dimension d′ and ambient
dimension d:

• Hemisphere(d′, d): Samples are drawn from the upper hemisphere of a d′-dimensional unit
sphere and embedded in an d-dimensional ambient space via a random isometric mapping.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• Sinusoid(d′, d): This dataset is generated by applying sinusoidal transformations to d′-
dimensional latent variables, resulting in a complex, nonlinear manifold embedded in d
dimensions.

For a detailed description of these datasets, refer to Appendix C.2.

6.2.1 1D AND 2D MANIFOLDS

In Figures 1 and 4, we present the data manifold approximations by our Riemannian autoen-
coder for four low-dimensional manifolds.: Hemisphere(2,3), Sinusoid(1,3), Sinusoid(2,3) and Si-
nusoid(1,100). In appendix F, we detail the process used to create the data manifold approximations
for these experiments. In our experiments, we set ϵ = 0.01, which resulted in dϵ = d′ for all cases,
accurately capturing the intrinsic dimension of each manifold and producing accurate global charts.

(a) Dims (5, 59, 92) (b) Dims (31, 55, 66) (c) Dims (64, 72, 90)

Figure 4: Approximate data manifold learned by the Riemannian autoencoder for the Sinusoid(1,
100) dataset. The orange curves depict the manifold learned by the model, while the blue points
show the training data. We visualize three different combinations of the ambient dimensions.

6.2.2 HIGHER-DIMENSIONAL MANIFOLDS

To evaluate the scalability of our method to higher-dimensional manifolds, we conducted additional
experiments on the Hemisphere(5,20) and Sinusoid(5,20) datasets.

Our theory suggests that the learned variances indicate the importance of each latent dimension:
higher variances signal more important dimensions for reconstructing the manifold, while dimen-
sions with vanishing variances are considered insignificant and are disregarded when constructing
the Riemannian autoencoder. To test the model’s ability to correctly identify important and unimpor-
tant latent dimensions, we report the average ℓ2 reconstruction error for each dataset as a function
of the number of latent dimensions used. In the reconstruction error plots (see figs. 5b and 5d),
we report three variance-based orders for adding latent dimensions: decreasing variance order (blue
line), increasing variance order (green line), and random order (red line).

For the Hemisphere(5,20) dataset, the model identified five non-vanishing variances (see fig. 5a),
perfectly capturing the intrinsic dimension of the manifold. This is reflected in the blue curve in
fig. 5b, where the first five latent dimensions, corresponding to the largest variances, are sufficient
to reduce the reconstruction error almost to zero. In contrast, the green curve illustrates that the
remaining ambient dimensions do not encode useful information about the manifold. The red curve
demonstrates improvement only when an important latent dimension is included.

For the more challenging Sinusoid(5,20) dataset, our method still performs very well, though not
as perfectly as for the Hemisphere dataset. The first six most important latent dimensions explain
approximately 97% of the variance, increasing to over 99% with the seventh dimension (see fig. 5c).
This is reflected in the blue curve in fig. 5d, where the first six latent dimensions reduce the recon-
struction error to near zero, and the addition of the seventh dimension brings the error effectively to
zero. The slight discrepancy between our results and the ground truth likely arises from increased
optimization difficulty, as the normalizing flow must learn a more intricate distribution while main-
taining approximate isometry. We believe that with deeper architectures and more careful tuning
of the optimization loss, the model will converge to the correct intrinsic dimensionality of five.
Currently, it predicts six dimensions at a threshold of ϵ = 0.05 and seven at ϵ = 0.01, slightly
overestimating due to the manifold’s complexity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Hemisphere (5,20)

(a) Learned variances in decreasing order. (b) Reconstruction error for three latent orders.

Sinusoid (5,20)

(c) Learned variances in decreasing order. (d) Reconstruction error for three latent orders.

Figure 5: Learned variances and reconstruction errors for the Hemisphere(5,20) and Sinusoid(5,20)
datasets. The plots in the left column show the learned variances in decreasing order for each dataset,
while the right column illustrates the average ℓ2 reconstruction error as a function of the number of
latent dimensions used. The reconstruction errors are evaluated for three variance-based orders of
the latent dimensions: the blue line (circular markers) represents adding dimensions in decreasing
order of variance, the green line (square markers) for increasing variance, and the red line (diamond
markers) for a random order.

7 CONCLUSIONS

In this work we have taken a first step towards a practical data-driven Riemannian geometry frame-
work, striking a balance between scalability of training a data-driven Riemannian structure and of
evaluating its corresponding manifold mappings. We have considered a family of unimodal prob-
ability densities whose negative log-likelihoods are compositions of strongly convex functions and
diffeomorphisms, and sought to learn them. We have shown that once these unimodal densities have
been learned, the proposed score-based pullback geometry gives us closed-form geodesics that pass
through the data probability density and a Riemannian autoencoder with error bounds that can be
used to estimate the dimension of the data manifold. Finally, to learn the distribution we have pro-
posed an adaptation to normalizing flow training. Through numerical experiments, we have shown
that these modifications are crucial for extracting geometric information, and that our framework
not only generates high-quality geodesics across the data support, but also accurately estimates the
intrinsic dimension of the approximate data manifold while constructing a global chart, even in
high-dimensional ambient spaces. Current challenges of the method lie in balancing the expressiv-
ity of the network architecture, e.g., through additional layers or more expressive architectures, and
satisfying approximate ℓ2-isometry on the data support. For future work we aim to overcome these
challenges, extending the method to multimodal distributions, while making it scalable for higher-
dimensional data sets. After that, we believe that this line of work has wide variety of downstream
applications as many of the applications mentioned to motivate this line of work will benefit from
more interpretable representation learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Georgios Arvanitidis, Lars K Hansen, and Søren Hauberg. A locally adaptive normal distribution.
Advances in Neural Information Processing Systems, 29, 2016.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

William M Boothby. An introduction to differentiable manifolds and Riemannian geometry, Revised,
volume 120. Gulf Professional Publishing, 2003.

