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ABSTRACT

Offline reinforcement learning (RL) has garnered significant attention for its ability
to learn effective policies from pre-collected datasets without the need for further
environmental interactions. While promising results have been demonstrated in
single-agent settings, offline multi-agent reinforcement learning (MARL) presents
additional challenges due to the large joint state-action space and the complexity
of multi-agent behaviors. A key issue in offline RL is the distributional shift,
which arises when the target policy being optimized deviates from the behavior
policy that generated the data. This problem is exacerbated in MARL due to the
interdependence between agents’ local policies and the expansive joint state-action
space. Prior approaches have primarily addressed this challenge by incorporating
regularization in the space of either Q-functions or policies. In this work, we
introduce a regularizer in the space of stationary distributions to better handle
distributional shift. Our algorithm, ComaDICE, offers a principled framework for
offline cooperative MARL by incorporating stationary distribution regularization
for the global learning policy, complemented by a carefully structured multi-
agent value decomposition strategy to facilitate multi-agent training. Through
extensive experiments on the multi-agent MuJoCo and StarCraft Il benchmarks,
we demonstrate that ComaDICE achieves superior performance compared to state-
of-the-art offline MARL methods across nearly all tasks.

1 INTRODUCTION

Over the years, deep RL has achieved remarkable success in various decision-making tasks (Levine
et al., 2016} |Silver et al., 2017; Kalashnikov et al.| [2018; |Haydari & Yilmaz, |2020). However, a
significant limitation of deep RL is its need for millions of interactions with the environment to gather
experiences for policy improvement. This process can be both costly and risky, especially in real-
world applications like robotics and healthcare. To address this challenge, offline RL has emerged,
enabling policy learning based solely on pre-collected demonstrations (Levine et al.| |2020). Despite
this advancement, offline RL faces a critical issue: the distribution shift between the offline dataset and
the learned policy (Kumar et al., 2019). This distribution shift complicates value estimation for unseen
states and actions during policy evaluation, resulting in extrapolation errors where out-of-distribution
(OOD) state-action pairs are assigned unrealistic values (Fujimoto et al., 2018)).

To tackle OOD actions, many existing works impose action-level constraints, either implicitly by
regulating the learned value functions or explicitly through distance or divergence penalties (Fujimoto
et al.,[2019; |Kumar et al., 2019 [Wu et al.| 2019; Peng et al., 2019} |[Fujimoto & Gu, |[2021}; Xu et al.,
2021)). Only a few recent studies have addressed both OOD actions and states using state-action-level
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behavior constraints (Li et al., 2022} Zhang et al.| |2022; Lee et al.} 2021;2022; Mao et al.}[2024)). In
particular, there is an important line of work on DIstribution Correction Estimation (DICE) (Nachum
& Dai, 2020) that constrains the distance in terms of the joint state-action occupancy measure between
the learning policy and the offline policy. These DICE-based methods have demonstrated impressive
performance results on the D4RL benchmarks (Lee et al., [2021}; 2022} [Mao et al., [2024)).

It is important to note that that all the aforementioned offline RL approaches primarily focus on the
single-agent setting. While multi-agent setting is prevalent in many real-world sequential decision-
making tasks, offline MARL remains a relatively under-explored area. The multi-agent setting poses
significantly greater challenges due to the large joint state-action space, which expands exponentially
with the number of agents, as well as the inter-dependencies among the local policies of different
agents. As a result, the offline data distribution can become quite sparse in these high-dimensional
joint action spaces, leading to an increased number of OOD state-action pairs and exacerbating
extrapolation errors. A few recent studies have sought to address the negative effects of sparse data
distribution in offline MARL by adapting the well-known centralized training decentralized execution
(CTDE) paradigm from online MARL (Oliehoek et al., | 2008; Kraemer & Banerjee} 2016)), enabling
data-related regularization at the individual agent level. Notably, some of these works (Pan et al.|
2022; Shao et al., [2024; Wang et al., 2022b)) extend popular offline single-agent RL algorithms, such
as CQL (Kumar et al.l2020) and SQL/EQL (Xu et al.,[2023)), within the CTDE framework.

In our work, we focus on addressing the aforementioned challenges in offline cooperative MARL.
In particular, we follow the DICE approach to address both OOD states and actions, motivated by
remarkable performance of recent DICE-based methods in offline single-agent RL. Similar to previous
works in offline MARL, we adopt the CTDE framework to handle exponential joint state-action
spaces in the multi-agent setting. We remark that extending the DICE approach under this CTDE
framework is not straightforward given the complex objective of DICE that involves the f-divergence
in stationary distribution between the learning joint policy and the behavior policy. Therefore, the
value decomposition in CTDE needs to be carefully designed to ensure the consistency in optimality
between the global and local policies. In particular, we provide the following main contributions:

* We propose ComaDICE, a new offline MARL algorithm that integrates DICE with a carefully
designed value decomposition strategy. In ComaDICE, under the CTDE framework, we
decompose both the global value function v*°* and the global advantage functions A%,
rather than using Q-functions as in previous MARL works. This unique factorization
approach allows us to theoretically demonstrate that the global learning objective in DICE
is convex in local values, provided that the mixing network used in the value decomposition
employs non-negative weights and convex activation functions. This significant finding
ensures that our decomposition strategy promotes an efficient and stable training process.

* Building on our decomposition strategy, we demonstrate that finding an optimal global
policy can be divided into multiple sub-problems, each aims to identify a local optimal
policy for an individual agent. We provide a theoretical proof that the global optimal policy
is, in fact, equivalent to the product of the local policies derived from these sub-problems.

* Finally, we conduct extensive experiments to evaluate the performance of our algorithm,
ComaDICE, in complex MARL environments, including: multi-agent StarCraft II (i.e.,
SMACvV1 (Samvelyan et al., [2019), SMACv2 (Ellis et al., [2022))) and multi-agent Mu-
joco (de Witt et al., [2020) benchmarks. Our empirical results show that our ComaDICE
outperforms several strong baselines in all these benchmarks.

2 RELATED WORK

Offline Reinforcement Learning (offline RL). Offline RL focuses on learning policies from
pre-collected datasets without any further interactions with the environment (Levine et al., [2020;
Prudencio et al. [2023). A significant challenge in offline RL is the issue of distribution shift,
where unseen actions and states may arise during training and execution, leading to inaccurate
policy evaluations and suboptimal outcomes. Consequently, there is a substantial body of literature
addressing this challenge through various approaches (Prudencio et al.,[2023). In particular, some
studies impose explicit or implicit policy constraints to ensure that the learned policy remains close
to the behavioral policy (Fujimoto et al.,[2019; [Kumar et al.| 2019; Wu et al.l 2019; Kostrikov et al.,
2021;|Peng et al.|[2019; Nair et al., | 2020; |[Fujimoto & Gu, 2021} Xu et al.,| 2021} Cheng et al.| [2024; |L1
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et al.,[2023)). Others incorporate regularization terms into the learning objectives to mitigate the value
overestimation on OOD actions (Kumar et al., |2020; [Kostrikov et al., 2021} |Xu et al., 2022¢; Niu et al.}
2022; | Xu et al.,[2023; Wang et al., [2022b). Uncertainty-based offline RL methods seek to balance
conservative approaches with naive off-policy RL techniques, relying on estimates of model, value,
or policy uncertainty (Agarwal et al., 2020;|An et al.,[2021; Bai et al.} 2022)). Offline model-based
algorithms focus on conservatively estimating the transition dynamics and reward functions based on
the pre-collected datasets (Kidambi et al., |2020; [Yu et al.| 2020; Matsushima et al., [2020; Yu et al.|
2021). Some other methods impose action-level regularization through imitation learning techniques
(Xu et al., 2022bj; |Chen et al.l 2020; Zhang et al., [2023; Zheng et al., 2024} |Brandfonbrener et al.,
2021; Xu et al., [2022a). Finally, while a majority of previous works target OOD actions only, there
are a few recent works attempt to address both OOD states and actions (L1 et al., 2022} Zhang et al.,
2022; |Lee et al.,[202152022; Sikchi et al., [2023; |Mao et al., 2024). Our work on offline MARL follow
the DICE-based approach, as motivated by compelling performance of DICE-based algorithms in
single-agent settings (Lee et al.,[2021}|2022; |Sikchi et al., 2023; Mao et al., |[2024).

Offline Multi-agent Reinforcement Learning (offline MARL). While there is a substantial body
of literature on offline single-agent RL, research on offline MARL remains limited. Offline MARL
faces challenges from both distribution shift—characteristic of offline settings—and the exponentially
large joint action space typical of multi-agent environments. Recent studies have begun to merge
advanced methodologies from both offline RL and MARL to address these challenges (Yang et al.,
20215 Pan et al., |2022; Shao et al., 2024; Wang et al.,|2022b) Specifically, these works employ local
policy regularization within the centralized training with decentralized execution (CTDE) framework
to mitigate distribution shift. The CTDE paradigm, well-established in online MARL, facilitates more
efficient and stable learning while allowing agents to operate in a decentralized manner (Oliehoek
et al.,2008; Kraemer & Banerjee, 2016)). For instance, Yang et al.|(2021) utilize importance sampling
to manage local policy learning on OOD samples. Both works by [Pan et al.| (2022) and |Shao
et al.| (2024) are built upon CQL (Kumar et al.,|2020), a prominent offline RL algorithm for single-
agent scenarios. Matsunaga et al.| (2023)) developed AlberDICE, leveraging the Nash equilibrium
solution concept from game theory to iteratively update the best responses of individual agents. Both
AlberDICE and our method, ComaDICE, adopt the DICE framework to address the out-of-distribution
(OOD) issue. However, while AlberDICE proposes learning individual Lagrange multipliers (or
value functions) to obtain occupancy ratios, our ComaDICE algorithm learns a global value function
by mixing local functions, adhering to the well-established CTDE principle. This design enables
ComaDICE to better capture inter-agent relationships and improve credit assignment across local
agents. Finally, OMIGA (Wang et al.,[2022b) establishes the equivalence between global and local
value regularization within a policy constraint framework, making it the current state-of-the-art
algorithm in offline MARL. The key difference between ComaDICE and OMIGA lies in their
respective approaches: OMIGA focuses on learning a global Q-function, whereas our algorithm (and
other methods in the DICE family) operates in the occupancy space, aiming to learn the ratio between
the occupancy of the learning policy and the behavior policy.

Beyond this main line of research, some studies formulate offline MARL as a sequence modeling
problem, employing supervised learning techniques to tackle the issue (Meng et al., 2023} [Tseng
et al.| 2022)), while others adhere to decentralized approaches (Jiang & Lul 2023).

3 PRELIMINARIES

Our work focuses on cooperative multi-agent RL, which can be modeled as a multi-agent Partially Ob-
servable Markov Decision Process (POMDP), defined by the tuple M = (S, A, P,r, Z, O, n, N, v).
Here, n is number of agents, N = {1,...,n} is the set of agents, s € S represents the true state
of the multi-agent environment, and A = Hi N Aj; is the set of joint actions, where A; is the set
of individual actions available to agent ¢ € N. At each time step, each agent ¢ € {1,2,...,n}
selects an action a; € A;, forming a joint action a = (ay,as,...,a,) € A. The transition dy-
namics P(s'|s,a) : S x A x & — [0, 1] describe the probability of transitioning to the next state
s’ when agents take an action a from the current state s. The discount factor v € [0, 1) represents
the weight given to future rewards. In a partially observable environment, each agent receives a
local observation s; € O; based on the observation function Z;(s) : S — O;, and we denote the
joint observation as 0 = (01,09, ..., 0y, ). In cooperative MARL, all agents share a global reward
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function r(s,a) : S x A — R. The goal of all agents is to learn a joint policy mys = {71,...,Tn}
that collectively maximize the expected discounted returns (g a)m,, Do or(se,a,)]. In the
offline MARL setting, a pre-collected dataset D is obtained by sampling from a behavior policy
ot = {1, - - -, fin }, and the policy learning is conducted soly based on D, with no interactions with
the environment. We also define the occupancy measure (or stationary distribution) as follows:

p"rtot (s,a) — (]_ _ 'y) Zt:O P(St =8, a; = a)

which represents distribution visiting the pair (observation, action) (s;, a;) when following the joint
policy o1, where sg ~ Py, a; ~ Tyor(+|S) and sy11 ~ P(:|s¢, az).

