
Stutter Makes Smarter: Learning Self-Improvement
for Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) excel in generating coherent text but are limited1

by their large parameters and high memory requirements. Recent studies suggest2

that dynamically adjusting inference operations can enhance performance without3

significantly increasing model size. We introduce the stutter mechanism, which4

enables self-improvement by selectively applying additional layers to challenging5

tokens, mimicking a human stutter to allocate more computational effort where6

needed. Our experiments with Pythia models show that the stutter mechanism7

consistently improves performance across benchmarks. Notably, the Pythia-410M-8

stutter model outperforms the larger Pythia-1B model on WinoGrande and WSC.9

Additionally, our method is data-efficient, requiring less than 1% of the pretraining10

data for additional training. These results demonstrate the stutter mechanism’s11

potential to enhance LLMs’ efficiency and performance in real-world applications.12

1 Introduction13

Decoder-only transformers are the standard for large language models, excelling in generating14

coherent and contextually relevant text. However, efficiency and adaptability to varying input15

complexities remain areas for improvement. Typically, transformers process all inputs uniformly,16

ignoring varying difficulty levels. Inspired by recent upscaling studies, we aim to enhance language17

capabilities without significantly increasing model size.18

In this paper, we propose the stutter mechanism, a minimally intrusive method to dynamically enhance19

a transformer’s language ability through self-improvement. Similar to a human stuttering at key20

points in speech, this method selectively applies additional layers to challenging tokens, thereby21

improving performance without significant resource increase. This approach focuses on how to22

apply more layers once challenging tokens are identified, and it is compatible with any method that23

determines which tokens deserve more computational effort. The stutter mechanism requires only24

minor modifications to the existing transformer architecture, making it a minimally intrusive yet25

highly effective way to enhance the model’s language capabilities through self-improvement.26

We implemented our method on Pythia-160M, Pythia-410M, and Pythia-1B. Results show that the27

stutter mechanism effectively improves accuracies on various benchmarks. With this mechanism,28

smaller models can outperform larger ones. Our contributions are threefold:29

• Innovative Mechanism for Enhanced Language Capability: We introduce the stutter30

mechanism, a novel and minimally intrusive method that dynamically allocates additional31

computational resources to more challenging tokens. This mechanism is compatible with32

existing methods for identifying tokens that require more computational effort, making it a33

versatile addition to current transformer architectures.34

• Performance Improvements on Various Benchmarks: We demonstrate that the stutter35

mechanism consistently enhances the performance of transformer models on various bench-36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



marks. Specially, the Pythia-410M model, enhanced by the stutter mechanism, outperforms37

the larger Pythia-1B model on WinoGrande and WSC.38

• Data and Computational Efficiency: We show that only one billion tokens (less than 1% of39

the pretraining data) are sufficient to train the stutter mechanism, reducing the computation40

time and cost significantly.41

2 Methods42

Figure 1: Overview of the proposed model architecture and stutter mechanism. (A) Model Archi-
tecture. Each purple column represents an inference step. Starting from the bottom, tokens are
embedded as hn

0 and propagated through the transformer. When thinking upon the token (e.g., "cute")
, the same token is fed into the model again for the second pass. During the second pass, the stutter
mechanism is applied, using the hidden states of the chosen layer (highlighted). (B) Stutter block.
In the second pass, each layer includes a stutter block with token-retrospect map applied after the
pretrained feed-forward and attention mechanisms, along with a residual connection. (C) Skipped
attention. During the second pass, the attention mechanism skips the hidden state from the first pass
while attending to the previous tokens as usual.

In a prototypical transformer with L layers and a sequence of tokens X = {x1, . . . , xN}, the43

input representation of layer l and token n is denoted as hn
l . The initial input hn

0 corresponds to44

the embedding of the previous output token. The transformation at layer l is given by hn
l+1 =45

FF(Attn(h0:n−1
l , hn

l )), where FF is the feed-forward network and Attn is the attention mechanism1.46

By the end of L layers, the output hn
L+1 is converted into logits by the language head yn =47

Head(hn
L+1).48

2.1 Stutter mechanism49

The stutter mechanism enhances the model’s ability to process a specific token n by performing50

inference twice. In the first pass, the model processes token n and stores the hidden state hn
l∗ ,51

capturing its semantic information. The hidden state before the last layer hn
l∗ = hn