Manfredo Perdigao do Carmo. Riemannian geometry. Birkhäuser, 1992.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv
preprint arXiv:2302.03660, 2023.

Yuen Ler Chow, Shantanu Singh, Anne E Carpenter, and Gregory P Way. Predicting drug polyphar-
macology from cell morphology readouts using variational autoencoder latent space arithmetic.
PLoS computational biology, 18(2):e1009888, 2022.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Friso de Kruiff, Erik Bekkers, Ozan Öktem, Carola-Bibiane Schönlieb, and Willem Diepeveen.
Pullback flow matching on data manifolds. arXiv preprint arXiv:2410.04543, 2024.

David DeMers and Garrison Cottrell. Non-linear dimensionality reduction. Advances in neural
information processing systems, 5, 1992.

Willem Diepeveen. Pulling back symmetric riemannian geometry for data analysis. arXiv preprint
arXiv:2403.06612, 2024.

Willem Diepeveen, Joyce Chew, and Deanna Needell. Curvature corrected tangent space-based
approximation of manifold-valued data. arXiv preprint arXiv:2306.00507, 2023.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=HkpbnH9lx.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in neural information processing systems, 32, 2019.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

P Thomas Fletcher, Conglin Lu, Stephen M Pizer, and Sarang Joshi. Principal geodesic analysis for
the study of nonlinear statistics of shape. IEEE transactions on medical imaging, 23(8):995–1005,
2004.

Daniel P Gomari, Annalise Schweickart, Leandro Cerchietti, Elisabeth Paietta, Hugo Fernandez,
Hassen Al-Amin, Karsten Suhre, and Jan Krumsiek. Variational autoencoders learn transferrable
representations of metabolomics data. Communications Biology, 5(1):645, 2022.

Søren Hauberg, Oren Freifeld, and Michael Black. A geometric take on metric learning. Advances
in Neural Information Processing Systems, 25, 2012.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville. Rie-
mannian diffusion models. Advances in Neural Information Processing Systems, 35:2750–2761,
2022.

Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein,
Avishek Joey Bose, and Francesco Di Giovanni. Metric flow matching for smooth interpolations
on the data manifold, 2024. URL https://arxiv.org/abs/2405.14780.

11

https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://arxiv.org/abs/2405.14780

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

John M Lee. Smooth manifolds. In Introduction to Smooth Manifolds, pp. 1–31. Springer, 2013.

Jaakko Peltonen, Arto Klami, and Samuel Kaski. Improved learning of riemannian metrics for
exploratory analysis. Neural Networks, 17(8-9):1087–1100, 2004.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Takashi Sakai. Riemannian geometry, volume 149. American Mathematical Soc., 1996.

Kotaro Sakamoto, Masato Tanabe, Masatomo Akagawa, Yusuke Hayashi, Ryosuke Sakamoto, Man-
ato Yaguchi, Masahiro Suzuki, and Yutaka Matsuo. The geometry of diffusion models: Tubular
neighbourhoods and singularities. In ICML 2024 Workshop on Geometry-grounded Representa-
tion Learning and Generative Modeling, 2024. URL https://openreview.net/forum?
id=YTBE6mJBY7.

John W Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on computers,
100(5):401–409, 1969.

Christopher Scarvelis and Justin Solomon. Riemannian metric learning via optimal transport. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=v3y68gz-WEz.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Peter Sorrenson, Daniel Behrend-Uriarte, Christoph Schnörr, and Ullrich Köthe. Learning distances
from data with normalizing flows and score matching, 2024. URL https://arxiv.org/
abs/2407.09297.

Jan Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Your diffusion model
secretly knows the dimension of the data manifold. arXiv preprint arXiv:2212.12611, 2022.

Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Guillaume Huguet, Guy Wolf,
Ian Adelstein, Tim G. J. Rudner, and Smita Krishnaswamy. Geometry-aware autoencoders
for metric learning and generative modeling on data manifolds. In ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024. URL https:
//openreview.net/forum?id=EYQZjMcn4l.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Luke Ternes, Mark Dane, Sean Gross, Marilyne Labrie, Gordon Mills, Joe Gray, Laura Heiser, and
Young Hwan Chang. A multi-encoder variational autoencoder controls multiple transformational
features in single-cell image analysis. Communications biology, 5(1):255, 2022.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Ellen D Zhong, Tristan Bepler, Bonnie Berger, and Joseph H Davis. Cryodrgn: reconstruction of
heterogeneous cryo-em structures using neural networks. Nature methods, 18(2):176–185, 2021.

12

https://openreview.net/forum?id=YTBE6mJBY7
https://openreview.net/forum?id=YTBE6mJBY7
https://openreview.net/forum?id=v3y68gz-WEz
https://openreview.net/forum?id=v3y68gz-WEz
https://arxiv.org/abs/2407.09297
https://arxiv.org/abs/2407.09297
https://openreview.net/forum?id=EYQZjMcn4l
https://openreview.net/forum?id=EYQZjMcn4l

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 1 AND AN ADDITIONAL RESULT

Proof of proposition 1. First note that ∇ψ ◦ φ is a diffeomorphism with inverse φ−1 ◦ ∇ψ⋆. Then,
equations (8), (10), (12), and (14) follow directly from (Diepeveen, 2024, Prop. 2.1) and (16) follows
directly from (Diepeveen, 2024, Cor. 3.6.1).

