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Abstract
We present an operator-theoretic framework for
temporal and spatio-temporal forecasting based
on learning a continuous time-shift operator. Our
operator learning paradigm offers a continuous
relaxation of the discrete lag factor used in tradi-
tional autoregressive models, enabling the history
of a system up to a given time to be mapped to its
future values. We parametrize the time-shift oper-
ator using Khatri-Rao neural operators (KRNOs),
a novel architecture based on non-stationary inte-
gral transforms with nearly linear computational
scaling. Our framework naturally handles irregu-
larly sampled observations and enables forecast-
ing at super-resolution in both space and time.
Extensive numerical studies across diverse tempo-
ral and spatio-temporal benchmarks demonstrate
that our approach achieves state-of-the-art or com-
petitive performance with leading methods.

1. Introduction
Time series forecasting is a fundamental problem in ma-
chine learning and statistics with applications to a broad
spectrum of problems encountered in all branches of sci-
ence, engineering, and finance (Roberts et al., 2013; Milani
et al., 2017; Siami-Namini & Namin, 2018). At a high-level,
time-series problems are concerned with forecasting the fu-
ture values of quantities of interest given past observations
of the same or correlated quantities.

The majority of methods for time-series forecasting largely
fall into the categories of autoregressive moving average
models and their variants (Box & Jenkins, 1976; Girard,
2004), and deep autoregressive models with memory (El-
man, 1990; Hochreiter & Schmidhuber, 1997; Salinas et al.,
2020). With the tremendous success of transformer-based
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Figure 1. The top row shows low-resolution test data. In the bottom
row we plot a high-resolution forecast. By parametrizing the time-
shift operator with a Khatri-Rao neural operator we can forecast in
super-resolution in both space and time.

models in natural language processing tasks (Vaswani et al.,
2017) and computer vision applications (Dosovitskiy et al.,
2020), this class of models is gaining popularity in time-
series forecasting (Chen et al., 2021; Nie et al., 2023; Zhou
et al., 2022; Wu et al., 2023; Liu et al., 2022; 2024; Gru-
ver et al., 2024; Zhang et al., 2024). In the world of
spatio-temporal forecasting, Gaussian processes (Hameli-
jnck et al., 2021), deep operator networks (DeepONets) (Lu
et al., 2021), and neural operators (Li et al., 2020b;c;d) have
emerged as cornerstones of the literature.

A major challenge with all autoregressive-style models is
that observations are required to be provided at a constant
frequency at both training and inference time. This require-
ment introduces a number of challenges in practice. First,
when observations are not provided at regular intervals, it
is common practice to create a hierarchy of approximations
that can negatively impact performance for reasons unre-
lated to the capacity of the model. Second, in an online
setting, this requirement necessitates creating a pipeline for
imputing any missing data points (due to sensor error or
system latency) before predictions can be made. While neu-
ral ordinary differential equations based methods (Chen
et al., 2018; Rubanova et al., 2019) have shown tremendous
promise for learning from irregularly spaced observations,
they are challenging to scale and train for large-scale tem-
poral and spatio-temporal datasets.

In the present work, we propose casting time-series forecast-
ing problems as a supervised learning problem of the contin-
uous time-shift operator. In contrast to standard autoregres-
sive models based on discrete-time (or discrete space-time)
representation of the dynamics, the continuous time-shift
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operator maps the entire, continuous history of the dynamics
over a past time-window into its future values over a subse-
quent time-window. Our operator-theoretic approach can be
viewed as a continuous relaxation of the discrete lag factor
in autoregressive models. This offers several practical ad-
vantages such as the ability to learn directly from irregularly
sampled observations and to forecast at super-resolution in
both space and time while retaining the stability of training
neural operators; see Figure 1.

To address the complexities of learning the time-shift oper-
ator for temporal and spatio-temporal dynamical systems,
we propose Khatri-Rao neural operators (KRNOs). KRNOs
are a new architecture for operator learning based on non-
stationary integral transforms that provides exceptional
model flexibility compared to methods based on station-
ary kernels (Li et al., 2020b; Kovachki et al., 2023; Rah-
man et al., 2023), while achieving almost linear scaling.
We demonstrate the efficacy of the proposed approach on
a suite of challenging test cases, including shallow water
simulation (Kissas et al., 2022), a climate modeling prob-
lem (Kissas et al., 2022), a set of challenging irregularly
sampled time-series benchmarks, the Darts datasets (Herzen
et al., 2022), and the M4 dataset (Makridakis et al., 2020).
In total, we evaluate KRNOs on 39 different test cases and
compare performance against numerous modern approaches
for temporal and spatio-temporal forecasting to demonstrate
its strong generalization capabilities.

2. Method
We first introduce the continuous time-shift operator for tem-
poral and spatio-temporal dynamical systems. Following
this, we propose Khatri-Rao neural operators for learning
the time-shift operator.

2.1. The continuous time-shift operator

Consider an ordinary differential equation (ODE) ż(t) =
F (z(t)), z(0) = z0, with Lipschitz continuous F : Rn →
Rn on the time interval [0, T ]. While the classical flow map
propagates a single state to future times, learning such a
map can be challenging in real-world applications involv-
ing sparse, noisy measurements. We therefore propose an
alternative paradigm: the continuous time-shift operator
At,tf

tp , a causal, continuous-time operator that maps the his-
tory of z over [tp, t] to its future values over (t, tf ], where
0 ≤ tp < t < tf ≤ T , i.e., a propagator of the form

z(τ) = (At,tf
tp z)(τ), ∀τ ∈ (t, tf ]. (1)

The existence of At,tf
tp : L2([tp, t];Rn) → L2((t, tf ];Rn)

follows from the Picard-Lindelöf theorem and noting that
z(τ) = z(t) +

∫ τ

t
F (z(s))ds, τ ∈ (t, tf ]. The time-

shift operator satisfies two key properties: (1) semigroup

property: At2,tf
tp = At2,tf

t1 ◦ At1,t2
tp , where tp < t1 <

t2 < tf , and (2) continuity property: ∃C > 0 such that
||At,tf

tp z1−At,tf
tp z2||L2((t,tf ];Rn) ≤ C||z1−z2||L2([tp,t];Rn)

for all z1, z2 ∈ L2([tp, t];Rn); see Appendix A for a proof.

The proposed time-shift operator formalism offers several
compelling advantages for data-driven learning. First, it
offers robustness through leveraging a richer representation
of the system’s history, potentially mitigating uncertainty in
any single observation. Second, it naturally accommodates
irregularly sampled observations by treating the history of
system dynamics as a function. In other words, since the
time-shift operator is continuous in time, it can be learned
from irregularly sampled observations (similar to neural
ODEs (Chen et al., 2018) but without requiring adjoint sen-
sitivity calculations), a significant advantage in many prac-
tical applications. Third, the continuous-time formulation
enables super-resolution forecasting in both space and time.
Moreover, since the operator depends on tp and tf , this rep-
resentation enables the study of the dynamics of complex
systems over different time scales. In time-series forecast-
ing contexts, tp and tf are treated as hyperparameters that
can be tuned via cross-validation or using techniques such
as hypergradient descent (Chandra et al., 2022).

The notion of shift operators has been widely studied in
functional analysis; see, for example, Marchenko (2006).
Recent theoretical work (Zhen et al., 2022b;a) leveraged
time-shift operators while studying the relationship between
the spectra of the autocorrelation function and the infinite-
dimensional Koopman operator (Koopman, 1931b) govern-
ing the evolution of observables. However, to the best of
our knowledge, the idea of developing an operator-theoretic
framework to directly learn the continuous time-shift op-
erator from time-series and spatio-temporal observations
remains unexplored.

In the present work, we propose to parametrize the time-
shift operator using a neural operator. To motivate this,
consider the special case where At,tf

tp : L2([tp, t];Rn) →
L2((t, tf ];Rn) is a Hilbert-Schmidt operator (Retherford,
1993). Then there exists a kernel κ : [0, T ] × [0, T ] → R
satisfying the condition

z(τ) = (At,tf
tp z)(τ) =

∫ t

tp

κ(τ, s)z(s)ds, (2)

∀τ ∈ (t, tf ], where the dependence of the kernel on
(t, tp, tf ) is not explicitly indicated for simplicity of no-
tation. It is worth noting that even though the preceding
continuous convolution integral representation holds under
restrictive assumptions on the dynamics, this representation
motivates approximating the time-shift operator for general
nonlinear dynamical systems using deep neural operators,
which involve a nested composition of integral transforms
and point-wise nonlinearities.
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We can similarly define the spatio-temporal time-shift oper-
ator for a scalar field u : Ω× [0, T ] → R, where Ω ⊂ Rd−1

(d > 1) denotes a bounded Lipschitz domain. Using the non-
overlapping time-intervals defined previously, the spatio-
temporal time-shift operator can be defined as

u(x, τ) = (At,tf
tp u)(x, τ), ∀x ∈ Ω, τ ∈ (t, tf ]. (3)

Under the assumption that u lies in the separable Hilbert
space U(Ω× [0, T ];R), and assuming the spatio-temporal
time-shift operator is a Hilbert-Schmidt operator mapping
from U(Ω × [tp, t];R) to U(Ω × (t, tf ];R), we have the
following integral representation

u(x, τ) = (At,tf
tp u)(x, τ), x ∈ Ω, τ ∈ (t, tf ]

=

∫
Ω

∫ t

tp

κ({x, τ}, {y, s})u(y, s)dyds, (4)

where κ : Ω×[0, T ]×Ω×[0, T ] → R is a square-integrable
kernel. The preceding representation in terms of an integral
transform motivates the application of deep neural oper-
ators to approximate the time-shift operator of complex
spatio-temporal dynamical systems. Furthermore, universal
approximation results for neural operators (Kovachki et al.,
2023) guarantee that, under suitable regularity assumptions,
the time-shift operator can be well approximated.

It is worth noting that Li et al. (2020b) considered an op-
erator learning test problem where a two-dimensional flow
field over the time-interval [0, 10] is mapped to the interval
(10, T ] (for a fixed T ). This was tackled using an autoregres-
sive Fourier neural operator (FNO) model and a 3D FNO
model, with the latter model making predictions over the
entire spatio-temporal domain of interest. The time-shift op-
erator learning formalism presented here allows us to view
the test-case involving FNO-3D in (Li et al., 2020b) as a
special case of the general setting considered here with a
stationary-kernel based neural operator parametrization of
the time-shift operator and fixed values of (tp, tf ). In the
next section, we present a new architecture for parametriz-
ing the time-shift operator that enables over an order of
magnitude reduction in the number of parameters compared
to FNO, while achieving superior accuracy.

2.2. Khatri-Rao neural operators (KRNOs)

We now introduce KRNOs, a new operator learning architec-
ture based on non-stationary integral transforms, to approxi-
mate the time-shift operator of temporal and spatio-temporal
dynamical systems. KRNOs offer expressive parametriza-
tion of operators using non-stationary integral transform
layers which (i) do not require any approximation of the
kernel and (ii) scale almost linearly in the number of quadra-
ture nodes. As far as we are aware, ours is the only ap-
proach for parametrizing neural operators which combines

Table 1. Comparison of Khatri-Rao Neural Operator (KRNO),
Graph Neural Operator (GNO) (Li et al., 2020c), Multipole Graph
Neural Operator (MGNO) (Li et al., 2020d), and Fourier Neural
Operator (FNO) (Li et al., 2020b), for computing kernel inte-
gral transforms, as compiled by (Kovachki et al., 2023). Here
N ′ << N is a constant used to control the variance of the integral
transform approximation. Ours is the only approach which allows
for exact, non-stationary kernel evaluations while achieving almost
linear computational cost.