4 COMADICE: OFFLINE COOPERATIVE MULTI-AGENT RL WITH
STATIONARY DISTRIBUTION CORRECTION ESTIMATION

We consider an offline cooperative MARL problem where the goal is to optimize the expected
discounted joint reward. In this work, we focus on the DICE objective function Nachum & Dai
(2020); [Lee et al| (2021), which incorporates a stationary distribution regularizer to capture the
divergence between the occupancy measures of the learning policy, m..¢, and the behavior policy,
o, formulated as follows:

maXa, ,, E(s,a)fvp"'tot [T(S7a)] - an (p"rwt || p“mt) (1)

Ttot

where DY (pTtot || phtot) = E(s,a)~pmior { f (ﬁ“ﬁﬂ is the f-divergence between the stationary dis-

tribution p™t°t of the learning policy and p*tt of the behavior policy. In this work, we consider f(-) to
be strictly convex and differentiable. The parameter o controls the trade-off between maximizing the
reward and penalizing deviation from the offline dataset’s distribution (i.e., penalizing distributional
shift). When o = 0, the problem becomes the standard offline MARL, where the objective is to find
a joint policy that maximizes the expected joint reward. On the other hand, when o >> 1, the problem
shifts towards imitation learning, aiming to closely mimic the behavioral policy.

This DICE-based approach offers the advantage of better capturing the system dynamics inherent in
the offline data. Such stationary distributions, p™** and p*t°t, however, are not directly available. We
will discuss how to estimate them in the next subsection.

4.1 CONSTRAINED OPTIMIZATION IN THE STATIONARY DISTRIBUTION SPACE

We first formulate the learning problem in Eq. [T]as a constrained optimization on the space of p™*°*:

maxpeior  Eisajmpmior [1(5,)] — aD? (pTet || pheer) @
Ttot N _ Tiot (! o /)

st Y A (sa) = (= pols) +y Y, p" (S a)P(sfals), Vs e S (3)

When f is convex, (213)) becomes a convex optimization problem, as it involves maximizing a concave
objective function subject to linear constraints. We now consider the Lagrange dual of (2}{3):

o tot pﬂmt (S’ a)
,C(Vt t7p1l’, ) = E(s,a)~p"tot [T(S, a)] — OéE(s@)Nthon |:f (p/"'t"‘(&a)>:|

. Zs VtOt(s)<Za, pﬂ'tot (S, a’) _ (1 _ ’Y)po(s) — ’Yza’,s’ p’r“’t (S,,a/)P(S|a/,S/))7 “)

where 19t (s) is a Lagrange multiplier. Since is a convex optimization problem, it is equivalent to
the following minimax problem over the spaces of *°! and p™¢t°t: min,,¢ot max o {L(vtot, pTot) ).
Furthermore, we observe that L(v'°f p™t) is linear in v'* and concave in p™t, so
the minimax problem has a saddle point, implying: min,tot max,meo: {L(V'F, pTtet)} =
max,meor Min,cor {L(v1°F, pTot)} . In a manner analogous to the single-agent case (Lee et al.| 2021),

by defining w’(s,a) = Z ::: 2:3, the Lagrange dual function can be simplified into the more

compact form (with detailed derivations are in the appendix):

L'(VtOt, wtm‘,) = (1 = 7)Espq [Vtot (s)] + E (s ) phttor [—ozf (w;‘;ot (s, a)) + w,tf)t (s, a)AT;’Ot (s, a)] 7
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where A%°? is an “advantage function” defined based on v as:
Af/Ot (Sa a) = tht (Sv a) — v (S)v 5

with ¢*%*(s,a) = 7(2(s),a) + YEg ~p(.js,a) ¥ (s')]. It is important to note that ' (s) and ¢*** (s, a)
can be interpreted as a value function and a Q function, respectively, arising from the decomposition
of the stationary distribution regularizer. We can now write the learning problem as follows:

min, tor max,eor>g {L(VF, w)}. (6)

It can be observed that £(*°t, wt°?) is linear in v*°* and concave in w?°?, which ensures well-
b

behaved properties in both the 1/*°!- and w®*-spaces. Following the derivations in|Lee et al.[(2021)),
a key feature of the above minimax problem is that the inner maximization problem has a closed-
form solution, which greatly simplifies the minimax problem, making it no longer adversarial. We
formalize this result as follows:

Proposition 4.1. The minimax problem in Eq. @is equivalent to min,,tot {E(V“’t) }, where

(07

B0) = (1= DB [ 6)] + By [0 (A())] |

Here, f* is convex conjugate of f, i.e., f*(y) = sup;>o{ty—f(t)}. Moreover, if v*°" is parameterized
by 0, the first-order derivative of L(v'°V) w.r.t. 0 is given as follows:

VoL W) = (1= 7)Esnp [Vor'* (5)] + Egsapmpmeor [Vo AL (s,@)w}"" (5,a)] .

where w'°* (s, a) = max{0, f'~ (A (s, a)/a)}, with f'~1(-) is the inverse function of the first-

order derivative of f.

Proposition @] above is a direct extension of the formulations in |Lee et al.|(2021) developed for the
single-agent setting, differing only in the inclusion of the closed-form expression for the first-order

derivative of the objective function, £(1/°!).

4.2 VALUE FACTORIZATION

Directly optimizing min,toc  {£(1*°%, w!°"*)} in multi-agent settings is generally impractical due to

the large state and action spaces. Therefore, we follow the idea of value decomposition in the well-
known CTDE framework in cooperative MARL to address this computational challenge. However, it
is not straightforward to extend the DICE approach within this CTDE framework due to the complex
objective of DICE, which involves the f-divergence between the learned joint policy and the behavior
policy in stationary distributions. Thus, it is crucial to carefully design the value decomposition in
CTDE to ensure optimality consistency between the global and local policies.

Specifically, we adopt a factorization approach that decomposes the value function v°!(s)
(or global Lagrange multipliers) into local values using mixing network architectures. Let

v(s) = {v1(s1),...,vn(sn)} represent a collection of local “value functions” and let A, (s,a) =
{A;(si,a;), © = 1,...,n} represent a collection of local advantage functions. The local ad-
vantage functions are computed as A;(s;,a;) = qi(si,a;) — vi(s;) for all i« € N, where
q(s,a) = {q(ss,a;), i = 1,...,n} is a vector of local Q functions. To facilitate centralized

learning, we create a mixing network, Mg, where 6 are the learnable weights, that aggregates the
local values to form the global value and advantage functions as follows:

VtOt(57 a) = MG[V(S)L Afj)t(& a) = Me[q(S, a) - V(S)],

where each network takes the vectors ¥(s) or A, (s, a) as inputs and outputs *°* and A%, respectively.
Under this architecture, the learning objective becomes:

Lw,0) = (1~ 7)Egepo [Molv(8)]] + Esa)mpiior {a e (Ma[Q(S,Z) v(s) )} ’
with the observation that A, (s,a) can be expressed as a linear function of v. There are different
ways to construct the mixing network M; previous work often employs a single linear combination
(1-layer network) or a two-layer network with convex activations such as ReLU, ELU, or Maxout. In
the following, we show a general result stating that the learning objective function is convex in v,
provided that the mixing network is constructed with nonnegative weights and convex activations.
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Theorem 4.2. If the mixing network My|-| is constructed with non-negative weights and convex
activations, then L(v,0) is convex in v.

Mixing networks with non-negative weights and concave activations (e.g., ELU or ReLU) have been
extensively used in MARL, forming the foundation of several notable state-of-the-art algorithms such
as QMIX (Rashid et al.| [2020), QTRAN (Son et al.,[2019), and MFIQ (Bui et al.,|{2024)). In particular,
it has been demonstrated that mixing networks with either negative weights or non-concave activations
result in significantly degraded performance (Bui et al.,[2024). Theorem shows that L(v, 0) is
convex in ¥ when using any multi-layer feed-forward mixing networks with non-negative weights and
convex activation functions. This finding is highly general and non-trivial, given the nonlinearity and
complexity of both the function (in terms of ) and the mixing networks. Previous work has often
focused on single-layer (Wang et al.,|2022b) or two-layer mixing structures (Rashid et al.|[2020; Bui
et al.,[2024), emphasizing that such two-layer networks can approximate any monotonic function
arbitrarily closely as network width approaches infinity (Dugas et al., 2009). In our experiments,
we test two configurations for the mixing network: a linear combination (or 1-layer) and a 2-layer
feed-forward network. While 2-layer mixing structures have shown strong performance in online
MARL (Rashid et al.;,|2020; [Son et al., 2019; [Wang et al., 2020), we observe in our offline settings
that the linear combination approach provides more stable results.

4.3 PoLICY EXTRACTION

Let v* be an optimal solution to the training problem with mixing networks, i.e.,

min L(v,0). (7

We now need to extract a local and joint policy from this solution. Based on Prop.[.1] given v*, we can

compute this occupancy ratio as follows: : w!°* (s, a) = max {0, ot (M) } . The global
policy can then be obtained as follows: m},,(als) = Zﬂ/:;jﬁfa()sg l,t)t f;‘,(fj)(&a,
however, is not practical since p*tt is generally not available and might not be accurately estimated
in the offline setting. A more practical way to estimate the global policy, 7}, as the result of solving
the following weighted behavioral cloning (BC):

3 This computation,

w2 Bromprio 108 ot AS)] = | | By [0 58 logmia(als)], - ®)
where II,,; represents the feasible set of global policies. Here we assume that II;,; contains decom-
posable global policies, i.e., IIyo; = {10 | 33, Vi € N such that 7, (als) = [, mi(ass:)}. In
other words, I1;,; consists of global policies that can be expressed as a product of local policies. This
decomposability is highly useful for decentralized learning and has been widely adopted in MARL
(Wang et al., 2022b; |Bui et al., [2024} |[Zhang et al., [2021]).

While the above weighted BC appears practical, as (s,a) can be sampled from the offline dataset
generated by p™t°t, and since w'°™*(s, a) is available from solving it does not directly yield local
policies, which are essential for decentralized execution. To address this, we propose solving the
following weighted BC for each local agent i € N:

maxy, Ea)op [w(s,a)log m;(as]s;)] . ©)

This local WBC approach has several attractive properties. First, w'°'* (s, a) appears explicitly in the
local policy optimization and is computed from global observations and actions. This enables local
policies to be optimized with global information, ensuring consistency with the credit assignment in
the multi-agent system. Furthermore, as shown in Proposition .3|below, the optimization of local
policies through local WBC is highly consistent with the global weighted BC in|8]

Proposition 4.3. Let w} be the optimal solution to the local weighted BC[9) Then =}, (als) =
[Lica 7§ (ails:) is also optimal for the global weighted BC inE‘?]

Here we note that consistency between global and local policies is a critical aspect of centralized
training with CTDE. Previous MARL approaches typically achieve this by factoring Q or V functions
into local functions and training local policies based on these local functions (Rashid et al.| 2020
Wang et al.;|2020; [Bui et al.| 2024). However, in our case, there are key differences that prevent us
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from employing such local values to derive local policies. Specifically, we factorize the Lagrange
multipliers ¢ to train the stationary distribution ratio w®°?. Although local w values can be extracted
from local v;, these local w values do not represent a local stationary distribution ratio and therefore
cannot be used to recover local policies.

5 PRACTICAL ALGORITHM

Let D represent the offline dataset, consisting of sequences of local observations and actions gathered
from a global behavior policy 7. To train the value function v, we construct a value network
v;(s:;1,) for each local agent 4, along with a network for each local Q-function ¢;(s;, a;; 14), where
., and 1), are learnable parameters for the local value and Q-functions. We note that the introduction
and learning of the Q-functions are intended to facilitate the decomposition of the advantage function,
At Tn our multi-agent setting, the absence of local rewards makes it difficult to directly compute
local advantage functions. To overcome this challenge, we learn local Q-functions, which are then
used to derive the local advantage functions. Additionally, as explained below, a MSE is optimized to
ensure that the global Q-function and state-value function align properly with the global rewards.

Now, each local advantage function is then calculated as follows: The global value function and
advantage function are subsequently aggregated using two mixing networks with a shared set of
learnable parameters 6:

VI (s) = Myl (sion)l, AL (s,a) = Mjla(s, as ) — v(s; o)),
where M [-] represents a linear combination of its inputs with non-negative weights, such that
M[v(s;9,)] = v(s;h,) T Wy + b5, where W and b are weights of the mixing network It is
important to note that W and by are generated by hyper-networks that take the global state s and
the learnable parameters 6 as inputs. In this context, we employ the same mixing network Mj to
combine the local values and advantages. However, our framework is flexible enough to allow the
use of two different mixing networks for v/*° and A%,

In our setting, the relationship between the global Q-function, value, and advantage functions is
described in Eq. |5} Specifically, we have: A%’ (s,a) = r(Z2(s),a) + 7Eg.p(.js,a) [V (8")] — v (s).
To capture this relationship, we train the Q-function by optimizing the following MSE loss:

: O O O 2
ming Z(s,a,s/)ND (A% (s,a) — r(Z(s),a) + /' (s") — v*(s)) " .