Next, if ψ is of the form (6), i.e.,

ψ(x) =
1

2
x⊤A−1x,

we have that its Fenchel conjugate is given by

ψ⋆(y) =
1

2
y⊤Ay. (29)

So both ∇ψ(x) = A−1x and ∇ψ⋆(y) = Ay are linear mappings, from which follows that they
cancel to identity everywhere and yield (9), (11), (13), (15), and (17).

Proposition 2. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a smooth
strongly convex function, whose Fenchel conjugate is denoted by ψ⋆ : Rd → R. Next, consider the
function f : Rd → Rd×d given by

f(z) := Dz∇ψ⋆ +
d∑
i=1

zi∂iD(·)∇ψ⋆. (30)

Finally, let x,y ∈ Rd be vectors and assume that for all vectors

z ∈ {(1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y) | t ∈ [0, 1]} ⊂ Rd

the matrix f(z) is positive definite.

Then, mapping
t 7→ ψ(φ(γ∇ψ◦φx,y (t))), t ∈ [0, 1] (31)

is strongly convex, where γ∇ψ◦φx,y is the geodesic between x and y under the Riemannian structure
(Rd, (·, ·)∇ψ◦φ).
In addition, if ψ is of the form (6) the mapping (31) is strongly convex for any x,y ∈ Rd.

Proof. By (8) in proposition 1 we have

ψ(φ(γ∇ψ◦φx,y (t))) = ψ(φ((φ−1 ◦ ∇ψ⋆)((1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y))))
= ψ(∇ψ⋆((1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y))). (32)

So the claim holds if on the linear subspace

{(1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y) | t ∈ [0, 1]} ⊂ Rd (33)

the function ψ ◦ ∇ψ⋆ is convex.

Next, note that the Hessian of ψ ◦ ∇ψ⋆ satisfies

Dz∇(ψ ◦ ∇ψ⋆) = f(z). (34)

By assumption f(z) is positive definite for all z in the subspace (33). In other words, on this
subspace ψ(∇ψ⋆(z)) is positive definite, which implies strong convexity and yields the main claim.

The claim for the special case of ψ is of the form (6) follows directly, because

f(z) = A, (35)

which is always positive definite.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B PROOF OF THEOREM 1

Auxiliary lemma
Lemma 1. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a quadratic func-
tion of the form (6) with diagonal A ∈ Rd×d. Furthermore, let p : Rd → R be the corresponding
probability density of the form (3). Finally, consider ε ∈ [0, 1] and the mappings Eε : Rd → Rdε
and Dε : Rdε → Rd in (20) and (21) with dε ∈ [d] as in (19).

Then, for any α ∈ [0, 1) and any β ∈ [0, 1− α)

EX∼p[d
φ
Rd(Dε(Eε(X)),X)2e

α
2 φ(X)⊤A−1φ(X)] ≤ ε

C2
β,φC

3
β,φ

1− α− β

(1 + β

1− α− β

) d
2

d∑
i=1

ai, (36)

where
C3
β,φ := sup

x∈Rd

{|det(Dφ(x)φ
−1)|e−

β
2 φ(x)

⊤A−1φ(x)}, (37)

and
C2
β,φ := sup

x∈Rd

{| det(Dxφ)|e−
β
2 φ(x)

⊤A−1φ(x)}. (38)

Proof. We need to distinct two cases: (i) dε = d and (ii) 1 ≤ dε < d

(i) If dε = d we have that Dε(Eε(x)) = x for any x ∈ Rd. In other words

EX∼p[d
φ
Rd(Dε(Eε(X)),X)2e

α
2 φ(X)⊤A−1φ(X)] = 0 ≤ ε

C2
β,φC

3
β,φ

1− α− β

(1 + β

1− α− β

) d
2

d∑
i=1

ai. (39)

(ii) Next, we consider the case 1 ≤ dε < d. First, notice that we can rewrite

∥φ(Dε(Eε(x)))−φ(x)∥22
(20) and (21)

= ∥
dε∑
k=1

(φ(x), eik)2e
ik−φ(x)∥22 = ∥

d∑
k=dε+1

(φ(x), eik)2e
ik∥22

orthogonality
=

d∑
k=dε+1

∥(φ(x), eik)2eik∥22 =

d∑
k=dε+1

(φ(x), eik)22 =

d∑
k=dε+1

φ(x)2ik . (40)

Moreover, we define

C :=

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx. (41)