Method Time Non-stationary Exact kernel1

GNO O(NN ′) ✓ ✗
MGNO O(N) ✓ ✗

FNO O(N logN) ✗ ✓

KRNO O(N1+1/d) ✓ ✓

these advantages. We will show later that KRNOs provide
state-of-the-art performance across a number of benchmarks
while inheriting the benefits of neural operators such as be-
ing discretization-invariant and enabling super-resolution in
forecasts (Li et al., 2020b).

Neural operators Neural operators (NOs) are an expres-
sive class of models for approximating maps between func-
tion spaces. In contrast to standard multi-layer perceptrons,
which are defined by an alternating series of affine maps and
nonlinear activations, NOs are defined by an alternating se-
ries of linear, kernel integral transforms and nonlinear activa-
tions. For simplicity of exposition, consider an integral trans-
form layer (Li et al., 2020b; Kovachki et al., 2023) that maps
the input spatio-temporal vector field vℓ : Ω× [0, τ ] → Rp

to vℓ+1 : Ω× [0, τ ] → Rq , defined below

vℓ+1(t, x) = K(vℓ)(t, x)

=

∫
Ω

∫ τ

0

κ({t, x}, {t′, x′})vℓ(t′, x′)dt′dx′

+Wvℓ(t, x) + b, (5)

where κ : R × Ω × R × Ω → Rq×p is a matrix-valued
kernel, W ∈ Rq×p is a weight matrix, and b ∈ Rq is
a bias vector. It is also common to prepend and append
the preceding layer by a series of point-wise lifting and
projection layers (Kovachki et al., 2023). Note that in (5),
the inputs and outputs are assumed to be defined over the
same spatio-temporal domain for simplicity – we will later
consider the general case when the input and output domains
are different.

Rather than computing the integral transforms exactly,
NOs propagate evaluations of the intermediate functions
at a set of quadrature nodes through the network. Let
X = {{t1, x1}, {t2, x2}, . . . , {tN , xN}} ∈ RN×d, where

1We use the term “Exact Kernel” to indicate that the only source
of approximation error stems from the quadrature scheme; the non-
stationary kernel itself is evaluated without further approximation.
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ti ∈ R and xi ∈ Rd−1, i = 1, . . . , N denote quadra-
ture nodes in the d-dimensional spatio-temporal domain
(N = nd, where n is the number of quadrature nodes per
dimension), and let w ∈ RN denote the vector of quadrature
weights. As we will show, while computing the point-wise
transformation defined by the weights W and b scales as
O(qpN), the primary computational bottleneck in comput-
ing the output from a kernel integral transform layer arises
from approximating the integral over the domain of the input
function.

In the discussion on computational complexity that follows
we omit writing the dependence on q and p since these
are architectural considerations and the required value for
N will be dependent on the complexity of the input func-
tion. Letting vℓ(X) ∈ RN×p be the ℓth layer evaluated at
the quadrature nodes, the kernel integral transform can be
approximated as∫

Ω

∫ τ

0

κ(X, {t′, x′})vℓ(t′, x′)dt′dx′

≈ κ(X,X)vec(diag(w)vℓ(X)), (6)

where vec : RN×p → RNp creates a vector from a matrix by
stacking columns, diag : RN → RN×N converts a vector
into a diagonal matrix, κ(X, {t′, x′}) ∈ RNq×p represents
the kernel evaluated between all the quadrature nodes X in
the output domain and a single node {t′, x′} in the input
domain. Meanwhile, κ(X,X) ∈ RNq×Np is the kernel
evaluated between all the quadrature nodes X in both the
output and input domains.

Naively evaluating this kernel integral transform scales as
O(N2) which is prohibitively expensive for even a modest
number of quadrature nodes. In light of this computational
challenge, a number of approaches have been developed
including Graph Neural Operators (Li et al., 2020c), Multi-
pole Graph Neural Operators (Li et al., 2020d), and Fourier
Neural Operators (FNOs) (Li et al., 2020b; Rahman et al.,
2023). As we will show, our approach is the only one which
scales almost linearly in the number of quadrature nodes
while enabling non-stationary integral transforms with exact
kernel evaluations.

Khatri-Rao product structure In order to achieve almost
linear scaling in N without having to approximate the kernel
function, we assume that the kernel function decomposes as
an element-wise product as follows:

κ({t, x}, {t′, x′}) = κ(1)(t, t′)⊙(
⊙d

i=2κ
(i)([x]i−1, [x]

′
i−1)

)
, (7)

where κ(i) : R × R → Rq×p for i = 1, . . . , d, ⊙ denotes
the element-wise product, and [x]i ∈ R indicates the ith

element of x. While this assumption may appear limit-
ing at first glance, it has been applied extensively in the

context of Gaussian process (GP) regression to build new
positive definite kernels and to scale GP regression on prod-
uct grids (Saatçi, 2011; Wilson et al., 2014). For example,
the squared exponential kernel, the Matérn class of kernels,
and the spectral mixture product kernel all decompose as a
product of the form in Equation (7).

Proposition 1. If the quadrature nodes lie on a product grid,
X = t̄× x(1) × . . . x(d−1), where t̄ ∈ Rn and x(i) ∈ Rn

denote the quadrature nodes along the time dimension and
the ith dimension of the spatial coordinate x, respectively,
and the kernel function has a component-wise product struc-
ture of the form given in Equation (7), then the kernel func-
tion evaluated at the quadrature nodes inherits the Khatri-
Rao product structure,

κ(X,X) = κ(1)(t̄, t̄)∗
(

d∗
i=2

κ(i)(x(i−1), x(i−1))

)
, (8)

where κ(i)(·, ·) ∈ Rqn×pn is a block-partitioned matrix
where block jk is the jkth output from the component kernel
κ(i) evaluated on the outer product of the quadrature nodes
along the ith dimension.

A proof for Proposition 1 can be found in Appendix B. A
practical consequence of this result is that the computational
complexity associated with computing kernel integral trans-
forms can be reduced from O(N2) to O(N1+1/d) with
O(N2/d + N) memory; see Appendix D for a detailed
discussion. These complexity estimates have a linear depen-
dence on pq, which are architectural parameters common
to all NO approaches. Table 1 provides a comparison of
KRNOs to other NOs in the literature. To reiterate what
was mentioned previously, ours is the only approach which
achieves almost linear cost while enabling non-stationary in-
tegral transforms without having to approximate the kernel
function.

In Appendix C, we present a generalization of Proposition 1
showing that the same computational advantage also holds
when the input and output domains are different with dif-
ferent resolution quadrature grids. This generalized result
enables the design of non-stationary integral transform lay-
ers that can be viewed as a continuous analog of upsampling
and downsampling techniques commonly used in convolu-
tional neural networks. In addition, this generalization can
be leveraged to significantly reduce computational cost and
memory requirements in applications with high spatial or
temporal resolutions by using lower-resolution quadrature
grids within the intermediate kernel integral layers. We
provide detailed numerical studies comparing the training
and inference costs of KRNO and FNO across different
spatial resolutions in Tables 9,10, as well as Figure 7 in
Appendix G.

In this work, we parametrize each component-wise kernel,
κ(i) : R×R → Rq×p by a neural network; see Appendix E
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Table 2. Performance comparison of different NO methods on
Darcy-flow and hyper-elastic problems. Results with (·)†, (·)‡
are from Lu et al. (2022) and Li et al. (2023), respectively.

Method L2 relative error
Darcy-flow Elasticity

FNO 1.19± 0.05%† 5.08%‡
DeepONet 1.36± 0.12%† 9.65%‡

KRNO (ours) 0.96± 0.04% 4.66± 0.09%

for details. To illustrate the efficacy of KRNO, we first
applied our method to the two-dimensional Darcy-flow and
hyper-elastic benchmark problems from Lu et al. (2022)
and Li et al. (2023), respectively. In these two problems,
the goal is to learn a mapping between input and output
fields over a two-dimensional spatial domain. Figure 11 in
Appendix illustrates the predictions from KRNO for these
two problems; see Appendix H.5 for additional details. It
can be noted from Table 2 that KRNO provides improved
performance over FNO (Li et al., 2020b) and DeepONet (Lu
et al., 2021) on both problems. We will later benchmark the
performance of KRNO on learning the time-shift operator
across a variety of challenging datasets to demonstrate that
our approach often provides competitive performance when
compared with SOTA methods.

3. Numerical studies
In addition to the two spatial modeling problems (Darcy-
flow and hyper-elasticity), we evaluated the performance
of the proposed method on a suite of challenging temporal
and spatio-temporal forecasting problems. These datasets
included two spatio-temporal datasets, and 21 diverse time-
series datasets (5 multivariate irregular time-series datasets,
8 univariate time-series from the Darts collection, 6 datasets
corresponding to different seasonalities from the M4 compe-
tition, one multivariate time series corresponding to trading
prices of 14 cryptocurrencies, and a bivariate time series
containing the positions of NBA basketball players). In total,
this amounts to 39 test cases or error metrics. Across these
cases, we compare against numerous modern approaches
for temporal and spatio-temporal forecasting problems.

For all the problems, we first convert the datasets into nec-
essary input and output sequence pairs for learning the
time-shift operator; see Appendix F for details. The de-
fault KRNO architecture used in all experiments has 3
kernel integral layers with 20 channels each, lifting and
projection layers are parametrized by MLPs with one hid-
den layer containing 128 hidden units, and the kernels in
the integral layers are parametrized by MLPs with 3 hid-
den layers. The component-wise kernel function used in
KRNO is parameterized by a neural network with three hid-
den layers (see Appendix E). Additional results and experi-
ment setup details are provided in Appendix H. Aggregated

performance statistics of the proposed approach across all
test cases are presented in Appendix Table 8. The code-
base used to generate the results is available at https:
//github.com/srinathdama/ShiftingTime.

3.1. Spatio-temporal forecasting problems

For spatio-temporal problems, we consider shallow water
simulation (Kissas et al., 2022), and a climate modeling
dataset (Kissas et al., 2022). For evaluation, we use the
L2 relative error metric, L2 relative error = ||u(·, t) −
û(·, t)||L2(Ω)/||u(·, t)||L2(Ω), where u(·, t) and û(·, t) are
true and predicted spatial fields at time t.

Shallow water example Here, the objective is to learn
a spatio-temporal operator that is capable of predicting
three field variables (fluid column height ρ, velocity in the
x1-direction u, and velocity in the x2-direction v) over
a future prediction window (t, tf ] using historical data
from a look-back window [tp, t], i.e., U(Ω× [tp, t],R3) →
U(Ω× (t, tf ],R3)), where Ω := (0, 1)× (0, 1) denotes the
spatial domain. It is worth noting that the spatio-temporal
forecasting problem statement considered here is signifi-
cantly more challenging than the standard benchmark in
prior work, which involves mapping the initial condition to
the solution at a single future time (Kissas et al., 2022).

The dataset used for this problem is taken from Kissas
et al. (2022), which includes simulated data generated on
a 32 × 32 spatial grid over the time window (0, 1) and
collected at every 0.01 seconds. The training and testing
datasets each consist of 1000 simulations with different ini-
tial conditions. Both the look-back and prediction window
period are set to 0.05 seconds. For evaluation on testing
data, we use the three field variables from the first 0.05
seconds window to recursively predict their evolution until
0.6 seconds. As a baseline method, we consider FNO-3D
model (Kovachki et al., 2023) and attention based neural
operator LOCA (Kissas et al., 2022) to approximate the
time-shift operator alongside the proposed KRNO method.

