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Abstract

Statistical heterogeneity severely limits the performance of federated learning (FL), motivating sev-
eral explorations e.g., FedProx, MOON and FedDyn, to alleviate this problem. Despite effectiveness,
their considered scenario generally requires samples from almost all classes during the local training
of each client, although some covariate shifts may exist among clients. In fact, the natural case of
partially disjoint data (PDD), where each client contributes a few classes (instead of all classes) of
samples, is practical yet underexplored. Specifically, the unique collapse and invasion characteristics
of PDD can induce the biased optimization direction in local training, which prevents the efficiency
of federated learning. To address this dilemma, we propose a manifold reshaping approach called
FedMR to calibrate the feature space of local training. Our FedMR adds two interplaying losses to
the vanilla federated learning: one is the intra-class loss to decorrelate feature dimensions for anti-
collapse; and the other one is the inter-class loss to guarantee the proper margin among categories in
the feature expansion. We conduct extensive experiments on a range of datasets to demonstrate that
our FedMR achieves much higher accuracy and better communication efficiency.

1 Introduction

Federated learning McMahan et al.| (2017); |L1 et al.| (2020a); [Yang et al.| (2019) has drawn considerable attention due
to the increasing requirements on data protection Shokri & Shmatikov| (2015)); Zhu & Han| (2020); |[Hu et al.| (2021));
Li et al.| (2021b); [Lyu et al.|(2020) in real-world applications like medical image analysis|Guo et al. (202 1)); [Park et al.
(2021); 'Y1n et al.| (2022); Dou et al.[(2021)); Jiang et al.| (2022) and autonomous driving [Liang et al.[ (2019)); |Pokhrel
& Choil (2020). Nevertheless, the resulting challenge of data heterogeneity severely limits the application of machine
learning algorithms Zhao et al.|(2018) in federated learning. This motivations a plenty of explorations to address the
statistical heterogeneity issue and improve the efficiency [Kairouz et al.|(2021)); Wang et al.| (2020); Li et al.| (2022).

Existing approaches to address the statistical heterogeneity can be roughly summarized into two categories. One line
of research is to constrain the parameter update in local clients or in the central server. For example, FedProx Li et al.
(2020b), FedDyn |Acar et al| (2020) and FedDC |Gao et al.| (2022) explore how to reduce the variance or calibrate
the optimization by adding the proximal regularization on parameters in FedAvg. The other line of research focuses
on constraining the representation from the model to implicitly affect the update. FedProc [Mu et al.| (2021) and
FedProto [Tan et al.[ (2022) introduce prototype learning to help local training, and MOON [Li et al.| (2021a) utilizes
contrastive learning to minimize the distance between representations learned by local model and global model, and
maximize the distance between representations learned by local model and previous local model. However, all these
methods validate their efficiency mostly under the support from all classes of samples in each client while lacking a
well justification on a natural scenario, namely partially disjoint data w.r.t. classes.

As illustrated in Figure in typical federated learning, each client usually contains all classes of samples but
under different covariate shifts, and all clients work together to train a global model. However, in the case of PDD
(Figure[I(b)), there are only a small subset of all categories in each client and all clients together provide information
of all classes. Such a situation is actually very common in real-world applications. For example, there are shared and
distinct Thyroid diseases in different hospitals due to regional diversity |Gaitan et al.| (1991). These hospitals from
different regions can construct a federation to learn a comprehensive model for the diagnostic of Thyroid diseases
but suffer from the PDD challenge. We conduct a toy study on a simulated dataset (see details in the Appendix [B),
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(a) Typical federated learning. (b) Federated learning under PDD.
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(c) Global / Collapsed / Reshaped (by FedMR) feature space.

Figure 1: Federated learning under partially disjoint data (PDD).

and visualize the feature space under the centralized training (the left panel of Figure and that of local training
under PDD (the middle panel of Figure by projecting on the unit sphere. From Figure we can find that
PDD induces a dimensional collapse onto a narrow area due to the lack of support from all classes, and causes a space
invasion to the missing classes.

To our best knowledge, previous methods in federated learning have not formally explored the collapse and invasion
characteristics of PDD, causing the algorithmic inefficiency in these scenarios. To address this dilemma, we propose a
manifold-reshaping approach called FedMR to properly prevent the degeneration caused by the locally class missing.
FedMR introduces two interplaying losses to the vanilla federated learning: one is intra-class loss to decorrelate
feature space for the dimensional anti-collapse; and another one is the inter-class loss to guarantee the proper margin
among categories by means of global class prototypes. The right panel of Figure[I(c)| provides a rough visualization of
FedMR. Theoretically, we analyze the benefit from the interaction of the intra-class loss and the inter-class loss under
PDD, and empirically, we verify the effectiveness of FedMR compared with the current state-of-the-art methods. Our
contributions can be summarized as follows:

* We are among the first attempts to study dimensional collapse and space invasion challenges caused by PDD
in Generic FL that degenerates embedding space and thus limits the model performance.