Then,

EX∼p[d
φ
Rd(Dε(Eε(X)),X)2e

α
2 φ(X)⊤A−1φ(X)] =

∫
Rd ∥φ(Dε(Eε(x)))− φ(x)∥22e−(1

2−
α
2)φ(x)⊤A−1φ(x)dx∫

Rd e
− 1

2φ(x)
⊤A−1φ(x)dx

(41)
=

1

C

∫
Rd

∥φ(Dε(Eε(x)))− φ(x)∥22e−(1
2−

α
2)φ(x)⊤A−1φ(x)dx

(40)
=

1

C

∫
Rd

d∑
k=dε+1

φ(x)2ike
−(1

2−
α
2)φ(x)⊤A−1φ(x)dx =

1

C

d∑
k=dε+1

∫
Rd

φ(x)2ike
−(1

2−
α
2)φ(x)⊤A−1φ(x)dx

x=φ−1(y)
=

1

C

d∑
k=dε+1

∫
Rd

y2
ik
e−(1

2−
α
2)y⊤A−1y|det(Dyφ

−1)|dy

=
1

C

d∑
k=dε+1

∫
Rd

y2
ik
e−(1

2−
α
2 − β

2)y⊤A−1y|det(Dyφ
−1)|e−

β
2 y⊤A−1ydy

≤
supy∈Rd{|det(Dyφ

−1)|e−
β
2 y⊤A−1y}

C

d∑
k=dε+1

∫
Rd

y2
ik
e−(1

2−
α
2 − β

2)y⊤A−1ydy

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(37)
=

C2
β,φ

C

d∑
k=dε+1

∫
Rd

y2
ik
e−(1

2−
α
2 − β

2)y⊤A−1ydy =
C2
β,φ

C

d∑
k=dε+1

∫
Rd

y2
ik
e
−(1

2−
α
2 − β

2)
∑d

j=1

y2
j

aj dy

=
C2
β,φ

C

d∑
k=dε+1

∫
R
y2
ik
e
−(1

2−
α
2 − β

2) y2

aik dyik

∫
Rd−1

e
−(1

2−
α
2 − β

2)
∑d

j ̸=ik

y2
j

aj dy1 . . . dyik−1dyik+1 . . . dyd

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

∫
R
e
−(1

2−
α
2 − β

2) y2

aik dyik

∫
Rd−1

e
−(1

2−
α
2 − β

2)
∑d

j ̸=ik

y2
j

aj dy1 . . . dyik−1dyik+1 . . . dyd

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

∫
Rd

e−(1
2−

α
2 − β

2)y⊤A−1ydy

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

(1 + β

1− α− β

) d
2

∫
Rd

e−(1
2+

β
2)y⊤A−1ydy

y=φ(x)
=

C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

(1 + β

1− α− β

) d
2

∫
Rd

e−(1
2+

β
2)φ(x)⊤A−1φ(x)|det(Dxφ)|dx

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

(1 + β

1− α− β

) d
2

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)|det(Dxφ)|e−
β
2 φ(x)

⊤A−1φ(x)dx

≤
C2
β,φ supx∈Rd{|det(Dxφ)|e−

β
2 φ(x)

⊤A−1φ(x)}
C

d∑
k=dε+1

aik
(1− α− β)

(1 + β

1− α− β

) d
2

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx

(38)
=

C2
β,φC

3
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

(1 + β

1− α− β

) d
2

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx

(41)
=

C2
β,φC

3
β,φ

1− α− β

(1 + β

1− α− β

) d
2

d∑
k=dε+1

aik

(19)
≤ ε

C2
β,φC

3
β,φ

1− α− β

(1 + β

1− α− β

) d
2

d∑
i=1

ai. (42)

Proof of the theorem

Proof of theorem 1. First, consider the Taylor approximation

φ−1(φ(y))− φ−1(φ(y)) = Dφ(x)φ
−1[φ(y)− φ(x)] +O(∥φ(y)− φ(x)∥22)

= Dφ(x)φ
−1[φ(y)− φ(x)] +O(dφRd(y,x)

2). (43)

Moreover, we define

C :=

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx. (44)

Subsequently, notice that

EX∼p[∥Dφ(X)φ
−1[φ(Dε(Eε(X)))− φ(X)]∥22]

=
1

C

∫
Rd

∥Dφ(x)φ
−1[φ(Dε(Eε(x)))− φ(x)]∥22e−

1
2φ(x)

⊤A−1φ(x)dx

≤ 1

C

∫
Rd

∥Dφ(x)φ
−1∥22∥φ(Dε(Eε(x)))− φ(x)∥22e−

1
2φ(x)

⊤A−1φ(x)dx

≤
supx∈Rd{∥Dφ(x)φ

−1∥22e−
β
2 φ(x)

⊤A−1φ(x)}
C

∫
Rd

∥φ(Dε(Eε(x)))−φ(x)∥22e−(1
2−

β
2)φ(x)⊤A−1φ(x)dx

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(23)
=

C1
β,φ

C

∫
Rd

∥φ(Dε(Eε(x)))− φ(x)∥22e
β
2 φ(x)

⊤A−1φ(x)e−
1
2φ(x)

⊤A−1φ(x)dx

= C1
β,φEX∼p[d

φ
Rd(Dε(Eε(X)),X)2e

β
2 φ(X)⊤A−1φ(X)]

lemma 1
≤ ε

C1
β,φC

2
β,φC

3
β,φ

1− 2β

(1 + β

1− 2β

) d
2

d∑
i=1

ai. (45)

Then,

EX∼p[∥Dε(Eε(X))−X∥22] = EX∼p[∥φ−1(φ(Dε(Eε(X))))− φ−1(φ(X))∥22]
(43)
= EX∼p[∥Dφ(X)φ

−1[φ(Dε(Eε(X)))− φ(X)] +O(dφRd(Dε(Eε(X)),X)2)∥22]
= EX∼p[∥Dφ(X)φ

−1[φ(Dε(Eε(X)))− φ(X)]∥22 +O(dφRd(Dε(Eε(X)),X)3)]

(45)
≤ ε

C1
β,φC

2
β,φC

3
β,φ

1− 2β

(1 + β

1− 2β

) d
2

d∑
i=1

ai + o(ε), (46)

which yields the claim as β was arbitrary.

C DATASET CONSTRUCTION DETAILS

In this section, we provide a detailed explanation of the construction of the datasets used in our
experiments. We organize the datasets into two categories based on the experimental sections in
which they are used.

