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ABSTRACT

Data-driven Riemannian geometry has emerged as a powerful tool for inter-
pretable representation learning, offering improved efficiency in downstream
tasks. Moving forward, it is crucial to balance cheap manifold mappings with ef-
ficient training algorithms. In this work, we integrate concepts from pullback Rie-
mannian geometry and generative models to propose a framework for data-driven
Riemannian geometry that is scalable in both geometry and learning: score-based
pullback Riemannian geometry. Focusing on unimodal distributions as a first step,
we propose a score-based Riemannian structure with closed-form geodesics that
pass through the data probability density. With this structure, we construct a Rie-
mannian autoencoder (RAE) with error bounds for discovering the correct data
manifold dimension. This framework can naturally be used with anisotropic nor-
malizing flows by adopting isometry regularization during training. Through nu-
merical experiments on various datasets, we demonstrate that our framework not
only produces high-quality geodesics through the data support, but also reliably
estimates the intrinsic dimension of the data manifold and provides a global chart
of the manifold, even in high-dimensional ambient spaces.

1 INTRODUCTION

Data often reside near low-dimensional non-linear manifolds as illustrated in Figure [T} This mani-
fold assumption (Fefferman et al.,[2016) has been popular since the early work on non-linear dimen-
sion reduction (Belkin & Niyogi, 2001} |Coifman & Lafonl 2006; Roweis & Saul, |2000; Sammon)
1969; Tenenbaum et al., |2000). Learning this non-linear structure, or representation learning, from
data has proven to be highly successful (DeMers & Cottrell, 1992} Kingma & Welling} [2013) and
continues to be a recurring theme in modern machine learning approaches and downstream appli-
cations (Chow et al., [2022} |Gomari et al., [2022} Ternes et al., 2022; |Vahdat & Kautz, [2020; [Zhong
et al.,[2021).

Recent advances in data-driven Riemannian geometry have demonstrated its suitability for learning
representations. In this context, these representations are elements residing in a learned geodesic
subspace of the data space, governed by a non-trivial Riemannian structur across the entire am-
bient space (Arvanitidis et al., 2016} Diepeveen, |2024; [Hauberg et al., 2012} [Peltonen et al., |2004;
Scarvelis & Solomon, 2023} |Sorrenson et al., [2024; |Sun et al.| 2024). Among these contributions,
it is worth highlighting that Sorrenson et al.| (2024)) are the first and only ones so far to use infor-
mation from the full data distribution obtained though generative models (Dinh et al.l [2017; [Song
et al., 2020), even though this seems a natural approach given recent studies such as|Sakamoto et al.
(2024); |Stanczuk et al.| (2022). A possible explanation for the limited use of generative models
in constructing Riemannian geometry could lie in challenges regarding scalability of the manifold
mappings. Indeed, even though the generative models can be trained efficiently, Sorrenson et al.
(2024) also mention themselves that it can be numerically challenging to work with their induced
Riemannian geometry.

If the manifold mapping scalability challenges were to be overcome, the combined power of Rie-
mannian geometry and state of the art generative modelling could have profound implications on
how to handle data in general. Indeed, beyond typical data analysis tasks such as computing dis-
tances, means, and interpolations/extrapolations of data points as illustrated in Figures [2a] to a
data-driven Riemannian structure also offers greater potential for representation learning and down-

'rather than the standard ¢>-inner product
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(a) Hemisphere (2,3) (b) Sinusoid (1,3) (c) Sinusoid (2,3)

Figure 1: Approximate data manifolds learned by the Riemannian autoencoder generated by score-
based pullback Riemannian geometry for three datasets. The orange surfaces represent the manifolds
learned by the model, while the blue points correspond to the training data. Each manifold provides
a convincing low-dimensional representation of the data, isometric to its respective latent space.

stream applications. For instance, many advanced data processing methods, from Principal Compo-
nent Analysis (PCA) to score and flow-matching, have Riemannian counterparts
(2023)); [Fletcher et al.| (2004) and |Chen & Lipman| (2023); Huang et al.| (2022)) that have proven
beneficial by improving upon full black box methods in terms of interpretability
or Euclidean counterparts in terms of efficiency (Kapusniak et all, 2024} [de Kruiff et al., 2024).

Here it is worth highlighting that scalability of manifold mappings was completely circumvented by

Diepeveen| (2024) and |de Kruiff et al (2024) by using pullback geometry. However, here learning a
suitable (and stable) pullback geometry suffers from challenges regarding scalability of the training

algorithm, contrary to the approach by Sorrenson et al.| (2024).

Motivated by the above, this work aims to address the following question: How to strike a good
balance between scalability of training a data-driven Riemannian structure and of evaluating its
corresponding manifold mappings?

@,

(a) Barycentre (b) Geodesic (c) Logarithm (d) Exponential
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Figure 2: Proposed Riemannian geometry from a toy probability density, visualized by its level sets.

1.1 CONTRIBUTIONS

In this paper, we take first steps towards striking such a balance and propose a score-based pull-
back Riemannian metric assuming a relatively simple but generally applicable family of probability
densities, which we show to result in both scalable manifold mappings and scalable learning algo-
rithms. We emphasize that we do not directly aim to find the perfect balance between the two types
of scalability. Instead we start from a setting which has many nice properties, but will allow for
generalization to multimodal densities, which we reserve for future work.

Specifically, we consider a family of unimodal probability densities whose negative log-likelihoods
are compositions of strongly convex functions and diffeomorphisms. As this work is an attempt to
bridge between the geometric data analysis community and the generative modeling community, we
break down the contributions in two ways. Theoretically,

* We propose a score-based pullback Riemannian metric such that manifold mappings re-
spect the data distribution as illustrated in Figures [2a]to[2d]
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* We demonstrate that this density-based Riemannian structure naturally leads to a Rieman-
nian autoencodelﬂ and provide error bounds on the expected reconstruction error, which
allows for approximation of the data manifold as illustrated in Figure I]

* We introduce a learning scheme based on adaptations of normalizing flows to find the
density to be integrated into the Riemannian framework, which is tested on several synthetic
data sets.

Practically, this work showcases how two simple adaptations to the normalizing flows framework
enable data-driven Riemannian geometry. This significantly expands the potential for downstream
applications compared to the unadapted framework.

1.2 OUTLINE

After introducing notation in Section [2] Section [3| considers a family of probability distributions,
from which we obtain suitable geometry, and Section ] showcases how one can subsequently con-
struct Riemannian Autoencoders with theoretical guarantees. From these observations Section|[5]dis-
cusses the natural limitations of standard normalizing flows and how to change the parametrisation
and training for downstream application in a Riemannian geometric setting. Section [6] showcases
several use cases of data-driven Riemannian structure on several data sets. Finally, we summarize
our findings in Section

2 NOTATION

Here we present some basic notations from differential and Riemannian geometry, see [Boothby
(2003)); ICarmo| (1992); [Lee| (2013)); [Sakai| (1996)) for details.

Let M be a smooth manifold. We write C'°°(M) for the space of smooth functions over M. The
tangent space at p € M, which is defined as the space of all derivations at p, is denoted by
TpM and for tangent vectors we write Z, € Tp M. For the tangent bundle we write T M and
smooth vector fields, which are defined as smooth sections of the tangent bundle, are written as

2 (M) C TM.