This is equivalent to:

miny, Lo(Yg) = Y (Mila(s,a,) — v(s: )]

(s,a,8")~D

— r(Z(5),0) + MY 5]~ Mil(si)]) (10

For the primary loss function used to train the value function, we leverage transitions from the offline
dataset to approximate the objective £, resulting in the following loss function for offline training:

L, 0) = (1=7) Egy o p M (50 )|+ Eg a0 {a f*<Mz[q(s,a; g) — u(s;wu)}ﬂ an

«

As mentioned, after obtaining (v*, 6*) by solving min,,, ¢ L (1., 0), we compute the occupancy ratio:
w!ot*(s,a) = max {O7 ot (Me* 7 ()] = M- [a(sa:0y)] )} . To train the local policy m;(a;|s;), we

represent it using a policy network 7;(a;|s;; 7; ), where n; are the learnable parameters. The training
process involves optimizing the following weighted behavioral cloning (BC) objective:

max,, Lr(n;)= Z(S}a)ND wto™ (s, a) log(m; (ai|si;mi))- (12)

Our ComaDICE algorithm consists of two primary steps. The first step involves estimating the
occupancy ratio w'** from the offline dataset. The second step focuses on training the local policy

'In our experiments, we use a single-layer mixing network due to its superior performance compared to a
two-layer structure, though our approach is general and can handle any multi-layer feed-forward mixing network.
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by solving the weighted BC problem using w?**. In the first step, we simultaneously update the
Q-functions 1), the mixing network parameters 0, and the value function v,,, aiming to minimize the
mean squared error (MSE) in Eq. [I0| while optimizing the main loss function in Eq. [T1]

It is important to note that, in practical POMDP scenarios, the global state s is not directly accessible
during training and is instead represented by the joint observations o from the agents. For notational
convenience, we use the global state s in our formulation; however, in practice, it corresponds to the
joint observation Z(s). Specifically, terms like pttt (s, a) and v*°(s) actually refer to pHtt (0, a)
and %°*(0), where 0 = Z(s).

6 EXPERIMENTS

6.1 ENVIRONMENTS

We utilize three standard MARL environments: SMACvI1 (Samvelyan et al.| 2019), SMACv2 (Ellis
et al., 2022)), and Multi-Agent MuJoCo (MaMujoco) (de Witt et al., [2020), each offering unique
challenges and configurations for evaluating cooperative MARL algorithms.

SMACVv1. SMACvVI is based on Blizzard’s StarCraft II. It uses the StarCraft II API and DeepMind’s
PySC2 to enable agent interactions with the game. SMACv1 focuses on decentralized micromanage-
ment scenarios where each unit is controlled by an RL agent. Tasks like 2¢_vs_64zg and 5Sm_vs_6m
are labeled hard, while 6i_vs_8z and corridor are super hard. The offline dataset, provided by Meng
et al.| (2023)), was generated using MAPPO-trained agents (Yu et al.,|2022).

SMACYV2. In comparison to SMACv1, SMACV2 introduces increased randomness and diversity by
randomizing start positions, unit types, and modifying sight and attack ranges. This version includes
tasks such as protoss, terran, and zerg, with instances ranging from 5_vs_5 to 20_vs_23, increasing in
difficulty. Our offline dataset for SMACv2 was generated by running MAPPO for 10 million training
steps and collecting 1,000 trajectories, ensuring medium quality but comprehensive coverage of the
learning process. To the best of our knowledge, we are the first to explore SMACV2 in offline MARL,
whereas most prior work has used this environment in online settings.

MaMujoco. MaMujoco serves as a benchmark for continuous cooperative multi-agent robotic
control. Derived from the single-agent MuJoCo control suite in OpenAl Gym (Brockman et al.|
2016), it presents scenarios where multiple agents within a single robot must collaborate to achieve
tasks. The tasks include Hopper-v2, Ant-v2, and HalfCheetah-v2, with instances labeled as expert,
medium, medium-replay, and medium-expert. The offline dataset was created by (Wang et al., 2022b)
using the HAPPO method (Wang et al., [2022a)).

6.2 BASELINES

We consider the following baselines, which represent either standard or state-of-the-art (SOTA)
methods for offline MARL: (i) BC (Behavioral Cloning); (ii) BCQ (Batch-Constrained Q-learning)
(Fujimoto et al.l 2019) — an offline RL algorithm that constrains the policy to actions similar to
those in the dataset to reduce distributional shift, adapted for offline MARL settings; (iii) CQL
(Conservative Q-Learning) (Kumar et al., [2020) — a method that stabilizes offline Q-learning by
penalizing out-of-distribution actions, ensuring conservative value estimates; (iv) ICQ (Implicit
Constraint Q-learning) (Yang et al.,|2021) — an approach using importance sampling to manage out-
of-distribution actions in multi-agent settings; (v) OMAR (Offline MARL with Actor Rectification)
(Pan et al., [2022) — a method combining CQL with optimization techniques to ensure the global
validity of local regularizations, promoting cooperative behavior; (vi) OMIGA (Offline MARL with
Implicit Global-to-Local Value Regularization) (Wang et al.,[2022b)) — a SOTA method that transforms
global regularizations into implicit local ones, optimizing local policies with global insights; (vii)
OptDICE - a naive extension of the OptDICE algorithm |Lee et al.| (2021) to multi-agent settings
where the global value function are directly learned without value factorization; and (viii) AlberDICE
Matsunaga et al.[(2023) - an offline MARL algorithm which also leverages the DICE framework to
address the OOD.

We used experimental results contributed by the authors of OMIGA (Wang et al., 2022b) as our
baselines. They provided both the results and source code for all the baseline methods. This source
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Instances BC BCQ CQL I1CQ OMAR OMIGA  OptDICE AlberDICE ComaDICE
(ours)

poor 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.6+1.3

2c.vs_64zg medium | 1915 25+3.6 25+3.6 19+15 12+15 62+56 1.0£15 1.6+ 1.6 88+7.0
good 312+99 356+88 444+13.0 28746 287+91 40.6+95 375+3.1 422+64 55015

poor 25+13 12+15 12+15 1.2+15 0.6+1.2 69+1.2 0.0+0.0 0.0 +0.0 44+42

Sm_vs_.6m  medium | 1.9+*1.5 1.2£15 25+12 1.2+15 0.6+1.2 25+3.1 0.0£0.0 3.1+00 75%25
good 25+23 1.9+25 19+15 38+23 38+1.2 69+12 73+39 39+14 81+32

poor 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0+0.0 1.0£15 1.9+3.8

6h.vs 8z  medium | 19%1.5 19+15 19+15 25+12 19+15 1.2+15 0.0+0.0 23+26 31+2.0
good 88+12 8.8+3.6 75%15 94+£20 06+1.3 5.6+3.6 0.0+0.0 0.0£0.0 11.2+54

poor 0.0+0.0 0.0 £0.0 0.0 +0.0 0.6+1.3 0.0 +0.0 0.0+0.0 0.0+0.0 0.0 +0.0 0.6+1.3

corridor medium | 15023 231%15 144+15 225+31 119+23 238+51 19.8+29 94+6.8 27.3+34
good 30.6+4.1 425+64 5612 425+64 3.1+£00 419+64 39.6+53 43.1+64 488 +2.5

Table 1: Comparison of average winrates for ComaDICE and baselines on SMACv1 tasks.

Instances BC BCQ  CQL ICQ OMAR oOMIGA OPtDICE AlberDICE  ComaDICE

(ours)

5.vs_5 36.9+48.7  16.2+2.3  10.0+4.1 36.949.1 21.2#4.1 33.1+54 10.8+1.2 12.6+0.9 46.2+6.1

10_vs_10 | 36.2+10.6 9.4+5.6 26.2+7.6 28.1%6.6 13.8£7.0 40.0+10.7 9.5+0.8 11.8+0.9 50.6+8.7

Protoss  10_vs_11 | 19.4+4.6  10.0+4.1 10.6£5.4 12.5+4.4 12.5+£34 16.246.1 10.0+0.5 9.8+0.3 20.0+4.2
20_vs 20 | 37.5+4.4 6.242.0  11.9+4.1 32.5+#8.1 23.842.5 36.245.1 10.0£2.0 10.1£0.6 47.5+7.8

20_vs_23 | 13.8+1.5 1.2+1.5 0.0+£0.0 12.5+5.6 11.247.8  12.548.1 8.1x14 8.8+0.8 13.8+5.8

5_vs_5 30.044.2  12.5+6.2  9.4+7.9  23.1+5.8 144447 28.1+4.4 6.4+1.1 8.1+1.4 30.6+8.2

10_vs_10 | 29.4+5.8 6.9+6.1 94456 169458 15.0+4.6  29.4+3.2 6.0£1.6 8.2+1.0 32.5+5.8

Terran  10_vs_11 | 16.2+3.6 3.8+4.6  7.5+6.4 5.0+4.2 94456 12.5+5.2 4.8+1.2 6.2+0.9 19.4+5.4
20_vs 20 | 26.2+10.4  5.0£3.2 10.6+4.2 15.6£34 7.5+7.3 21.9+4.4 6.3%1.8 5.9+1.2 29.4+3.8

20_vs_23 44442 0.0£0.0  0.0+0.0 7.56.1 5.0+4.2 4425 4.4+0.7 3.9+0.8 9.4+5.2

5_vs_5 26.9+10.0 144442 144458 18.8+7.1 13.846.1  21.9+59 8.2+1.8 9.5+0.8 31.2+7.7

10_vs_10 | 25.0+2.8 5.644.6  5.6+%4.6 15674 194423 23.8+6.4 7.8+1.0 8.5+0.3 33.8+11.8

Zerg 10_vs_11 | 13.8+4.7 94452  6.2+44  10.6£6.7 10.6+3.8  13.8+6.7 7.2+0.7 9.1+0.5 19.4+3.6

20_vs_20 8.1+1.5 2.5+1.2 1.2+¢1.5  10.0+7.8 12.5+44  10.0+2.3 7.3+0.7 8.3+0.5 9.4+6.2

20_vs_23 7.5+3.2 0.6+1.3 1.2+1.5 7.5+3.2 3.8+2.3 44442 7.1£1.2 8.8+0.5 11.2+4.2

Table 2: Comparison of win rates for ComaDICE and baselines across SMACv2 tasks.

code was also employed to run these baselines for the SMACV2 environment. All hyperparameters
were kept at their default settings, and each experiment was conducted with five different random
seeds to ensure robustness and reproducibility of the results.

6.3 MAIN COMPARISON

We now present a comprehensive evaluation of our proposed algorithm, ComaDICE, against several
baseline methods in offline MARL. The baselines selected for comparison include both standard and
SOTA approaches, providing a robust benchmark to assess the effectiveness of ComaDICE.

Our evaluation focuses on two primary metrics: returns and winrates. Returns are the average
rewards accumulated by the agents across multiple trials, providing a measure of policy effectiveness.
Winrates, applicable in competitive environments such as SMACv1 and SMACV2, indicate the
success rate of agents against opponents, reflecting the algorithm’s robustness in adversarial settings.

The experimental results, summarized in Tables [T{3] demonstrate that ComaDICE consistently
achieves superior performance compared to baseline methods across a range of scenarios. Notably,
ComaDICE excels in complex tasks, highlighting its ability to effectively manage distributional shifts
in challenging environments.

6.4 ABLATION STUDY - IMPACT OF THE REGULARIZATION PARAMETER ALPHA

We investigate how varying the regularization parameter alpha («) affects the performance of our
ComaDICE algorithm. The parameter « is crucial for balancing the trade-off between maximizing
rewards and penalizing deviations from the offline dataset’s distribution. We conducted experiments
with « values ranging from {0.01,0.1, 1,10, 100}, evaluating performance using average winrates
across all the SMACv2 tasks and average returns across all the MaMujoco tasks. These results,
illustrated in Figure|l] highlight the sensitivity of ComaDICE to different « values. In particular, we
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Instances BCQ CQL 1CQ OMIGA OptDICE AlberDICE C"'(‘(‘)‘:Ir’ggCE
expert 77.9 £58.0 159.1£313.8  7547£8063  859.6£709.5  6559%120.1  844.6+5565  2827.7%62.9

H medium 44,6 +20.6 4013£199.9  501.8+140  1189.3+5443  204.1£419 2169+353  822.6+66.2
OPPET 1 replay 26.5+24.0 314152 1954+103.6  7742+4943 257.8 +55.3 4192+2435  906.3 +242.1
meexpert | 54.3%23.7 648+1233 35543739  709.0£5957 4009 +1325  515.1+3034  1362.4+522.9

expert | 1317.7£2863  10424£2021.6 20500+ 119 20555+ 1.6 171724270 189684337 20569 £5.9

Apg medium | 1059.6£012 533917664  14124£109  14184%54 1199.0 +26.8 13043£2.6 1425029
mreplay | 950.8+488  234.6+16183  1016.7£53.5  1105.1 £88.9 869.4 % 62.6 10428 £80.8 11229 £ 61.0

meexpert | 102092427  8002+1621.5 159024856 17203+110.6  1293.2+183.1  1780.0+23.6  1813.9%68.4

expert | 2992.7+£629.7  1189.5+10345 29559+4592 3383.6£5527 2601.6+461.9 335645469 4082.9 457

Half  medium | 2590511104 1011310169 2549.3+963 3608.1+237.4  3053+9468  5224+3155  2664.7 542
Cheetah mereplay | -333.6+152.1 199876939 192246129 2504.7+83.5 -9129+1363.9  440.0+528.0 2855.0 £242.2
meexpert | 35437+780.9 11942+ 1081.0 2834.0£4203 2948.5+£518.9 -24858+23384 2288.2+759.5 3889.7 816

Table 3: Average returns for ComaDICE and baselines on MaMuJoCo benchmarks.