C.1 DATASETS FOR MANIFOLD MAPPING EXPERIMENTS

(a) Single Banana (b) Squeezed Single Banana (c) River

Figure 6: Visualization of the datasets used in our manifold mapping experiments.

In our manifold mapping experiments (Section 6.1), we use the following datasets illustrated in
Figure 6:

• Single Banana Dataset: A two-dimensional dataset shaped like a curved banana.

• Squeezed Single Banana Dataset: A variant of the Single Banana with a tighter bend.

• River Dataset: A more complex 2D dataset resembling the meandering path of a river.

Each dataset is constructed by defining specific diffeomorphisms φ and convex quadratic functions
ψ, then sampling from the resulting probability density using Langevin Monte Carlo Markov Chain
(MCMC) with Metropolis-Hastings correction. The probability density function is defined as:

p(x) ∝ e−ψ(φ(x)), (47)

where the strongly convex function ψ is given by:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ψ(v) =
1

2
v⊤A−1v, (48)

and A is a positive-definite diagonal matrix. The specific choices of φ and A for each dataset
determine its geometric properties.

C.1.1 DIFFEOMORPHISMS AND CONVEX QUADRATIC FUNCTIONS

The key differences between the datasets arise from the diffeomorphism φ and the covariance matrix
A used in the sampling process. Below, we describe the specific settings for each dataset.

1. Single Banana Dataset

• Diffeomorphism:

φ(x) =

(
x1 − ax22 − z

x2

)
where a = 1

9 and z = 0.
• Covariance matrix:

A =

(
1
4 0
0 4

)
2. Squeezed Single Banana Dataset

• Diffeomorphism: Same as the Single Banana Dataset.
• Covariance matrix:

A =

(
1
81 0
0 4

)
3. River Dataset

• Diffeomorphism:

φ(x) =

(
x1 − sin(ax2)− z

x2

)
where a = 2 and z = 0.

• Covariance matrix:

A =

(
1
25 0
0 3

)
C.1.2 DATASET GENERATION ALGORITHM

Algorithm 1 outlines the dataset generation process for all three datasets. The specific diffeomor-
phisms and quadratic functions differ for each dataset.

C.2 DATASETS FOR RIEMANNIAN AUTOENCODER EXPERIMENTS

In the Riemannian autoencoder experiments (Section 6.2), we use the following datasets:

• Hemisphere(d’, d) Dataset: Samples drawn from the upper hemisphere of a d’-dimensional
unit sphere and embedded into Rd via a random isometric mapping.

• Sinusoid(d’, d) Dataset: Generated by applying sinusoidal transformations to d’-
dimensional latent variables, resulting in a complex, nonlinear manifold in Rd.

C.3 HEMISPHERE(d′, d) DATASET

The Hemisphere(d′, d) dataset consists of samples drawn from the upper hemisphere of a d′-
dimensional unit sphere, which are then embedded into a d-dimensional ambient space using a
random isometric embedding. Below are the steps involved in constructing this dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1 General Dataset Generation Algorithm

Require: Number of samples N , MCMC steps T , Step size δ, Diffeomorphism φ, Covariance
matrix Λ

Ensure: Dataset {x1,x2, . . . ,xN}
1: Initialize: Set initial state x0 = 0 ∈ R2.
2: for i = 1 to N do
3: x = x0

4: for k = 1 to T do
5: Compute the score function ∇x log ptarget(x).
6: Propose x′ = x+ δ2

2 ∇x log ptarget(x) + δη, where η ∼ N (0, I2).
7: Compute the forward kernel:

Kforward =
|x− x′ + δ2

2 ∇x′ log ptarget(x
′)|2

2δ2

8: Compute the reverse kernel:

Kreverse =
|x′ − x+ δ2

2 ∇x log ptarget(x)|2

2δ2

9: Compute the Metropolis-Hastings acceptance probability:

A = min

(
1,
ptarget(x

′)

ptarget(x)
exp (−Kforward +Kreverse)

)
10: Accept x′ with probability A; else set x′ = x.
11: Update x = x′.
12: end for
13: Store the final x as sample xi.
14: end for

1. Sampling from the Upper Hemisphere We begin by sampling points from the upper hemi-
sphere of the d′-dimensional unit sphere Sd

′

+ ⊂ Rd′+1. The upper hemisphere is defined as:

Sd
′

+ =
{
x ∈ Rd

′+1 : ∥x∥ = 1, x1 ≥ 0
}
.

The first angular coordinate θ1 is sampled from a Beta distribution with shape parameters α = 5 and
β = 5, scaled to the interval

[
0, π2

]
. This sampling method emphasizes points near the “equator”

of the hemisphere. The remaining angular coordinates θ2, . . . , θd′ are sampled uniformly from the
interval [0, π]:

θ1 ∼ Beta(5, 5) ·
(π
2

)
, θi ∼ Uniform(0, π), for i = 2, . . . , d′.

2. Conversion to Cartesian Coordinates Next, each sampled point in spherical coordinates is
converted into Cartesian coordinates in Rd′+1 using the following transformation equations:

x1 = cos(θ1), x2 = sin(θ1) cos(θ2), . . . , xd′+1 = sin(θ1) sin(θ2) · · · sin(θd′).
This conversion ensures that the sampled points lie on the surface of the unit sphere in (d′ + 1)-
dimensional space.