A smooth manifold M becomes a Riemannian manifold if it is equipped with a smoothly varying
metric tensor field (-, -): Z (M) x Z (M) — C>*(M). This tensor field induces a (Rieman-
nian) metric daq: M x M — R. The metric tensor can also be used to construct a unique affine
connection, the Levi-Civita connection, that is denoted by V() (-) : 2 (M) x 2" (M) — Z (M).
This connection is in turn the cornerstone of a myriad of manifold mappings. One is the notion of
a geodesic, which for two points p,q € M is defined as a curve vy q: [0, 1] — M with minimal
length that connects p with q. Another closely related notion to geodesics is the curve ¢ +— vp =, (%)
for a geodesic starting from p € M with velocity §p =, (0) = Z, € Tp M. This can be used to
define the exponential map exp,: Dp — M as

exp, (Ep) := Vp,5,(1) where Dy C T, M is the set on which v, = (1) is defined. (1)

Furthermore, the logarithmic map log,,: exp(Dy,) — Dy, is defined as the inverse of exp,,, so it is
well-defined on D}, C D), where exp, is a diffeomorphism.

Finally, if (M, (-,-)) is a d-dimensional Riemannian manifold, A is a d-dimensional smooth mani-
fold and ¢ : N' — M is a diffeomorphism, the pullback metric

(2, @) := (D1 6[E()], D)o@ )] (2)
where Dp¢ : To,N — T(p)M denotes the differential of ¢, defines a Riemannian structure on N,

which we denote by (N, (-, -)?). Pullback metrics literally pull back all geometric information from
the Riemannian structure on M. In particular, closed-form manifold mappings on (M, (-, -)) yield
under mild assumptions closed-form manifold mappings on (N, (-,-)?). Throughout the rest of the
paper pullback mappings will be denoted similarly to[(2)]with the diffeomorphism ¢ as a superscript,

i.e., we write dﬁ[(p, q), fyf;q, expg(Ep) and logﬁ qforp,qe Nand E, € TpN.

%in the sense of Diepeveen| (2024)
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3 RIEMANNIAN GEOMETRY FROM UNIMODAL PROBABILITY DENSITIES

We remind the reader that the ultimate goal of data-driven Riemannian geometry on R? is to con-
struct a Riemannian structure such that geodesics always pass through the support of data probability
densities. In this section we will focus on constructing Riemannian geometry that does just that from
unimodal densities p : R — R of the form

p(x) oc e~ (@) 3)

where 1) : R? — R is a smooth strongly convex function and ¢ : R? — R? is a diffeomorphism,
e.g., such as the density in Figurem In particular, we will consider pullback Riemannian structures
of the form

(2, @) = (Dx Vi 0 9[Z], Dx Vi 0 0[@))2, @

which are related to the Riemannian structure obtained from the score function V log(p(-)) : R¢ —
R? if ¢ is close to a linear £>-isometry on the data support, i.e., Dy is an orthogonal operator:

(DxVlog(p(+))[E], DxV log(p(-))[®])2 = (Dx V(¢ 0 p)[E], DxV (¢ 0 ¢)[®])2
= (Dx((Diyp) T 0 VY 0 9)[E], D ((D(y) " 0 Vi 0 0)[@])2
~ (Dx V1 0 @[E], Dy V1) 0 o[®])2 = (Z, )Y VP, (5)

For that reason, we call such an approach to data-driven Riemannian geometry: score-based pull-
back Riemannian geometry. Since we find ourselves in a pullback settinﬂ this allows to construct
pullback geometry with closed-form manifold mappings.

What remains to be shown is that such geodesics and other manifold mappings pass through the data
support (like in Figures 2ato[2d). The following result, which is a direct application of (Diepeveen,
2024, Prop. 2.1) and (Diepeveenl 2024, Cor. 3.6.1), gives us closed-form expressions of several
important manifold mappings under (-, -)V¥°% and makes a connection with (-, -)% if we choose

P(x) = %XTA_lx, (6)

where A € R?*9 is symmetric positive definite.

This special case highlights why, in general, we expect to obtain geodesics and manifold mappings
that pass through the data support. For instance, in the scenario depicted in Figure [2b] where the
correct form [(3)]is used, geodesics are computed by first reversing the effect of the diffeomorphism
— transforming the data distribution to resemble a Gaussian, then drawing straight lines between
the morphed data points, and finally applying the diffeomorphism again. This approach results
in geodesics that traverse regions of higher likelihood between the endpoints, due to the strong
convexity of the quadratic function, which aligns perfectly with our objectives.

For the proof of the result below and a more general statement and proof related to geodesics passing
through the data support as in explanation above, we refer the reader to Appendix

Proposition 1. Let ¢ : R? — R? be a smooth diffeomorphism and let 1) : R — R be a smooth

strongly convex function, whose Fenchel conjugate is denoted by 1)* : R® — R. Next, consider the
0%-pullback manifolds (R?, (-,-)V¥°%) and (R?, (-, -)?) defined through metric tensor fields

(2,®)Y V% := (Dx Vi 0 @[E], Dx V0 @[®@])2, and (Z,®)% := (Dx¢[Z], Dxp[®])2. (7)

Then,
(i) length-minimising geodesics vy ¥°% : [0,1] — R on (R?, (-,-)V¥°?) are given by
Ty F(t) = (71 o V) (1 = 1) (Ve 0 ) (x) + (VY 0 9)(y))- (8)
In addition, if 1) is of the form
Ty P () = 25 (1) = o7 (L = )p(x) + to(y))- ©)

*Here, 1(x) := 2x7 + 15 and ¢(x) 1= (X1 — £X3,X2).

*This is generally not true when using the score itself for probability densities of the form
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(ii) the logarithmic map logy V°?(-) : R% — TxR% on (RY, (-, -)V¥°%) is given by

X

logy "y = Do) # ™ [D(vpog) 0 VO (VY 0 ) (y) = (VYo ) ()]l (10)
In addition, if 1 is of the form[(6)]
logy V¢ y =logl y = Dy 'e(y) — ¢(x)]. (11)

(iii) the exponential map expy ¥°#(-) : TeR? — R on (R4, (-,-)V¥°%) is given by

expy "7 (Ex) = (7! o V) (VY 0 9) (%) + D) Vi [Dxg[Exll).  (12)
In addition, if 1 is of the form[(6)]

eszwow(EX) = expg (Ex) = 90_1(50(X) + Dxp[Ex])- (13)

(iv) the distance dgjbw ‘R4 x R — Ron (RY, (-, -)V¥°%) is given by

A2 (x,y) = (Vi o 9)(x) = (Vi 0 9)(y)]2- (14)
In addition, if v is of the form[(6)|
dy P (x,y) = [o(x) = e(¥)lla-2 = A7 (o(x) = (¥))ll2- (15)

(v) the Riemannian barycentre x* € RY of the data set {x'}¥_| on (RY, (-,-)V¥°%) is given by

N N
x* = argmin{% Zd;j’o@(x, xi)2} = (¢t o V) (% Z Vw(go(xi))). (16)
i—1

x€R? i=1

In addition, if 1 is of the form[(6)]

N N
X i arg min{% ) = ! (% > ). (17)
i—1 1=1

x€ER?

Remark 1. We note that (%-stability of geodesics and the barycentre are inherited by (Diepeveen,
2024, Thms. 3.4&3.8), if we have (approximate) local £%-isometry of ¢ on the data distribution.