* We introduce a principled approach termed as FedMR, which decorrelates the feature space to avoid dimen-
sional collapse and constructs the proper inter-class margin to prevent space invasion. Our theoretical analysis
confirms the rationality of the designed losses and their benefits to address the dilemma of PDD.

* We conduct a range of experiments on multiple benchmark datasets under the PDD case and a real-world
disease dataset to demonstrate the advantages of FedMR over the state-of-the-art methods. We also develop
several variants of FedMR to consider the communication cost and privacy concerns, and show their promise.

2 Related Works

2.1 Federated Learning

There are extensive works to address the statistical heterogeneity in federated learning, which induces the bias of
local training due to the covariate shifts among clients Zhao et al.[(2018)); L1 et al.| (2022). A line of research handles
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this problem by adding constraints like normalization or regularization on model weights in the local training or
in the server aggregation. FedProx [Li et al|(2020b) utilizes a proximal term to limit the local updates so as to
reduce the bias, and FedNova [Wang et al.| (2020) introduces the normalization on total gradients to eliminate the
objective inconsistency. FedDyn |Acar et al.|(2020) makes the global model and local models approximately aligned
in the limit by proposing a dynamic regularizer for each client at each round. FedDC |Gao et al.| (2022)) reduces the
inconsistent optimization on the client-side by local drift decoupling and correction. Another line of research focuses
on constraining representations from local models and the global model. MOON |Li et al.|(2021a)) corrects gradients in
local training by contrasting the representation from local model and that from global model. FedProc Mu et al.| (2021)
utilizes prototypes as global information to help correct local representations. Our FedMR is similarly conducted on
representations of samples and classes but follows a totally different problem and spirit.

2.2 Representation Learning

The collapse problem is also an inevitable concern in the area of representation learning. In their research lines, there
are several attempts to prevent the potential collapse issues. For example, in self-supervised learning, Barlow Twins,
VICReg and Shuffled-DBN |Bardes et al.| (2022); |[Zbontar et al.| (2021); Hua et al.| (2021) manipulate the rank of the
(co-)variance matrix to prevent the potential collapse. In contrastive learning, DirectCLR [Jing et al.| (2021) directly
optimizes the representation space without an explicit trainable classifier to promote a larger feature diversity. In
incremental learning, CwD [Shi et al.|(2022) applies a similar technique to prevent dimensional collapse in the initial
phase. In our PDD case, it is more challenging, since we should not only avoid collapse but also avoid the space
invasion in the feature space.

2.3 Federated Prototype Learning

In many vision tasks |Snell et al.| (2017); |Yang et al.| (2018); Deng et al.| (2021), prototypes are the mean values
of representations of a class and contain information like feature structures and relationships of different classes.
Since prototypes are population-level statistics of features instead of raw features, which are relatively safe to share,
prototype learning thus has been applied in federated learning. In Generic FL, FedProc Mu et al.[(2021) utilizes the
class prototypes as global knowledge to help correct local training. In Personalized FL, FedProtoTan et al.| (2022)
shares prototypes instead of local gradients to reduce communication costs. We also draw spirits from prototype
learning to handle PDD. Besides, to make fair comparison to methods without prototypes and better reduce extreme
privacy concerns, we conduct a range of auxiliary experiments in Section[d.4]

3 The Proposed Method

3.1 Preliminary

PDD Definition. There are many nonnegligible real-world PDD scenarios. ISIC2019 dataset Codella et al.| (2018));
Tschandl et al.| (2018); |Combalia et al| (2019), a region-driven subset of types of Thyroid diseases in the hospital
systems, is utilized in our experiments. In landmark detection Weyand et al.|(2020) for thousands of categories with
data locally preserved, most contributors only have a subset of categories of landmark photos where they live or
traveled before, which is also a scenario for the federated PDD problem. To make it clear, we first define some
notations of the partially disjoint data situation in federated learning. Let C' denote the collection of full classes and P
denote the set of all local clients. Considering the real-world constraints like privacy or environmental limitation, each
local client may only own the samples of partial classes. Thus, for the k-th client Py, its corresponding local dataset
Dy, can be expressed as

Dy, = {(zk.i, Yx.i)|yr.i = ¢ € Cx}, where Cy, C C.