Table 3 and Figure 2 compares the relative L2 error (aver-
aged across 1000 test simulations) for the three field vari-
ables when training is conducted for 100 epochs. The results
indicate that KRNO delivers superior performance relative
to FNO-3D and LOCA. In addition, it is worth noting that
KRNO only uses 6% of the parameters required by FNO-3D
(see Table 3). Predictions from KRNO for a test simulation
are shown in Figure 3. Additional numerical results for this
test case can be found in Appendix H.6.

Climate modeling example In this experiment, we consider
the problem of approximating a spatio-temporal time-shift
operator that maps the surface air temperature and surface
air pressure, i.e., U(Ω× [tp, t];R2) → U(Ω× (t, tf ];R2)),
where Ω := [−90, 90] × [0, 360] denotes the spa-
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Table 3. Comparison of the average relative L2 errors on the shal-
low water problem for the three field variables.

Method #Parameters L2 relative error

ρ u v

FNO-3D 2, 462, 895 0.00211 0.02606 0.02637
LOCA 94, 477, 220 0.00314 0.15221 0.14999
KRNO 146, 159 0.00145 0.01497 0.01459
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Figure 2. Comparison of the average relative L2 errors as a func-
tion of time for the three field variables (across the 1000 test
simulations) obtained using KRNO, FNO-3D and LOCA models.

tial domain defined in terms of latitude and longi-
tude. The dataset is taken from Kissas et al. (2022)
which is based on the Physical Sciences Labora-
tory meteorological data (Kalnay et al., 1996); see
https://psl.noaa.gov/data/gridded/data.
ncep.reanalysis.surface.html. The training
data consists of daily temperature and pressure from 2000 to
2005 (1825 days) over a 72× 72 spatial grid. The test data
contains observations from the years 2005 to 2010 on the
same grid. The KRNO operator is trained on temperature
and pressure data from a 7-day look-back window, with
a matching 7-day prediction window. For the evaluation
on testing data, we used data from the last week of the
previous year and recursively predicted the temperature
and pressure fields for the whole year. This is repeated for
each year in the testing set. Representative predictions for
pressure and temperature are shown in Figure 4 along with
the corresponding relative L2 errors. It can be seen that the
proposed time-shift operator learning approach performs
remarkably well for this dataset.

3.2. Temporal forecasting problems

We evaluate the performance of our approach on both regu-
larly and irregularly sampled temporal forecasting problems.
For irregular time-series, we use the MuJoCo, MIMIC-III,
USHCN, and Human Activity benchmarks, along with a
synthetic 2D spiral dataset (details in Appendix H.1). For
regularly sampled time-series, we use datasets from the
Darts (Herzen et al., 2022) and M4 (Makridakis et al., 2020)
collections, in addition to the Crypto (Ticchi et al., 2021)

ρ
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Figure 3. Shallow water problem: Top figure shows the predictions
(ρ̂, û, v̂) for the three field variables along with the true fields
(ρ, u, v) as a function of time for a test simulation using KRNO
trained for 100 epochs. The bottom figure shows the error bars
representing the L2 relative errors for three field variables across
the 1000 test simulations, with the shaded region indicating ±1
standard deviation. Additional error plots for the three fields are
shown in Figure 13 in the Appendix.

and Player Trajectory datasets.2

Distribution shift presents a key challenge in temporal fore-
casting (Kouw & Loog, 2018; Wang et al., 2021; Kuznetsov
& Mohri, 2020). A common practice to tackle this challenge
is to use preprocessing strategies, which involve removing
known trends and seasonality from the data. To handle distri-
bution shifts in some datasets, we use the reversible instance
normalization (ReVIN) approach (Kim et al., 2021) to nor-
malize each input sequence and denormalize the model
output predictions.

3.2.1. IRREGULARLY SAMPLED TIME-SERIES

We use datasets from diverse domains, including healthcare
(MIMIC), climate science (USHCN), biomechanics (Hu-
man Activity), and physical simulation (MuJoCo); see Ap-
pendix H.0.1 for details. Notably, the MIMIC, USHCN and
Human Activity datasets exhibit significant temporal irregu-
larities along with missing values for the states. To handle
missing data, we augment KRNOs with one-dimensional
convolutional network (CNN) feature extractor module,
whose parameters are jointly learned; additional details on
the KRNO architecture used are provided in Appendix H.0.1
for details.

Table 4 compares the performance of KRNO with latest
SOTA methods such as T-PATCHGNN (Zhang et al., 2024),
CRU (Schirmer et al., 2022), Neural Flow (Biloš et al.,
2021), and Latent-ODEs (Rubanova et al., 2019). The re-
sults highlight the strong performance of KRNO. Specifi-
cally, KRNO achieves the best MSE on both the MIMIC

2https://github.com/linouk23/NBA-Player-Movements
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Table 4. Comparison of KRNO performance with baseline models on irregular time-series datasets. Test MSE and MAE (mean ± std) are
shown for each dataset. Top three best results are highlighted in bold, underline, and italic, respectively. Results for baseline models are
sourced from Zhang et al. (2024), Table 1.

Algorithm MIMIC USHCN Human Activity

MSE×10−2 MAE×10−2 MSE×10−1 MAE×10−1 MSE×10−3 MAE×10−2

DLinear 4.90 ± 0.00 16.29 ± 0.05 6.21 ± 0.00 3.88 ± 0.02 4.03 ± 0.01 4.21 ± 0.01
TimesNet 5.88 ± 0.08 13.62 ± 0.07 5.58 ± 0.05 3.60 ± 0.04 3.12 ± 0.01 3.56 ± 0.02
PatchTST 3.78 ± 0.03 12.43 ± 0.10 5.75 ± 0.01 3.57 ± 0.02 4.29 ± 0.14 4.80 ± 0.09
Crossformer 2.65 ± 0.10 9.56 ± 0.29 5.25 ± 0.04 3.27 ± 0.09 4.29 ± 0.20 4.89 ± 0.17
Graph Wavenet 2.93 ± 0.09 10.50 ± 0.15 5.29 ± 0.04 3.16 ± 0.09 2.89 ± 0.03 3.40 ± 0.05
MTCNN 2.71 ± 0.23 9.55 ± 0.65 5.39 ± 0.05 3.34 ± 0.02 3.03 ± 0.03 3.53 ± 0.03
StemGNN 1.73 ± 0.02 7.71 ± 0.11 5.75 ± 0.09 3.40 ± 0.09 8.81 ± 0.37 6.90 ± 0.02
CrossGNN 2.95 ± 0.16 10.82 ± 0.21 5.66 ± 0.04 3.53 ± 0.05 3.03 ± 0.10 3.48 ± 0.08
FOURIER/GNN 2.55 ± 0.03 10.22 ± 0.08 5.82 ± 0.06 3.62 ± 0.07 2.99 ± 0.02 3.42 ± 0.02

GRU-D 1.76 ± 0.03 7.53 ± 0.09 5.54 ± 0.38 3.40 ± 0.28 2.94 ± 0.05 3.51 ± 0.06
SeFT 1.87 ± 0.01 7.84 ± 0.08 5.80 ± 0.19 3.70 ± 0.11 12.20 ± 0.17 8.43 ± 0.05
RainDrop 1.99 ± 0.03 8.27 ± 0.07 5.78 ± 0.22 3.67 ± 0.17 14.92 ± 0.14 9.45 ± 0.05
Warpformer 1.73 ± 0.04 7.58 ± 0.13 5.25 ± 0.05 3.23 ± 0.05 2.79 ± 0.04 3.39 ± 0.03

mTAND 1.85 ± 0.06 7.73 ± 0.13 5.33 ± 0.05 3.26 ± 0.10 3.22 ± 0.07 3.81 ± 0.07
Latent-ODE 1.89 ± 0.19 8.11 ± 0.52 5.62 ± 0.03 3.60 ± 0.12 3.34 ± 0.11 3.94 ± 0.12
CRU 1.97 ± 0.02 7.93 ± 0.19 6.09 ± 0.17 3.54 ± 0.18 6.97 ± 0.78 6.30 ± 0.47
Neural Flow 1.87 ± 0.05 8.03 ± 0.19 5.35 ± 0.05 3.25 ± 0.05 4.05 ± 0.13 4.36 ± 0.09
T-PatchGNN 1.69 ± 0.03 7.22 ± 0.09 5.00 ± 0.04 3.08 ± 0.04 2.66 ± 0.03 3.15 ± 0.02
KRNO 1.57 ± 0.02 7.43 ± 0.06 4.95 ± 0.08 3.06 ± 0.08 2.85 ± 0.03 3.46 ± 0.02

d
a
y

1
2
0

Predicted p̂ in KPa True p in KPa |p− p̂|/|p|

5
0

5
9

6
8

7
8

8
7

9
7

1
0
6

5
0

5
9

6
8

7
8

8
7

9
7

1
0
6

0
.0

0
0

0
.0

0
3

0
.0

0
6

0
.0

1
0

0
.0

1
3

0
.0

1
6

0
.0

1
9

0
.0

2
2

0
.0

2
6

0
.0

2
9

d
a
y

1
2
0

Predicted T̂ in K True T in K |T − T̂ |/|T |

1
9
5

2
0
7

2
1
9

2
3
1

2
4
4

2
5
6

2
6
8

2
8
1

2
9
3

3
0
5

1
9
5

2
0
7

2
1
9

2
3
1

2
4
4

2
5
6

2
6
8

2
8
1

2
9
3

3
0
5

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0 50 100 150 200 250 300 350

t (days)

0.01

0.02

0.03

re
l.
L

2
er

ro
r

p

T

Figure 4. Climate modeling problem: Top two figures show the
predicted surface pressure and temperature fields using KRNO
model along with the true fields for a single day in a forecasted
year. Bottom figure shows the error bars representing the L2

relative errors for the five years in test data, with the shaded region
indicating ±1 standard deviation.

and USHCN datasets, and also secures the best MAE on
USHCN. On the MIMIC dataset, KRNO is the second-best
performing model in terms of MAE, closely following T-
PatchGNN. For the Human Activity dataset, T-PatchGNN
shows the strongest performance, with KRNO ranking third
in MSE. Overall, KRNO consistently places among the top-
performing methods, demonstrating its robustness and effec-
tiveness for forecasting with complex, irregularly sampled

data. Numerical studies on a synthetic 2D spiral trajectory
prediction problem are presented in Appendix H.1.

MuJoCo The MuJoCo dataset used in this study is based
on simulations of the ’Hopper’ model using the DeepMind
Control Suite (Tassa et al., 2018). Each trajectory consists of
a 14-dimensional state vector sampled at 100 evenly-spaced
time points. These trajectories are generated from random
initial conditions, allowing the deterministic dynamics of
the Hopper model to evolve. We used 100 such trajectories
from the dataset provided by Rubanova et al. (2019).

The forecasting objective was to predict the values for the
next 10 time steps using observations from the preceding 50
time steps. To simulate irregular sampling, we adopted the
preprocessing strategy of Zhang et al. (2024), randomly re-
moving 30%, 50%, or 70% of samples from each trajectory.
Table 5 compares KRNO’s performance with state-of-the-
art (SOTA) methods such as Neural SDEs (Li et al., 2020a;
Oh et al., 2024). It can be seen that KRNO outperforms
Neural SDEs in all dropout settings. It is worth noting that
KRNO achieves an error reduction of 46% on regular data
and 38% error reduction on the irregularly sampled versions.

