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ABSTRACT

Decision Transformers (DT) play a crucial role in modern reinforcement learning,
leveraging offline datasets to achieve impressive results across various domains.
However, DT requires high-quality, comprehensive data to perform optimally. In
real-world applications, the lack of training data and the scarcity of optimal be-
haviours make training on offline datasets challenging, as suboptimal data can
hinder performance. To address this, we propose the Counterfactual Reasoning
Decision Transformer (CRDT), a novel framework inspired by counterfactual rea-
soning. CRDT enhances DT’s ability to reason beyond known data by generating
and utilizing counterfactual experiences, enabling improved decision-making in
unseen scenarios. Experiments across Atari and D4RL benchmarks, including
scenarios with limited data and altered dynamics, demonstrate that CRDT out-
performs conventional DT approaches. Additionally, reasoning counterfactually
allows the DT agent to obtain stitching abilities, combining suboptimal trajecto-
ries, without architectural modifications. These results highlight the potential of
counterfactual reasoning to enhance reinforcement learning agents’ performance
and generalization capabilities.

1 INTRODUCTION

In the pursuit of achieving artificial general intelligence (AGI), reinforcement learning (RL) has
been a widely adopted approach. Conventional RL methods have shown impressive success in
training AI agents to perform tasks across various domains, such as gaming (Mnih et al., 2015; Silver
et al., 2017) and robotic manipulation (Van Hoof et al., 2015). When referring to conventional RL
approaches, we mean methods that train agents to discover an optimal policy that maximizes returns
(Sutton, 2018), either through value function estimation (Watkins & Dayan, 1992) or policy gradient
derivation (Sutton et al., 1999). However, more recent advances, such as Decision Transformers
(DT) (Chen et al., 2021), introduce a paradigm shift by leveraging supervised learning on offline
RL datasets, offering a more practical and scalable alternative to the online learning traditionally
required in RL. This shift highlights the growing importance of supervised learning on offline RL
approaches, which can be more efficient and convenient in environments where data collection is
expensive or impractical (Srivastava et al., 2019; Chen et al., 2021; Janner et al., 2021).

In its original form, the DT agent is trained to maximize the likelihood of actions conditioned on
past experiences (Chen et al., 2021). Numerous follow-up studies have tried to improve DT, such
as through online fine-tuning (Zheng et al., 2022), pre-training (Xie et al., 2023), or improving its
stitching capabilities (Wu et al., 2024; Zhuang et al., 2024). These works have shown that DT
techniques can match or even outperform state-of-the-art conventional RL approaches on certain
tasks. However, these improvements focus solely on maximizing the use of available data, raising
the question: What if the optimal data is underrepresented in the given dataset? This scenario
is illustrated in Fig. 1 of a toy navigation environment, wherein the blue (good) trajectories are
underrepresented compared to the green (bad) trajectories. The traditional DT by Chen et al. (2021)
is expected to underperform in this environment because it simply maximizes the likelihood of the
training data, which can be problematic when optimal data is lacking. Additionally, it lacks effective
stitching capabilities—the ability to combine suboptimal trajectories (refer to Appendix. A for an
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explanation of the stitching behaviour). This leads us to a key question: Can we improve DT’s
performance by enabling the agent to reason about what lies beyond the known?

Our Counterfactual Reasoning Decision Transformer (CRDT) approach is inspired by the poten-
tial outcome framework, specifically, the ability to reason counterfactually (Neyman, 1923; Rubin,
1978). The core intuition behind CRDT is that by reasoning about hypothetical, better outcomes, the
agent can deepen its understanding of the environment and the relationships between states, actions,
and rewards, ultimately improving its generalizability. This mirrors how humans imagine alternative
scenarios and outcomes from past experiences to inform better decisions in the future.