The number of samples of the class ¢ (¢ € Cy) in Py, is N7. We denote a local model f(-; wy) on all clients as two
parts: a backbone network f1(-; Wy, 1) and a linear classifier f2(-; Wy 2). The loss of the k-th client can be formulated
as

2k, i=f1(Tk,i;wk,1)’

Ny,
1
63 (Dy;wy) = N, E C(Yr,is f2 (2053 wk,2))|
i—1



Under review as submission to TMLR

Figure 2: An illustration about the shift of the optimization direction under PDD. Here, we assume our client contains
two classes ¢; and ¢, with one missing class c3. w* is the optimal classifier direction for ¢ (perpendicular to the plane
o) when all classes exist, and wj is the learned classifier direction when c3 is missing, which can be inferred by the
decision plane 3 between c; and co. As can be seen, PDD leads to the angle shift 6 in the optimization.

where zy, ; is the feature representation of the input x, ; and £(-, -) is the loss measure like the cross-entropy function.
Under PDD, we can empricially find the dimensional collapse and the space invasion problems about representation.

FedAvg. The vanilla federated learning via FedAvg consists of four steps McMahan et al.[(2017): 1) In round ¢, the
server distributes the global model w? to clients that participate in the training; 2) Each local client receives the model
and continues to train the model, e.g., the k-th client conducts the following,

wi, < Wi, — V(b wh), (1)

where 7 is the learning rate, and b}, is a mini-batch of training data randomly sampled from the local dataset D,.
After E epochs, we acquire a new local model w; 3) The updated models are then collected to the server as
{wi,wh, ..., wti}; 4) The server performs the following aggregation to acquire a new global model w1,

K
WY pwt, @
k=1

where pj, is the proportion of sample number of the k-th client to the sample number of all the participants, i.e.,
pr = Ni/ 25:1 Ny When the pre-defined maximal round T reaches, we will have the final optimized model w7 .

3.2 Motivation

In Figure 2] we illustrate a low-dimensional example to characterize the directional shift of the local training under
PDD on the client side. In the following, we use the parameter aggregation of a linear classification to study the
directional shift of global model in the server, which further clarifies the adverse effect of PDD. Similar to Figure @
let ¢1, co and c3 denote three classes of samples respectively centered at (1, 0), (O, v/3) and (0, -v/3) with radius r=%.
Then, if there are samples of all classes in each local client, we will get the optimal weight for all categories as follows:

S
I
l —
SR
N O

INIEg

Note that, we omit the bias term in linear classification for simplicity. Conversely, among total three participants, if
each participant only has the samples of two classes, e.g., (c1, c2), (c1, c3) and (c2, c3) respectively, then their learned

~
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weights can be inferred as follows:

* * *
Wy, Wy, Wy =

1 _ 3 1 V3 0 0
2 2 2 2

EST A O I T R O
S I N I )

Then, we can find that except the difference on amplitude between w* and @™, a more important issue is the optimiza-

tion direction for ¢z (or c3) shifts about 45° by computing the angle between vector (— V3 1) and vector (— ¢ f+2)

22
(or between vector (— ?, - 7) and vector (— %, — ‘/§6+2 )). Actually, the angle shift can be enlarged in some real—world

applications, when the hard negative classes are missing.

3.3 Manifold Reshaping

As the aforementioned analysis, PDD in federated learning leads to the directional shift of optimization both in the
local models and in the global model. An empirical explanation is that the feature representation of the specific
class that should support classification is totally missing, inducing the feature representation of other observed classes
arbitrarily distributes as a greedy collapsed manifold, as shown in Figure To address this problem, we explore a
manifold-reshaping method from both the intra-class perspective and the inter-class perspective. In the following, we
will present two interplaying losses and our framework.

3.3.1 Intra-Class Loss

The general way to prevent the representation from collapsing into a low-dimensional manifold, i.e., dimensional col-
lapse, is to decorrelate dimensions for different patterns and expand the intrinsic dimensionality of each category. Such
a goal can be implemented by manipulating the rank of the covariance matrix regarding representation. Specifically,
for each client, we can first compute the class-level normalization for the representation zy, as follows:

where pif and oy are the mean and standard deviation of features belonging to class ¢ in the (mini-)batch. Then, we
can compute an intra-class covariance matrix based on the above normalization for each observed class in the k-th

client:
1 i T
M= g (8 (2. G ).

With M, we can make its eigenvalues distributed uniformly to prevent the dimensional collapse of each observed
class. However, considering the learnable pursuit of machine learning algorithms, we actually cannot directly optimize
the eigenvalues to reach this goal. Fortunately, it is possible to use an equivalent objective as an alternative, which is
clarified by the following lemma.