3.2.2. REGULARLY SAMPLED TIME-SERIES

Darts benchmarks We consider 8 univariate time-series
datasets from Darts (Herzen et al., 2022). We compare the
performance of the proposed time-shift operator with mod-
els such as ARIMA (Box & Jenkins, 1976), neural networks-
based models (TCN (Lea et al., 2016), N-BEATS (Oreshkin
et al., 2020), N-HiTS (Challu et al., 2023)), SM-GP (Wilson

7
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Table 5. Comparison of forecasting performance on the MuJoCo dataset under different percentages of missing observations. Results for
baseline methods are sourced from Oh et al. (2024), Table 12.

Methods Test MSE

Regular 30% dropped 50% dropped 70% dropped

GRU-∆t 0.223± 0.020 0.198± 0.036 0.193± 0.015 0.196± 0.028
GRU-D 0.578± 0.042 0.608± 0.032 0.587± 0.039 0.579± 0.052
GRU-ODE 0.856± 0.016 0.857± 0.015 0.852± 0.015 0.861± 0.015
ODE-RNN 0.328± 0.225 0.274± 0.213 0.237± 0.110 0.267± 0.217
Latent-ODE 0.029± 0.011 0.056± 0.001 0.055± 0.004 0.058± 0.003
Augmented-ODE 0.055± 0.004 0.056± 0.004 0.057± 0.005 0.057± 0.005
ACE-NODE 0.039± 0.003 0.053± 0.007 0.053± 0.005 0.052± 0.006
NCDE 0.028± 0.002 0.027± 0.000 0.027± 0.001 0.026± 0.001
ANCDE 0.026± 0.001 0.025± 0.001 0.025± 0.001 0.024± 0.001
EXIT 0.026± 0.000 0.025± 0.004 0.026± 0.000 0.026± 0.001
LEAP 0.022± 0.002 0.022± 0.001 0.022± 0.002 0.022± 0.001

Neural SDE 0.028± 0.004 0.029± 0.001 0.029± 0.001 0.027± 0.000
Neural LSDE 0.013± 0.000 0.014± 0.001 0.014± 0.000 0.013± 0.001
Neural LNSDE 0.012± 0.001 0.014± 0.001 0.014± 0.001 0.014± 0.000
Neural GSDE 0.013± 0.001 0.013± 0.001 0.013± 0.000 0.014± 0.000

KRNO 0.007± 0.002 0.008± 0.002 0.0114± 0.004 0.0115± 0.002

& Adams, 2013) and LLMTIME (Gruver et al., 2024). We
used normalized mean absolute error (NMAE)(22) as the
evaluation metric. Figure 5 shows the testing errors from
KRNO in comparison to other baseline methods presented
in (Gruver et al., 2024). The time-shift operator is among
the top 3 performing methods on 5 out of 8 datasets in the
Darts collection: see Table 8 in Appendix for details.
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Figure 5. Comparison of geometric mean of normalized MAE on
univariate Darts datasets for various methods.

M4 benchmarks The M4 dataset (Makridakis et al., 2020)
is a collection of 100,000 univariate time series from diverse
domains such as finance and demographics. This collection
comprises six datasets corresponding to different seasonal-
ities, varying from hourly to yearly. On this challenging
dataset, the top winning methods in the M4 competition,
Smyl (2020) and Montero et al. (2020), Koopman Neural
Forecaster (KNF) (Wang et al., 2023), and Nbeats-I+G (Ore-
shkin et al., 2020) are considered as baselines. All the

Table 6. Comparison of sMAPE from KRNO method with other
baseline methods for M4. Results with (·)† were taken from Wang
et al. (2023).

Method Quarterly Weekly Daily

Montero et al. (2020) 9.733 7.625† 3.097†

Smyl (2020) 9.679 7.817† 3.170†

Nbeats-I+G 9.212 - -
KNF 10.008† 7.254† 2.990†

KRNO (ours) 10.503 6.934 3.086

models are evaluated using the symmetric mean absolute
percentage error (sMAPE) metric used in the M4 compe-
tition. A comparison of KRNO performance on M4 data
is presented in Table 6 (for full results see Table 13 in Ap-
pendix). We observe that KRNO is among the top two
methods on datasets such as M4-Weekly and M4-Daily,
where seasonality trends are not present (Wang et al., 2023).

Crypto and Player Trajectory datasets The Crypto (Tic-
chi et al., 2021) dataset is a multivariate time series con-
taining eight features corresponding to trading prices of 14
cryptocurrencies. The objective is to forecast the returns
for all 14 cryptocurrencies. The Player Trajectory dataset
is a bivariate time series containing the positions of NBA
basketball players. The goal here is to forecast the positions
of the players. For both datasets, we utilized the same train-
ing, validation, and test data as used by Wang et al. (2023).
We employed weighted RMSE (Ticchi et al., 2021) for the
Crypto data and RMSE for the Player Trajectory data for
evaluation. Our method is compared with KNF and other
latest methods such as FedFormer (Zhou et al., 2022), Long
Expressive Memory (LEM) (Rusch et al., 2022), Variational

8
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Beam Search (VBS) (Li et al., 2021), Multilayer Percep-
tron (MLP) (Faloutsos et al., 2018), and Vector ARIMA
(VARIMA) (Stock & Watson, 2001). Table 7 compares
KRNO with these baseline methods. KRNO is the second-
best method after KNF on Crypto and Player Trajectory
datasets (for full results see Table 15 in Appendix H.4).

Table 7. Comparison of RMSE from KRNO method with other
baseline methods on Crypto and Player Trajectory datasets.

Crypto Basketball
(Weighted RMSE 10−3) (RMSE)

VARIMA 8.76±0.00 1.26±0.00

MLP 7.85±0.35 1.91±0.32

MLP+RevIN+TB 7.01±0.08 1.48±0.25

RF+TB 7.84±0.04 2.40±0.01

FedFormer 7.46±0.04 1.29±0.03

LEM 7.02±0.04 1.42±0.02

VBS 19.52±0.00 5.60±0.00

KNF 6.91±0.01 1.16±0.01

KRNO 6.95±0.16 1.25±0.05

4. Related work
The continuous time-shift operator introduced in this work
is distinct from the Koopman operator (Koopman, 1931a),
an infinite-dimensional linear operator acting on a space of
observables, which has been extensively studied in dynam-
ical systems and machine learning (Mezić, 2021; Brunton
et al., 2022; Wang et al., 2023; Liu et al., 2023). The time-
shift operator corresponding to a set of sufficiently smooth
observables can be viewed as a continuous extension of the
Koopman operator (Zhen et al., 2022b). This theoretical
connection deserves further study.

Similar to neural ODE based methods (Chen et al., 2018;
Rubanova et al., 2019; Kidger et al., 2020) and neural
SDEs (Li et al., 2020a; Oh et al., 2024), our framework
formulates time-series forecasting in a continuous setting.
Our approach offers significant computational advantages
during training, as it obviates the need for adjoint sensi-
tivity methods to compute gradients of the loss function
(similar to simulator-free approaches for learning SDEs, see,
for example, Course & Nair (2023)). Furthermore, unlike
typical NODE and SDE formulations that focus on tempo-
ral dynamics, our operator-theoretic framework naturally
extends to spatio-temporal problems, inherently enabling
super-resolution in both space and time.

Neural operators, such as the Fourier Neural Operator (FNO)
(Li et al., 2020b) and its U-Net inspired variant U-shaped
Neural Operator (U-NO) (Rahman et al., 2023), have ad-
vanced the learning of mappings between functions defined
over spatio-temporal domains. Liu-Schiaffini et al. (2023)
proposed FNO-based recurrent neural operator (RNO) ar-
chitecture to address forecasting non-stationary dynamics
on function spaces. As previously noted, Li et al. (2020b)

used the FNO to learn a map for the solutions of the Navier-
Stokes equations from the time interval [0, 10] to (10, 50]
and discussed the ability of this strategy to provide super-
resolution in both space and time. This specific application
can be viewed as an instance of our time-shift operator for-
malism with fixed time windows. Our framework is more
general, employing learnable non-stationary kernels (via
KRNOs) to parametrize the time-shift operator and treating
the time window length as hyperparameters. Moreover, as
demonstrated in our numerical studies (Section 3), KRNOs
are considerably more parameter-efficient than FNOs while
often achieving superior accuracy.

Transformer-based models have gained significant popu-
larity in time-series forecasting (Zhang et al., 2024; Nie
et al., 2023; Chen et al., 2021; Zhou et al., 2022; Wu et al.,
2023; Liu et al., 2022; 2024). It is worth noting that most
transformer architectures for time-series forecasting assume
regularly sampled observations. A recent exception is T-
PatchGNN (Zhang et al., 2024), designed for irregularly
sampled data, against which we compare in Section 3.

5. Concluding remarks
We introduced a novel operator-theoretic framework for tem-
poral and spatio-temporal forecasting based on learning a
continuous time-shift operator. This paradigm offers a prin-
cipled and robust approach to map the continuous history
of a system to its future evolution, providing a continuous
relaxation of traditional discrete-lag autoregressive models.
To parameterize this operator, we proposed Khatri-Rao Neu-
ral Operators (KRNOs), a new architecture that leverages
non-stationary integral transforms. KRNOs achieve nearly
linear computational scaling with the number of quadrature
points while allowing for exact kernel evaluations, a unique
combination of efficiency and expressiveness.

The practical advantages of our approach include the ability
to handle irregularly sampled observations, perform super-
resolution forecasting in both space and time, and achieve
significant parameter efficiency. Extensive numerical stud-
ies across 39 diverse test cases, encompassing physical
simulations and challenging real-world time-series, demon-
strate the efficacy and scalability of our method. KRNOs
consistently achieve state-of-the-art or highly competitive
performance, outperforming leading methods on several
benchmarks, particularly for irregularly sampled data and
complex spatio-temporal dynamics.

We envision several exciting research directions stemming
from this work: further theoretical analysis of the time-shift
operator itself, including its connections to other operator-
theoretic constructs; development of advanced KRNO vari-
ants or alternative parameterizations; and the application of
this paradigm to new domains.
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A. Continuity of the time-shift operator for ODEs
Lemma 1. Let ż(τ) = F (z(τ)), where F : Rn → Rn is Lipschitz continuous and τ ∈ [tp, tf ]. Then the time-shift operator
At,tf

tp : L2([tp, t];Rn) → L2((t, tf ];Rn) is continuous in the L2 sense, i.e., for tp < t < tf , there exists a constant C > 0
such that

||At,tf
tp z1 −At,tf

tp z2||L2((t,tf ];Rn) ≤ C||z1 − z2||L2([tp,t];Rn),

where z1 and z2 are trajectories of ż = F (z) corresponding to different initial conditions.