0 i i o

0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10 100 0.010.1 1 10 100 00101 1 10100 00101 1 10 100
protoss terran zerg Hopper Ant HalfCheetah

Figure 1: Impact of regularization parameter o on performance in different environments.

observe that ComaDICE achieves optimal performance when « is around 10, suggesting that the
stationary distribution regularizer plays a essential role in the success of our algorithm.

In our appendix, we provide additional ablation studies to analyze the performance of our algorithm
using different forms of f-divergence functions, as well as comparisons between 1-layer and 2-layer
mixing network structures. The appendix also includes proofs of the theoretical claims made in the
main paper, details of our experimental settings, and other experimental information.

7 CONCLUSION, FUTURE WORK AND BROADER IMPACTS

Conclusion. In this paper, we propose ComaDICE, a principled framework for offline MARL. Our
algorithm incorporates a stationary distribution shift regularizer into the standard MARL objective to
address the conventional distribution shift issue in offline RL. To facilitate training within a CTDE
framework, we decompose both the global value and advantage functions using a mixing network.
We demonstrate that, under our mixing architecture, the main objective function is concave in the
value function, which is crucial for ensuring stable and efficient training. The results of this training
are then utilized to derive local policies through a weighted BC approach, ensuring consistency
between global and local policy optimization. Extensive experiments on SOTA benchmark tasks,
including SMACV2, show that ComaDICE outperforms other baseline methods.

Limitations and Future Work: There are some limitations that are not addressed within the scope
of this paper. For instance, we focus solely on cooperative learning, leaving open the question of
how the approach would perform in cooperative-competitive settings. Additionally, in our training
objective, the DICE term is designed to reduce the divergence between the learning policy and the
behavior policy. As a result, the performance of the algorithm is heavily dependent on the quality of
the behavior policy. Furthermore, our algorithm, like other baselines, still requires a large amount of
data to achieve desirable learning outcomes. Improving sample efficiency would be another valuable
area for future research.

Broader Impacts: Developing an offline MARL algorithm with a stationary distribution shift reg-
ularizer can enhance performance in costly real-time tasks like robotics, autonomous driving, and
healthcare. It also enables safer exploration and broader adoption in high-stakes settings. However,
reliance on the behavior policy means flawed or biased data could degrade performance, reinforcing
biases or suboptimal behaviors. Additionally, the algorithm, like any Al systems, risks unintended
misuse in surveillance or military applications, where multi-agent systems could manipulate environ-
ments without proper oversight.

10
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ETHICAL STATEMENT

Our work introduces ComaDICE, a framework for offline MARL, aimed at improving training
stability and policy optimization in complex multi-agent environments. While this research has
significant potential for positive applications, particularly in domains such as autonomous systems,
resource management, and multi-agent simulations, it is crucial to address the ethical implications
and risks associated with this technology.

The deployment of reinforcement learning systems in real-world, multi-agent settings raises con-
cerns about unintended behaviors, especially in safety-critical domains. If the policies learned by
ComaDICE are applied without proper testing and validation, they may lead to undesirable or harmful
outcomes, especially in areas such as autonomous driving, healthcare, or robotics. Additionally,
bias in the training data or simulation environments could result in suboptimal policies that unfairly
impact certain agents or populations, potentially leading to ethical concerns regarding fairness and
transparency.

To mitigate these risks, we emphasize the need for extensive testing and validation of policies
generated using ComaDICE, particularly in real-world environments where the consequences of
errors could be severe. It is also essential to ensure that the datasets and simulations used in training
are representative, unbiased, and carefully curated. We encourage practitioners to use human oversight
and collaborate with domain experts to ensure that ComaDICE is applied responsibly, particularly in
high-stakes settings.

REPRODUCIBILITY STATEMENT

In order to facilitate reproducibility, we have submitted the source code for ComaDICE, along with
the datasets utilized to produce the experimental results presented in this paper (all these will be made
publicly available if the paper gets accepted). Additionally, in the appendix, we provide details of
our algorithm, including key implementation steps and details needed to replicate the results. The
hyper-parameter settings for all experiments are also included to ensure that others can reproduce the
findings under the same experimental conditions. We invite the research community to explore and
apply the ComaDICE framework in various environments to further validate and expand upon the
results reported in this work.
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APPENDIX

Our appendix includes the following:

Proofs of the theoretical claims presented in the main paper.
Details of our experimental settings.

Detailed numerical results from the ablation study investigating the impact of o on Co-
maDICE’s performance.

An ablation study assessing ComaDICE’s performance with different forms of f-divergence
functions.

An ablation study comparing ComaDICE’s performance using 1-layer versus 2-layer mixing
networks.
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A MISSING PROOFS
A.1 PROOF OF PROPOSITION[Z.]]

Proposition. The minimax problem in|§|is equivalent to min,tot {Z(Vt"t) }, where

B0%) = (1= ) [6)] + By [0 (2222,

«

tot

where f* is convex conjugate of f, i.e., f*(y) = sup,>o{ty — f(t)}. Moreover, if v'°" is parameter-

ized by 0, the first order derivative oflj(l/t"t) w.r.t. 6 is given as
VQZ(VtOt) = (1 — q/)IESNpo [VthOt(S)] + ]E(s’a)mpuwt [V@AZOt(S,a)’LUtVOt*(S,a)] .

where w'?™* (s, a) = max{0, f'~ ' (At (s,a)/a)}, where f'~1(-) is the inverse function of the first-
order derivative of f.

Proof. The first part of the proof, concerning the closed-form formulation for Z(l/tOt), follows
directly from the single-agent OptDICE paper (Lee et al.,[2021). While straightforward, we include it
here for the sake of completeness. Our novelty begins with the derivation of the formulation for the

first-order derivative of the loss function, V£ (v").
We write the Lagrange dual function as:

o ror pﬂ'tot s,a
,C(Vt t7p‘ll' ) = E(s,a)wp"’tot [T‘(S, a)] - aE(s’a)Npﬂtot |:f (M)}

_Zyt"t(s) Zp’”“t(s,a —(1- ’YZPM“ (s',a")P(sla’,s")
s a’

a’,s’

= 361 = 1)p0(s) — By {f (ng

+ Z Pt (s,a) (r(s,a) + YEg.op(jsa ™ (s) — 1% (s))

s,a
= (1 = 7)Esupo [V"°(8)] + Esayopuor [—uf (0l (s,a)) + wl’(s,a) Al (s,a)] , (13)
prtot (s,a)

phtot (s a)
wit(s,a) ALt (s, a) is maximized at:

We now see that, for each (s, a), each component —arf (w!%(s,a)) +

where w!% (s, a) =

«

max —af (w(s,a)) + w,(s,a) A (s,a) = f* <

wtot>0

A)*(s,a) )
)
where f* is the (variant) convex conjugate of the convex function f. We then obtain:

. [(Alt(s,a
max £(Vtot7wtot) ,C(th) (1 _ )Es~p0 [l/tOt(S)] +E(s,a)~pﬂtot |:af ((i)>:| .

wtot >0

Moreover, consider the maximization problem max,tot>o T (w'(s,a)) = —af (wi(s,a)) +
wto(s,a) Al (s, a). Taking its first-order derivative w.r.t w’*!(s, a) yields:

—af'(w(s,a)) + AL (s, a).
So, if f/~1 (@) > 0, then w'*(s,a) = f'~1 (@) > 0 is optimal for the maxi-
mization problem. Otherwise, if f/~! (%) < 0, we see that T'(w'“(s,a)) is increasing
when wt(s,a) < f'71 (@) and decreasing when w'°(s,a) > f'~! (%), imply-
ing that the maximization problem has an optimal solution at w!***(s,a) = 0. So, putting all

together, w'°*(s,a) = max{0, f'~'(A!*(s,a)/a)} is optimal for the maximization problem
mMaXy,tot >0 T( tot (S7 a))

17



Published as a conference paper at ICLR 2025

To get derivatives of £(1/1°!), we note that, for any y € R, V f*(y) = t*, where y* = argmax, o (ty—
f(t)). Thus, the first-order derivative of f* (W) can be computed as:

AjPt(s,a) VoAl (s,a)
= w
« «

Vof* < (s,a),

which implies:

V9Z(Vt0t) = (1 - 7)E5~po [VG 2 (S)] + E(s,a)Np"tot [VGAIt/Ot (Sv a)w,tf’t*(s, a)] ’
we complete the proof. O

A.2 PROOF OF THEOREM [4.2]

Theorem. Assume the mixing network My|:] is constructed with non-negative weights and convex
activations, then L(v, 6) is convex in v.

Proof. We first introduce the following lemma, which is essential to validate the convexity of L (v,0).

Lemma A.l1. If the mixing network are multi-level feed-forward, constructed with non-negative
weights and convex activations, then Mgy[v(s)] and Mylq(s,a) — v(s)] are convex in v

Proof. To simplify the proof, we first prove a general result stating that if M[X] is a multi-level
feed-forward network with non-negative weights and convex activations, then My [X] is convex in X.
To start, we note that any /V-layer feed-forward network with input X can be defined recursively as

F'X) =X (14)
Fn<x):0—n(pn—1(x)) X Wy +bn, n=1,...,N, (15)
where ¢ is a set of activation functions applied to each element of vector F~1(X), and W,, and b,,
are the weights and biases, respectively, at layer n. Therefore, we will prove the result by induction,
i.e., F™(X) is convex and non-decreasing in X for n = 0, . ... Here we note that F"(X) is a vector,

so when we say “F"(X) is convex and non-decreasing in X,” it means each element of F"(X) is
convex and non-decreasing in X.

We first see that the claim indeed holds for n = 0. Now let us assume that F"~*(X) is convex
and non-decreasing in X; we will prove that F"(X) is also convex and non-decreasing in X. The
non-decreasing property can be easily verified as we can see, given two vectors X and X’ such that
X > X’ (element-wise comparison), we have the following chain of inequalities:

ey Y ey
FrX) 5 FrLX)
®
o"(F"N (X)) > 0" (F" (X))
(©
o (F"HX)) x W, + b, > o™(F" (X)) x W, + by,
where (a) is due to the induction assumption that F"~!(X) is non-decreasing in X, (b) is because o
is also non-decreasing, and (c) is because the weights W,, are non-negative.

To verify the convexity of F*(X), we will show that for any X, X’, and any scalar o € (0, 1), the
following holds:
aF™"(X)+ (1 - a)F"(X) > F"(aX + (1 — a)X') (16)
To this end, we write:
aF"(X) + (1 — a)F(X') = (aa”(F”_l(X)) + (1 a)a"(F”_l(X/))> x Wi + by

(g (a” (aF"_l(X) +(1— a)Fn_l(X/))) X Wi +bn

(o (P X 4+ (1= a)X)) ) x W+,

=F"(aX+ (1 - a)X).
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where (d) is due to the assumption that activation functions ¢ are convex and W,, > 0, and (e) is
because aF"~H(X) + (1 — ) F" LX) > F"71(aX + (1 — a)X') (because F"~1(X) is convex
in X, by the induction assumption), and the activation functions o™ are non-decreasing and W,, > 0.
So, we have:

aF"(X)+ (1 —a)F"(X') > F"(aX + (1 — a)X').

implying that £ (X) is convex in X. We then complete the induction proof and conclude that F™(X)
is convex and non-decreasing in X forany n = 0,..., V.

From the result above, since both v(s) and q(s,a) — v(s) are linear in v, it follows that Mg [v(s)]
and My[q(s,a) — v(s)] are convex with respect to v.