Lemma 1. Assuming a covariance matrix M € R4 computed from the feature of each sample with the standard
normalization, and its eigenvalues {\1, \a, ..., \a}, we will have the following equality that satisfied

d 1(1
D (=g XA = I~

i=1
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The complete proof is summarized in the Appendix [A.2] From Lemma([I] we can see that pursuing the uniformity of
the eigenvalues for the covariance matrix can transform into minimizing the Frobenius norm of the covariance matrix.
Therefore, our intra-class loss to prevent the undesired dimensional collapse for observed classes is formulated as

Ei];ltra_ |C | Z ||Mk||F (3)

ceCy,

3.3.2 Inter-Class Loss

Although the intra-class loss helps decorrelate the feature dimensions to prevent collapse, the resulting space invasion
for the missing classes can be concomitantly exacerbated. Thus, it is important to guarantee the proper space of the
missing classes in the expansion as encouraged by equation 3} To address this problem, we maintain a series of global
class prototypes and transmit them to local clients as support of the missing classes in the feature space. Concretely,
we first compute the class prototypes in the k-th client as follows:

Ni;

1
g5 lgs ﬁzzgﬂ. for ¢ € Cj,
k=1

Then, all client-level prototypes are submitted to the server along with local models in federated learning. In the
central server, the global prototypes for all classes are updated as

K
{gf gl + szgg forc e C’},
k=1

where ¢! is the global prototype of the c-th class in round ¢ and p§ = N§/ Zle N¢. In the next round, the central
server distributes the global prototypes to all clients as the references to avoid the space invasion. Formally, we
construct the following margin loss by contrasting the distances from prototypes to the representation of the sample.

élkr:ner _ |Ok |Ck — 1 Z Z DCHCJ7 (4)

¢ €Ck ¢; €Cr\ci

where D, ., is defined as:

1 <& .
Deye; = N > max{|lz, — gt || = [z, — 961,03
n=1

In the following, we use a theorem to characterize how the inter-class loss jointly with the intra-class loss makes the
representation of the missing classes approach to the optimal via the feature decorrelation and the prototype support.

Theorem 1. Let the global optimal representation for class c denote by g: = [aZ 150 Qg d] and zc’t denote the
representation of sample x in the class c of the k-th client. Assuming that Vi, both |a i and 2, are upper bounded

by G, and all dimensions are disentangled. Then, in round t, the i-th dimension of local representanon 2y ¥ satisfies
|Zk i e, 7,| < 2(1 *ﬁkF)G + 5F7

1- (Pk)

T=pt and 6 is the maximum

where pf, is the accumulation regarding the i-th dimension of the class-c prototype, I =

margin induced by the optimization of the inter-loss term.

Note that, Theorem [I| shows four critical points: 1) The proof of the theorem requires each dimension of the repre-
sentation to be irrelevant to each other, which is achieved by the intra-class loss. 2) In the theorem, ¢ is a trade-off
of training stability and theoretical results determined by the margin. The larger the margin, the larger the §, however
the more stable the local training is. This is because the global prototypes are not very accurate in the early stage of
local training and directly minimizing the distance of samples to their global class prototypes can bring side effect to
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Figure 3: The framework of FedMR. On the client side, except the vanilla training with the classification loss, the
manifold-reshaping parts, i.e., the intra-class loss and the inter-class loss, respectively help conduct the feature decor-
relation to avoid the dimensional collapse, and leverage the global prototypes to construct the proper margin among
classes to prevent the space invasion. On the server side, except the model aggregation, the global class prototypes are
also generated as the reference for missing classes participating in the local training.

Algorithm 1 FedMR
Input: a set of K clients that participate in each round, the initial model weights w°, the maximal round 7', the
learning rate 7, the local training epochs E.
fort=0,1,...,7 —1do
> on the server side
randomly sample K clients

updates global model weights and global class prototypes (w? <+ Zszl pLwi ! Ve, gt Zszl P5ge ).
distribute w' and G.{g}, g5, ..., g&} tothe K clients.