3. Random Isometric Embedding into Rd After sampling points on the hemisphere in Rd′+1,
the points are embedded into a d-dimensional ambient space (d ≥ d′ + 1) using a random isometric
embedding. The embedding process is as follows:

1. Generate a random matrix A ∈ Rd×(d′+1), where each entry is sampled from a standard
normal distribution N (0, 1).

2. Perform a QR decomposition on matrix A to obtain Q ∈ Rd×(d′+1):

A = QR.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The columns of Q form an orthonormal basis for a (d′ + 1)-dimensional subspace of Rd,
ensuring that Q defines an isometric embedding from Rd′+1 into Rd. This guarantees that
distances and angles are preserved during the mapping, maintaining the geometric structure
of the original space within the higher-dimensional ambient space.

3. Use matrix Q to map each sample x ∈ Rd′+1 into the ambient space:

y = Qx,

where y ∈ Rd are the embedded samples.

Algorithm 2 Hemisphere(d′, d) Dataset Generation

1: Input: Intrinsic dimension d′, ambient dimension d, number of samples n, Beta distribution
parameters α = 5, β = 5

2: Output: Dataset Y ∈ Rn×d
3: Step 1: Generate Random Isometric Embedding
4: Generate a random matrix A ∈ Rd×(d′+1) with entries from N (0, 1)

5: Perform QR decomposition on A to obtain Q ∈ Rd×(d′+1):

A = QR

6: Step 2: Construct Dataset
7: for i = 1 to n do
8: Step 2.1: Sample Spherical Coordinates
9: Sample the first angular coordinate θ1 from a scaled Beta distribution:

θ1 ∼ Beta(α, β) ·
(π
2

)
10: Sample the remaining angular coordinates θ2, . . . , θd′ from a uniform distribution:

θi ∼ Uniform(0, π), for i = 2, . . . , d′

11: Step 2.2: Convert to Cartesian Coordinates
12: Convert the spherical coordinates to Cartesian coordinates xi ∈ Rd′+1 using:

x1 = cos(θ1), x2 = sin(θ1) cos(θ2), . . . , xd′+1 = sin(θ1) sin(θ2) · · · sin(θd′).

13: Step 2.3: Embed Sample xi into Ambient Space
14: Map the sample xi to the ambient space using:

yi = Qxi

15: Append yi to the dataset Y
16: end for
17: Return: The final dataset Y = [y1,y2, . . . ,yn]

C.4 SINUSOID(d′, d) DATASET

The Sinusoid(d′, d) dataset represents a d′-dimensional manifold embedded in d-dimensional space
through nonlinear sinusoidal transformations. Below are the detailed steps involved in constructing
this dataset.

1. Sampling Latent Variables The latent variables z ∈ Rd′ are sampled from a multivariate
Gaussian distribution with zero mean and isotropic variance, as follows:

z ∼ N
(
0, σ2

mId′
)
,

where σ2
m controls the variance along each intrinsic dimension, and Id′ is the d′×d′ identity matrix.

The value of σ2
m is set to 3 for our experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

2. Defining Ambient Coordinates with Sinusoidal Transformations For each of the d − d′

ambient dimensions, we construct a shear vector aj ∈ Rd′ , with its elements drawn uniformly from
the interval [1, 2]:

aj ∼ Uniform(1, 2)d
′
, for j = 1, . . . , d− d′.

The shear vectors aj apply a fixed linear transformation to the latent space z ∈ Rd′ , determining
how the latent variables influence each ambient dimension. These vectors, sampled once for each of
the d− d′ ambient dimensions, modulate the scale and periodicity of the sinusoidal transformation.

Each ambient coordinate xj is generated as a sinusoidal function of the inner product between aj
and z, with a small Gaussian noise added for regularization.

xj = sin
(
a⊤j z

)
+ ϵj ,

where ϵj ∼ N (0, σ2
a) is Gaussian noise with variance σ2

a. In our experiments, we set σ2
a = 10−3.

3. Constructing the Dataset Samples The final samples y ∈ Rd are formed by concatenating the
ambient coordinates x1, x2, . . . , xd−d′ with the latent variables z1, z2, . . . , zd′ :

y = [x1, x2, . . . , xd−d′ , z1, z2, . . . , zd′]
⊤
.

Algorithm 3 Sinusoid(d′, d) Dataset Generation

1: Input: Intrinsic dimension d′, ambient dimension d, number of samples n, variance σ2
m = 3,

noise variance σ2
a = 10−3

2: Output: Dataset Y ∈ Rn×d
3: Step 1: Generate Shear Vectors
4: for j = 1 to d− d′ do
5: Sample shear vector aj ∈ Rd′ from Uniform(1, 2)d

′

6: end for
7: Step 2: Construct Dataset
8: for i = 1 to n do
9: Step 2.1: Sample Latent Variables

10: Generate latent variables zi ∈ Rd′ from a multivariate Gaussian:

zi ∼ N (0, σ2
m · Id′)

11: Step 2.2: Compute Ambient Coordinates for Sample i
12: for j = 1 to d− d′ do
13: Compute ambient coordinate xj for the i-th sample:

xj = sin
(
a⊤j zi

)
+ ϵj , ϵj ∼ N (0, σ2

a)

14: end for
15: Step 2.3: Form Final Sample yi
16: Concatenate the ambient coordinates x = [x1, x2, . . . , xd−d′] and the latent variables zi to

form the final sample yi ∈ Rd:

yi = [x1, x2, . . . , xd−d′ , z1, z2, . . . , zd′]
⊤

17: Append yi to the dataset Y
18: end for
19: Return: The final dataset Y = [y1,y2, . . . ,yn]

D ERROR METRICS FOR EVALUATION OF PULLBACK GEOMETRIES

Geodesic Error. The geodesic error measures the difference between geodesics on the learned and
ground truth pullback manifolds. Given two points x0,x1 ∈ Rd, let γφθ2

x0,x1(t) and γφGT
x0,x1

(t) denote

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

the geodesics induced by the learned map φθ2 and the ground truth map φGT, respectively, where
t ∈ [0, 1].