We are now ready to prove the convexity of Z(u, 0) with respect to v. Directly verifying the
convexity of this function is challenging, as it involves some complicated components such as
* (Me[q(sya)—V(S)]

= ), which is difficult to analyze. However, we recall that:

L(v,0) = max L(v,0,w""),

where
Lv,0,w'") = (1 —7)Esp, [Mo[v(s)]]
+ ]E(S,a)wpl"tot [_af (wlt/()t (57 a)) + wyt/()t(sa a)MO[q(S7 a) - V(S)]] .

From LemmalA.1] we know that M[v(s)] and My[q(s, a) —v(s)] are convex in v, thus L (v, 0, w'*)

is also convex in v. We now follow the standard approach to verify the convexity of L(v,0) as
follows. Let ! and v? be two feasible value functions. Given any 3 € (0, 1), we will prove that:

BLW',0) + (1 — B)LW?,0) > L(Bv' + (1 — B2, 0). (17)

To see why this should hold, we recall that L(v,6,w™) is convex in v and L(v,0) =
max,tot>o L(v, 0, w'°"), leading to the following chain of inequalities:

BLW',0) + (1 - B)LW?,0) = fmax L@ 0,w™) + (1 - p) max L@ 0, w'")
2> max {BLW",0,w™") + (1= B)LW?,0,w' ")}
> max {£(5v" + (1 - w2, 0,0'")}
= L(Bv' + (1 - BW2,0).

The last inequality directly confirms Eq. {17, implying the convexity of £(v, ) in v, as desired. [

A.3 PROOF OF PROPOSITION[4.3]

Proposition.  Ler 7 be the optimal solution to the local weighted BC[9 Then w},,(als)
[Lica 75 (ailsi) is also optimal for the global weighted BCproblem

Proof. To prove that 7, (als) = [[;ca 7; (ailsi) is optimal for the global WBC problem we
need to verify that

tot*(

E(saymppior (W (s,a)log mior(als)] < Esayopneor (W' (s,a)logmy,,(als)]

for any global policy 74, € I;t-

Since 7, is decomposable, there exist local policies 7; such that

Tior(als) = [ ] miailsi).

1EN
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As a result, we have the following inequalities:

E(saymppior (W (s,a)logmior(als)] = Egsaympmior [w (s, a) Z log 7; (a;|s;)
ieN

= Z E(saympntor [ (s,a) log m;(a;]s;)]
ieN

< Z max g ) pueor [ (s, ) log 7 (ails;)]
ieN T

— Z Es,a)~pntot [wt"t* (s,a)log 7r1*(a1|51)}
ieN

fotx (S7 a) log/’r:ot (a|s)] 9

which directly implies that 7}, is optimal for the global WBC problem@

- ]E(s,a)wpl‘tot [w
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B ADDITIONAL DETAILS

B.1 FACTORIZATION ASPECT OF THE LEARNING OBJECTIVE IN COMADICE

In this section, we delve into the main learning objective function of ComaDICE to explore its
factorization aspect. Specifically, we show that, under certain conditions on the mixing network

and the f-divergence function, optimizing the objective function Lis approximately equivalent to
optimizing factorized occupancy ratios.

To see this, let us consider the main learning objective with mixing networks:

Molq(s,a) —v(s)] ﬂ 7

«

£.0) = (1= 7)Expo Mo[o(8)]] + Esm) oy [af* (

where My is the mixing network.

Assume that the mixing structure is linear in its inputs, i.e.,
Mo(v(s)) = Z@‘Vi(si)a Mala(s,a) —v(s)] = Z@(%(Si, a;) — vi(si)),

where (; are non-negative weights of the mixing network. Moreover, assume that the f-divergence
function is chi-square. Under these assumptions, the learning objective can be written as:

/j(u, 0) = Z,@i(l — V)Es; opo [Vi(8i)] + ZE(Sivai)NP“'tot laf* <Z B; qi(s4, aq',)a— Vz(31)>‘| 7

(g Zﬁiﬁi(%‘%

where

Li(v3) = Bil1 = V) Barmpio 16 (5)] + Es, e pieer [a f (qi(si, ai)a— ui(si))] .

Here, the approximation holds because the mixing network is linear in v;, and the f-divergence is
chi-square, where (fl.)~!(z) =z + 1.

We now see that minimizing the local function £;(;) is equivalent to:
P,

which is essentially solving the OptDICE learning problem for each individual agent.

maXqs, E(Si,ai)NP” [Ti(si’ ai)] —aD’ (pm

Thus, the above discussion implies that optimizing the main objective function £ of ComaDICE,
under the setting of a linear mixing network and chi-square divergence, is approximately equivalent to
optimizing factorized policies. This further implies the global-local consistency property mentioned
in the main paper. It is also worth noting that the setting of a linear mixing network and chi-square
divergence is exactly what we employ in our experiments, yielding the best performance compared to
the variants.

When using a two-layer mixing network, the equivalence becomes harder to achieve. However, since
the mixing network in our setting consists of non-negative weights, minimizing the global training
objective L is expected to behave similarly to minimizing each local function £;, partially indicating
the global-local consistency and the factorization aspect of ComaDICE.

In comparison with other DICE-based approaches such as AlberDICE and OptDICE, ComaDICE
takes a distinctive approach by learning a global occupancy ratio and employing a factorization
method to decompose the global learning variables into local ones, leveraging local information. This
design captures the contribution of each local agent to the global objective, enabling ComaDICE to
effectively model the interconnections between agents. Furthermore, during the policy extraction
phase, local policies are optimized using a shared global occupancy ratio, which incorporates aspects
of credit assignment across agents—an important feature not present in AlberDICE.
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B.2 OFFLINE MULTI-AGENT DATASETS

. . State Obs Action Average
Instances Trajectories Samples Agents dim  dim dim returns
poor 0.3K 21.7K 2 675 478 70 8.9+1.0
2c_vs_64zg  medium 1.0K 75.9K 2 675 478 70 13.0+1.4
good 1.0K 118.4K 2 675 478 70 19.9+£1.3
poor 1.0K 113.7K 5 156 124 12 8.5+1.2
Sm_vs_.6m  medium 1.0K 138.6K 5 156 124 12 11.0+£0.6
good 1.0K 138.7K 5 156 124 12 20.0+0.0
poor 1.0K 145.5K 6 213 172 14 9.1+0.8
6h_vs_8z medium 1.0K 177.1K 6 213 172 14 12.0+1.3
good 1.0K 228.2K 6 213 172 14 17.8+2.1
poor 1.0K 307.6K 6 435 346 30 4.9+1.7
corridor medium 1.0K 756.1K 6 435 346 30 13.1+1.3
good 1.0K 601.0K 6 435 346 30 19.9+1.0
5.vs_5 1.0K 60.8K 5 130 92 11 16.8+6.3
10_vs_10 1.0K 68.3K 10 310 182 16 15.745.2
Protoss 10_vs_11 1.0K 62.9K 10 327 191 17 15.3+5.7
20_vs_20 1.0K 76.7K 20 820 362 26 16.2+4.7
20_vs_23 1.0K 65.0K 20 901 389 29 14.0+4.5
5.vs_5 1.0K 47.6K 5 120 82 11 15.247.2
10_vs_10 1.0K 56.4K 10 290 162 16 14.746.2
Terran 10_vs_11 1.0K 52.5K 10 306 170 17 12.1£5.7
20_vs_20 1.0K 63.0K 20 780 322 26 14.0+6.0
20_vs_23 1.0K 51.3K 20 858 346 29 11.745.7
5_vs_5 1.0K 27.5K 5 120 82 11 10.445.0
10_vs_10 1.0K 319K 10 290 162 16 14.746.0
Zerg 10_vs_11 1.0K 30.9K 10 306 170 17 12.045.1
20_vs_20 1.0K 35.4K 20 780 322 26 12.3+4.2
20_vs_23 1.0K 32.8K 20 858 346 29 10.8+4.0
expert 1.5K 999K 3 42 14 1 2452.0+1097.9
Hobper medium 4.0K 915K 3 42 14 1 723.6+211.7
PP m-replay 42K 1311K 3 42 14 1 746.4+671.9
m-expert 5.5K 1914K 3 42 14 1 1190.6+973.4
expert 1.0K 1000K 2 226 113 4 2055.1£22.1
Ant medium 1.0K 1000K 2 226 113 4 1418.7+37.0
m-replay 1.8K 1750K 2 226 113 4 1029.5+141.3
m-expert 2.0K 2000K 2 226 113 4 1736.9+319.6
expert 1.0K 1000K 6 138 23 1 2785.1+1053.1
Half medium 1.0K 1000K 6 138 23 1 1425.7+520.1
Cheetah m-replay 1.0K 1000K 6 138 23 1 655.8+590.4
m-expert 2.0K 2000K 6 138 23 1 2105.4+1073.2

Table 4: Overview of datasets used in experiments, including details of trajectories, samples, agent
counts, and state, observation, and action space dimensions across SMACv1, SMACv2, and MaMu-
joco environments, with average returns indicating performance levels.

B.3 IMPLEMENTATION DETAILS

Our experiments were implemented using PyTorch and executed in parallel on a single NVIDIA®
H100 NVL Tensor Core GPU. Our study required running a large number of sub-tasks, specifically
1,365 in total (i.e., 39 instances across 7 algorithms with 5 different random seeds each).
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Algorithm 1 ComaDICE: Offline Cooperative MARL with Stationary DIstribution Correction
Estimation

1: Input: Parameters 6,1, ,,n; and the corresponding learning rates Ag, Ay, , Ay, , Ay, TESPEC-
tively. Offline data D.
2: Qutput: Local optimized polices ;.
3: # Training the occupancy ratio w°t*
4: for a certain number of training steps do
50 g =g — Ay, Vi, L(g) # Update Q-function towards the MSE in[10]
6: 6=0—XgVyL(W,,0) # Update 6 to minimize the loss 1n.
7 Yy =1y — Ay, Vg, L(W,,0)  # Update 1, to minimize the loss in
8: end for
9: # Training local policy
10: for a certain number of training steps do
1 n =n+ AV, Lr(m) # Update the local policy by optimizing
12: end for
13: Return 7;(a;|os;m:), i =1,....,n

Update m

Update U, Update 1, 'u)t’Jt

tot ‘N Atot (s, a)

Hyper Network

\ b\'

Linear

Mixing Network Mixing Network

| [Al(ol,al) Am(om,am)]
E E /VT

[v1(01) - Vm(0m)] lg1(01,a1) -.. gm(0m,am)]

Agent
Network

Agent
Network

(01, a1) (0m, am)

Figure 2: Our ComaDICE model architecture.

The offline datasets for each instance are substantial, reaching sizes of up to 7.4 GB. To manage this,
we developed a preprocessing step designed to optimize data handling and improve computational
efficiency. This process involves reading all transitions from each dataset and combining individual
trajectory files into a single large NumPy object that contains batches of trajectories. In this step,
we define the data type for each element, such as states (float32), actions (int64), and dones (bool),
ensuring consistent and efficient data storage. The processed data is then saved into a compressed
NumPYy file, which significantly boosts computing performance.

Despite these optimizations, loading the entire dataset still requires a large amount of RAM. By
leveraging parallel processing and efficient data management strategies, we effectively managed the
extensive computational and memory demands of our experiments. This approach allowed us to
handle the large-scale data and complex computations necessary for our study.
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B.3.1 HYPER-PARAMETERS

Hyperparameter Value
Optimizer Adam
Learning rate (Q-value and policy networks) 1 x 1074
Tau (1) 0.005
Gamma () 0.99
Batch size 128
Agent hidden dimension 256
Mixer hidden dimension 64
Number of seeds 5
Number of episodes per evaluation step 32
Number of evaluation steps 100
Lambda scale (\) 1.0
Alpha («) 10
f-divergence soft-x?

Table 5: Hyperparameters for our algorithm

In our study, we developed two versions of our algorithm: a continuous version for MaMujoco
using Gaussian distributions (torch.distributions.Normal), and a discrete version for SMACv1 and
SMACV2 using Categorical distributions (torch.distributions.Categorical). In the discrete setting,
action probabilities are computed using softmax over available actions only, ensuring zero probability
for unavailable actions, which enhances the accuracy of log likelihood calculations. Key hyperparam-
eters are listed on the Table[5] Experiments were conducted with 5 seeds, 32 episodes per evaluation
step, and 100 evaluation steps.

B.4 ADDITIONAL EXPERIMENTAL DETAILS

We evaluate the performance of our ComaDICE algorithm using two key metrics: mean and standard
deviation (std) of returns and winrates. Returns measure the average rewards accumulated by
agents, calculated across five random seeds to ensure robustness, while winrates, applicable only to
competitive environments like SMACv1 and SMACv2, indicate the success rate against other agents.
For cooperative settings such as MaMujoco, winrates are not applicable. We also include figures
showing evaluation curves, highlighting how each method’s performance evolves during training
with offline datasets. These metrics and visualizations provide a comprehensive overview of our
algorithm’s effectiveness and consistency in various MARL tasks.