> on the client side
do in parallel for V& € K clients
wh +— w'.
forr=0,1,...., F —1do
sample a mini-batch b], from local dataset and perform local updates( wh, + wi — nV.Ly (b}, Ge; wh) ).
end for

update local class prototypes (Ve, g§ < S L),

s
1 1nk

submit w}, and { g,i, g,%, e g,?} to the server.

end in parallel
end for

the feature diversity. When the margin is removed (D, ., = 1&}: S Iz — g1, 0 will be zero. 3) Without
considering 4, as ¢ increases, I is smaller and representation zj, is closer to global optimal prototype g, showing the
promise of our method. 4) When t is large enough, we can get an upper bound 21_1@“7};’7’“61’, meaning more clients with

k

the specific dimensional information participating in the training, the tighter the upper bound is. When all other clients
can provide the support (pf, = 1 — p{), the error will be 0. The complete proof is summarized in the Appendix@
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Table 1: Performance of FedMR and a range of state-of-the-art approaches on four datasets under PDD partitions.
Datasets are divided into p clients and each client has ¢ classes (denoted as PoC<). We compute average accuracy of
all partitions, highlight results of FedMR, underline results of best baseline, and show the improvement of FedMR to
FedAvg (subscript of FedMR) and to the best baseline (A).

Datasets | Split | FedAvg FedProx FedProc FedNova MOON FedDyn FedDC  FedMR A

PSC2 | 6729 69.60 6628 6687 6682 7101 6850 75.51g000s +4.50
PIOC2 | 6733 6776  69.08 4844 6793 67.16 67.36 7497740 +5.89
evnisT | P10C3 | 8167 80.93 8206 8320 8342  83.00 8324 8355 geq +0.13
PI0CS | 8853 8922 89.23  88.86 8898 8838 8922 90.04; 5,0 +0.81
1D 91.93 9195 9206  91.84 9212 9176  92.15 9219956 +0.04
avg 7935  79.89  79.74 7584  79.87 80.26 80.09 8345104+ +3.19
PSC2 | 8185 81.83 79.54  81.11  81.60 79.89 81.63 83.10; o500 +1.27
PI0OC2 | 7892 79.60 7875  66.86  79.83 7624 78.96 82.473550: +2.64
SVHN PI0C3 | 87.70 8740 88.13  87.50 87.83 8727 88.05 89.13; 43 +1.00
PI0OC5 | 9120 9124  91.63  92.09 9116 90.17 91.64 92180659 +0.09
1D 9274 9280 9357 9262 9312 9226 9290 93.04q309: -0.53
avg 8648 8659 8632  83.87 86.71 85.17 86.64 87.98) 5q0s +1.27
PSC2 | 67.68 6818 6927 6757 6686 69.64 69.18 7419510 +4.55
PI0C2 | 6727 7L09 67.02 5779  67.61 6774 67.64 73.325530: +2.23
CrEARlo |PIOC3 | 7782 7780 7787 7722 7842 7799  77.94 827545 +4.33
PIOCS | 8822 8834 8819 8820 88.00 88.35 88.14 89.060 .9 +0.71
11D) 91.88 9214 9262 9237 9256 9229  92.85 93.06; 154 +0.21
avg 7858  79.53 7899 7663  78.69 7920 79.15 82.485400: +2.95
PI0CIO| 5431 5479 5469 5445 5498 5594 5473 57275060 +1.33
PI0C20 | 6481 6537 6498 6579 6575 6502 6521 65.81; go5r +0.02
CIFARI00 | PIOC30| 6935 69.75  69.64 6955 6951  69.84  69.38 70240509 +0.40
P10CS0 | 7128 7135 7213 7125 7154 7125 7211 72170599+ +0.04
1D 7228 7255  73.07 7266  73.01  73.04 7277 7279519 -0.28
avg 66.41 6676 6690 6674 6696 67.22 6684 67.66, 0501 +0.44

3.3.3 The Total Framework

After introducing the intra-class loss and the inter-class loss, we give the total framework of FedMR. On the client
side, local models are trained on their partially disjoint datasets. Through manifold-reshaping loss, dimensions of
the representation are decorrelated and local class subspace is corrected to prevent the space invasion, and gradually
approach the global space partition. The total local objective including the vanilla classification loss can be written as

Ly =05° + ("™ + pa ),

manifold reshaping

(&)

where 111 and po are the balancing hyperparameters and will be discussed in the experimental part. In Figure 3] we
illustrate the corresponding structure of FedMR and formulate the training procedure in Algorithm [T} In terms of
the privacy concerns about the prototype transmission and the communication cost, we will give the comprehensive
analysis on FedMR about these factors.

4 Experiment

4.1 Experimental Setup

Datasets. We adopt four popular benchmark datasets SVHN [Netzer et al.| (2011), FMNIST [Xiao et al.| (2017),
CIFARI10 and CIFAR100 [LeCun et al| (1998) in federated learning and a real-world PDD medical dataset
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Table 2: Global test accuracy of methods on CIFAR10 and CIFAR100 under larger scale of clients (P10, P50 and
P100) and ISIC2019. PoCs denotes that the dataset is divided into ¢ clients and each client has ¢ classes of sam-
ples. We highlight results of FedMR, underline results of best baseline, and show the improvement of FedMR to
FedAvg (bottom right corner of results) and to the best baseline (A).