The geodesic error is calculated as the mean Euclidean distance between the learned and ground
truth geodesics over N pairs of points:

Geodesic Error =
1

N

N∑
i=1

1

T

T∑
k=1

∥∥∥∥γφθ2

x
(i)
0 ,x

(i)
1

(tk)− γφGT

x
(i)
0 ,x

(i)
1

(tk)

∥∥∥∥
2

,

where T is the number of time steps used to discretize the geodesic, and tk = k−1
T−1 for k = 1, . . . , T .

This metric captures the average discrepancy between the learned and ground truth geodesics, re-
flecting the accuracy of the learned pullback manifold.

Variation Error. The variation error quantifies the sensitivity of the geodesic computation under
small perturbations to one of the endpoints. For two points x0,x1 ∈ Rd, let z = x1 + ∆x, where
∆x is a random variable sampled from the Gaussian distribution:

∆x ∼ N (0, 0.12I),

with mean 0 and covariance 0.12I, where I is the identity matrix. Define γφθ2
x0,x1(t) and γφθ2

x0,z(t) as
the geodesics from x0 to x1 and z, respectively, induced by the learned map φθ2 .

The variation error is calculated as the mean Euclidean distance between the geodesic from x0 to x1

and the perturbed geodesic from x0 to z:

Variation Error =
1

N

N∑
i=1

1

T

T∑
k=1

∥∥∥∥γφθ2

x
(i)
0 ,x

(i)
1

(tk)− γ
φθ2

x
(i)
0 ,z(i)

(tk)

∥∥∥∥
2

,

where N is the number of sampled point pairs, T is the number of time steps used to discretize the
geodesic, and tk = k−1

T−1 for k = 1, . . . , T .

This metric evaluates the robustness of the learned geodesic against small perturbations, providing
insight into the stability of the learned manifold.

E TRAINING DETAILS

The following section describes the important configuration parameters for reproducing the exper-
iments on manifold mappings. All experiments share some common parameters, which are listed
below, while dataset-specific parameters are provided in Table 2.

Common Parameters:

• Optimizer: Adam with betas = (0.9, 0.99), eps = 1 × 10−8, and weight decay of
1× 10−5.

• Learning Rate Schedule: Warm-up cosine annealing with 1000 warm-up steps.

• Gradient Clipping: Gradient norm clipped to 1.0.

• Model Architecture: A composition of affine coupling layers is used, where each layer
transforms part of the input while keeping the other part unchanged. The transformation
function in each layer is modeled by a residual network (ResNet) consisting of 64 hidden
features, 2 residual blocks, ReLU activations, and no batch normalization. Dropout is set
to 0, and transformations alternate across different dimensions at each layer.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: Training configurations for each experiment.

Dataset Flow Steps Epochs Batch Size λiso λvol Learning Rate
Sinusoid(1,3) 8 1000 64 1.0 1.0 3× 10−4

Sinusoid(2,3) 8 1000 64 1.0 1.0 3× 10−4

Sinusoid(5,20) 24 2000 128 1.2 2.5 4× 10−4

Hemisphere(2,3) 8 2000 64 1.0 1.0 4× 10−4

Hemisphere(5,20) 12 2000 64 0.75 1.2 4× 10−4

F DATA MANIFOLD APPROXIMATION

The learned manifold, shown in orange in Figure 1, is the set Dϵ(U), where Dϵ is the RAE decoder
(21), the set U in the latent space is the open set given by

U =

dϵ∏
i=1

(−3
√
aui

, 3
√
aui

)

and au1 , . . . ,audϵ
are the dϵ highest learned variances corresponding to the ones used in the RAE

construction.

To visualize this in practice, we construct a mesh grid by linearly sampling each latent dimension
from −3

√
aui

to +3
√
aui

, for i = 1, . . . , dϵ, where dϵ is the number of significant latent dimensions.
Practically, the off-manifold latent dimensions (those corresponding to negligible variances) are set
to zero. The decoder Dϵ then maps this grid from U back to Rd, generating an approximation of the
data manifold, as illustrated in Figure 1.

G EXPERIMENTS WITH MORE COMPLEX DISTRIBUTIONS

We applied our training framework9 to model complex real-world and synthetic distributions, specif-
ically focusing on the subset of digit “1” from the MNIST dataset and a synthetic dataset of 10-
dimensional Gaussian blobs introduced in Stanczuk et al. (2022). The subset of digit “1” is chosen
as it is likely to be represented well by the unimodal parametric family 3. The Gaussian blobs dataset
is included because its intrinsic dimension is known (10), providing a reliable baseline for evaluating
the accuracy of the RAE’s intrinsic dimension estimation.

Modeling such distributions effectively requires more expressive normalizing flow architectures,
such as affine coupling flows combined with 1 × 1 invertible convolutions for pixel reshuffling,
or rational quadratic (RQ) spline flows. These architectures, however, are not guaranteed to have
zero second derivatives, which can cause the higher-order terms in Theorem 1 to become signifi-
cant, potentially inflating the expected reconstruction error of the Riemannian Auto-encoder (RAE).
Furthermore, enforcing ℓ2 isometry regularization becomes more challenging in these cases.

Despite these issues, our experiments indicate that the deviations from isometry and the presence of
non-zero second derivatives do not visibly impact the quality of the manifold mappings. However,
they can affect the overall performance of the RAE.