4 RIEMANNIAN AUTOENCODER FROM UNIMODAL PROBABILITY DENSITIES

The connection between (-,-)V¥°¢ and (-, -)¥ begs the question what 1) could still be used for if
it is of the form We note that this case comes down to having a data probability density that
is a deformed Gaussian distribution. In the case of a regular (non-deformed) Gaussian, one can
compress the data generated by it through projecting them onto a low rank approximation of the
covariance matrix such that only the directions with highest variance are taken into account. This is
the basic idea behind PCA. In the following we will generalize this idea to the Riemannian setting
and observe that this amounts to constructing a Riemannian autoencoder (RAE) (Diepeveen, |2024),
whose error we can bound by picking the dimension of the autoencoder in a clever way, reminiscent
of the classical PCA error bound.

Concretely, we assume that we have a unimodal density of the form [(3)] with a quadratic strongly
convex function ¢ (x) := x' A~!x for some diagonal matrix A := diag(ay, .. .ag) with positive

entrie’} Next, we define an indexing u,, € [d] := {1,...,d} forw = 1,...,d such that
au1 2 e Za’ltdv (18)
and consider a threshold € € [0, 1]. We then consider d. € [d] defined as the integer that satisfies

: d d . d
d. = mm{d/ €ld—1] ‘ D e dr 1 A SED g au}, ifa,, < EZUZI ay, (19)
, otherwise.

SNote that this is not restrictive as for a general symmetric positive definite matrix A the eigenvalues can
be used as diagonal entries and the orthonormal matrices can be concatenated with the diffeomorphism.
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Finally, we define the mapping E. : R? — R? coordinate-wise as

)

EE(X)W = (Ing_l(O) X, Do(pil[euw}):_l(o) - (@(X)aeuw)27 w = 17 7d€a (20)
and define D, : R% — R% as
de de
D.(p) i= expf 10y (3 PuDow ™ fe"]) B (3 pue), @1
w=1 w=1

which generate a Riemannian autoencoder and the set D.(R%) C R as an approximate data man-
ifold as in the scenario in Figure

As hinted above, this Riemannian autoencoder comes with an error bound on the expected approx-
imation error, which is fully determined by the diffeomorphism’s deviation from isometry around
the data manifold. For the proof, we refer the reader to Appendix [B]

Theorem 1. Let ¢ : R — R? be a smooth diffeomorphism and let 1) : R — R be a quadratic
function of the form with positive definite diagonal matrix A € R**%. Furthermore, let p :
R? — R be the corresponding probability density of the form|(3)l_Finally, consider ¢ € [0,1] and
the mappings E. : R — R and D, : R% — R% in and with d. € [d] as in

Then,

le (72 (73 1 % d
By ID(E(X) - X[ <= _int {ZPeRe e (L2 S o), @)
=1

BeE(0,2) 1-28 1-28
where ) o
Coip = SUP {IDyie™ 37 2900 4709, 23)
x€
2, = sup {|det(Dyip)le™ 200 A0y, (24)
xER4
and ) .
C’EW = sup{|det(Dcp(x)4p*1)|e*5“"(x) A “"(x)}. (25)
xER4

Remark 2. Note that the RAE latent space is interpretable as it is (*-isometric to the data manifold
if @ is an approximate (*-isometry on the data manifold. In other words, latent representations
being close by or far away correspond to similar behaviour in data space, which is not the case for
a VAE (Kingma & Welling| |2013).

5 LEARNING UNIMODAL PROBABILITY DENSITIES

Naturally, we want to learn probability densities of the form|[(3)] which can then directly be inserted
into the proposed score-based pullback Riemannian geometry framework. In this section we will
consider how to adapt normalizing flow (NF) (Dinh et al., 2017) training to a setting that is more
suitable for our purposeﬂ In particular, we will consider how training a normalizing flow density
p: R? — R given by

1 — X

p(x) = e V0 det(Dxp)], (26)

¥
where Cy, > 0 is a normalisation constant that only depends on the strongly convex function 1,
yields our target distribution|[(3)]

From Sections [3| and |4/ we have seen that ideally the strongly convex function 1 : R — R cor-
responds to a Gaussian with a parameterised diagonal covariance matrix A € R?*?, resulting in
more parameters than in standard normalizing flows, whereas the diffeomorphism ¢ : R? — R? is
regularized to be an isometry. In particular, A ideally allows for learnable anisotropy rather than
having a fixed isotropic identity matrix. The main reason is that through anisotropy we can con-
struct a Riemannian autoencoder (RAE), since it is known which dimensions are most important.

SWe note that the choice for adapting the normalizing flow training scheme rather than using diffusion
model training schemes is due to more robust results through the former.
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Moreover, the diffeomorphism should be ¢2-isometric, unlike standard normalizing flows which are
typically non-volume preserving, enabling stability (Remark |1)) and a practically useful and inter-
pretable RAE (Theorem (1| and remark . In addition, £2-isometry (on the data support) implies
Volureservation, which means that [det(Dx )| ~ 1 so that[(26)|reduces to the target distribu-
tion|(3)

This leads to learning the density through minimizing the following adapted normalizing flow loss

L(01,02) := Expy, [~ 10g pa, 6,(X)]
+ Mol Exmpy, [10g(] det (Dxo,)1)?] + NisoExXmpe [|(Dx20,) " Dxpo, — 1allz:]  (27)

where A\, Aiso > 0 and the negative log likelihood term reduces to

1

EX’\‘pdalu [7 10gp91792 (X)] = iEX’me [9092 (X)TA9_119992 (X)]

1 d
— EXpuna [108(| det(Dx g, )1)] + 3 tr(Ag,) + 5 log(27), (28)

where Ay, is a diagonal matrix and g, is a normalizing flow with affine coupling layersﬁ (Dinh
et al., 2017).

6 EXPERIMENTS

We conducted two sets of experiments to evaluate the proposed scheme from Section[5]to learn suit-
able pullback Riemannian geometry. The first set investigates whether our adaptation of the standard
normalizing flow (NF) training paradigm leads to more accurate and stable manifold mappings, as
measured by the geodesic and variation errors. The second set assesses the capability of our method
to generate a robust Riemannian autoencoder (RAE).

For all experiments in this section, detailed training configurations are provided in Appendix

6.1 MANIFOLD MAPPINGS

As discussed in |Diepeveen| (2024)), the quality of learned manifold mappings is determined by two
key metrics: the geodesic error and the variation error. The geodesic error measures the average
deviation form the ground truth geodesics implied by the ground truth pullback metric, while the
variation error evaluates the stability of geodesics under small perturbations. We define these error
metrics for the evaluation of pullback geometries in Appendix D}

Our approach introduces two key modifications to the normalizing flow (NF) training framework:
1. Anisotropic Base Distribution: We parameterize the diagonal elements of the covariance
matrix Ay, , introducing anisotropy into the base distribution.
2. (?-Isometry Regularization: We regularize the flow g, to be approximately /2-isometric.

To assess the effectiveness of these modifications in learning more accurate and robust manifold
mappings, we compare our method against three baselines:

(1) Normalizing Flow (NF): Uses an NF with a standard isotropic Gaussian base distribution
N(0,1,) and no isometry regularization of the flow.

"We note that without these constraints (accommodating multimodality) the learned mappings can in prin-
ciple be used to construct Riemannian geometry and a RAE. However, from the theory discussed in this paper
we cannot guarantee stability of manifold mappings nor that the RAE has the right dimension.