Proof. Let e(τ) = z1(τ)− z2(τ) with τ ∈ [tp, tf ], where z1, z2 ∈ L2([tp, tf ];Rn) are two ODE trajectories corresponding
to different initial conditions. Then, we have

||At,tf
tp z1 −At,tf

tp z2||L2((t,tf ];Rn) = ||z1 − z2||L2((t,tf ];Rn) = ||e||L2((t,tf ];Rn). (9)

Noting that ||ė||2 = ||F (z1)− F (z2)||2 ≤ LF ||e||2, where LF > 0 is the Lipschitz constant of F , we have

d

dτ
||e(τ)||22 = 2e(τ)T

de

dτ
≤ 2 ||e(τ)||2

∣∣∣∣∣∣∣∣ dedτ
∣∣∣∣∣∣∣∣
2

= 2LF ||e(τ)||22, τ ∈ [tp, tf ]. (10)

Applying Grönwall’s lemma (Ames & Pachpatte, 1997) to the preceding inequality, we have

||e||2L2((t,tf ];Rn) =

∫ tf

t

||e(τ)||22dτ ≤ ||e(tp)||22
∫ tf

t

e2LF (τ−tp)dτ. (11)

Since the trajectories are continuous over [tp, tf ], it follows from the extreme value theorem that ||F (z(t))||2 is bounded over
this interval which in turn implies that ż ∈ L∞([tp, tf ];Rn) ⊂ L2([tp, tf ];Rn). In addition, since z is square integrable, we
have z ∈ H1([tp, tf ];Rn). Noting that H1([tp, tf ];Rn) ↪→ C([tp, tf ];Rn) due to the Sobolev embedding theorem, there
exists an embedding constant C1 > 0 such that

||e(tp)||2 ≤ ||e||L∞([tp,t];Rn) ≤ C1

(
||e||L2([tp,t];Rn) + ||ė||L2([tp,t];Rn)

)
= C1(1 + LF )||e||L2([tp,t];Rn). (12)

Using (9), (11), (12), we have

||At,tf
tp z1 −At,tf

tp z2||L2((t,tf ];Rn) ≤ C||z1 − z2||L2([tp,t];Rn),

where C = C1(1+LF )√
2LF

√
exp(2LF (tf − tp))− exp(2LF (t− tp)).

The continuity of the spatio-temporal time-shift operator can be established for time-dependent PDEs under appropriate
regularity assumptions. We leave this for future work.

Time-shift operator for forced dynamical systems: The notion of the continuous time-shift operator can be extended
to forced dynamical systems. Consider a forced ODE of the form: ż(τ) = F (z(τ), ξ(τ)), where z(τ) ∈ Rn is the state,
ξ(τ) ∈ Rm is an exogenous forcing function (or control input), and F : Rn × Rm → Rn is assumed to be sufficiently
regular. Similar to the unforced case, we can define a forced time-shift operator, denoted by Gt,tf

tp , which maps the history of
the state z over a look-back window [tp, t] and the forcing function ξ defined over the interval [tp, tf ] (which includes both
look-back and prediction periods) to the future values of the state z over the interval (t, tf ]. The forced time-shift operator
Gt,tf
tp is therefore a map from L2([tp, t];Rn)× L2([tp, tf ];Rm) to L2((t, tf ];Rn), which we can define as follows:

z(τ) =
(
Gt,tf
tp

(
z|[tp,t], ξ|[tp,tf ]

))
(τ), ∀τ ∈ (t, tf ], (13)

where z|[tp,t] and ξ|[tp,tf ] denote the restriction of z and ξ to the intervals [tp, t] and [tp, tf ], respectively. When parametrizing
the forced time-shift operator, it is critical to ensure causality, i.e., the predictions made at time instant τ are not influenced
by the future values of the forcing function. This can be achieved by defining the integration domain of the kernel
integral transform with respect to ξ as [tp, τ ], where τ ∈ (t, tf ] denotes the time-stamp at which a prediction is being
made. For example, a linear integral transform representation of the forced time-shift operator would take the form:
z(τ) =

∫ t

tp
κz(τ, s)z(s)ds +

∫ τ

tp
κξ(τ, s)ξ(s)ds. The notion of forced time-shift operators can be similarly extended to

spatio-temporal systems, enabling the application of our operator-learning framework to systems with exogenous inputs.
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B. Proof for Proposition 2.1
We start by briefly clarifying what is meant by the quadrature nodes lying on a product grid. An example of a two-dimensional
product grid is provided in Figure 6 below.

Figure 6. Example of a quadrature rule which lies on a product grid. Circled in blue are the quadrature nodes along the first dimension and
circled in red are the quadrature nodes along the second dimension.

Proposition 1 states that if:

1. the quadrature nodes lie on a product grid, X = t̄× x(1) × . . . x(d−1) where t̄, x(i) ∈ Rn indicate the quadrature nodes
along the time dimension and the ith dimension of x respectively such that N = nd (for the general case N = Πd

i=1ni)
and

2. the kernel function has a component-wise product structure of the form given in Equation (7) reproduced below for
clarity:

κ({t, x}, {t′, x′}) = κ(1)(t, t′)⊙
(
⊙d

i=2κ
(i)([x]i−1, [x]

′
i−1)

)
Then the kernel function evaluated at the quadrature nodes inherits the Khatri-Rao product structure provided in Equation (8)
and reproduced below,

κ(X,X) = κ(1)(t̄, t̄)∗
(

d∗
i=2

k(i)(x(i−1), x(i−1))

)
.

Here κ(i)(·, ·) ∈ Rqn×pn is a block-partitioned matrix where block jk is the jkth output from the component kernel κ(i)

evaluated on the outer product of the quadrature nodes along the ith dimension.

Proof. We start by observing that κ(X,X) can be block-partitioned into q × p blocks of size N ×N .

κ(X,X) =


κ1,1 κ1,2 . . . κ1,p

κ2,1 κ2,2 . . . κ2,p

...
. . .

...
κq,1 κq,2 . . . κq,p

 . (14)

Each of these N ×N blocks inherits the product structure of Equation (8),

κj,k = ⊙d
i=1κ

(i)
j,k(X[:, i− 1], X[:, i− 1]), (15)

where κ
(i)
j,k(X[:, i − 1], X[:, i − 1]) ∈ RN×N is the jkth output of the ith component kernel function evaluated on the ith

dimension of the quadrature nodes. The jkth block in the kernel evaluated at the quadrature nodes can be written as the
Kronecker product as follows (Van Loan, 2000),

κj,k = κ
(1)
j,k(t̄, t̄)⊗

(
⊗d

i=2κ
(i)
j,k(x

(i−1), x(i−1))
)
, (16)

16



Shifting Time: Time-series Forecasting with Khatri-Rao Neural Operators

where κ(i)
j,k(x

(i−1), x(i−1)) ∈ Rn×n, each t̄, x(i) ∈ Rn indicate the one-dimensional quadrature nodes along the time and ith

dimension respectively. The Khatri-Rao product structure follows from substituting (16) into (14).

The above proof can be generalized to cases where the quadrature nodes are distributed on a product grid with a variable
number of nodes along each dimension, i.e., N = Πd

i=1ni.

C. Generalization of Proposition 2.1
In this section, we generalize Proposition 1 to the case where the input and output are defined over different spatio-temporal
domains and different quadrature nodes are used for the input and output functions. We start by rewriting the kernel integral
transform layer as a map with the input function vℓ : Ωℓ × Iℓ → Rp and the output function vℓ+1 : Ωℓ+1 × Iℓ+1 → Rq as
follows

vℓ+1(tℓ+1, xℓ+1) = K(vℓ)(tℓ+1, xℓ+1)

=

∫
Ωℓ

∫
(0,τ ]

κ({tℓ+1, xℓ+1}, {t′ℓ, x′
ℓ})vℓ(t′ℓ, x′

ℓ)dt
′
ℓdx

′
ℓ +Wvℓ(Φℓ(tℓ+1, xℓ+1)) + b,

where κ : R × Ωℓ × R × Ωℓ+1 → Rq×p is a matrix-valued kernel, W ∈ Rq×p is a weight matrix, Φℓ : Ωℓ+1 → Ωℓ is a
map between the output and input domains, and b ∈ Rq is a bias vector.

Let Xℓ and Xℓ+1 denote the sets of quadrature nodes for the input and output domains, respectively. The quadrature
nodes over the domain of the input function are assumed to lie on a product grid, i.e., Xℓ = t̄ℓ × x

(1)
ℓ × . . . x

(d−1)
ℓ ,

where t̄ℓ ∈ Rnℓ and x
(i)
ℓ ∈ Rnℓ denote the quadrature nodes along the input time dimension and the ith dimension of xℓ,

respectively, such that Nℓ = nd
ℓ (for the general case when the number of quadrature nodes along the ith dimension is

nℓi , we have Nℓ = Πd
i=1nℓi). Similarly, the quadrature nodes over the output domain are assumed to lie on a product

grid, Xℓ+1 = t̄ℓ+1 × x
(1)
ℓ+1 × . . . x

(d−1)
ℓ+1 where t̄ℓ+1 ∈ Rnℓ+1 and x

(i)
ℓ+1 ∈ Rnℓ+1 denote the quadrature nodes along the

output time dimension and the ith dimension of xℓ+1, respectively, such that Nℓ+1 = nd
ℓ+1 (for the general case with a

different number of quadrature nodes along each dimension Nℓ+1 = Πd
i=1nℓ+1i ). As before, we will consider a kernel with

a component-wise product structure of the form given in Equation (7).

Similar to the previous proof, we start by observing that κ(Xℓ+1, Xℓ) can be block-partitioned into q × p blocks of size
Nℓ+1 ×Nℓ, i.e.,

κ(Xℓ+1, Xℓ) =


κ1,1 κ1,2 . . . κ1,p

κ2,1 κ2,2 . . . κ2,p

...
. . .

...
κq,1 κq,2 . . . κq,p

 . (17)

Each Nℓ+1 ×Nℓ block inherits the product structure, i.e., κj,k = ⊙d
i=1κ

(i)
j,k(Xℓ+1[:, i− 1], Xℓ[:, i− 1]), where κ(i)

j,k(Xℓ+1[:

, i− 1], Xℓ[:, i− 1]) ∈ RNℓ+1×Nℓ is the jkth output of the ith component kernel function evaluated on the ith dimension of
the quadrature nodes. The jkth block in the kernel evaluated at the quadrature nodes can be written as

κj,k = κ
(1)
j,k(t̄ℓ+1, t̄ℓ)⊗

(
⊗d

i=2κ
(i)
j,k(x

(i−1)
ℓ+1 , x

(i−1)
ℓ )

)
, (18)

where κ
(i)
j,k(x

(i−1)
ℓ+1 , x

(i−1)
ℓ ) ∈ Rnℓ+1×nℓ . Substituting (18) into (17), we have

κ(Xℓ+1, Xℓ) = κ(1)(t̄ℓ+1, t̄ℓ)∗
(

d∗
i=2

k(i)(x
(i−1)
ℓ+1 , x

(i−1)
ℓ )

)
, (19)

where κ(i)(·, ·) ∈ Rqnℓ+1×pnℓ is a block-partitioned matrix where block jk is the jkth output from the component kernel
κ(i) evaluated on the outer product of the quadrature nodes along the ith dimension.

It follows from this result that we retain the original computational complexity of the KRNO operator even in situations
where the inputs and outputs are defined over different domains. In addition, this result provides the flexibility of designing
memory-efficient multi-resolution neural operators, where the hidden layers operate on variable-resolution representations
of the input function. This generalized KRNO integral transform layer can be viewed as a continuous analog of upsampling
and downsampling layers used in convolutional neural networks.
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D. Algorithm for Khatri-Rao structured matrix-vector products
In this section, we present an algorithm to efficiently compute the matrix-vector product associated with the Khatri-Rao
product structured matrix defined in (8), without the need to explicitly construct the full matrix of size qN × pN .

Let A ∈ RqN×pN be a block structured matrix of the form,

A =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
. . .