L is chosen as the52

semantic information from the first pass.53

In the second pass, the stutter mechanism is applied, and each layer includes a stutter block, consisting54

of the original Attn and FF components, along with a token-retrospect map utilizing hn
l∗ . The55

intermediate representation of layer l in the second pass is rnl , with rn0 = hn
0 . The input rnl of the56

layer l first goes through the original architecture, producing an output onl+1 = FF(Attn(h0:n−1
l , rnl )).57

The onl+1 is then integrated with the hidden states from the first pass hn
l∗ using the token-retrospect

map. For layers l not higher than the chosen layer l∗, the transformation is described by:
rnl+1 = token-retrospect(onl+1, h

n
l∗) + onl+1,

1For simplicity, we have omitted the notation for positional embedding, normalization layers, and residual
connections, although they are typically present in transformer architectures

2



where the token-retrospect map is the key component of the stutter mechanism. It is defined as:

token-retrospect(onl+1, h
n
l∗) =

(
qTonl+1

khn
l∗√

dk

)
vhn

l∗
, ∀l ≤ l∗,

where qonl+1
= W q

l o
n
l+1, khn

l∗
= W k

l h
n
l∗ , vhn

l∗
= W v

l h
n
l∗ and W q

l , W k
l and W v

l are additional58

attention parameters for training.59

To enhance token generation with the help of its own insights, we apply attention to two hidden states60

linearly without using Softmax in the token-retrospect map. This allows the model to leverage stored61

hidden states for additional context. The stutter mechanism integrates the original model’s result with62

hidden states from the chosen layer, improving contextual understanding and token generation.63

2.2 Training and Loss64

To train the proposed architecture, we start with an existing transformer and freeze all its weights65

except those in the token-retrospect map. Our primary objective is to demonstrate the effectiveness66

of the stutter mechanism, so the selection of specific tokens to stutter is beyond the scope of this67

paper. Therefore, during training, we stutter every token exactly once. Initially, we pass the training68

sequence X through the inherited transformer to capture h0:N
l∗ . Then, we train the stutter transformer69

by stuttering at every token, with each layer augmented by attending to the additional input. Only the70

additional attention parameters in the token-retrospect map are trained, which constitute only 10% of71

the entire model, requiring less data for training. Performance saturation was achieved with only 172

billion tokens, which is less than 1% of the pretraining data, showing competitive data efficiency.73

We use the next token prediction loss as our primary loss term. This loss function is essential74

for language modeling tasks because it evaluates the model’s ability to predict the next token in a75

sequence given the previous tokens.76

3 Experiments77

We used "The Pile" as our training dataset, a large-scale text corpus with about 210 million samples.78

We trained on 1 billion tokens for each model, using a parallel training setting similar to the Pythia79

model, combining hidden states, MLP outputs, attention outputs and token-retrospect outputs. We80

stored the input hidden states of the L-th layer for each token and initialized the token-retrospect81

map with Gaussian initialization. Checkpoints were saved every 5000 steps and evaluated on the82

LAMBADA dataset. Stuttering was enabled for all tokens during inference, with each token allowed83

to repeat once.84

3.1 Evaluation85

We evaluate the performance of different size of Pythia models on various benchmark datasets:86

• Pythia Model: We used Pythia 160M, 410M, and 1B as base models to show the stutter87

mechanism’s effectiveness across scales.88

• Benchmarks: Evaluations were conducted on LAMBADA, PIQA, WinoGrande, WSC,89

ARC-e, ARC-c, SciQ, and LogiQA datasets, testing various aspects of language understand-90

ing and reasoning.91

This section provides a comprehensive analysis of the performance improvements, distribution92

alignment, and layer effectiveness of the stutter mechanism in Pythia models. The analysis is divided93

into three main points:94

• Performance Analysis of Pythia Models: The stutter mechanism generally enhances95

performance across benchmarks. As shown in Table 1, Pythia-160M-Stutter improves96

LAMBADA 5-shot accuracy from 0.271 to 0.295 and 0-shot accuracy from 0.353 to 0.383.97

Similar improvements are seen in Pythia-410M and Pythia-1B models. Notably, Pythia-98

410M-Stutter achieves performance close to Pythia-1B, and even outperforms it in WSC99

and WinoGrande evaluation.100

3



Table 1: Performance of Pythia-160M/410M/1B and Pythia-160M/410M/1B-Stutter on Various
Benchmarks. Metrics are presented as 5-shot accuracy / 0-shot accuracy.