8We note that the choice for affine coupling layers rather than using more expressive diffeomorphisms such
as rational quadratic flows |Durkan et al.|(2019) is due to our need for high regularity for stable manifold map-
pings (Remark[I) and an interpretable RAE (Remark 2, which has empirically shown to be more challenging
to achieve for more expressive flows as both first-and higher-order derivatives of ¢ will blow up the error terms
in theorem [I} For more details refer to appendix@
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Metric Our Method NF Anisotropic NF  Isometric NF
Single Banana Dataset
Geodesic Error  0.0315 (0.0268) 0.0406 (0.0288)  0.0431 (0.0305) 0.0817 (0.1063)
Variation Error  0.0625 (0.0337) 0.0638 (0.0352)  0.0639 (0.0354) 0.0639 (0.0355)
Squeezed Single Banana Dataset
Geodesic Error  0.0180 (0.0226)  0.0524 (0.0805)  0.0505 (0.0787)  0.1967 (0.2457)
Variation Error  0.0631 (0.0326) 0.0663 (0.0353) 0.0661 (0.0350) 0.0669 (0.0361)
River Dataset
Geodesic Error  0.1691 (0.0978)  0.2369 (0.1216)  0.2561 (0.1338)  0.3859 (0.2568)
Variation Error  0.0763 (0.0486) 0.1064 (0.0807) 0.1113 (0.0863) 0.0636 (0.0333)

Table 1: Comparison of evaluation metrics for different methods across three datasets. Best-
performing results for each metric are highlighted in bold. Values are reported as mean (std). The
proposed method performs best in all metrics on each data set.

(2) Anisotropic Normalizing Flow: Uses an NF with the same parameterization of the diagonal
covariance matrix in the base distribution as in our method, but without regularization of
the flow.

(3) Isometric Normalizing Flow: Uses an NF with an isotropic Gaussian base distribution
N(0,1;) and regularizes the flow to be approximately ¢2-isometric.

We conduct experiments on three datasets, illustrated in Figure [§]in Appendix [C.I} the Single Ba-
nana Dataset, the Squeezed Single Banana Dataset, and the River Dataset. Detailed descriptions of
the construction and characteristics of these datasets are provided in Appendix [C.1}

Table [T] presents the geodesic and variation errors for each method across the three datasets and
Figure [3| visually compares the geodesics computed using each method on the river dataset. Our
method consistently achieves significantly lower errors compared to the baselines, indicating more
accurate and stable manifold mappings.

Introducing anisotropy in the base distribution without enforcing isometry in the flow offers no sig-
nificant improvement over the standard flow. On the other hand, regularizing the flow to be approx-
imately isometric without incorporating anisotropy in the base distribution results in underfitting,
leading to noticeably worse performance than the standard flow. Our results demonstrate that the
combination of anisotropy in the base distribution with isometry regularization (our method) yields
the most accurate and stable manifold mappings, as evidenced by consistently lower geodesic and
variation errors.

,/‘ o / // E / E //

(a) Ground Truth (b) Our Method (c) Standard NF (d) Anisotropic NF (e) Isometric NF

Figure 3: Comparison of geodesics computed using different methods on the river dataset. The
geodesics generated by the proposed method have least artifacts, which is in line with our expecta-
tions from Table

6.2 RIEMANNIAN AUTOENCODER

To evaluate the capacity of our method to learn a Riemannian autoencoder, we conducted experi-
ments on two synthetic datasets across various combinations of intrinsic dimension d’ and ambient
dimension d:

e Hemisphere(d', d): Samples are drawn from the upper hemisphere of a d’-dimensional unit
sphere and embedded in an d-dimensional ambient space via a random isometric mapping.
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e Sinusoid(d’, d): This dataset is generated by applying sinusoidal transformations to d’-
dimensional latent variables, resulting in a complex, nonlinear manifold embedded in d
dimensions.

For a detailed description of these datasets, refer to Appendix

6.2.1 1D AND 2D MANIFOLDS

In Figures [I] and ] we present the data manifold approximations by our Riemannian autoen-
coder for four low-dimensional manifolds.: Hemisphere(2,3), Sinusoid(1,3), Sinusoid(2,3) and Si-
nusoid(1,100). In appendix [F} we detail the process used to create the data manifold approximations
for these experiments. In our experiments, we set ¢ = 0.01, which resulted in d. = d’ for all cases,
accurately capturing the intrinsic dimension of each manifold and producing accurate global charts.

R,

%

"

R e ahaie Y

(a) Dims (5, 59, 92) (b) Dims (31, 55, 66) (c) Dims (64, 72, 90)

Figure 4: Approximate data manifold learned by the Riemannian autoencoder for the Sinusoid(1,
100) dataset. The orange curves depict the manifold learned by the model, while the blue points
show the training data. We visualize three different combinations of the ambient dimensions.

6.2.2 HIGHER-DIMENSIONAL MANIFOLDS

To evaluate the scalability of our method to higher-dimensional manifolds, we conducted additional
experiments on the Hemisphere(5,20) and Sinusoid(5,20) datasets.

Our theory suggests that the learned variances indicate the importance of each latent dimension:
higher variances signal more important dimensions for reconstructing the manifold, while dimen-
sions with vanishing variances are considered insignificant and are disregarded when constructing
the Riemannian autoencoder. To test the model’s ability to correctly identify important and unimpor-
tant latent dimensions, we report the average £2 reconstruction error for each dataset as a function
of the number of latent dimensions used. In the reconstruction error plots (see figs. [5b| and [5d),
we report three variance-based orders for adding latent dimensions: decreasing variance order (blue
line), increasing variance order (green line), and random order (red line).

For the Hemisphere(5,20) dataset, the model identified five non-vanishing variances (see fig. @,
perfectly capturing the intrinsic dimension of the manifold. This is reflected in the blue curve in
fig. [5b] where the first five latent dimensions, corresponding to the largest variances, are sufficient
to reduce the reconstruction error almost to zero. In contrast, the green curve illustrates that the
remaining ambient dimensions do not encode useful information about the manifold. The red curve
demonstrates improvement only when an important latent dimension is included.

For the more challenging Sinusoid(5,20) dataset, our method still performs very well, though not
as perfectly as for the Hemisphere dataset. The first six most important latent dimensions explain
approximately 97% of the variance, increasing to over 99% with the seventh dimension (see fig.[Sc).
This is reflected in the blue curve in fig. [5d] where the first six latent dimensions reduce the recon-
struction error to near zero, and the addition of the seventh dimension brings the error effectively to
zero. The slight discrepancy between our results and the ground truth likely arises from increased
optimization difficulty, as the normalizing flow must learn a more intricate distribution while main-
taining approximate isometry. We believe that with deeper architectures and more careful tuning
of the optimization loss, the model will converge to the correct intrinsic dimensionality of five.
Currently, it predicts six dimensions at a threshold of ¢ = 0.05 and seven at ¢ = 0.01, slightly
overestimating due to the manifold’s complexity.
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(c) Learned variances in decreasing order. (d) Reconstruction error for three latent orders.
Figure 5: Learned variances and reconstruction errors for the Hemisphere(5,20) and Sinusoid(5,20)
datasets. The plots in the left column show the learned variances in decreasing order for each dataset,
while the right column illustrates the average /2 reconstruction error as a function of the number of
latent dimensions used. The reconstruction errors are evaluated for three variance-based orders of
the latent dimensions: the blue line (circular markers) represents adding dimensions in decreasing
order of variance, the green line (square markers) for increasing variance, and the red line (diamond
markers) for a random order.