...
Aq,1 Aq,2 . . . Aq,p

 (20)

where each Aj,k = ⊗d
i=1A

(i)
j,k and A

(i)
j,k ∈ Rn×n. Assuming q, p << N , the computational complexity associated with the

matrix-vector product u = Av can be reduced from O(N2) to O(N1+1/d). In addition, the memory requirements are also
reduced from O(N2) to O(N2/d +N). An efficient PyTorch implementation outlining the steps is provided below.

def khatri_rao_mmprod(
A: list[Float[Tensor, "q p n1 n2"]], V: Float[Tensor, "pN batch"]

) -> Float[Tensor, "qN batch"]:
d = len(A) # size of the product grid (# of kernel components)
q, p, _, _ = A[0].shape
pN, bs = V.shape
X = V.reshape(p, -1, bs).transpose(-2, -1)
for i in range(d):

Gd = A[i].shape[-1]
bs_prod = X.shape[:-1]
X = X.reshape(*bs_prod, Gd, -1)
Z = A[i].unsqueeze(-3) @ X
X = Z.transpose(-2, -1).reshape(q, p, bs, -1)

return X.sum(1).transpose(-2, -1).reshape(-1, bs)

We note that the above algorithm is applicable to Khatri-Rao product structured matrix, as defined in (19), where the inputs
and outputs are defined over different spatio-temporal domains (with each domain using a different set of quadrature nodes).

E. Details on KRNO parametrization
As mentioned in the paper, we parametrize each component-wise kernel, κ(i) : R× R → Rq×p by a neural network. All
neural nets use skip connections and layer normalization (Ba et al., 2016). In addition, before passing an input into the
component function, we apply an input transformation ϕ : R× R → Rm,

ϕ(t, t′) =
1√
2
cos

([
t t′

]
ω + β

)
, (21)

where ω ∈ R2×m and β ∈ Rm. Such input feature transforms were found to be beneficial in prior works (Kissas et al.,
2022)

F. Practical aspects of learning the time-shift operator
Consider an n-dimensional multivariate discrete time-series dataset {zt}Tt=0. This dataset is first converted into pairs of
input and output sequences over two non-overlapping time intervals [tp, t] and (t, tf ], where 0 ≤ tp < t < tf ≤ T , for
various time instances t. The input sequence, denoted by U t

p = {zt}tt=tp , includes zt given at P time steps within the

look-back window [tp, t]. The output sequence, denoted by U t
f = {zt}

tf
t=t, contains values of zt given at H time steps

within the prediction window (t, tf ]. These pairs of sequences, for different values of t, are used to approximate the
continuous time-shift operator At,tf

tp using KRNO. For estimating the KRNO parameters, we minimize the loss function,
1
M

∑M
i=1 ||U

ti
f −Ati,tf

tp U ti
p ||L2((ti,tf ];Rn), where M is the number of input-output sequence pairs. As discussed previously,

tp and tf are hyperparameters of the time-shift operator which are chosen using cross-validation.

Similar to temporal datasets, we consider spatio-temporal data comprising discrete snapshots of spatial fields {ut(x)}Tt=0,
where x ∈ Ωg with Ωg representing a spatial grid over Ω. This dataset is converted into pairs of input and output sequences
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of spatial fields, U t
p(x) and U t

f (x), over time intervals [tp, t] and (t, tf ], where 0 ≤ tp < t < tf ≤ T . The input sequence
U t
p(x) = {ut(x)}tt=tp contains spatial fields corresponding to P time steps within the look-back window [tp, t]. The

output sequence U t
f (x) = {ut(x)}

tf
t=t contains spatial fields over H time steps within the prediction window (t, tf ]. These

sequence pairs are used to learn the spatio-temporal time-shift operator (3) using KRNO by minimizing the loss function,
1
M

∑M
i=1 ||U

ti
f −Ati,tf

tp U ti
p ||L2(Ω)×L2((ti,tf ]), where M is the number of input-output sequence pairs.

Table 8. Summary of all datasets (along with corresponding test cases and error metrics) considered in our numerical experiments. This
leads to a total of 39 different test cases or error metrics. The top five models are listed for each case. It can be seen that KRNO achieves
top performance on 17/39 cases and top-3 performance on 30/39 cases.

Dataset Test case Best Second Third Fourth Fifth
(or error metric)

Darcy flow ϵu KRNO FNO POD-DeepONet DeepONet -
Hyper-elastic ϵσ KRNO FNO DeepONet - -

Shallow water
ϵρ KRNO FNO-3D LOCA - -
ϵv1 KRNO FNO-3D LOCA - -
ϵv2 KRNO FNO-3D LOCA - -

2D spiral Short traj. KRNO Latent-ODE T-PATCHGNN - -
Long traj. KRNO Latent-ODE T-PATCHGNN - -

MIMIC MSE KRNO T-PATCHGNN StemGNN Warpformer GRU-D
MAE T-PATCHGNN KRNO GRU-D Warpformer StemGNN

USHCN MSE KRNO T-PATCHGNN Crossformer Warpformer Graph Wavenet
MAE KRNO T-PATCHGNN Graph Wavenet Warpformer Neural Flow

Human Activity MSE T-PATCHGNN Warpformer KRNO Graph Wavenet GRU-D
MAE T-PATCHGNN Warpformer Graph Wavenet FOURIER/GNN KRNO

MuJoCo

Regular KRNO Neural LSDE Neural LNSDE Neural GSDE LEAP
30% KRNO Neural GSDE Neural LNSDE Neural GSDE LEAP
50% KRNO Neural GSDE Neural LNSDE Neural GSDE LEAP
70% KRNO Neural LSDE Neural LNSDE Neural GSDE LEAP

Darts

AirPassengers LLaMA-2 ARIMA KRNO GPT-3 SM-GP
AusBeer N-BEATS LLaMA-2 GPT-3 KRNO ARIMA

GasRateCO2 SM-GP KRNO ARIMA LLaMA-2 N-BEATS
MonthlyMilk GPT-3 LLaMA-2 KRNO SM-GP N-HiTS

sunspots KRNO ARIMA GPT-3 LLaMA-2 N-HiTS
Wine KRNO GPT-3 ARIMA TCN N-HiTS

Wooly N-HiTS ARIMA SM-GP KRNO GPT-3
HeartRate TCN GPT-3 SM-GP KRNO N-HiTS

M4

Monthly KNF Nbeats-I+G Smyl Montero et al KRNO
Weekly KRNO KNF Montero et al Smyl -
Daily KNF KRNO Montero et al Smyl -

Hourly Smyl KNF Montero et al KRNO -
Yearly Nbeats-I+G Smyl Montero et al KNF KRNO

Quarterly Nbeats-I+G Smyl Montero et al KNF KRNO

Crypto

(1 ∼ 5) MLP+RevIN+TB KNF KRNO LEM VARIMA
(6 ∼ 10) KNF KRNO MLP+RevIN+TB LEM FedFormer
(11 ∼ 15) KNF KRNO LEM MLP+RevIN+TB RF+TB
(1 ∼ 15) KNF KRNO MLP+RevIN+TB LEM FedFormer

Player Traj

(1 ∼ 10) VARIMA KNF KRNO LEM MLP+RevIN+TB
(11 ∼ 20) KNF VARIMA FedFormer KRNO MLP+RevIN+TB
(21 ∼ 30) KNF KRNO FedFormer VARIMA LEM
(1 ∼ 15) KNF KRNO VARIMA FedFormer LEM

G. Comparison of training and inference costs of KRNO and FNO
In this section, we compare the computational cost and memory requirements of KRNO and FNO-3D for different spatial
resolutions using the shallow water dataset. We utilized the default settings for KRNO described earlier, except for the
quadrature grid. For all the spatial resolutions, we employed a quadrature grid of size 32×32×5 in the hidden KRNO integral
transform layers. It is important to note that for high-resolution spatial data, the memory requirements and computational
cost are primarily driven by computations in the first and last integral transform layers, which contain the highest number of
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Table 9. Comparison of training memory requirements and computational cost of KRNO and FNO-3D models on shallow water problem
for different spatial resolutions (with a batch size of 8). Two FNO-3D configurations are compared: one with a fixed number of Fourier
modes m = 12, and another with m = S

2
+ 1 that scales with the spatial resolution S × S.

Spatial
resolution
S × S

# Quadrature
nodes

GPU memory (MB) Time (seconds)
KRNO FNO-3D

(m = 12)
FNO-3D
(m = S

2 +1)
KRNO FNO-3D

(m = 12)
FNO-3D
(m = S

2 +1)
32 × 32 5,120 (N ) 1,390 854 1,074 0.0279 0.0216 0.0234
64 × 64 20,480 (4N ) 2,776 1,350 2,772 0.0394 0.0252 0.0347
96 × 96 46,080 (9N ) 4,884 2,124 5,264 0.0626 0.0405 0.0710

128 × 128 81,920 (16N ) 7,608 3,318 8,994 0.0999 0.0704 0.1297
160 × 160 128,000 (25N ) 10,040 4,872 13,764 0.1584 0.1114 0.2088

Note: N = 32× 32× 5 = 5120.

Table 10. Comparison of inference memory requirements and computational cost for KRNO and FNO-3D models on shallow water
problem for different spatial resolutions (with a batch size of 8). Two FNO-3D configurations are compared: one with a fixed number of
Fourier modes m = 12, and another with m = S

2
+ 1 that scales with the spatial resolution S × S.

Spatial
resolution
S × S

# Quadrature
nodes

GPU memory (MB) Time (seconds)
KRNO FNO-3D

(m = 12)
FNO-3D
(m = S

2 +1)
KRNO FNO-3D

(m = 12)
FNO-3D
(m = S

2 +1)
32 × 32 5,120 (N ) 708 942 1,074 0.0107 0.0065 0.0062
64 × 64 20,480 (4N ) 1,314 1,294 2,772 0.0134 0.0069 0.0071
96 × 96 46,080 (9N ) 2,366 1,622 5,264 0.0185 0.0108 0.0149

128 × 128 81,920 (16N ) 3,796 2,428 8,994 0.0312 0.0210 0.0288
160 × 160 128,000 (25N ) 5,644 3,292 11,288 0.0502 0.0315 0.0456

quadrature nodes. For the FNO-3D model, the number of Fourier modes (m) in each spatial dimension has a significant
impact on the computational complexity. For instance, when training on data with spatial resolution 160× 160, increasing
m from 12 to 81 increases the memory requirements from 4, 872 MB to 13, 764 MB and the training time per iteration from
0.1114 seconds to 0.2088 seconds. In addition, the parameter count of FNO-3D dramatically increases from 5.5 million to
252 million when m increases from 12 to 81. In contrast, KRNO maintains a fixed parameter count of 145, 319, independent
of the size of the quadrature grid and the resolution of the dataset.

The memory requirements and computational cost during training and inference are shown in Table 9, Table 10, and Figure 7.
As discussed earlier, the memory requirements and time complexity of FNO-3D grow dramatically with an increase in
the number of Fourier modes. We observe that the memory usage of KRNO is significantly higher during training than
at inference. We believe that this can be reduced by further optimizing the implementation of Khatri-Rao matrix-vector
products.

We would like to highlight that our current implementation uses a mid-point quadrature scheme for the temporal dimension
and a trapezoidal quadrature scheme for spatial dimensions to evaluate the integral transform layers. Additionally, in our
current implementation, the quadrature nodes are defined over the spatial mesh of the input function. While this approach
is reasonable for the problems we are considering, it is not the most suitable (and tends to be overly conservative) for
high-resolution spatio-temporal datasets. For such datasets, the memory requirements can be significantly reduced by using
quadrature nodes that are defined over a lower-resolution spatial grid which is independent of the input’s spatial resolution.