B.4.1 RETURNS

Tables [6] [ and [I0] present the returns from our experimental results across the SMACvI,
SMACYV2, and Multi-Agent MuJoCo environments, highlighting the performance of our proposed
algorithm, ComaDICE, alongside baseline methods such as BC, BCQ, CQL, ICQ, OMAR, OMIGA,
OptDICE and AlberDICE. Our results demonstrate that ComaDICE consistently achieves superior
returns, particularly excelling in more complex difficulty tasks. Figures [3] @] and [3]illustrate the
learning curves for these algorithms, showing that ComaDICE not only outperforms other algorithms
in terms of mean returns but also exhibits lower standard deviation, indicating robust and stable
performance. This suggests that ComaDICE effectively handles distributional shifts in offline settings.
These findings underscore our algorithm’s adaptability and effectiveness in diverse multi-agent
coordination scenarios, setting a new benchmark in offline MARL.
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Instances | BC BCQ CQL ICQ  OMAR OMIGA OptDICE AlberDICE ComaDICE
poor | 11604 125202 10805 126+02 113£05 13.0£07 108%04 11.0£02 12105
2cvs64zg medium | 134+19 156+04 128+16 156+0.6 102+02 160£02 11.2£08 152205 16307
good | 179%13 19103 185+1.0 18802 17.3£08 191203 149%12 179£06  20.3%0.1
poor | 7.0£05 7.6%04 74%01 73%02 7304 75£02 7.1£02 5712 8105
Smvs6m  medium | 7.0£08  7.6£0. 7.8+0.1 78%03 7.1£05 79£06 5913 7704 8704
good | 70£0.5 78%01 8102 7903 74x0.6 83%04 5815 6506 8705
poor | 8608 10802 108%05 106+01 106+02 11302 9803 10.6£03  114x0.6
6hvs8z medium | 9.5£03 118202 113203 111£03 104202 122202 108206 123204 128202
good | 100+17 122£02 104£02 118201 9903 12502 9107 10.0£03  13.1£05
poor | 29£06 45%09 41%06 45%03 4305 5603 63%05 5005 6405
corridor  medium | 7.4+08 108%09 70£07 11316 73%07 117+13 112£07 9303 12906
good | 108426 152+12 52%08 15511 67+07 159209 134221 144212  180%0.1
Table 6: Comparison of average returns for ComaDICE and baselines on SMACv1 benchmarks.
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Figure 3: Evaluation of SMACV1 tasks comparing the returns achieved by ComaDICE and baselines.

Instances \ BC BCQ CQL ICQ OMAR OMIGA  OptDICE AlberDICE ComaDICE (ours)
5_vs 5 132+0.7 68+16 93+1.6 107+12 89+08 143+14 10812 12.6 +0.9 144 +1.1
10vs_10 | 12019 77+13 113%09 104+16 88%0.6 142+15 95%08 11.8+09 14.6 £ 1.8
Protoss  10.vs_11 | 11.2+0.5 52+14 79+08 103+0.7 8.0+03 121+05 10.0+05 9.8+0.3 13.2+09
20vs20 | 13.1+0.5 48+06 10509 11.8+05 9.1+05 140+09 100£2.0 10.1+0.6 14.8 +1.0
20_vs23 | 11205 35+06 56+£07 102+07 7407 13.0+1.1 81%14 8.8+0.8 13.3+0.9
5_vs_5 108+14 64+11 65+09 68+06 69+06 105+12 64=+1.1 81+14 10.7 1.5
10vs_10 | 103+03 4604 68+0.6 8714 7610 10106 6016 8210 11.8 0.9
Terran  10_vs_11 | 9.0£0.7 3.6+1.1 55+02 5509 59+£07 88%14 48+1.2 6.2+09 9.4 +0.9
20vs20 | 108+0.8 39+06 4306 83+£03 73+04 105+07 6318 59+12 11.8+0.5
20vs23 | 72+£1.0 1210 16+0.2 53+£05 51+£03 7906 44+0.7 39+0.8 82+0.7
5_vs.5 105£22 6.6+02 67+05 65+09 77+£09 89=+1.1 82+1.38 9.5+0.8 10.7 £ 2.0
10vs_10 | 11008 7310 7203 7711 7508 11.8%+1.6 7.8%1.0 85+03 11.5+£1.0
Zerg 10vs11 | 92+1.1 7.6%+09 67+04 68+10 65+1.0 9512 72+0.7 9.1+£05 11.0+0.9
20vs20 | 93+05 37+04 4703 69+£05 69+08 92+05 73+0.7 83+05 94+1.2
20vs23 | 85+£0.7 3303 4106 69+£05 5704 98x06 71£12 88£0.5 10.5 £ 0.8

Table 7: Comparison of average returns for ComaDICE and baselines on SMACv?2 tasks.
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SMACv2
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Figure 4: Evaluation of SMACv?2 tasks comparing the returns achieved by ComaDICE and baselines.

Hopper-v2
Method expert medium medium-replay  medium-expert
BC 209.8+191.1 511.9+7.4 133.3+£53.5 155.3£111.5
BCQ 77.9+£58.0 44.6+20.6 26.5+24.0 54.3£23.7
CQL 159.1£313.8  401.3%£199.9 31.4£15.2 64.8+123.3
ICQ 754.7+806.3 501.8+14.0 195.4+103.6 355.4+373.9
OMAR 24+1.5 21.3£24.9 3.3£3.2 1.4+0.9
OMIGA 859.6+£709.5 1189.3+544.3 774.24494.3 709.0+£595.7
OptDICE 655.9+120.1 204.1+41.9 257.8455.3 400.9+132.5
AlberDICE 844.6+556.5 216.9+£35.3 419.24243.5 515.1+£303.4
ComaDICE (ours) | 2827.7+62.9  822.6+66.2 906.3+242.1 1362.4+522.9

Table 8: Comparison of average returns on Hopper-v2 of MaMujoco benchmarks.

B.4.2 WINRATES

In this section, we analyze the winrates of our ComaDICE algorithm across various multi-agent
reinforcement learning scenarios. Winrates are crucial in competitive environments like SMACv1
and SMACV2, as they measure the algorithm’s success against other agents. Our results demonstrate
that ComaDICE consistently achieves higher winrates compared to baseline methods. Notably,
ComaDICE performs well across both simple and complex tasks, reflecting its robustness and
adaptability. As shown in Tables [T]and [2] as well as Figures [6|and[7} ComaDICE not only excels
in average winrates but also exhibits lower variance, indicating stable performance across different
trials. These findings highlight ComaDICE’s ability to effectively manage distributional shifts and
the OOD issue.

B.5 ABLATION STUDY: DIFFERENT VALUES OF ALPHA

We provide more experimental details for ablation study assessing the impact of varying the regular-
ization parameter alpha (o) on the performance of our ComaDICE.

B.5.1 RETURNS
Our results, in Tables [T1] [I2] and [T3] show that the performance of ComaDICE is sensitive to

the choice of a. Lower values of o tend to prioritize imitation learning, leading to suboptimal
performance in terms of returns, whereas higher values facilitate better adaptation to the offline data,

26



Published as a conference paper at ICLR 2025

Ant-v2
Method expert medium medium-replay  medium-expert
BC 2046.3+£6.2 1421.1£7.9 994.0£20.3 1561.7+64.8
BCQ 1317.7+£286.3 1059.6+£91.2 950.8+48.8 1020.9+242.7
CQL 1042.442021.6  533.9+£1766.4 234.6+1618.3 800.2+1621.5
ICQ 2050.0+11.9 1412.4+£10.9 1016.7+£53.5 1590.2+85.6
OMAR 312.5+£297.5 -1710.0£1589.0  -2014.2+844.7 -2992.8+7.0
OMIGA 2055.5+1.6 1418.4+5.4 1105.1+88.9 1720.3£110.6
OptDICE 1717.2427.0 1199.0+£26.8 869.4+62.6 1293.2+183.1
AlberDICE 1896.8+33.7 1304.3+£2.6 1042.8+80.8 1780.0+£23.6
ComaDICE (ours) 2056.9+5.9 1425.0+2.9 1122.9+61.0 1813.9+68.4

Table 9: Comparison of average returns on Ant-v2 of MaMujoco benchmarks.

HalfCheetah-v2

Method expert medium medium-replay  medium-expert
BC 3251.24+386.8 2280.3+£178.2 1886.2+390.8 2451.9+783.0
BCQ 2992.7+4629.7  2590.5+1110.4 -333.6+152.1 3543.7+780.9
CQL 1189.5+1034.5 1011.3%x1016.9 1998.7+693.9 1194.2+1081.0
1CQ 2955.9+459.2 2549.3+96.3 1922.4+612.9 2834.0+420.3
OMAR -206.7%161.1 -265.7+147.0 -235.4%154.9 -253.8+63.9
OMIGA 3383.6+552.7 3608.1+237.4 2504.7+83.5 2948.5+518.9
OptDICE 2601.6+461.9 305.3+946.8 -912.9+1363.9  -2485.8+2338.4
AlberDICE 3356.44+546.9 522.4+315.5 440.0+£528.0 2288.2+759.5
ComaDICE (ours) 4082.9+45.7 2664.7+54.2 2855.0+242.2 3889.7+81.6

Table 10: Comparison of average returns on HalfCheetah-v2 of MaMujoco benchmarks.

achieving superior returns. Notably, an « value of 10 consistently yielded the best results across most
tasks, indicating an optimal balance between exploration and exploitation in offline settings. This
ablation study underscores the importance of selecting an appropriate « to enhance the algorithm’s
robustness and effectiveness in handling distributional shifts in offline multi-agent reinforcement
learning scenarios.

Instances | =001 a=01 a=1 a=10 «a=100
poor 10.6£0.5 11.1+0.4 11.1+0.1 12.1+0.5 11.8+0.2

2c_vs_64zg medium | 9.6x0.5 13.1£0.8  12.5#24 16.3x0.7 16.0+0.3
good 11.1£1.4  9.6£2.7 17.4+0.5 20.3x0.1 19.940.1

poor 5.7£0.1 5.1£0.3 7.1£0.7 8.1+£0.5 7.74£0.3

Sm_vs_ 6m  medium | 5.6%0.1 53+0.2  7.8+0.8 8.7+0.4 8.5+0.7
good 5.7£0.1 5740.2  7.840.5 8.7+0.5 8.8+0.8
poor 8.5+0.2 9.6£0.3  10.0+0.3 11.4+0.6 10.7+0.4

6h_vs 8z  medium | 85+0.6 10.5£0.8 10.7£0.5 12.8¢0.2 12.3+x0.3
good 7.940.1 9.5+40.6 11.3x0.6 13.1x0.5 12.8+0.4

poor 2.1+04 37£1.0  6.1+0.8 6.4+0.5 5.0£1.1

corridor medium | 1.7+1.0 22+1.7 11.3x0.3 12.9+0.6 13.3+0.1
good 47+2.4 3.845.0 157403 18.0£0.1  17.4+0.1

Table 11: Impact of alpha on returns for ComaDICE and baselines in SMACv1.

B.5.2 WINRATES

In the A.4.2 section of the appendix, we investigate the impact of varying o on winrates across
different multi-agent reinforcement learning environments. We observe that an intermediate «
value of 10 consistently yields optimal results, suggesting it strikes an effective balance between
conservative policy adherence and exploration of the offline dataset. This section underscores the
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B.6 ABLATION STUDY: DIFFERENT FORMS OF F-DIVERGENCE
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Figure 5: Evaluation of MaMujoco tasks comparing the returns achieved by ComaDICE and baselines.

Figure 6: Evaluation of SMACv1 tasks comparing the winrates achieved by ComaDICE and baselines.

importance of fine-tuning « to enhance the robustness and efficacy of the ComaDICE algorithm in
managing distributional shifts within competitive multi-agent settings.

We conduct an ablation study to examine the effects of different functions of f-divergence on
the performance of our ComaDICE algorithm across various multi-agent reinforcement learning
environments. The study specifically evaluates three types of f-divergence: Kullback-Leibler (KL),
X2, and Soft-y2 .
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Figure 7: Evaluation of SMACvV2 tasks comparing the winrates achieved by ComaDICE and baselines.