7 CONCLUSIONS

In this work we have taken a first step towards a practical data-driven Riemannian geometry frame-
work, striking a balance between scalability of training a data-driven Riemannian structure and of
evaluating its corresponding manifold mappings. We have considered a family of unimodal prob-
ability densities whose negative log-likelihoods are compositions of strongly convex functions and
diffeomorphisms, and sought to learn them. We have shown that once these unimodal densities have
been learned, the proposed score-based pullback geometry gives us closed-form geodesics that pass
through the data probability density and a Riemannian autoencoder with error bounds that can be
used to estimate the dimension of the data manifold. Finally, to learn the distribution we have pro-
posed an adaptation to normalizing flow training. Through numerical experiments, we have shown
that these modifications are crucial for extracting geometric information, and that our framework
not only generates high-quality geodesics across the data support, but also accurately estimates the
intrinsic dimension of the approximate data manifold while constructing a global chart, even in
high-dimensional ambient spaces. Current challenges of the method lie in balancing the expressiv-
ity of the network architecture, e.g., through additional layers or more expressive architectures, and
satisfying approximate ¢2-isometry on the data support. For future work we aim to overcome these
challenges, extending the method to multimodal distributions, while making it scalable for higher-
dimensional data sets. After that, we believe that this line of work has wide variety of downstream
applications as many of the applications mentioned to motivate this line of work will benefit from
more interpretable representation learning.

10
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A PROOF OF PROPOSITION [I] AND AN ADDITIONAL RESULT

Proof of proposition|[l] First note that V) o ¢ is a diffeomorphism with inverse @1 o Vi*. Then,

equations[(8)] [(TO)} [(12)] and[(T4)|follow directly from (Diepeveenl[2024] Prop. 2.1) and[(16)]follows
directly from (Diepeveen, 2024, Cor. 3.6.1).

Next, if ¢ is of the form[(6)] i.e.,

U(x) = px A X,

we have that its Fenchel conjugate is given by

1
v(y) = 5y Ay (29)
So both Vi)(x) = A~!x and V¢*(y) = Ay are linear mappings, from which follows that they
cancel to identity everywhere and yield [(9)] [TD] [(T3)] [T3)] and [(T7)} O

Proposition 2. Let ¢ : R? — R? be a smooth diffeomorphism and let 1) : R — R be a smooth
strongly convex function, whose Fenchel conjugate is denoted by * : R* — R. Next, consider the
function f : R* — R4¥9 given by

d
f(z) = D,V¢* + > 2:0,D() V" (30)

i=1
Finally, let x,y € R? be vectors and assume that for all vectors

2 € {(1-1)(Vio p)(x) + {0 g)(y) | € [0,1]} C R
the matrix f(z) is positive definite.

Then, mapping
= Y(p(y*(1), te(0,1] 31

is strongly convex, where %Z ?‘w is the geodesic between x and y under the Riemannian structure
(RY, (-, -) Vo).

In addition, if i is of the formthe mapping is strongly convex for any x,y € R%
Proof. By|[(®)]in proposition[I]we have
Dy ? (1)) = (¢! o VY ) (1 = ) (Ve 0 9)(x) + LV 0 9)(y))))
= (VP (1= 1)(VY o )(x) + H (VY o 9)(y))). (32)
So the claim holds if on the linear subspace
{1 =1)(Vop)(x) +t(Veop)(y) |t €[0,1]} C R? (33)

the function ¥ o V* is convex.

Next, note that the Hessian of 1) o Vi)* satisfies

D V(4o V™) = [(2). (34)

By assumption f(z) is positive definite for all z in the subspace In other words, on this
subspace 1 (V1)*(z)) is positive definite, which implies strong convexity and yields the main claim.

The claim for the special case of ¢ is of the form [(6)]follows directly, because
f(z) = A, (35)

which is always positive definite.

13
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B PROOF OF THEOREM ]

Auxiliary lemma

Lemma 1. Let o : R — R be a smooth diffeomorphism and let 1) : R* — R be a quadratic func-
tion of the form|( - with dlagonal A € R¥? Fyrthermore, let p : R® — R be the corresponding
probability density of the form|(3)l Finally, conszder e € [0,1] and the mappings E. : R? — R4
and D, : R% — R in (20) and 1)\ with d. € [d] as m

Then, for any « € [0,1) and any 8 € [0,1 — «)

2 3
Expld?,(De(E-(X)), X)2e#X) AT (0] < Cﬂ SOCW( 1+6ﬂ) San  (6)

1 —a—pf\l—a-— pt
where N
Cgﬁ, := sup {|det(Dyx)p~ )|e Se() AT ¢(x)} (37)
xER4
and ) -
ng, = sup {| det(Dyp)|e”z¥) AT @) (38)
xER4

Proof. We need to distinct two cases: (i) d. = dand (ii)) 1 < d. < d
(i) If d. = d we have that D (E.(x)) = x for any x € R?. In other words

d
> ai (39)

Expdf, (Do (E-(X)),X)2e3#X) AT = g < ¢

C3.C5.0 ( 1+ )

l—-a—-pF\l—a-p pt
(ii) Next, we consider the case 1 < d. < d. First, notice that we can rewrite
o) : N
lo(D:(E-(x)))—¢(x)|3 [ Z e e —p(x)3 =1 D (p(x),e")e™ |3
k=1 k=d.+1
. ; d d d
orthogonalit i i i
TN ), )e™ 3= Y (p(x),e*)3 = > @(x);. (40)
k=d.+1 k=d.+1 k=d.+1
Moreover, we define
Ci= [ e 29 AT () 4y (41)

Rd

DE(EE(X)))_ ( )||2€ (2_5) (X)TAiltp(x)dx

¢ 2,50(X)TAT (X)) _ Jpa |l
Extep e (De(Fe (X)), X)e ] Joa € BPOOTATE 4

i 1 “ _
/ lo(Do(Ex(x))) — p(x) |3~ B e0 T AT 00 4x
]Rd

G

1 d
*/ Z p(x ) —(3-%)e(x) AT () 4% Z / —(3-5)e(x) "TAT o) 4%

C Jpa k=do+1 Ok d.+1 7R

d
x=¢_'(y) 1 2 ~(3-%)y A Yy -1
= Vel Z yi.e *? 2 |det(Dye™)|dy
k=d.+1 "R

Z /yu G5 =2¥ A | det(Dy o Y)em 7Y A Vay
Rd

k de+1
,,yTA y d
7SUpyeRd{|det( yg e } Z /yu g—%—g)yTA*IYdy
k=d.+1

14
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o1 Ch.e zd: / 2 (g2 a vy, _ Che zd: 2 ~(-3-HTL, B
C e C L e
C2 d ,(l,gfﬁ) y? _(l_a_B d ﬁ
= gw ) /RY?,C@ CP Ty, /Rd L G820 S dy, L dys1dyie - dya
k=d.+1 B
C2 d a; C(i_a_8y¥? (l_a_ gy Vi
- g’w Z (lfakfﬁ)/Re C kdy”/ﬂgd L€ (B8 2 *dyy...dyi,—1dyi+1 .. dya
k=d.+1 B
_ Che Zd: Qi / ~G-5-%y ATy
0 e U—a=B) J” Y
2 d
_ CB#P Z Qg ( 1+B )g/ —(%-&-i)yTA*lydy
C k:dﬁ_l(l—a—ﬂ) l—a-p R
2 d d
v=o(x) C5 3 aj, ( 1+5 )f —(342)0(0 T A (%)
= e"272 | det(Dxp)|dx
C I-a=-B8\1-a—-3/ Jga
k=d.+1
2 d d
ﬁ 1+ 2 Clo(x)TA Lo(x BT A Yo(x
- Z l—a ﬂ)(l—a—ﬁ) /Rde 2909 AT 00| det(Dygp) e 20 A ¢ dx
k=
—Box)TA Tp(x d
Scﬁ,cpsupxeﬂ{dﬂdet( xp)le” 79 209} Z Ay, ( 1+5 )g/ e 39 TAT (%) 45
C k:d€+1(1_a_6) l—a-—p Rd
2 3 d
Cﬁ,s@cﬁﬁp Z a;, ( 1+ )g/ e —Lox)TA e(x)q
C l-a-/H\l—a-0 Rd

k=d.+1
C3.08, 0 148 \#<
< By 42
—61—a—5<1—a—5> > an @)