We trained two models on the digit “1” subset of MNIST: an affine coupling flow with 1×1 invertible
convolution layers (which is not an affine transformation) and an RQ spline flow. In both cases, we
observed stable and accurate geodesics that traversed regions of high data density, consistent with
theoretical predictions. These geodesics effectively navigate through common examples of the digit
“1”, as expected based on the learned data distribution. The results are presented in Figure 7.

To complement the MNIST experiments, we evaluated the same models on the Gaussian blobs
dataset, where the true intrinsic dimension is known to be 10. This dataset allows us to directly
assess the accuracy of the RAE’s intrinsic dimension estimation. The trained affine and RQ spline
models produced stable and accurate geodesics similar to those observed in the MNIST experiments,
as shown in Figure 8. However, both models overestimated the intrinsic dimension.

9with the minor change of replacing the isometry regularizer to a more scalable version (see Appendix H
for details)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Affine Coupling Model (b) Rational Quadratic Spline Model

Figure 7: Geodesics computed for two different normalizing flow models trained on the subset of
digit “1” from the MNIST dataset. (a) shows the geodesics for a model using affine coupling layers
with 1× 1 convolutions, while (b) shows the geodesics for a model using rational quadratic splines.
In both cases, the geodesics pass through high-density regions of the dataset, consistent with the
theoretical expectation that geodesics align with areas of higher probability under the learned data
distribution. This highlights the models’ ability to capture the underlying data manifold effectively.

(a) Affine Coupling Model (b) Rational Quadratic Spline Model

Figure 8: Geodesics computed for two different normalizing flow models trained on the 10-
dimensional Gaussian blobs dataset. (a) shows the geodesics for a model using affine coupling
layers with 1 × 1 convolutions, while (b) shows the geodesics for a model using rational quadratic
splines. Both models demonstrate smooth geodesics that traverse high-density regions.

Our RAE model consistently overestimates the intrinsic dimension across both datasets. For the
MNIST subset, we observe an estimated intrinsic dimension of approximately 650 for the RQ spline
flow and around 300 for the affine flow when using an ϵ = 0.1 threshold. Similarly, for the Gaus-
sian blobs dataset, the affine model estimates an intrinsic dimension of 650, while the RQ spline
model estimates 396. We attribute this overestimation primarily to the difficulty of achieving an ℓ2
isometry while learning the complex data distribution. Although non-zero second derivatives are

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

a secondary factor, they may exacerbate the issue by increasing the contributions of higher-order
terms in Theorem 1.

These results suggest that while our method can effectively capture the manifold structure, additional
regularization may be required to better align the learned metric with the true geometry, especially
when using highly expressive flow architectures.

H COMPUTATIONAL COMPLEXITY OF THE PROPOSED APPROACH TO
TRAINING

In this paper we have claimed that this approach is more scalable than the work by Diepeveen (2024).
This is the case for most parts of the proposed loss, except for the isometry regularizer, which is also
in the loss by Diepeveen (2024).

In our work, we employed the exact orthogonal regularization, which comes down to computing

1

b

b∑
i=1

∥(Dxiφθ2)
⊤Dxiφθ2 − Id∥2F ,

where b is the batch size.

Computational Complexity The complexity of the exact method is:

O(b× d3 + b× d× f),

where:

• d is the ambient dimension,
• f is the cost of a forward and backward pass through φ.

This scales cubically with d and is independent of the intrinsic dimension. We leveraged Py-
Torch’s vmap to efficiently compute this for dimensions up to d = 100 in our experiments.

Approximate Method for Higher Dimensions In the experiments for higher-dimensional data
(in appendix G), we used an approximate regularization method. Instead of computing the full
Jacobian, we approximate the orthogonality condition using v random orthonormal vectors {vj}vj=1.
The regularization term is

1

b

b∑
i=1

v∑
j=1

∥∥(Dxiφθ2)
⊤Dxiφθ2 [v

j]− vj
∥∥2 .

Complexity of Approximate Method

O(b× d× v2 + b× v × f + b× v3).

This reduces the computational cost, scaling linearly with d, and is also independent of the intrinsic
dimension. It offers a scalable alternative for high-dimensional datasets. For our main experi-
ments, we used the exact method due to its strong regularization in moderate dimensions (d ≤ 100).
However, the approximate method was tested in preliminary high-dimensional experiments and ef-
fectively enforced orthogonality, promoting near-isometric mappings as required by our theoretical
framework. The exact method ensures robust regularization in lower to moderate dimensions, while
the approximate method provides a scalable alternative for higher-dimensional cases. By leverag-
ing a small number of slicing vectors, it reduces the computational burden while preserving key
geometric properties, making it effective across varying dimensional regimes.

24

	Introduction
	Contributions
	Outline

	Notation
	Riemannian geometry from unimodal probability densities
	Riemannian autoencoder from unimodal probability densities
	Learning unimodal probability densities
	Experiments
	Manifold mappings
	Riemannian autoencoder
	1D and 2D manifolds
	Higher-dimensional manifolds

	Conclusions
	Proof of thm:pull-back-mappings and an additional result
	Proof of thm:rae-error
	Dataset Construction Details
	Datasets for Manifold Mapping Experiments
	Diffeomorphisms and Convex Quadratic Functions
	Dataset Generation Algorithm

	Datasets for Riemannian Autoencoder Experiments
	Hemisphere(d', d) Dataset
	Sinusoid(d', d) Dataset

	Error Metrics for Evaluation of Pullback Geometries
	Training Details
	Data Manifold Approximation
	Experiments with More Complex Distributions
	Computational complexity of the proposed approach to training