The CRDT framework has three key steps. The first step involves training the agent to reason
counterfactual. We introduce two models: the Treatment model T and the Outcome model O. The
model T is trained to estimate the conditional distribution of actions given the historical experiences,
i.e., the probability of selecting actions based on past trajectories. This differs from the original DT,
which directly predicts the action itself rather than modeling the underlying distribution. The model
O is trained to predict the future state and return as outcomes of taking an action. Once these two
models are trained using the given offline dataset, we proceed to the second step. We aim to utilize
the action selection probabilities and the inferred outcomes to generate counterfactual experiences.
Unlike prior approaches that generate counterfactual data simply by perturbing the actions or states
(Pitis et al., 2022; Sun et al., 2023; Zhao et al., 2024; Sun et al., 2024) with small noise, we argue that
an action should be considered as counterfactual if only it has a low probability of being selected.
We employ a mechanism known as Counterfactual Action Selection mechanism to identify such
actions. However, extreme counterfactual actions may introduce excessive noise or lead to states
that are not beneficial for the agent’s learning. To mitigate this, we implement a mechanism called
Counterfactual Action Filtering to eliminate irrelevant actions. The actions that pass the filtering
process will be used as inputs for the Outcome model, which gives us the outcomes of these actions.
In the final step, we integrate these counterfactual experiences with the offline dataset to train the
underlying DT agent. Fig. 1(c) provides an overview of our CRDT framework.1

Our empirical experiments in continuous action space environments, including locomotion, ant and
maze benchmarks, small datasets, and modified environment settings, and discrete action space
environments like Atari, show that our framework improves the performance of the underlying DT
agent. Moreover, we demonstrate that under CRDT, the DT agent attains the “stitching” ability
without needing to modify the underlying architecture. To summarize, our key contributions are:

1. We propose the CRDT framework, which enables agents to reason counterfactually, allow-
ing them to explore alternative outcomes and generalize to novel scenarios.

2. Through extensive experiments, we demonstrate that CRDT consistently enhances the per-
formance of the underlying DT agent and provides it with the ability to stitch trajecto-
ries. This improvement is observed across various conditions, including standard settings,
smaller datasets, and modified environments.

2 PRELIMINARIES

2.1 OFFLINE REINFORCEMENT LEARNING AND DECISION TRANSFORMER

We consider learning in a Markov decision process (MDP) represented by the tuple
(S,A, r, P, γ, ρ0), where S is the state space, A is the action space, reward function r : S×A→ R,
γ is the discount factor, and the initial distribution ρ0. At each timestep t, the agent observes a state
st ∈ S, takes an action at ∈ A and receives a reward rt = R(st, at). The transition to the next state
st+1 ∈ S follows the probability transition function P (st+1 | st, at). The goal of reinforcement
learning is to find a policy π(a|s) that can maximize the expected return Eπ,P,ρ0

[
∑∞

t=0 γ
tR(st, at)].

In offline RL, the agent is not allowed to interact with the environment until test time (Levine et al.,
2020). Instead, it is given a static dataset Denv = {(s(i)0 , a

(i)
0 , r

(i)
0 , s

(i)
1 , . . . , s

(i)
t , a

(i)
t , r

(i)
t , . . . )}Ni=1,

collected from one or more behaviour policies πβ , to learn from. Generally, learning the optimal
policy from a static dataset is challenging or even impossible (Kidambi et al., 2020). Consequently,
the objective is to create algorithms that reduce sub-optimality to the greatest extent possible.

1Source code will be made available upon publication.
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Figure 1: (a): A toy environment where the goal of the agent is to move from the green circle position
to the red circle position given that data is biased toward moving from bottom-left to top-right (green
trajectory) over top-left to bottom-right (blue trajectory). When using traditional DT, the agent will
most likely follow the green trajectory and fail to reach the goal. (b): The empirical result of the
counterfactual reasoning process following CRDT on the toy environment. At the crossing between
green and blue trajectories, notice that turning right yields a higher potential outcome/return, CRDT
generates counterfactual experience accordingly. As shown by the bold yellow, blue, and green
dots, none of the counterfactual experiences followed the green trajectory after the crossing point;
they all show a clear right turn. Training DT with these counterfactual experiences improved the
overall performance (refer to Sect. 4.4.2 for performance results). (c) Top: The CRDT framework
follows three steps: first, learning to reason counterfactually with the CRDT agent; second, perform
counterfactual reasoning to generate counterfactual experiences; and third, use these experiences to
improve decision-making. Bottom: A single step in the iterative counterfactual reasoning process
of a trajectory. The outcomes of one-step reasoning are the counterfactual action ât, the next state
ŝt+1 and returns-to-go ĝt+1 will replace the original values at, st+1, gt+1 and the generated data
will be used in next iteration.