Proof of the theorem

Proof of theorem([I} First, consider the Taylor approximation

e (e(y)) — ¢ (e(y)) = Dy Hely) — ()] + O(lle(y) — ¢(x)]13)
= Dy ely) — ()] + O(dg.(y,x)?).  (43)
Moreover, we define

Ci= [ e 2200 AT 000 gy, (44)
R4
Subsequently, notice that

EXNP[HDsa(X)‘P 1 [p(D:(E:(X))) — W(X)]H%]
:7/ | Do o (De(E=(x))) = ()] [[3e 270 A7 ¢dx
= 6/]1@‘1 ||D¢(x)907 ||2||S0(D6(E5(X))) ( )”2 —3¢( (x)TA™ (’O(x)d

B8 T -1
SUPx ]Rd{HD x‘p_1||2€_§@()() A LP(X)} —(1-_8 x “lo(x
< MPaer 2e00? [ (DB = o320 A e
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1
BZ0e [ (DB () — (o) [eh o078 00 b0 A g

= C} JExp[df, (D (Eo(X)), X)%e 2900 A (X))
emmall CL C2%2 C3 1+814
By~ By~ By 2
< )
= € 1-28 (1_2/@) Zaz 45)

1=1
Then,
Exp[[| De(E-(X)) — X[5] = Expllle™ (#(D=(E-(X)))) — ¢~ (X)) 3]
@Epr[HD@(xyp*l[@(DE(EE(X))) — p(X)] + O(dg.(D-(E-(X)), X)?)|3]
= Exp[| Dox)p ™ [p(D: (B (X)) — p(X)]|I5 + O(dgu(De(E=(X)), X)?)]
; 1 2 3 4 d
ECﬁ’ﬁCLB’;BCﬂW (11j265) ) Zai +o(e), (46)
i=1

which yields the claim as 8 was arbitrary. O

C DATASET CONSTRUCTION DETAILS

In this section, we provide a detailed explanation of the construction of the datasets used in our
experiments. We organize the datasets into two categories based on the experimental sections in
which they are used.

C.1 DATASETS FOR MANIFOLD MAPPING EXPERIMENTS

}. A

ot
REuL

E '%&"e&,

(a) Single Banana (b) Squeezed Single Banana (c) River

Figure 6: Visualization of the datasets used in our manifold mapping experiments.

In our manifold mapping experiments (Section [6.1), we use the following datasets illustrated in
Figure 6}

* Single Banana Dataset: A two-dimensional dataset shaped like a curved banana.
* Squeezed Single Banana Dataset: A variant of the Single Banana with a tighter bend.

* River Dataset: A more complex 2D dataset resembling the meandering path of a river.

Each dataset is constructed by defining specific diffeomorphisms ¢ and convex quadratic functions
1), then sampling from the resulting probability density using Langevin Monte Carlo Markov Chain
(MCMC) with Metropolis-Hastings correction. The probability density function is defined as:

p(x) o e—w(so(x))) (47)

where the strongly convex function v is given by:
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U= gvTATY, (48)

and A is a positive-definite diagonal matrix. The specific choices of ¢ and A for each dataset
determine its geometric properties.

C.1.1 DIFFEOMORPHISMS AND CONVEX QUADRATIC FUNCTIONS

The key differences between the datasets arise from the diffeomorphism ¢ and the covariance matrix
A used in the sampling process. Below, we describe the specific settings for each dataset.

1. Single Banana Dataset

* Diffeomorphism:

where a = § and z = 0.

¢ Covariance matrix:

2. Squeezed Single Banana Dataset

¢ Diffeomorphism: Same as the Single Banana Dataset.

e Covariance matrix:

3. River Dataset
* Diffeomorphism:
T, —sin(azxs) — 2
p(x) = ( 1~ sin(az) )

where ¢ = 2 and z = 0.

¢ Covariance matrix:

C.1.2 DATASET GENERATION ALGORITHM

Algorithm |I| outlines the dataset generation process for all three datasets. The specific diffeomor-
phisms and quadratic functions differ for each dataset.

C.2 DATASETS FOR RIEMANNIAN AUTOENCODER EXPERIMENTS
In the Riemannian autoencoder experiments (Section , we use the following datasets:

* Hemisphere(d’, d) Dataset: Samples drawn from the upper hemisphere of a d’-dimensional
unit sphere and embedded into R? via a random isometric mapping.

* Sinusoid(d’, d) Dataset: Generated by applying sinusoidal transformations to d’-
dimensional latent variables, resulting in a complex, nonlinear manifold in R4,

C.3 HEMISPHERE(d', d) DATASET
The Hemisphere(d', d) dataset consists of samples drawn from the upper hemisphere of a d’-

dimensional unit sphere, which are then embedded into a d-dimensional ambient space using a
random isometric embedding. Below are the steps involved in constructing this dataset.
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Algorithm 1 General Dataset Generation Algorithm

Require: Number of samples N, MCMC steps T, Step size 9§, Diffeomorphism ¢, Covariance
matrix A
Ensure: Dataset {x1,X2,...,Xn}
1: Initialize: Set initial state xo = 0 € R2.
2: fori =1to N do
3: X=1Xg

4. fork=1toT do
5: Compute the score function Vy 10g Prarget (X).
6: Propose x' = x + %Vx 1og Prarget (X) + 07, where 7 ~ N (0, I5).
7: Compute the forward kernel:
2
K, B ‘X -x'+ %vx’ 1nglarget(x/”2
forward — 252
8: Compute the reverse kernel:
K B ‘X/ —-x+ %vx Ingtarget(X)|2
reverse — 262
9: Compute the Metropolis-Hastings acceptance probability:
: x'
A = min (17 ZIMget((X)) €xp (_Kforward + Kreverse))
target
10 Accept x’ with probability A; else set x’ = x.
11: Update x = x'.
12:  end for
13:  Store the final x as sample x;.
14: end for

1. Sampling from the Upper Hemisphere We begin by sampling points from the upper hemi-
sphere of the d’-dimensional unit sphere Si, C R¥+!, The upper hemisphere is defined as:
si:{xeRﬁﬂqu:Lxlzo}

The first angular coordinate 6, is sampled from a Beta distribution with shape parameters o = 5 and
B = 5, scaled to the interval [O, g} This sampling method emphasizes points near the “equator”
of the hemisphere. The remaining angular coordinates 65, . . ., 04 are sampled uniformly from the
interval [0, 7]:

91AJBmaGL5)-<g>, §; ~ Uniform(0, ), fori = 2, ..., d".

2. Conversion to Cartesian Coordinates Next, each sampled point in spherical coordinates is
converted into Cartesian coordinates in R? *! using the following transformation equations:

x1 =cos(bh), x2=sin(01)cos(f2), ..., zg41 =sin(fr)sin(bs)---sin(fy).