Alternatively, we could design a quadrature scheme that uses a low-resolution subsampling of the input as nodes and
generates quadrature weights on-the-fly to meet a specified target precision. This would not only enhance accuracy and
efficiency for high-resolution spatio-temporal datasets but also improve the performance of KRNO for irregularly spaced
observations. We plan to explore this in future work.
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Figure 7. Training and inference time per iteration for KRNO and FNO-3D models on the shallow water problem, plotted as a function
of the number of quadrature nodes. For the FNO-3D model, the number of Fourier modes is set to m = S

2
+ 1, where S is the spatial

resolution. See the discussion in Appendix G for more details.

H. Additional experimental details
This section provides additional details on the experimental setup used to generate the results presented in the main text.
The default KRNO architecture used in most of the experiments has 3 kernel integral layers with 20 channels each, lifting
and projection layers are parametrized by MLPs with one hidden layer containing 128 hidden units, and the kernels in
the integral transform layers are parametrized by MLPs with 3 hidden layers with 32 hidden units each. We used the
SiLU (Elfwing et al., 2018) activation function as the nonlinearity. In each test case, we used the same input and output
quadrature grids in each kernel integral layer except for the final layer. For problems involving high spatial or temporal
resolutions, adopting lower-resolution quadrature grids within the internal kernel integral layers is recommended as an
effective strategy to reduce computational costs. The hyperparameter settings used for Darts, M4, Crypto, and Player
Trajectory datasets are summarized in Table 12 and Table 14. The AdamW (Loshchilov & Hutter, 2019) optimizer is used
for training all the models. All the computations were carried out on a single Nvidia RTX 4090 with 24GB memory.

In all experiments, we treat the tp and tf as fixed hyperparameters. We would like to highlight here that further work is
needed to explore the possibility of training a single model on a dataset containing input/output trajectories for different
settings of tp and tf . This would enable the possibility of learning a model that can predict the dynamics at different length
scales.

H.0.1. ADDITIONAL DETAILS ON MIMIC, USHCN AND HUMAN ACTIVITY BENCHMARKS

MIMIC The MIMIC dataset (Johnson et al., 2016), a publicly available clinical database, contains electronic health
records from critical care patients. After applying preprocessing steps outlined by Biloš et al. (2021); Zhang et al. (2024),
we extracted time series data for 23,457 patients. Each time series encompasses 96 variables recorded during the initial 48
hours post-admission. The goal here is to forecast target values for the subsequent 24-hour period using the data from the
first 24 hours as observations.

USHCN The United States Historical Climatology Network (USHCN) dataset (Menne et al., 2015) is utilized to address
the common challenge of missing data in climate research, which often arises from issues like sensor malfunctions or data
acquisition errors. This dataset originally encompasses daily measurements of five climate variables (precipitation, snowfall,
snow depth, minimum and maximum temperature) collected from numerous meteorological stations across the United
States. Following preprocessing methodologies adopted from previous studies (De Brouwer et al., 2019b; Schirmer et al.,
2022), a specific subset is used, focusing on 1, 114 stations and an observational period spanning four years, from 1996 to
2000. We followed the preprocessing steps described by Zhang et al. (2024), which resulted in 26, 736 multivariate time
series. The primary task here is to forecast the climate conditions for the subsequent 24 months using the climate data from
the preceding 24 months for each time series.
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Human Activity The Human Activity dataset contains 3D positional data from four sensors worn on the left ankle, right
ankle, belt, and chest. This data, initially consisting of 12 irregularly measured variables from five individuals performing
activities like walking and sitting, was preprocessed according to Zhang et al. (2024). This resulted in 5, 400 irregularly-
sampled multivariate time series, each spanning 4, 000 milliseconds. For forecasting, we use the initial 3, 000 milliseconds
of each irregularly sampled multivariate time-series as observed data to predict sensor positions for the subsequent 1, 000
milliseconds.

KRNO architecture details: The MIMIC, USHCN, and Human Activity benchmarks involve irregularly sampled,
multivariate time-series with missing observations. To accommodate the missing observations, we need to augment the
KRNO architecture with a learnable transformation that maps the irregularly sampled observations with missing states
to a feature vector defined over the union of all observation time-stamps across all variables/states. We experimented
with different preprocessing architectures and found that the best performance was achieved by augmenting the KRNO
architecture with a simple one-dimensional CNN preprocessing module that is shared across the variables (states). This is
similar in spirit to approaches used in T-PATCHGNN (Zhang et al., 2024) and PatchTST (Nie et al., 2023), where all the
model weights are shared across all the variables (states). It is worth noting here that in the present work only the CNN
preprocessing module weights are shared across the states, while the KRNO architecture does not use weight sharing.

We take the union of all time-stamps corresponding to each variable (state) in a single trajectory, and create a binary mask to
indicate the missing observations. The CNN module takes this augmented sequence for each variable (state) along with
the corresponding mask (treated as a two-channel input) and transforms it to a single-channel feature vector defined over
the union of all time-stamps. The transformed sequence of features extracted from the CNN preprocessing module along
with the union of time-stamps are then used as inputs to the KRNO architecture. For all three datasets, we used a CNN
preprocessing module composed of three layers, each employing a kernel size of 9 with stride length of 1 and padding of 4.
The number of output channels for the three layers is set to 30, 20, and 1, respectively. We used the LeakyReLU (Maas
et al., 2013) activation function as the nonlinearity. The KRNO architecture used is the default configuration described in
Section H. The AdamW optimizer is used for training and the learning rate is set to 10−3. The training, validation and test
splits are created using 60%, 20%, and 20% of the data, respectively.

Our current KRNO implementation for these datasets uses a batch size of 1 since the length of the transformed sequences
for each trajectory is different. Further work is required to explore how this limitation can be overcome. One promising
approach involves converting variable-length sequences into fixed-length feature vectors, analogous to the methodology in
T-PATCHGNN (Zhang et al., 2024), thereby enabling their use as batched inputs for the KRNO model.

Baseline models On irregular time-series benchmarks, we compare the performance of KRNO with numerous SOTA mod-
els, including DLinear (Zeng et al., 2023), TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), Crossformer (Zhang &
Yan, 2023), Graph Wavenet (Wu et al., 2019), MTCNN (Wu et al., 2020), StemGNN (Cao et al., 2020), CrossGNN (Huang
et al., 2023), FOURIER/GNN (Yi et al., 2023), GRU-∆t, GRU-D (Che et al., 2018), SeFT (Horn et al., 2020), Rain-
Drop (Zhang et al., 2022), Warpformer (Zhang et al., 2023), mTAND (Shukla & Marlin, 2021), CRU (Schirmer et al., 2022),
Neural Flow (Biloš et al., 2021), T-PATCHGNN (Zhang et al., 2024), GRU-ODE (De Brouwer et al., 2019a), ODE-RNN,
Latent-ODE (Rubanova et al., 2019), Augmented-ODE (Dupont et al., 2019), ACE-NODE (Jhin et al., 2021), NCDE (Kidger
et al., 2020), ANCDE (Jhin et al., 2024), EXIT (Jhin et al., 2022), LEAP (Jhin et al., 2023), Neural SDE (Li et al., 2020a),
Neural LSDE (Oh et al., 2024), Neural LNSDE (Oh et al., 2024), Neural GSDE (Oh et al., 2024).

H.1. 2D spiral example

This section presents additional numerical results to evaluate the performance of KRNO on irregularly spaced time-series
data obtained for the two-dimensional spiral test case from (Chen et al., 2018) and compare against T-PATCHGNN (Zhang
et al., 2024) and Latent-ODE (Rubanova et al., 2019). First, we consider 10 irregularly spaced short training trajectories,
which represent high levels of irregularity, alongside one equispaced training trajectory. The equispaced trajectory is
generated by sampling the states at 100 evenly spaced time stamps over the short time interval [0, 15.61] seconds. To
generate training datasets with a high level of irregularity, 100 new time-stamps are obtained by adding random noise
ϵt ∼ U [0, 0.156] to the time stamps of the equispaced trajectory. Subsequently, the training trajectory is obtained by
sampling the states at the randomly perturbed time-stamps. This randomization procedure was repeated to create 10 different
training datasets where the distribution of the time-stamps is highly irregular, making this test case more challenging.
Similarly, we generated 10 irregularly spaced trajectories alongside one equispaced training trajectory over the longer time
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interval [0, 65.88] seconds.

We consider T-PATCHGNN (Zhang et al., 2024) and Latent-ODE (Rubanova et al., 2019) as baseline methods. We trained
all models on both short and long trajectories. For models trained on short trajectories, performance is evaluated on a test
dataset containing the future states at 18 uniformly spaced time stamps over the interval (15.61, 18.45] seconds. While for
models trained on long trajectories, performance is evaluated on a test dataset containing the future states at 18 uniformly
spaced time stamps over the interval (65.88, 68.72] seconds. All models are trained by fixing the length of the time window
corresponding to the input and the output sequences to be 1.419 seconds. We did not tune the KRNO hyperparameters for
this experiment. The KRNO architecture consisted of 128 channels in both the lifting and projection layers, with three
kernel integral layers, each containing four channels.

The predictive performance of all models is compared in Table 11. When the training trajectories are equispaced, the
performance of both Latent-ODE and T-PATCHGNN models is comparable, with KRNO outperforming them by a factor
of 10. For the case of irregularly-spaced training data, we provide the statistics of test MSE over 10 different randomly
sampled trajectories generated using the procedure described earlier. Table 11 shows that KRNO significantly outperforms
both Latent-ODE and T-PATCHGNN models on this extrapolation task.

Sample predictions from models trained on short and long trajectories are shown in Figures 8, 9, respectively. KRNO is
the only model that is able to consistently predict the future states on both short and long trajectories. Both Latent-ODE
and T-PATCHGNN models revert to predicting the training data. In all cases, on average, Latent-ODE performs better than
T-PATCHGNN. As shown in Figure 9, there is significant variance in the predictive performance of T-PATCHGNN across
different irregularly spaced trajectories.

We note that reduction in predictive accuracy when the distribution of the time-stamps is highly irregular is influenced by
the time intervals where the sampling frequency is low. For instance, lower sampling frequency in the time interval close to
the testing time window has the most significant impact on predictive accuracy. In such situations, the hyperparameters tp
and tf would need to be carefully selected to improve the predictive performance.

Another important factor that impacts the predictive accuracy for irregularly-spaced training observations is the quadrature
scheme used to approximate the kernel integral transform layers. Our current implementation uses a trapezoidal quadrature
rule which is not ideal when the training data is sampled at a highly irregular frequency. It is expected that by adopting a
quadrature scheme that obtains weights on-the-fly for irregularly spaced data (while meeting a target precision), the accuracy
can be improved further.

Table 11. Comparison of test MSE of models trained on one equispaced trajectory and 10 trajectories (mean/std) with irregularity in the
distribution of the time-stamps.