Benchmark 160M 160M-Stutter 410M 410M-Stutter 1B 1B-Stutter

LAMBADA 0.271 / 0.353 0.295 / 0.383 0.442 / 0.516 0.449 / 0.524 0.485 / 0.562 0.509 / 0.578
PIQA 0.625 / 0.623 0.631 / 0.625 0.680 / 0.667 0.688 / 0.682 0.714 / 0.707 0.716 / 0.700
WinoGrande 0.513 / 0.513 0.519 / 0.519 0.533 / 0.532 0.538 / 0.538 0.534 / 0.534 0.542 / 0.542
WSC 0.575 / 0.575 0.615 / 0.615 0.659 / 0.659 0.670 / 0.670 0.666 / 0.667 0.681 / 0.681
ARC-e 0.442 / 0.436 0.456 / 0.449 0.545 / 0.518 0.553 / 0.519 0.586 / 0.569 0.596 / 0.572
ARC-c 0.180 / 0.194 0.185 / 0.180 0.218 / 0.214 0.219 / 0.219 0.256 / 0.244 0.257 / 0.240
SciQ 0.780 / 0.754 0.789 / 0.776 0.892 / 0.815 0.894 / 0.829 0.917 / 0.839 0.927 / 0.853
LogiQA 0.235 / 0.196 0.225 / 0.201 0.230 / 0.216 0.215 / 0.213 0.238 / 0.225 0.216 / 0.224

LAMBADA PIQA WinoGrande WSC ARC-e ARC-c SciQ LogiQA
0

0.2

0.4

0.6

0.8

1

K
L

D
iv

er
ge

nc
e Pythia-160M

Pythia-160M-Stutter

(a) KL Divergence evaluation over 8 benchmarks.

LAMBADA PIQA WinoGrande WSC ARC-e ARC-c SciQ LogiQA

−5

0

5

10

A
cc

ur
ac

y
D

iff
er

en
ce

(%
)

Layer 10
Layer 11
Layer 12

(b) Pythia-160M-Stutter with Different Chosen Layers (0-shot) - Baseline Subtracted

Figure 2: (a) KL Divergence (b) Ablation study of different chosen layers

• KL divergence Analysis: We evaluated the KL divergence of Pythia-160M and Pythia-101

160M-Stutter with Pythia-1B as the target distribution. The stutter mechanism effectively102

aligns the output distribution of the smaller Pythia-160M model closer to that of the larger103

Pythia-1B model, as shown in Figure 2a.104

• Effectiveness of hl∗ : We experimented with employing the stutter mechanism at different105

layers of the Pythia-160M model. Figure 2b shows that attending to layer 10 and layer 11106

yields similar performance, while layer 12 generally results in lower improvements. This107

suggests that the last layer filters out some semantic information, making it less effective for108

the stutter mechanism.109

4 Conclusion and Future Work110

We propose the stutter mechanism to enhance LLM performance by facilitating an extended think-111

ing process. This approach optimizes computational efficiency and improves performance across112

benchmark datasets. Future research could focus on optimizing the repeating mechanism, refining113

heuristics for the stutter mechanism, and interpreting the reasoning mechanism of LLMs to build114

trust and transparency in AI systems.115

4



References116

[1] Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of117

model merging recipes. arXiv preprint arXiv:2403.13187, 2024.118

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,119

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel120

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,121

Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott122

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya123

Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,124

M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information125

Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.126

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam127

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:128

Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–129

113, 2023.130

[4] Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,131

and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint132

arXiv:2403.02181, 2024.133

[5] Danny Halawi, Jean-Stanislas Denain, and Jacob Steinhardt. Overthinking the truth: Under-134

standing how language models process false demonstrations. arXiv preprint arXiv:2307.09476,135

2023.136

[6] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza137

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.138

Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.139

[7] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,140

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language141

models. arXiv preprint arXiv:2001.08361, 2020.142

[8] Sanghoon Kim, Dahyun Kim, Chanjun Park, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeon-143

woo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, Changbae Ahn, Seonghoon Yang, Sukyung144

Lee, Hyunbyung Park, Gyoungjin Gim, Mikyoung Cha, Hwalsuk Lee, and Sunghun Kim.145

SOLAR 10.7B: Scaling large language models with simple yet effective depth up-scaling. In146

Yi Yang, Aida Davani, Avi Sil, and Anoop Kumar, editors, Proceedings of the 2024 Conference147

of the North American Chapter of the Association for Computational Linguistics: Human148

Language Technologies (Volume 6: Industry Track), pages 23–35, Mexico City, Mexico, June149