Datasets | Split | FedAvg FedProx FedProc FedNova MOON FedDyn FedDC  FedMR A

P10C3 77.82 77.89 77.87 77.22 7842 7799 7194 827549394 +4.33
CIFAR10 | P50C3 75.46 77.46 76.27 74.12 76.51 7552  76.03 79.584 109 +2.12
P100C3 71.65 72.37 72.44 70.46 7246 71.85 7395 76.93; o594 +2.98

P10C10 54.31 54.79 54.69 54.45 5498 5594 5473 57.275 9%y +1.33
CIFAR100 | P50C10 | 49.84 51.17 51.94 50.22 52.19 5053  51.17 53.363 509 +1.17
P100C10 | 47.90 48.26 49.01 48.07 4894 4924 4876 49.60; 799+ +0.36

ISIC2019 | Real ‘ 73.14  75.41 75.26 73.62 75.46  75.07 7525 76.553 4194 +1.09

ISIC2019 |(Codella et al.| (2018); [Tschandl et al.| (2018)); (Combalia et al.| (2019) to conduct experiments. Regarding
the data setup, although Dirichelet Distribution is popular to split data in federated learning, it usually generates
diverse imbalance data coupled with occasionally PDD. In order to better study pure PDD, for the former four bench-
marks, we split each dataset into ¢ clients, each with ¢ categories, abbreviated as PpoC's. For example, P10C10 in
CIFAR100 means that we split CIFAR100 into 10 clients, each with 10 classes. Please refer to the detailed explana-
tions and strategies in the Appendix. ISIC2019 is a real-world federated application under the PDD situation and the
data distribution among clients is shown in the Appendix [C.1.3] We follow the settings in Flamby benchmark [Terrail
et al.[(2022).

Implementation. We compare FedMR with FedAvg|McMahan et al.|(2017) and multiple state-of-the-arts including
FedProx [Li et al.| (2020b)), FedProc |[Karimireddy et al.| (2020), FedNova [Li et al.| (2021a), MOON Wang et al.| (2020),
FedDyn|Acar et al.|(2020) and FedDC Gao et al.|(2022)). To make a fair and comprehensive comparison, we utilize the
same model for all approaches and three model structures for different datasets: ResNet18|He et al.| (2016)) (follow |L1
et al.| (2021a;2022)) for SVHN, FMNIST and CIFAR10, wide ResNet|[Zagoruyko & Komodakis|(2016) for CIFAR100
and EfficientNet [Tan & Le|(2019) for ISIC2019. The optimizer is SGD with a learning rate 0.01, the weight decay
10~° and momentum 0.9. The batch size is set to 128 and the local updates are set to 10 epochs for all approaches.
The detailed information of the model and training parameters are given in the Appendix.

4.2 Performance under PDD

In this part, we compare FedMR with FedAvg and other methods on FMNIST, SVHN, CIFAR10 and CIFAR100
datasets under partially disjoint situation. Note that, in FedProx, MOON, FedDyn, FedProc, FedDC and our method,
there are parameters that need to set. Here we use grid search to choose the best parameters for each method. The
concrete parameters and communications rounds are shown in the Appendix[C.2] All other settings follow Section[d.T]

As shown in Table [T} with the decreasing class number in local clients, the performance of FedAvg and all other
methods greatly drops. However, comparing with all approaches, our method FedMR achieves far better improvement
to FedAvg, especially 7.64% improvement vs. 1.75% of FedProc for FEMNIST (P10C2) and 6.51% improvement vs.
1.96% of FedDyn for CIFAR10 (P5C2). Besides, FedMR also performs better in less PDD situation, and on average
of all partitions listed in the table, our method outperforms the best baseline by 3.19% on FMNIST and 2.95% on
CIFAR10.

4.3 Scalability and Robustness

In the previous section, we validate the FedMR under 5 or 10 local clients under partially disjoint data situations. In
order to make a comprehensive comparison, we increase the client numbers of CIFAR10 and CIFAR100 and in each
round, only 10 of clients participate in the federated procedures. Besides, we also add one real federated application
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Table 3: The communication cost of approaches with prototypes (i.e., FedProc and FedMR) and without proto-
types (i.e., FedAvg, FedProx, FedNova, MOON, FedDyn and FedDC).

Method Type ‘ FMNIST SVHN  CIFAR10 CIFAR100 ISIC2019

w/o Prototypes | 11.182M  11.184M 11.184M  36.565M  4.875M
w/ Prototypes 11.187M  11.189M  11.189M  36.629M  4.880M

Additional cost | 0.044% 1 0.044% 1 0.044% +  0.175% 1 0.102% *+

Table 4: Number of communication rounds and the speedup of communication when reaching the best accuracy of
FedAvg in federated learning on CIFAR100 under three partition strategies.