Instances | =001 a=01 a=1 a=10 o =100

5_vs5 12.241.0 13.1x1.3  13.2+#1.1 14.4%1.1 14.0£2.0

10_vs_10 | 12.8+0.9 14.0+0.8 13.4+1.2 14.6x1.8 14.1+1.3

Protoss  10_vs_11 9.9+1.1 11.1+0.8 11.3x1.2 13.2+09 12.2+1.1
20_vs 20 | 10305 11.1x1.0 12.2+09 14.8+1.0 13.2+04

20_vs_23 8.0+2.3 11.2+#1.2  11.7#0.6  13.3x0.9 13.2+0.5

5.vs_5 11.1x1.8  10.1+1.2  9.0¢1.0 10.7+#1.5 12.6*1.9

10_vs_10 8.5+0.8 10.3+0.7 10.4+1.1 11.8%0.9 11.8%1.7

Terran  10_vs_11 7.5+0.7 8.6+2.1 8.5%1.6 9.4+0.9 9.6+0.9
20_vs 20 | 6.2%1.1 6.4+1.7 9.1+0.7 11.8+0.5 9.3x0.6

20_vs_23 5.5+1.1 6.5+1.6 6.5+0.8 8.2+0.7 8.2+0.4

5.vs_5 7.9+0.6 9.3+09 10.5+1.4 10.74#2.0 10.4%1.2

10_vs_10 | 10.9+1.5 11.4+15 11.8¢0.7 11.5#1.0 10.9+2.2

Zerg 10_vs_11 | 10.1£2.5  9.1+1.2  10.0¢1.2 11.0+0.9 9.8+0.8
20_vs20 | 8.0+0.5 9.2+1.3 9.2+1.0 9.4+12  10.5+0.9
20_vs_23 9.1+1.1 10.0+0.7 10.4+0.6 10.5+0.8 10.1x0.7

Table 12: Impact of alpha on returns for ComaDICE and baselines in SMACv?2.

KL-Divergence: This is a well-known measure of how one probability distribution diverges from a
second, expected probability distribution. It is defined as:

fxu(x) =zloger —xz +1
The corresponding inverse derivative, which is used in optimization, is:

(fiL) " (@) = exp(z — 1)
KL-divergence can lead to numerical instability due to the exponential function, especially when the
values become large.

x2-Divergence: This divergence measures the difference between two probability distributions by
considering the square of the differences. It is expressed as:

1

frata) = 5@ —1)?

The inverse derivative is:
(fyz) (@) =z +1
While this function avoids the exponential instability seen in KL-divergence, it may suffer from zero

gradients for negative values, which can slow down or halt training.
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Instances a=0.01 a=0.1 a=1 a=10 a =100

expert 147.3+67.9 107.9+65.5 545.7+820.6 2827.7+£62.9 2690.7+58.6

Hopper medium 149.6+96.8 107.5+66.9 244.7+267.5 822.6+66.2 807.5+122.2
PP m-replay | 165.6£104.1 109.6+38.7 155.6+61.6 906.3+242.1 186.5+£16.8
m-expert 119.1+77.1 95.6+69.5 58.8+26.1 1362.4+£522.9  1358.4+595.1

expert 1016.4£196.5 1179.0£273.7  1927.7+174.1 2056.9+£5.9 1950.0+3.3

Ant medium 907.3+£32.2 1000.0+£90.4 1424.343.1 1425.0+£2.9 1354.6+2.5
m-replay 969.1+£21.9 978.4+39.6 944.6+28.9 1122.9+61.0 1072.1+41.4

m-expert | 915.8+364.1 1132.9+£282.2 738.5+£250.2 1813.9+68.4 1559.6+86.8
expert 1068.9+635.2  935.2+905.9 3637.0+£80.9 4082.9445.7  3843.7+£149.4

Half medium 575.9+724.8 445.24403.9 2690.0+£92.4 2664.7+£54.2 2523.4+59.0
Cheetah  m-replay | 412.3+£310.5 233.5+270.1 861.6x173.5 2855.0+£242.2  2557.4+241.5
m-expert | -107.5£298.1  -275.9+544.5 1136.9+1608.3  3889.7+81.6 3605.6+£70.4

Table 13: Impact of alpha on returns for ComaDICE and baselines in MaMujoco.
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Figure 8: Impact of alpha on returns for ComaDICE and baselines.

Soft-x? Divergence: This function combines the forms of KL and x? divergences to mitigate both
numerical instability and the dying gradient problem. It is defined piecewise as:

s () = zlogr —z+1 if0<z<l1
Softx® ) =\ L — 1) ifr>1
The inverse derivative is:
] 1, Jexp(x) ifx<0
(Fsonxz) ™ (#) = {m +1 ifz>0

This choice provides a stable optimization process by maintaining non-zero gradients and avoiding
large exponential values, making it suitable for reinforcement learning tasks.

We assess their impact on both returns and winrates in environments such as SMACv1l, SMACv2, and
MaMujoco. Our results, detailed in Tables[T6}20] reveal that the choice of f-divergence function sig-
nificantly influences the algorithm’s effectiveness. For instance, the Soft-y? divergence consistently
yields superior returns and competitive winrates across most scenarios, suggesting its robustness in
managing distributional shifts in offline settings. Conversely, while Soft-y? divergence also performs
well, particularly in environments with higher complexity, KL divergence shows varying results,
indicating its sensitivity to specific task dynamics. This comprehensive analysis underscores the
importance of selecting an appropriate f-divergence function to optimize ComaDICE’s performance
in diverse multi-agent reinforcement learning contexts.
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Instances | =001 a=0.1 a=1 a=10 o =100

poor 0.0+0.0 0.0£0.0  0.0£0.0 0.6x1.3 0.6x1.3
2c_vs_64zg medium 0.0+0.0 1.9+3.8 5.0+5.1 8.8+7.0 8.8+4.6
good 0.6x1.2 0.0+0.0 40.6+4.0 55.0£1.5 51.9+1.5

poor 0.0+£0.0 0.0£0.0  4.4+47 4.4+4.2 1.9+1.5
Sm_vs_6m  medium 0.0+£0.0 0.0+£0.0 8.1+6.4 7.5+£2.5 7.5+£3.8
good 0.0+0.0 0.020.0 6.2+4.4 8.1£3.2  10.0%6.1

poor 0.0+0.0 0.0+0.0  1.9+£3.8 1.9+3.8 0.6+1.3
6h_vs_8z medium | 0.0+0.0 0.6+1.3 1.9+1.5 3.1£2.0 3.1£2.0
good 0.0+0.0 0.0+0.0  7.5+58 11.2454 7.5+73

poor 0.0+0.0 0.6+x1.2  0.0+0.0 0.6+1.3 1.2+1.5
corridor medium | 0.0£0.0 0.0+0.0 30.0+£5.1 273434 344428
good 0.0+0.0 4.4+8.8 48.8+4.77 48.8+25 49.4+3.6

Table 14: Impact of alpha on winrates for ComaDICE and baselines in SMACv1.

Instances | =001 a=01 a=1 a=10 o =100

5.vs.5 20.6+10.0 31.9+6.1  50.0+2.8 46.2+6.1 46.248.5

10_vs_10 | 19.4+6.1  25.0£3.4 45.0+11.1  50.6+8.7 51.2+7.6

Protoss  10_vs_11 0.0£0.0 6.2+£9.7 18.8+8.1 20.0+4.2 29.448.3
20_vs_20 1.2+1.5 8.8+7.8 28.1+8.6 47.5+¢7.8 40.6+6.2

20_vs_23 0.0£0.0 1.9£2.5 9.4+6.6 13.8+5.8 17.545.1

5.vs_5 25.6+4.6  22.5+7.2  30.6+4.1 30.6+8.2 41.2+4.6

10_vs_10 | 15.048.7  28.74£7.2  33.849.4 32.5+5.8 43.8+7.1
Terran  10_vs_11 3.8+2.3 13.849.2  14.4+9.2 19454  16.2+10.3
20_vs_20 0.6+1.2 2.543.6 18.8+£2.0 29.4+3.8 21.9+3.4

20_vs_23 0.6+1.3 2.54£3.6 2.5+3.6 9.4+5.2 6.2+2.0

5.vs_5 10.0+4.6  20.0£5.8  28.7+4.6 31.2+7.7 25.0+8.6

10_vs_10 | 13.849.0 20.6+8.3  29.4+9.0 33.8+11.8 31.9+6.7

Zerg 10_vs_11 9.4+9.5 12.5+6.8  16.9+3.2 19.4+3.6 17.5+9.2
20_vs_20 0.0+0.0 1.9+1.5 6.9+6.1 9.4+6.2 12.5+4.0
20_vs_23 1.2+1.5 3.8+2.3 12.5+4.0 11.2+4.2 11.9+6.1

Table 15: Impact of alpha on winrates for ComaDICE and baselines in SMACv2.
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Figure 9: Impact of alpha on winrates for ComaDICE and baselines.
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B.6.1 RETURNS

Instances | fy2(z) k() fsofn2 ()

poor 11.6£0.2 11.1+0.3 12.1+£0.5

2c_vs_64zg medium | 16.1+0.6 15.7+0.3 16.3£0.7
good 19.7£0.1  19.320.1 20.3+0.1

poor 7.8+0.4 7.5+0.5 8.1+£0.5

Sm_vs_6m  medium 8.1+0.5 7.7£0.4 8.7+£0.4
good 8.7+0.6 8.1+0.4 8.7+0.5

poor 10.5+0.3  10.0+£0.2 11.4+0.6

6h_vs_8z medium | 12.9+04  12.4+0.5 12.8+0.2
good 12.7£0.4  12.4+0.5 13.1+£0.5

poor 6.5+0.5 6.1£0.4 6.4+0.5

corridor medium | 12.7+0.7  12.0£0.7 12.9£0.6
good 17.3£0.1  16.9+0.1 18.0+0.1

Table 16: Impact of f-divergence on returns for ComaDICE and baselines in SMACvVI.

Instances | f2(0)  fu(@)  fonn2(@)
5.vs5 14.6+0.5 13.6x0.9 14.4+1.1

10_vs_10 | 14.7£1.3  13.7#1.6  14.6+1.8

Protoss  10_vs_11 | 12.8+1.0 11.4+1.7 13.2+0.9
20_vs 20 | 12.7#0.3 13.1£0.7  14.8+1.0

20_vs23 | 12.4+0.9 12.5#0.7  13.3+0.9

5.vs_5 11.1£1.2  12.7#2.0  10.7#1.5

10_vs_10 | 9.840.9  10.7+#1.3  11.8+0.9
Terran  10_vs_11 | 8.9+0.8 8.9+1.0 9.4+0.9
20_vs20 | 10.5£0.5 10.2+0.7  11.8+0.5
20_vs 23 | 8.2+0.4  7.4+0.7 8.2+0.7

5_vs_5 10.0£0.8  9.61.5 10.7£2.0

10_vs_10 | 12.4+1.2  10.3+1.1  11.5%1.0

Zerg 10_vs_11 | 8.9+0.4 9.1+1.1 11.0+0.9
20_vs 20 | 9.0+0.8 9.0+0.6 9.4+1.2

20-vs23 | 10.2£1.0  9.3+0.8 10.5+0.8

Table 17: Impact of f-divergence on returns for ComaDICE and baselines in SMACV?2.

Instances | fr2(x) fru(z) Fsotin2 (T)
expert | 2625.0£191.3  2018.7£972.0  2827.7+62.9

Hooper  Medium | 79442602 295.5+227.1 822.6+66.2
PPET mreplay | 221.3+£58.0 129.9455.0  906.3+242.1
m-expert | 1294.14#520.4  105.5£103.9  1362.4£522.9

expert 1945.242.8 1884.1227.8  2056.9+5.9

Ap  medium | 13592432 13462+49.8 1425.042.9
mreplay | 1111.1#57.8  987.5#33.9  1122.9461.0
m-expert | 1655.9+42.8  1182.5+405.1  1813.9+68.4

expert | 3860.6£91.5  3830.0+88.8  4082.9+45.7

Half  medium | 2532.3+81.9  2347.8+171.8  2664.7+54.2
Cheetah m-replay | 2729.94241.5 1258.5:1015.4 2855.0+242.2
m-expert | 3665.2+74.0 3601.0£155.6 3889.7+81.6

Table 18: Impact of f-divergence on returns for ComaDICE and baselines in MaMujoco.
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B.6.2 WINRATES

Instances | fie(@)  fr(@) fsory2 (@)

poor 0.0£0.0  0.0£0.0 0.6+1.3
2c_vs_64zg medium | 13.1+4.6 10.6+£3.8 8.8+7.0
good 55.6£3.1 54.4£15  55.0%1.5

poor 3.843.1 3.843.6 44442
Sm_vs_bm  medium 6.2+2.8 5.0+£3.8 7.5+£2.5
good 8.84£3.6 6.9+3.1 8.1£3.2

poor 0.0+0.0 0.0+0.0 1.9+3.8
6h_vs 8z  medium | 5.0+2.5 5.0£3.8 3.1£2.0
good 9.4+4 .4 9.4£2.0 11.2+5.4

poor 1.2+1.5 1.2£1.5 0.6£1.3
corridor medium | 31.2+6.2 28.1+5.9 27.3£34
good 494454  48.1%£1.5 48.8+2.5

Table 19: Impact of f-divergence on winrates for ComaDICE and baselines in SMACv1.