2024. Association for Computational Linguistics.150

[9] Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of151

inference? arXiv preprint arXiv:2406.19384, 2024.152

[10] Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,153

Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence154

of activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.155

[11] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,156

Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open157

sparse autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147,158

2024.159

[12] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-160

tava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient161

llms at inference time. In International Conference on Machine Learning, pages 22137–22176.162

PMLR, 2023.163

[13] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.164

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.165

5



[14] Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters.166

arXiv preprint arXiv:2407.09298, 2024.167

[15] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,168

Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv169

preprint arXiv:2303.18223, 2023.170

A Appendix / supplemental material171

A.1 Related work172

In this section, an overview of key concepts and techniques relevant to the development of transformer173

models is provided. We discuss the architecture and scaling trends of decoder-only transformers,174

methods for upscaling and pruning, and approaches to improve computational efficiency. Additionally,175

we explore the loss functions used in training and the confidence levels of transformers in token176

prediction.177

A.1.1 Decoder-only transformers178

The Generative Pre-trained Transformer (GPT) series by OpenAI showcases the power of decoder-179

only transformer architectures [13, 2]. GPT-2, released in 2019 with 1.5 billion parameters, demon-180

strated impressive text generation capabilities. GPT-3, introduced in 2020, expanded to 175 billion181

parameters, significantly enhancing performance and enabling more complex and accurate text gen-182

eration. This progression highlights the trend that increasing model parameters leads to substantial183

performance improvements [6].184

As the number of parameters increases, the depth of the model also tends to increase. For example,185

GPT-2 has 48 layers, while GPT-3 scales up to 96 layers. This trend is also observed in various large186

language models where more layers are added to accommodate the growing number of parameters,187

thereby enhancing the model’s capacity to learn complex patterns and dependencies in the data [15].188

This scaling law is further supported by studies showing that larger models continue to improve189

performance with increased size [7].190

A.1.2 Upscaling191

While increasing the number of parameters and layers can enhance model performance, it also192

introduces significant computational challenges. To address these challenges, upscaling methods193

are employed to increase the parameter count and the depth of a transformer. These methods can194

be broadly categorized into training-free attempts and upscale-and-train attempts. Training-free195

upscaling involves techniques such as parameter sharing and repeating layers without additional196

training. Recently, merged LLMs have shown success in improving performance without re-training.197

An evolutionary algorithm is proposed in [1] to search for a better merge combination which is costly198

and limits the number of repetitions.199

On the other hand, upscale-and-train methods involve increasing the model size and then training it200

on large datasets to achieve better performance. For instance, the SOLAR 10.7B model demonstrates201

effective depth upscaling techniques that significantly enhance model performance [8]. Additionally,202

the authors in [3] discuss how scaling pathways can be used to efficiently upscale models.203

A.1.3 Layers skipping and pruning204

Despite the benefits of upscaling, the increased model size can lead to inefficiencies during inference.205

To decrease the runtime computational requirements of a transformer, various methods such as layer206

skipping and pruning are employed. Layer skipping involves dynamically skipping certain layers207

during inference based on the input data, thereby reducing the computational load. Pruning, on the208

other hand, involves removing less important weights or neurons from the model, which can signifi-209

cantly reduce the model size and inference time while conceding some performance. The authors in210

[4] explore these techniques in detail, showing how selective layer usage can maintain performance211

while reducing computational costs. Another approach proposed in [12, 10] demonstrates that layer212

sparsity can be contextualized, suggesting that not all layers are necessary for processing simpler213

6



input tokens. In addition, observations from [5] show that early-exiting in critical layers (around layer214

28 in GPT2-XL) improves the model performance.215

A.1.4 How confident is a transformer on a given token216

Understanding the training and inference processes is essential [11], but it is equally important to217

evaluate the model’s confidence in its predictions. The confidence of a transformer on a given token218

can be measured by the probability distribution it outputs for the next token prediction. Studies219

have shown that transformers can generate high-confidence predictions for certain tokens, which can220

be used to gauge the model’s certainty in its predictions. While there are extensive studies on the221

overall performance of transformers in generating sequences, there is ongoing research to understand222

the confidence levels at the token level. For example, authors in [14, 9] discuss the confidence and223

interpretability of transformer layers in generating specific tokens. Additionally, the study delves into224

how models process and generate tokens with varying levels of confidence [5].225

7


	Introduction
	Methods
	Stutter mechanism
	Training and Loss

	Experiments
	Evaluation

	Conclusion and Future Work
	Appendix / supplemental material
	Related work
	Decoder-only transformers
	Upscaling
	Layers skipping and pruning
	How confident is a transformer on a given token