Method \ P10C10 P50C10 P100C10
(CIFAR100) ‘ Commu. Speedup Commu. Speedup Commu. Speedup
FedAvg 400 1x 400 1x 400 1x
FedProx 352 1.14x 370 1.08x 384 1.04x
FedProc 357 1.12x 381 1.05x% 389 1.03x
FedNova 290 1.38x 385 1.04x 382 1.05x
MOON 332 1.20x 373 1.07x 395 1.01x
FedDyn 178 2.25x% 366 1.09x 384 1.04x
FedDC 275 1.45% 393 1.02x 387 1.03x
FedMR 149 2.68x 293 1.37 % 368 1.09x

ISIC2019 with multiple statistical heterogeneity problems including PDD. The exact parameters and communication
rounds of all methods can be found in the Appendix [C.2}

In Table 2] we divide CIFAR10 and CIFAR100 into 10, 50 and 100 clients and keep the PDD degree in the same level.
As can be seen, with the number of client increasing, the performance of all methods drops greatly. No matter in the
situations of fewer or more clients, our method achieves better performance and outperforms best baseline by 2.98%
in CIFAR-10 and 0.95% in CIFAR-100 on average. Besides, in Table 2| we also verify FedMR with other methods
under a real federated applications: ISIC2019. As shown in the last line of Table 2] our method achieves the best
improvement of 3.41% relative to FedAvg and of 1.09% relative to best baseline MOON, which means our method is
robust in more complicated situations more than PDD.

Litel0 I Bl [ ocal Compu. 0.75 FedMR
. FedMR FedMR
Lite50 _ Local Memory —_ 0 73 (Lite10) * (Lite50)
FedMR I ST
FedDC . 80.71
FedDyn [ g FedProc .FedDyn
I\EOON I S0.691 FeddC ™™ kedprox
FedNova [ ] - ]
MOON
FedPorc [ | k3] 0.67 FedNova. FedAvg .
FedProx [
FedAvg | 0.65
0 10 20 30 40 50 60 70
6x S5x 4x 3x 2x Ix Ox 1x 2x 3x 4x 5x 6x time per round(s)
(a) Typical federated learning. (b) Federated learning under PDD.

Figure 4: The average memory consuming and computation time of local training on all datasets of all baselines,
FedMR and its light versions (Lite 10 and Lite 50) for accelerating.
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Table 5: Performance of FedMR on CIFAR10 and CIFAR100 when only 50%, 80% and 100% of clients are allowed
to submit their class prototypes under different partitions. PoCs means that the dataset is divided into o clients and
each client has ¢ classes.

Datasets Split FedAvg 50% 80% 100%

P10C3 77.82 8042 80.27 82.75
CIFARIO | P50C3 7546  79.14 7943 79.58
P100C3 71.65 76.73 76.87 76.93

P10C10 5431 56.41 56.73 57.27
CIFAR100 | P50C10 50.22  51.06 52.57 53.36
P100C10 | 4790 48.80 48.88 49.60

Table 6: The ablation study of FedMR. We illustrate average accuracy of FedMR on FMNIST, SVHN, CIFAR10 and
CIFAR100 without the inter-class loss or the intra-class loss or both. Results of all partitions of four datasets are shown

in Appendix

Inter Intra ‘ FMNIST SVHN CIFAR10 CIFAR100

- - | 7935 8648  78.58 66.41
v - 80.18 8746  78.86 66.62
- v 81.03  87.15  80.89 67.11
v v | 8345 8798 8248 67.66

4.4 Further Analysis

Except performance under PDD, we here discuss the communication cost between clients and server, local burden of
clients, and privacy, and conduct the ablation study.

Communication Concern. In terms of communication cost, our method needs to share the additional prototypes.
To show how much extra communication cost will be incurred, in Table |3 we show the number of transmission
parameters in each round to compare the communication cost of methods with prototypes (FedProc and FedMR)
and without prototypes (FedAvg, FedProx, FedNova, MOON, FedDyn and FedDC). From the results, the additional
communication cost in single round is negligible. In Table[d] we also provide the communication rounds on CIFAR100
under three different partitions, where all methods require to reach the best accuracy of FedAvg within 400 rounds.
From the table 4] we can see that FedMR uses less communication rounds (best speedup) to reach the given accuracy,
indicating that FedMR is a communication-efficient approach.