Instances | fyz(x) Je(@)  fsory2 ()

5_vs_5 52.5+4.1 46.2+7.2 46.2+6.1

10_vs_10 | 48.1+£7.6 55.0+9.8 50.6x8.7

Protoss  10_vs_11 | 22.5+8.7 20.6+6.1 20.0+4.2
20_vs 20 | 38.1%¥2.3 41.2+7.8 47.5+£7.8

20_vs23 | 16.9+4.2 15.0+£3.6 13.8+5.8

5_vs_5 41.247.2  38.8+10.6  30.6%8.2

10_vs_10 | 30.6+x4.1  36.2+10.8  32.5+5.8

Terran  10_vs_11 | 15.6+11.5  15.0£7.5 19.4+54
20_vs20 | 33.846.4  28.7+11.8  29.4+3.8

20_vs_23 5.6+4.1 8.1+4.2 9.4+5.2

5.vs.5 29.4+¢9.0  33.1£133  31.247.7

10_vs_10 | 31.24#7.7  26.2+5.1  33.8+11.8

Zerg 10_vs_11 11.2+1.5 16.2+7.2 19.4+3.6
20_vs 20 | 7.543.2 11.247.0 9.4+6.2
20_vs_23 | 10.6+3.2 10.0+2.3 11.244.2

Table 20: Impact of f-divergence on winrates for ComaDICE and baselines in SMACv2.

B.7 ABLATION STUDY: DIFFERENT TYPES OF MIXER NETWORK

In this section, we explore the impact of using different types of mixer networks within the ComaDICE
algorithm. We introduce two settings for the mixer network within the ComaDICE algorithm: 1-layer
and 2-layer settings. The mixer network plays a crucial role in aggregating local value functions into a
global value function, which is essential for effective policy optimization in multi-agent reinforcement
learning (MARL) settings. By examining various mixer network architectures, we aim to understand
how these configurations affect the performance and stability of the ComaDICE algorithm. The
comparisons are presented in Tables [21}{25] reporting both average returns and win rates. The results
clearly show that the 1-layer configuration outperforms the 2-layer configuration, delivering more
stable training outcomes across nearly all tasks. This finding contrasts with many prior online MARL
studies (Rashid et al., [2020; Son et al., [2019; Wang et al., [2020), which could be attributed to
overfitting issues in the offline learning setting.

Since mixing networks are effective in capturing the interdependencies between local values and
policies—reflecting credit assignment across local agents—the observed instability with the 2-
layer mixing network suggests that this configuration may be too complex to effectively model
the relationships between local agent policies in offline settings, leading to overfitting. While the
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performance of the 2-layer mixing network might improve with more offline data, increasing the
dataset size could overload storage capacity, making training computationally infeasible.

B.7.1 RETURNS

ComaDICE (ours)
l-layer | 2-layer

poor 12.1£0.5 | 11.5£0.9
2c_vs_64zg | medium | 16.3+0.7 | 11.2+0.8
good 20.3+0.1 | 9.0+2.2

poor 8.1+0.5 3.8+1.1
Sm_vs_6m | medium 8.7+0.4 0.8+0.3
good 8.7+0.5 7.7x0.1

poor 11.4+0.6 | 10.3x0.3
6h_vs_8z medium | 12.8+0.2 | 9.1+0.6
good 13.1+0.5 | 8.3x0.5

poor 6.4£0.5 1.5+0.7
corridor medium | 12.9+0.6 3.9+1.7
good 18.0£0.1 2.6+2.3

Instances

Table 21: Average returns for ComaDICE and baselines on SMACv1 with different mixer settings.

ComaDICE (ours)
l-layer | 2-layer

5.vs_5 14.4+1.1 | 10.5+1.4
10_vs_10 | 14.6£1.8 | 11.2+1.6
Protoss | 10_vs_11 | 13.2+0.9 9.5+0.4
20_.vs 20 | 14.841.0 | 9.5+0.9
20_vs 23 | 13.320.9 | 7.1+2.2

5.vs_5 10.7¢1.5 | 8.3+x0.8
10_vs_10 | 11.8+0.9 | 8.8+1.1
Terran 10_vs_11 9.4+0.9 6.4+1.2
20_vs 20 | 11.8+0.5 | 7.8+0.9
20_vs 23 | 8.2+0.7 6.6+0.9

5_vs_5 10.7£2.0 | 7.8£1.1
10_vs_10 | 11.5+¢1.0 | 9.7+0.6
Zerg 10_vs_11 | 11.0+0.9 | 7.9+0.7
20_vs 20 | 9.4%1.2 7.8+0.6
20_vs 23 | 10.5+0.8 | 8.0+0.5

Instances

Table 22: Average returns for ComaDICE and baselines on SMACv2 with different mixer settings.
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ComaDICE (ours)
Instances
1-layer 2-layer
expert 2827.7£62.9 483.7£349.7
Hopper medium 822.6+66.2 648.4+245.9
m-replay | 906.3+242.1 441.9+4260.8
m-expert | 1362.4+522.9 | 402.3+288.2
expert 2056.9+£5.9 1583.0+160.4
Ant medium 1425.0£2.9 1198.9+£53.9
m-replay | 1122.9+61.0 1041.8+38.4
m-expert | 1813.9+68.4 | 1426.6+171.4
expert 4082.9+45.7 | 2159.4+658.0
Half medium 2664.7£54.2 | 2026.7+244.3
Cheetah | m-replay | 2855.0£242.2 | 1299.2+196.1
m-expert | 3889.7+81.6 | 1336.3+381.9

Table 23: Average returns for ComaDICE and baselines on MaMujoco with different mixer settings.

B.7.2 WINRATES

I ComaDICE (ours)
nstances

l-layer | 2-layer

poor 0.6x1.3 0.0£0.0

2c_vs_64zg | medium | 8.8+7.0 3.843.6

good 55.0+£1.5 | 19.445.0

poor 44442 3.1£0.0

Sm_vs_6m | medium | 7.5%2.5 1.2+1.5

good 8.1+3.2 3.1£0.0

poor 1.94£3.8 0.0£0.0

6h_vs_8z medium | 3.1+2.0 0.0£0.0

good 112454 | 1.9+2.5

poor 0.6£1.3 0.0£0.0

corridor medium | 27.3+3.4 | 11.2+£2.5

good 48.8+2.5 | 23.148.1

Table 24: Average winrates for ComaDICE and baselines on SMACv1 with different mixer settings.

I ComaDICE (ours)
nstances
l-layer | 2-layer
5_vs_5 46.2+6.1 31.9+3.6
10_vs_10 | 50.6+£8.7 | 32.5+5.8
Protoss | 10_vs_11 20.0+4.2 10.6+£7.3
20_vs 20 | 47.5£7.8 | 21.9+4.0
20_vs_23 13.8+5.8 6.9+5.4
5_vs_5 30.6+8.2 | 25.6+4.6
10_vs_10 | 32.5+£5.8 | 28.1+34
Terran | 10_vs_11 19.445.4 12.54£4.0
20_vs 20 | 29.4+3.8 11.2+£3.2
20_vs_23 9.445.2 3.1£2.0
5_vs_5 31.2+£7.7 | 20.6x4.7
10_vs_10 | 33.8+11.8 | 21.2+7.2
Zerg 10_vs_11 19.4+3.6 13.1+4.1
20_vs_20 9.446.2 5.6%1.3
20_vs_23 11.2+4.2 3.1+£3.4

Table 25: Average winrates for ComaDICE and baselines on SMACv2 with different mixer settings.
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B.8 COMADICE ON THE PENALTY XOR GAME

We discuss how ComaDICE addresses the Penalty XOR Game, a benchmark task previously consid-
ered in the AlberDICE paper (Matsunaga et al., [2023} |[Fu et al., [2022).

Overview of the Penalty XOR Game. The Penalty XOR Game is a commonly used benchmark
in multi-agent cooperative reinforcement learning, designed to evaluate the agents’ ability to learn
coordinated policies. In this game, two agents interact with a shared environment defined by a
global state consisting of two binary features. Each agent selects a binary action, and the reward
is determined by the relationship between their actions and the global state (as illustrated in Figure
[I0). This game highlights key challenges in multi-agent learning, such as credit assignment and
coordination, as agents must infer the XOR-like reward logic from their experiences while aligning
their actions to optimize joint behavior. This benchmark is particularly valuable for testing algorithms’
capabilities in capturing inter-agent dependencies and handling sparse, state-dependent rewards.

A B
Al O 1
Bl 1 |2

Figure 10: The Penalty XOR Game environment.

Experimental Setup. Following the setup in AlberDICE, we construct four datasets with increasing
complexity: 1. (a) {AB} 2. (b) {AB, BA} 3. (¢) {AA, AB, BA} 4. (d) {AA, AB, BA, BB}

Results. The optimal policy values returned by ComaDICE after a few epochs of training are
presented in Table[26] Our results show that ComaDICE successfully learns the optimal policy across
all four datasets. Compared to the results reported in the AlberDICE paper (Matsunaga et al.| 2023)),
ComaDICE achieves similar policy values while outperforming other baselines considered in that
study.

@| A | B ® | A | B ©| A | B @| A | B
A|000[100| | A[000|1.00| | A[000|1.00| | A |0.00]| 100
B |0.00]000| | B|0.00[000| |[B|0.00]|000]| | B |0.00]0.00

Table 26: Policy values after convergence returned by ComaDICE.

We now delve into the toy example to explain how ComaDICE achieves optimal policy values
by balancing the maximization of global reward and the minimization of divergence between the
occupancy of the learning policy and the behavior policy.

Consider the dataset { AB}, where the observation yields a high reward (i.e., 1). When optimizing
the global policy with this dataset, ComaDICE seeks a policy that maximizes the reward across the
dataset while aligning with the behavioral policy represented by { AB}. Consequently, it returns a
global optimal policy (in the form of an occupancy ratio) that assigns the highest possible probabilities
to the joint action { AB}. Subsequently, the weighted behavior cloning (BC) step learns decentralized
policies that also assign the highest possible probabilities to the joint action { AB}, producing the
desired optimal policy observed in our experiments.

For the dataset { AB, BA}, ComaDICE returns a global policy ensuring that the first player always
chooses A and the second always chooses B. To understand why this occurs, note that ComaDICE’s
learning objective consists of two terms: one aims to maximize the global reward, and the other
minimizes the divergence between the learned policy and the dataset. When the dataset includes
{AB, BA}, the occupancy-matching term favors a policy that assigns (uniformly) positive prob-
abilities to both joint actions {AB} and { BA}. However, since ComaDICE learns decentralized
policies, assigning significantly positive probabilities to both joint actions { AB} and { BA} implies
that both players would take both actions A and B with significant probabilities, leading to a lower
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expected global reward. In other words, exactly matching the dataset distribution would result in
suboptimal reward. To optimize the overall objective, ComaDICE assigns the highest probability to
one of the joint actions, { AB} or { BA}. In our experiments, it assigned the highest probability to
{AB}, achieving a better balance between reward maximization and divergence minimization. This
explains why ComaDICE converges to this optimal policy.

The other datasets can be explained similarly. For example, with the dataset {AA, AB, BA}, the
second term of the objective favors a policy that assigns equal probabilities (1/3) to these three joint
actions. However, this would imply that both players take both actions A and B with non-zero and
significant probabilities, resulting in lower accumulated rewards. To balance reward maximization
and dataset alignment, ComaDICE returns an optimal policy ensuring that the first player always
chooses A and the second always chooses B.

In comparison with OptDICE, both our experiments and those reported in the AlberDICE paper
demonstrate that OptDICE fails to return optimal policy values even when provided with an optimal
dataset, e.g., when the dataset is {AB, BA}. This is despite the fact that both OptDICE and
ComaDICE aim to balance maximizing the joint reward and matching the data distribution. Here, we
provide an intuitive explanation for why this occurs.

First, we note that while ComaDICE learns the global objective function over decentralized and
factorized policies, OptDICE learns only the global policy by directly solving the original objective
function. In this context, when the dataset is { AB, BA}, OptDICE learns a global policy that assigns
uniform probabilities to both joint actions { AB} and { BA}. However, when extracting local policies,
OptDICE will return local policies that make both the first and second players choose actions A and
B with probabilities of 0.25, as shown in Table [27] which is indeed suboptimal.

®| A | B
A 025025
B | 025|025

Table 27: Policy values returned by OptDICE with dataset (b).
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