Decision Transformer (DT) (Chen et al., 2021) is a pioneering work that frames RL as a sequential
modeling problem. The authors introduce a transformer-based agent, denoted asM with trainable
parameters δ, to tackle offline RL environments. While substantial research has built upon this
work (see Sect. 5 for a comprehensive review), DT, in its original form, applies minimal modi-
fications to the underlying transformer architecture (Vaswani, 2017). Similar to traditional offline
RL approaches, the agent M in DT is given an offline dataset Denv, which contains multiple tra-
jectories. Each trajectory consists of sequences of states, actions, and rewards. However, rather
than simply using past rewards from Denv as input intoM, the authors introduce returns-to-go, de-
noted as gt and computed as gt =

∑T
t′=t rt′ . The agentM is fed this returns-to-go gt instead of

the immediate reward rt, allowing it to predict actions based on future desired returns. In Chen
et al. (2021), a trajectory τ (i) is represented as: τ (i) = (g

(i)
1 , s

(i)
1 , a

(i)
1 , . . . , g

(i)
T , s

(i)
T , a

(i)
T ). Agent

M with parameter δ is trained on a next action prediction task. This involves using the experience
ht = (g1, s1, a1, ..., gt, st, at), returns-to-go gt+1 and state st+1 as inputs and the next action at+1

as output. This can be formalized as:

p(at+1 | ht, st+1, gt+1; δ) =M(ht, st+1, gt+1; δ), (1)

for discrete action space. And:

at+1 =M(ht, st+1, gt+1; δ). (2)
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for continuous action space. This action prediction ability is then utilized during the inference and
evaluation phases on downstream RL tasks. In addition to the aforementioned process, the authors
investigated the potential benefits of integrating additional tasks to predict the next state and returns-
to-go into the agent’s training to enhance its understanding of the environment’s structure, however,
it was concluded that such methods do not improve the agent’s performance (Chen et al., 2021).
Further, they suggested that this “would be an interesting study for future research” (Chen et al.,
2021). Our method, while not explicitly incorporating such predictions, demonstrates an alternative
approach that can effectively use these predictions to improve the agent’s performance.

2.2 POTENTIAL OUTCOME AND COUNTERFACTUAL REASONING

Our work is inspired by the potential outcomes framework (Neyman, 1923; Rubin, 1978) and its
extension to time-varying treatments and outcomes (Robins & Hernan, 2008). The potential out-
comes framework is a key approach in causal inference that defines and estimates causal effects by
considering the potential outcomes for each variable under different treatment conditions (Robins &
Hernan, 2008). Counterfactual reasoning involves imagining what might have happened under al-
ternative conditions or scenarios that did not occur (Pearl & Mackenzie, 2018). Under the potential
outcome framework, at each timestep t ∈ {1, ..., T}, we observe time-varying covariates Xt, treat-
ments At, and the outcomes Yt+1. The treatment At influences the outcome Yt+1, and all Xt, At,
and Yt+1 affect future treatment. A history at timestep t is denoted as H̄t = {X̄t, Āt−1, Ȳt}, where
X̄t = (X1, . . . , Xt), Ȳt = (Y1, . . . , Yt), and Āt−1 = (A1, . . . , At−1). The estimated potential
outcome for a trajectory of treatment āt = (at, ..., at+ξ−1) is expressed as E[Yt+ξ(āt:t+ξ−1) | H̄t]
where ξ ≥ 1 is the treatment horizon for ξ steps prediction.

Mapping to this paper, the time-varying covariates correspond to the agent’s past observations and
the returns-to-go it has received. The treatment corresponds to the action taken, and the outcome
is the subsequent observation and future returns. A counterfactual treatment refers to an action the
agent could have taken but did not. Therefore, for each timestep t, we aim to estimate the outcome
of counterfactual action ât or E[ŝt+1, ĝt+1 | ĥt], where ŝt+1 and ĝt+1 denote the counterfactual
state and returns-to-go corresponding to taking the counterfactual action ât. ĥt is the new historical
experience (g1, s1, a1, . . . , gt, st, ât), given that we have taken a counterfactual action ât that is
different from the original action at in the dataset Denv.