This conversion ensures that the sampled points lie on the surface of the unit sphere in (d’ + 1)-
dimensional space.

3. Random Isometric Embedding into R?  After sampling points on the hemisphere in R +1,
the points are embedded into a d-dimensional ambient space (d > d’ + 1) using a random isometric
embedding. The embedding process is as follows:

1. Generate a random matrix A € R¥*(@+1) where each entry is sampled from a standard
normal distribution A(0, 1).
2. Perform a QR decomposition on matrix A to obtain Q € R¥*(d'+1).

A = QR.
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The columns of Q form an orthonormal basis for a (d’ + 1)-dimensional subspace of R,

ensuring that Q defines an isometric embedding from R4+ into R?. This guarantees that
distances and angles are preserved during the mapping, maintaining the geometric structure
of the original space within the higher-dimensional ambient space.

3. Use matrix Q to map each sample x € R%+1 into the ambient space:
y = Qx,

where y € R are the embedded samples.

Algorithm 2 Hemisphere(d’, d) Dataset Generation

1:

Input: Intrinsic dimension d’, ambient dimension d, number of samples n, Beta distribution
parameters « = 5, 3 =5

2: Output: Dataset Y € R™*¢

3. Step 1: Generate Random Isometric Embedding

4: Generate a random matrix A € R (@ +1) with entries from A(0,1)

5: Perform QR decomposition on A to obtain Q € R¥*(d'+1);

A =QR

6: Step 2: Construct Dataset

7: for i =1ton do

8:  Step 2.1: Sample Spherical Coordinates

9:  Sample the first angular coordinate ¢, from a scaled Beta distribution:

01 ~ Beta(a, 3) - (g)
10:  Sample the remaining angular coordinates s, . .. , 84 from a uniform distribution:
0; ~ Uniform(0, ), fori=2,...,d
11:  Step 2.2: Convert to Cartesian Coordinates
12 Convert the spherical coordinates to Cartesian coordinates x; € R +1 using:
x1 =cos(61), x2 =sin(61)cos(ba),..., zg+1 =sin(f;)sin(bs)---sin(fy).

13:  Step 2.3: Embed Sample x; into Ambient Space

14:  Map the sample x; to the ambient space using:

yi =Qx;

15:  Append y; to the dataset Y

16: end for

17: Return: The final dataset Y = [y1,y2,...,¥nx]
C.4 SINusoID(d’, d) DATASET

The Sinusoid(d’, d) dataset represents a d’-dimensional manifold embedded in d-dimensional space
through nonlinear sinusoidal transformations. Below are the detailed steps involved in constructing
this dataset.

1.

Sampling Latent Variables The latent variables z € R are sampled from a multivariate

Gaussian distribution with zero mean and isotropic variance, as follows:

z~N(0,0010),

where o2, controls the variance along each intrinsic dimension, and I is the d’ x d’ identity matrix.

The value of o2

%, is set to 3 for our experiments.
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2. Defining Ambient Coordinates with Sinusoidal Transformations For each of the d — d’
ambient dimensions, we construct a shear vector a; € R? | with its elements drawn uniformly from
the interval [1, 2]:

a; ~ Uniform(1, N, forj=1,...,d—d.

The shear vectors a; apply a fixed linear transformation to the latent space z € R, determining
how the latent variables influence each ambient dimension. These vectors, sampled once for each of
the d — d’ ambient dimensions, modulate the scale and periodicity of the sinusoidal transformation.

Each ambient coordinate x; is generated as a sinusoidal function of the inner product between a;
and z, with a small Gaussian noise added for regularization.

T; = sin (a;-rz) + €5,

where €; ~ N (0, 02) is Gaussian noise with variance o2. In our experiments, we set 02 = 1073.

3. Constructing the Dataset Samples The final samples y € R¢ are formed by concatenating the
ambient coordinates 1, o, ..., xq4_q Wwith the latent variables zq, 29, ..., z4:

T
y= [$17x27"- yLd—d'y #1,%2, - - '7Zd/}

Algorithm 3 Sinusoid(d’, d) Dataset Generation

1: Input: Intrinsic dimension d’, ambient dimension d, number of samples n, variance o2 =3,

m
noise variance 02 = 1073
2: Output: Dataset Y € R"*4
3. Step 1: Generate Shear Vectors
4: forj=1tod—d do
5: Sample shear vector a; € R% from Uniform(1,2)?
6: end for
7: Step 2: Construct Dataset
8: fori = 1tondo
9 Step 2.1: Sample Latent Variables
10:  Generate latent variables z; € R from a multivariate Gaussian:
Z; NN(O,O’% . Id/)
11:  Step 2.2: Compute Ambient Coordinates for Sample
12: forj=1tod—d do
13: Compute ambient coordinate x; for the i-th sample:
xj =sin(az;) +¢j, € ~N(0,00)
14:  end for
15.  Step 2.3: Form Final Sample y;
16:  Concatenate the ambient coordinates x = [z1, Z3,...,Z4—q| and the latent variables z; to

form the final sample y; € R%:

T
Yi = [1‘1,1'2,...7$d7d’,21,22,...72d/]

17:  Append y; to the dataset Y
18: end for
19: Return: The final dataset Y = [y1,y2,...,¥n]

D ERROR METRICS FOR EVALUATION OF PULLBACK GEOMETRIES

Geodesic Error. The geodesic error measures the difference between geodesics on the learned and

ground truth pullback manifolds. Given two points xo, x1 € R, let 1, %, () and 7£SZ (t) denote
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the geodesics induced by the learned map ¢y, and the ground truth map ¢, respectively, where
t e 0,1].

The geodesic error is calculated as the mean Euclidean distance between the learned and ground
truth geodesics over N pairs of points:

1 a1
Geodesic Error = Z Z ’y ( ) ’y (L) (tk) ,
N3 k=1 2
where 7' is the number of time steps used to discretize the geodesic, and t;, = % fork=1,...,T.

This metric captures the average discrepancy between the learned and ground truth geodesics, re-
flecting the accuracy of the learned pullback manifold.

Variation Error. The variation error quantifies the sensitivity of the geodesic computation under
small perturbations to one of the endpoints. For two points xo,x; € R%, let z = x; + Ax, where
Ax is a random variable sampled from the Gaussian distribution:

Ax ~ N(0,0.1%T),

with mean 0 and covariance 0.12I, where I is the identity matrix. Define Y%, (t) and yue%(t) as

the geodesics from xg to x; and z, respectively, induced by the learned map (g, .

The variation error is calculated as the mean Euclidean distance between the geodesic from xg to x;
and the perturbed geodesic from x to z:

1L
Variation Error = g g
z:l k:l

i

Poy
7 () x(® ’yxéi)yz(i) (tx)

where N is the number of sampled point pairs, 7" is the number of time steps used to discretize the
geodesic, and t, = =L fork =1,...,T.

This metric evaluates the robustness of the learned geodesic against small perturbations, providing
insight into the stability of the learned manifold.

E TRAINING DETAILS

The following section describes the important configuration parameters for reproducing the exper-
iments on manifold mappings. All experiments share some common parameters, which are listed
below, while dataset-specific parameters are provided in Table[2]

Common Parameters:
e Optimizer: Adam with betas = (0.9, 0.99), eps =1 X 108, and weight decay of
1 x1075.
¢ Learning Rate Schedule: Warm-up cosine annealing with 1000 warm-up steps.
* Gradient Clipping: Gradient norm clipped to 1.0.