Local Burden Concern. In real-world federated applications, local clients might be mobile phones or other small
devices. Thus, the burden of local training can be the bottleneck for clients. In Figure we compute the number
of parameters that needs to be saved in local clients and the average local computation time in each round. As can be
seen, FedDC, FedDyn and MOON require triple or even quadruple storing memory than FedAvg, while FedProc and
FedMR only need little space to additionally store prototypes. In terms of local computation time, FedMR requires
more time to carefully reshape the feature space. To handle some computing-restricted clients, we provide light
versions of FedMR, namely Lite 10 and Lite 50, where local clients randomly select only 10 or 50 samples to compute
inter-class loss. From Figure d(a)} the training time of Lite 10 and Lite 50 decreases sharply, while their performance
is still competitive and better than other baselines, as shown in Figure Please refer to Appendix for more
details.

Privacy Concern. Although prototypes are population-level statistics of features instead of raw features, which
are relatively safe [Mu et al.| (2021)); Tan et al.| (2022), it might be still hard for some clients with extreme privacy
limitations. To deal with this case, one possible compromise is allowing partial local clients not to submit prototypes.
In Table [5] we verify this idea for FedMR on CIFAR10 and CIFAR100, where at the beginning, we only randomly

11
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Table 7: Variance of top 50 egienvalues of covariance matrices of all classes within a mini-batch on CIFAR10.

Method ‘ P5C2 P10C2 P10C3 P10C5 IID
FedAvg 1201 1274 1055 814 640
FedMR (intra) 478 437 372 407 538

FedMR (inter+intra) | 570 538 566 579 635

Table 8: The average accuracy of all methods adopted in Table [T] with or without the aid of prototypes on FMNIST.
Since FedProc is the prototype version of FedAvg, here we don’t show them.

Method ‘FedProx FedNova MOON FedDyn FedDC FedMR
w/o Prototypes 79.89 75.84 79.87 80.26 80.09 81.03

w Prototypes 80.29 78.76 80.12 81.21 80.57 83.45

pre-select 50% and 80% clients to require prototypes. From Table[5] even under the prototypes of 50% clients, FedMR
still performs better than FedAvg, showing the elastic potential of FedMR in the privacy-restricted scenarios. In the
extreme case where all prototypes of clients are disallowed to be submitted, we can remove the inter-class that depends
on prototypes from FedMR and use the vanilla federated learning with the intra-class loss. As shown in Table[6] it can
achieve a promising improvement than that without the intra-class loss. Note that, we cannot counteract the privacy
concerns of federated learning itself, and leave this in the future explorations.

Decorrelating Analysis Here, we empirically verify the effectiveness of the intra-class loss on decorrelating the
feature dimensions. In Table|7} we show the variance of top-50 eigenvalues (sort from the largest to the smallest) of
the covariance matrix M within a mini-batch (batchsize is 128) after training 100 rounds on CIFAR10, namely,

1 50 1 50
— > (== NP
128 i:l( 50; i)

As can be seen, when the PDD problem eased, the variance of FedAvg gradually drops, which means in more uniform
data distribution, the variance should be relatively small. The sharp decreasing variance indicates that the intra-class
loss successfully decorrelates the dimensions. However the variance under the intra-class loss is too small and far
away from the values of FedAvg in the IID setting, meaning it may enlarge the risk of the space invasion. In order to
prevent space invasion, our inter-class loss provide a margin for the feature space expansion. In the table, we could see
that the variance of FedMR (under the intra-class loss and the inter-class loss) is a little larger compared to FedMR (the
intra-class loss) and approaches to the FedAvg under the IID setting.

Ablation Study. FedMR introduces two interplaying losses, the intra-class loss and the inter-class loss, to vanilla FL.
To verify the individual efficiency, we conduct an ablation experiment in Table[6] As can be seen, the intra-class loss
generally plays a more important role in the performance improvement of FedMR, but their combination complements
each other and thus performs best than any of the single loss, confirming our intuition to prevent the collapse and space
invasion under PDD jointly. Besides, as FedMR and FedProc need local clients additionally share class prototypes
which might not fair for other baselines, in Table 3 we properly configure all baselines with prototypes on FMNIST
to show the superiority of FedMR.

5 Conclusion

In this work, we study the problem of partially disjoint data (PDD) in federated learning, which is practical and
challenging due to the unique collapse and invasion problems, and propose a novel approach called FedMR to address
the dilemma of PDD. Theoretically, we show how the proposed two interplaying losses in FedMR to prevent the
collapse and guarantee the proper margin among classes. Extensive experiments show that FedMR achieves significant
improvements on FedAvg under the PDD situations and outperforms a range of state-of-the-art methods.

12
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