Our framework follows the three standard assumptions: (1) consistency, (2) sequential ignorability,
and (3) sequential overlap ensuring that the counterfactual outcomes over time are identifiable from
the factual observational data Denv (see Appendix. B).

3 METHODOLOGY

This section introduces the Counterfactual Reasoning Decision Transformer framework, our ap-
proach to empowering the DT agent with counterfactual reasoning capability.2 The framework
follows three steps: first, we train the Treatment and Outcome Networks to reason counterfactually;
then, we use these two networks to generate counterfactual experiences and add these to a buffer
Dcrdt; and finally, we train the underlying agent with these new experiences.

3.1 LEARNING TO REASON COUNTERFACTUALLY

As mentioned in Sect. 2.2, counterfactual reasoning involves estimating how outcomes would dif-
fer under unobserved treatments (Pearl & Mackenzie, 2018). This process is often broken down
into learning the selection probability of the agent’s treatment and learning the outcomes of the
treatments. This means that we must be able to estimate the probability of selecting actions at, at
timestep t, given historical experiences ht−1 = (g1, s1, a1, . . . , gt−1, st−1, at−1), the current out-
come state st, and returns-to-go gt. Knowing the distribution enables exploration of counterfactual
actions ât (actions with low selection probability). By using these counterfactual actions as new
treatment, we can estimate their corresponding outcomes, the next state ŝt+1 and the next returns-
to-go ĝt+1. To address these steps, we introduce two separate transformer models: the Treatment

2From this point forward, if needed we will use the notations a∗
t , s

∗
t , g

∗
t for the factual values and notations

at, st, gt for the predicted values. ât, ŝt, ĝt will be used to denote counterfactual related values.
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model (T ) and the Outcome model (O). The model T , parameterized by θ, learns the probability
of selecting treatments (i.e., the agent’s action). The model O, with parameters η, estimates the
outcomes of actions. Together, these models enable the agent to reason counterfactually, by learning
the probability of selecting actions and the potential outcomes of unchosen actions.

Treatment Model Training. We want to use the Treatment model T to estimate the probability of
selecting a specific action. In discrete action space environment, this can be formalized as:

p(at | ht−1, st, gt; θ) = T (ht−1, st, gt; θ). (3)

The model can be trained using a cross-entropy (CE) loss:

LT (θ) = −
1

N

N∑
i=1

a
∗(i)
t log

(
p(a

(i)
t | h

(i)
t−1, s

(i)
t , g

(i)
t ; δ)

)
. (4)

where a
∗(i)
t is the encoded true label for the action of the i-th instance of N samples, and

p(a
(i)
t | h(i)

t−1, s
(i)
t , g

(i)
t ; δ) is the predicted probability of the action a

(i)
t . In environments with a

continuous action space, we assume that actions follow a Gaussian distribution and estimate its
mean and variance using a neural network (an assumption that is often made in continuous treat-
ment potential outcome research (Robins et al., 2000; Zhu et al., 2015; Bahadori et al., 2022)), thus,
at ∼ N (µt, σ

2
t ), where µt, σ

2
t = T (ht−1, st, gt; θ). The model T is trained to minimize:

LT (θ) =
1

N

N∑
i=1

(
(a

∗(i)
t − µ

(i)
t )2

2σ
2(i)
t

+
1

2
log(2πσ

2(i)
t )

)
. (5)

Outcome Model Training. To predict outcome of taking an action, the O model is trained to
minimize the loss between predicted state st+1 and returns-to-go gt+1 and their factual values. This
objective can be achieved using the Mean Squared Error (MSE) loss. This can be formalized as:

st+1, gt+1 = O(ht; η), (6)

LO(η) =
1

N

N∑
i=1

(
∥s∗(i)t+1 − s

(i)
t+1∥2 + ∥g

∗(i)
t+1 − g

(i)
t+1∥2

)
. (7)

Here, s(i)t+1 and g
(i)
t+1 are two different output heads of the outcome model with input trajectory

ht = (g1, s1, a1, ..., gt, st, at). The training procedures of model T and O are detailed in the
Algorithm. 1 in Appendix. C.