Train Trajectory Test MSE

Length Type KRNO Latent-ODE T-PATCHGNN

Short Equispaced 0.081 0.931 1.944
Irregular 0.147 ± 0.06 0.929 ± 0.12 1.740 ± 0.40

Long Equispaced 0.768 4.939 5.221
Irregular 0.974 ± 0.68 6.828 ± 3.91 64.023 ± 58.9

H.2. Darts benchmarks

For all the datasets in Darts, we used 60%-20%-20% as a train-validation-test split. We performed a grid search on the Darts
datasets using the hyperparameters listed in Table 12 to find the optimal hyperparameters. Model selection was done based
on the normalized mean absolute error (NMAE) (22) on the validation set. Since the available training data in the Darts
dataset is not sufficient to train a deep network, we conducted weight decay tuning to determine the optimal weight decay
value using the selected hyperparameters. This optimal weight decay value was then used to train the final model using both
the training and validation data. This final model is used to obtain predictions by forecasting recursively until the end of the
testing window, shown in Figure 10. The evaluation metric, normalized MAE (NMAE), is computed as follows

NMAE(y, ŷ) =
MAE(y, ŷ)
1
n

∑n
i=1 |yi|

=
MAE(y, ŷ)

mean(|y|)
, (22)

where y and ŷ are the truth and predicted time series.
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Table 12. Hyperparameter tuning ranges used for Darts dataset.
Learning
rate

Integral
layer
channels

Hidden
units in
kernel

Look-back
window
length

Prediction
window
length

ReVIN

[1e-3, 5e-3] [5, 10, 32] [32, 64] 10 to 100 5 to 100 [True, False]

H.3. M4 benchmarks

We utilized the training and test datasets from the M4 competition (Makridakis et al., 2020). For all M4 datasets, the last
10% of the data for each time series in the training data is used as validation data. The testing process involves forecasting
for a specified time period (testing window length) for each seasonality. The testing window lengths for each seasonality are
shown in the parentheses next to the seasonality in Table 13.

Table 13. Comparison of sMAPE from KRNO with other baseline methods on M4 datasets. Results with (·)† were taken from Wang et al.
(2023).

Method Monthly(18) Weekly(13) Daily(14) Hourly(48) Yearly(6) Quarterly(8)

Montero et al. (2020) 12.639 7.625† 3.097† 11.506 13.528 9.733
Smyl (2020) 12.126 7.817† 3.170† 9.328 13.176 9.679
Nbeats-I+G 12.024 - - - 12.924 9.212
KNF (Wang et al., 2023) 11.930† 7.254† 2.990† 11.294 13.800 10.008
KRNO(ours) 13.432 6.934 3.086 11.686 14.302 10.503

H.4. Crypto and Player Trajectory benchmarks

For these two datasets, we used the same train-test splits as Wang et al. (2023). Similar to the M4 datasets, 10% of the data
corresponding to each time series in the training data is used for validation. Following (Wang et al., 2023), the prediction
window lengths for the Crypto and Player Trajectory datasets were set to 15 and 30, respectively. Table 15 presents a
comparison of prediction errors between KRNO and baseline methods.

For the Crypto dataset, Table 15 details the test prediction errors for time steps 1-5, 6-10, and 11-15, along with the total
error across all 15 steps. Similarly, for the Player Trajectory dataset, Table 15 reports errors for time steps 1-10, 11-20, and
21-30, and the total error over all 30 steps.

Table 14. Hyperparameter ranges used in M4, Crypto, and Player Trajectory datasets.
Learning
rate

Integral
layer
channels

Hidden
units in
kernel

Look-back
window
length

Prediction
window
length

ReVIN

[1e-3, 5e-3] [16, 32] [32, 64] 3 to 192 1 to 18 [True, False]
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Table 15. Comparison of RMSE from KRNO method with other baseline methods on Crypto and Player Trajectory datasets.

Crypto (Weighted RMSE 10−3) Basketball Player Trajectory (RMSE)

Model (1∼5) (6∼10) (11∼15) Total (1∼10) (11∼20) (21∼30) Total

VARIMA 6.09±0.00 8.83±0.00 10.74±0.00 8.76±0.00 0.22±0.00 0.90±0.00 1.98±0.00 1.26±0.00

MLP 6.68±1.53 7.95±0.33 8.64±0.55 7.85±0.35 0.73±0.20 1.64±0.31 2.77±0.42 1.91±0.32

MLP+RevIN+TB 5.03±0.08 7.16±0.13 8.41±0.06 7.01±0.08 0.37±0.02 1.16±0.03 2.25±0.04 1.48±0.25

RF+TB 6.62±1.30 7.99±0.24 8.51±1.19 7.84±0.04 0.86±0.01 2.10±0.02 3.48±0.02 2.40±0.01

FedFormer 5.61±0.05 7.50±0.03 8.89±0.03 7.46±0.04 0.43±0.02 0.92±0.02 1.97±0.04 1.29±0.03

LEM 5.27±0.02 7.23±0.06 8.23±0.05 7.02±0.04 0.33±0.01 1.08±0.02 2.18±0.02 1.42±0.02

VBS 15.23±0.00 14.46±0.01 26.49±0.01 19.52±0.00 0.90±0.00 2.84±0.00 9.24±0.00 5.60±0.00

KNF 5.24±0.00 7.03±0.01 7.63±0.01 6.91±0.01 0.26±0.01 0.84±0.01 1.81±0.01 1.16±0.01

KRNO 5.27±0.27 7.07±0.17 7.72±0.1 6.95±0.16 0.27±0.03 0.93±0.05 1.94±0.07 1.25±0.05

H.5. Spatial modeling problems

H.5.1. DARCY PROBLEM
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0

20

40

60

Figure 11. The top row presents a sample prediction from the test set for the Darcy-flow problem, while the bottom row illustrates a
sample prediction for the elasticity problem.

We consider steady-state Darcy flow in a two-dimensional unit square domain Ω ∈ [0, 1]× [0, 1], governed by the following
PDE

−∇ · (a(x)∇u(x)) = f, x ∈ Ω, where u(x) = 0, x ∈ ∂Ω, (23)

a(x) is the permeability field, u(x) is the pressure field, and f is the source term. The goal here is to learn the pressure field
u(x) as a function of the permeability field a(x). In this case, the permeability field is modelled as a(x) = exp(F (x)),
where F (x) denotes a truncated Karhunen-Loéve (KL) expansion with 100 terms. We utilized the data provided in (Lu
et al., 2022) for training and testing purposes. The training dataset consists of 1000 snapshots, and the testing data consists
of 200 snapshots. The snapshots corresponding to both the input permeability field a(x) and target pressure field u(x) are
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given on a uniform grid of size 20× 20. We compared the relative test errors of KRNO with other operator-based methods
such as DeepONet (Lu et al., 2021) and FNO (Li et al., 2020b). The results are presented in Table 2 and Figure 11.

The KRNO architecture used in the experiment has 3 kernel integral layers with 20 channels each, lifting and projection
layers are parametrized by MLPs with one hidden layer containing 20 and 128 hidden units, respectively, and the kernels
in the integral transform layers are parametrized by MLPs with 3 hidden layers with 128 hidden units each. We used the
AdamW optimizer for training and the learning rate is set to 10−3.

H.5.2. HYPER-ELASTIC PROBLEM

In this problem, we consider a hyper-elastic material within a unit domain Ω ∈ [0, 1]× [0, 1] that contains a void of arbitrary
shape at the center, as illustrated in the bottom row of Figure 11 (Li et al., 2023). The bottom edges of the unit cell are
clamped, and we apply a tension traction of t = [0, 100] to the top edge. The prior of the void radius is r = 0.2 + 0.2

1+exp(r̃)

with r̃ ∼ N (0, 42(∇ + 32)−1), which satisfies the constraint r ∈ [0.2, 0.4]. The dynamics of an elastic material are
represented by the following PDE

ρ
∂2u

∂t2
+∇ · σ = 0 (24)

where ρ is the mass density, u is the displacement vector, and σ is the stress tensor. Constitutive models are essential
to define the behaviour of the system entirely. These models establish the relationship between the strain ϵ and stress
tensors, effectively completing the mathematical framework necessary for solving the system. In this context, the material
behaviour is characterized by the incompressible Rivlin-Saunders model, which uses energy density function parameters
C1 = 1.863× 105 and C2 = 9.79× 103. We utilized the data provided in (Li et al., 2023) for both training and testing
purposes. The training dataset consists of 1000 snapshots, and the testing data consists of 200 snapshots generated using a
finite element solver.

The goal here is to learn the stress field as a function of the deformed mesh that corresponds to the void shape. We compared
the relative test errors corresponding to predictions of our method with other ML-based operator methods such as FNO (Li
et al., 2020b) and DeepONet (Lu et al., 2021). The results are presented in Table 2.

The KRNO architecture used in the experiment has 3 kernel integral layers with 20 channels each, lifting and projection
layers are parametrized by MLPs with one hidden layer containing 128 hidden units, and the kernels in the integral transform
layers are parametrized by MLPs with 3 hidden layers with 64 hidden units each. We used the AdamW optimizer for training
and the learning rate is set to 10−3.

H.6. Shallow water simulation

We provide some additional numerical results for the shallow water test case using the default KRNO architecture detailed
in Section H. We followed the procedure described in Kovachki et al. (2023) in our numerical studies using FNO. Table 16
and Figure 12 compares results from different models trained for 200 epochs. The results presented show that FNO-
3D performance improves when trained for 200 epochs. We also applied FNO-2D (Kovachki et al., 2023) to learn an
autoregressive model that maps the spatio-temporal field at five time instants to the next time step. However, irrespective of
the choice of hyperparameters, we were unable to learn an autoregressive model that provided stable predictions over the
testing horizon. Due to this numerical issue, the FNO-2D model is only trained for 100 epochs. Representative predictions
from all the models are shown in Figures 14, 15, 16, 17.

H.7. Climate modeling example

The KRNO architecture used in the experiment has 3 kernel integral layers with 20 channels each, lifting and projection
layers are parametrized by MLPs with one hidden layer containing 20 and 256 hidden units, respectively, and the kernels
in the integral transform layers are parametrized by MLPs with 2 hidden layers with 64 hidden units each. We used the
AdamW optimizer for training and the learning rate is set to 10−3.
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Figure 8. Comparison of forecasted predictions of KRNO with other models trained on short trajectories with equispaced and high levels
of irregularity in the time-stamps.
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Figure 9. Comparison of forecasted predictions of KRNO with other models trained on long trajectories with equispaced and high levels
of irregularity in the time-stamps.
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Figure 10. KRNO predictions on the Darts datasets

Table 16. Comparison of the average relative L2 errors
on the shallow water problem for the three field vari-
ables when training is conducted for 200 epochs.

Method L2 relative error
ρ u v

FNO-3D 0.000719 0.01951 0.01174
LOCA 0.003091 0.15179 0.14942
KRNO 0.000331 0.01339 0.01406
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Figure 12. Comparison of the average relative L2 errors as a function
of time for the three field variables (across the 1000 test simulations)
obtained using KRNO, FNO-3D and LOCA models trained for 200
epochs.
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Figure 13. Shallow water problem: Figure shows the predictions (ρ̂, û, v̂) for the three field variables along with the true fields (ρ, u, v) as
a function of time for a test simulation using KRNO trained for 100 epochs.
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Figure 14. Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field variables along with the true fields (ρ, u, v)
as a function of time for a test simulation using FNO-2D trained for 100 epochs. The bottom figure shows the error bars representing the
L2 relative errors for three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard deviation.
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Figure 15. Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field variables along with the true fields (ρ, u, v)
as a function of time for a test simulation using KRNO trained for 200 epochs. The bottom figure shows the error bars representing the L2

relative errors for three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard deviation.
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Figure 16. Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field variables along with the true fields (ρ, u, v)
as a function of time for a test simulation using FNO-3D trained for 200 epochs. The bottom figure shows the error bars representing the
L2 relative errors for three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard deviation.
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Figure 17. Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field variables along with the true fields (ρ, u, v)
as a function of time for a test simulation using LOCA model trained for 200 epochs. The bottom figure shows the error bars representing
the L2 relative errors for three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard deviation.
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