* Model Architecture: A composition of affine coupling layers is used, where each layer
transforms part of the input while keeping the other part unchanged. The transformation
function in each layer is modeled by a residual network (ResNet) consisting of 64 hidden
features, 2 residual blocks, ReL.U activations, and no batch normalization. Dropout is set
to 0, and transformations alternate across different dimensions at each layer.
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Table 2: Training configurations for each experiment.

Dataset Flow Steps | Epochs | Batch Size | )\, | A\, | Learning Rate
Sinusoid(1,3) 8 1000 64 1.0 | 1.0 3x 1072
Sinusoid(2,3) 8 1000 64 1.0 | 1.0 3x 1074
Sinusoid(5,20) 24 2000 128 1.2 | 25 4x107*
Hemisphere(2,3) 8 2000 64 1.0 | 1.0 4x107%
Hemisphere(5,20) 12 2000 64 075 | 1.2 4%x107%

F DATA MANIFOLD APPROXIMATION

The learned manifold, shown in orange in Figure[l] is the set D, (i), where D, is the RAE decoder
the set ¢/ in the latent space is the open set given by

de
U= H(—3,/aui,31/aui)
i=1
and ay, , . ..,a,,, arethe d. highest learned variances corresponding to the ones used in the RAE
construction.

To visualize this in practice, we construct a mesh grid by linearly sampling each latent dimension
from —3,/a,; to +3,/a,,, fori =1, ..., d., where d. is the number of significant latent dimensions.
Practically, the off-manifold latent dimensions (those corresponding to negligible variances) are set
to zero. The decoder D, then maps this grid from 2/ back to R?, generating an approximation of the
data manifold, as illustrated in Figure[I]

G EXPERIMENTS WITH MORE COMPLEX DISTRIBUTIONS

We applied our training frameworkﬂ to model complex real-world and synthetic distributions, specif-
ically focusing on the subset of digit “1” from the MNIST dataset and a synthetic dataset of 10-
dimensional Gaussian blobs introduced in |Stanczuk et al|(2022). The subset of digit “1” is chosen
as it is likely to be represented well by the unimodal parametric family [3] The Gaussian blobs dataset
is included because its intrinsic dimension is known (10), providing a reliable baseline for evaluating
the accuracy of the RAE’s intrinsic dimension estimation.

Modeling such distributions effectively requires more expressive normalizing flow architectures,
such as affine coupling flows combined with 1 x 1 invertible convolutions for pixel reshuffling,
or rational quadratic (RQ) spline flows. These architectures, however, are not guaranteed to have
zero second derivatives, which can cause the higher-order terms in Theorem [1| to become signifi-
cant, potentially inflating the expected reconstruction error of the Riemannian Auto-encoder (RAE).
Furthermore, enforcing £2 isometry regularization becomes more challenging in these cases.

Despite these issues, our experiments indicate that the deviations from isometry and the presence of
non-zero second derivatives do not visibly impact the quality of the manifold mappings. However,
they can affect the overall performance of the RAE.

We trained two models on the digit “1” subset of MNIST: an affine coupling flow with 1 x 1 invertible
convolution layers (which is not an affine transformation) and an RQ spline flow. In both cases, we
observed stable and accurate geodesics that traversed regions of high data density, consistent with
theoretical predictions. These geodesics effectively navigate through common examples of the digit
“17, as expected based on the learned data distribution. The results are presented in Figure

To complement the MNIST experiments, we evaluated the same models on the Gaussian blobs
dataset, where the true intrinsic dimension is known to be 10. This dataset allows us to directly
assess the accuracy of the RAE’s intrinsic dimension estimation. The trained affine and RQ spline
models produced stable and accurate geodesics similar to those observed in the MNIST experiments,
as shown in Figure [g} However, both models overestimated the intrinsic dimension.

“with the minor change of replacing the isometry regularizer to a more scalable version (see Appendix
for details)
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(a) Affine Coupling Model (b) Rational Quadratic Spline Model

Figure 7: Geodesics computed for two different normalizing flow models trained on the subset of
digit “1” from the MNIST dataset. (a) shows the geodesics for a model using affine coupling layers
with 1 x 1 convolutions, while (b) shows the geodesics for a model using rational quadratic splines.
In both cases, the geodesics pass through high-density regions of the dataset, consistent with the
theoretical expectation that geodesics align with areas of higher probability under the learned data
distribution. This highlights the models’ ability to capture the underlying data manifold effectively.

(a) Affine Coupling Model (b) Rational Quadratic Spline Model

Figure 8: Geodesics computed for two different normalizing flow models trained on the 10-
dimensional Gaussian blobs dataset. (a) shows the geodesics for a model using affine coupling
layers with 1 x 1 convolutions, while (b) shows the geodesics for a model using rational quadratic
splines. Both models demonstrate smooth geodesics that traverse high-density regions.

Our RAE model consistently overestimates the intrinsic dimension across both datasets. For the
MNIST subset, we observe an estimated intrinsic dimension of approximately 650 for the RQ spline
flow and around 300 for the affine flow when using an € = 0.1 threshold. Similarly, for the Gaus-
sian blobs dataset, the affine model estimates an intrinsic dimension of 650, while the RQ spline
model estimates 396. We attribute this overestimation primarily to the difficulty of achieving an ¢2
isometry while learning the complex data distribution. Although non-zero second derivatives are
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a secondary factor, they may exacerbate the issue by increasing the contributions of higher-order
terms in Theorem [T}

These results suggest that while our method can effectively capture the manifold structure, additional
regularization may be required to better align the learned metric with the true geometry, especially
when using highly expressive flow architectures.

H COMPUTATIONAL COMPLEXITY OF THE PROPOSED APPROACH TO
TRAINING

In this paper we have claimed that this approach is more scalable than the work by Diepeveen! (2024)).
This is the case for most parts of the proposed loss, except for the isometry regularizer, which is also
in the loss by [Diepeveen| (2024).

In our work, we employed the exact orthogonal regularization, which comes down to computing

S| =

b
Z H(Dx“pez)TDxi(pgz - Id||2F"
i=1

where b is the batch size.

Computational Complexity The complexity of the exact method is:

Obxd®+bxdxf),
where:

* d is the ambient dimension,

* f is the cost of a forward and backward pass through .

This scales cubically with d and is independent of the intrinsic dimension. We leveraged Py-
Torch’s vmap to efficiently compute this for dimensions up to d = 100 in our experiments.

Approximate Method for Higher Dimensions In the experiments for higher-dimensional data
(in appendix [G), we used an approximate regularization method. Instead of computing the full
Jacobian, we approximate the orthogonality condition using v random orthonormal vectors {v’ }}’:1.
The regularization term is

b v
1 . -
=D (Do) T Do, [v] = v

i=1 j=1

Complexity of Approximate Method
Obxdxv?+bxuvxf+bxv®).

This reduces the computational cost, scaling linearly with d, and is also independent of the intrinsic
dimension. It offers a scalable alternative for high-dimensional datasets. For our main experi-
ments, we used the exact method due to its strong regularization in moderate dimensions (d < 100).
However, the approximate method was tested in preliminary high-dimensional experiments and ef-
fectively enforced orthogonality, promoting near-isometric mappings as required by our theoretical
framework. The exact method ensures robust regularization in lower to moderate dimensions, while
the approximate method provides a scalable alternative for higher-dimensional cases. By leverag-
ing a small number of slicing vectors, it reduces the computational burden while preserving key
geometric properties, making it effective across varying dimensional regimes.
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