3.2 COUNTERFACTUAL REASONING WITH CRDT

This section describes the agent’s iterative counterfactual reasoning process. At each timestep t, the
model T is provided with the input sequence (g1, s1, a1, . . . , gt−1, st−1, at−1, gt, st) to compute
the action distribution. Using this distribution, a counterfactual action ât is drawn according to the
Counterfactual Action Selection. Next, the modelO is used to generate the counterfactual state ŝt+1

and returns-to-go ĝt+1. The trajectory is then updated with the counterfactual experience, forming
the new input (g1, s1, a1, . . . , gt, st, ât, ĝt+1, ŝt+1) for the next iteration. Counterfactual reasoning
for a trajectory is deemed successful if the iterative process proceeds to the end of the trajectory
without violating the Counterfactual Action Filtering mechanism. Successful reasoning trajectories
are added to the counterfactual experience buffer, denoted as Dcrdt, if the number of experiences in
Dcrdt is less than a hyperparameter ne. The counterfactual reasoning process is detailed in the
Algorithm. 2 in Appendix. D.

Counterfactual Action Selection. Our goal is to sample na actions that can be classified as coun-
terfactual actions, which will be passed to the filtering process. Rather than just adding small noise,
we aim to identify counterfactual actions as outliers, thereby, encouraging the exploration of less
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supported outcomes. The method for selecting a counterfactual action differs based on whether the
action space is discrete or continuous. In a discrete action space, as the output of the Treatment
model is the probability of the action, we can simply select all actions whose probability of being
selected is less than a threshold γ. On the other hand, for continuous action spaces, we draw inspi-
ration from the maximum of Gaussian random variables, as discussed in Kamath (2015), to derive
our bound to identify counterfactual actions. Specifically, the upper bound of the expectation of the
maximum of Gaussian random variables is used. Applying to action at, this is written as:

E [max(at)] ≤ µt +
√
2σt

√
ln(nenc). (8)

Here, nenc denotes the number of times the model has encountered an input (ht, st+1, gt+1). This
bound indicates the expected range for the action, and any action that exceeds this bound is consid-
ered a counterfactual action. Based on this, we derive the formula to search for potential actions in
the counterfactual action set (detailed in Appendix. D):

a
(j)
t = µt − Φ−1 (0.08− j · β)σt

√
ln(nenc), for j = 0, 1, . . . , na. (9)

where β is the step size and j indicates the index of the j-th action from the total na sampled actions.
Φ−1 is the quantile function of the standard normal distribution. When j = 0, Φ−1 (0.08− j · β) =
Φ−1 (0.08) ≈ −

√
2, thus, Eq. 9 is approximately equal to the RHS of Eq. 8. By using Eq. 9, we

ensure that at each time step t, we can explore a diverse range of candidate counterfactual actions.

Counterfactual Action Filtering. This mechanism is proposed to filter counterfactual actions that
are not beneficial to the agent. For each candidate action, we generate subsequent outcomes using
O to construct candidate counterfactual trajectories. The trajectories are then filtered based on 2
criteria: (1) high accumulated return and (2) high prediction confidence. The reason for sampling
high return actions is because DT techniques improve with higher return data (Bhargava et al., 2024;
Zhao et al., 2024), aligning with our approach to introduce counterfactual experiences that can lead
to better outcomes. Therefore, we look for actions that resulted in the lowest counterfactual returns-
to-go (equivalent to higher return), ĝt+1, lower than returns-to-go gt+1 in the offline dataset Denv .

Regarding the second criterion, we introduce an uncertainty estimator function to determine low
prediction confidence states and exclude actions that lead to these states, therefore stopping and
discarding the counterfactual trajectory if the uncertainty is too high. There are multiple ways to
implement such an estimator. In our framework, the model O is trained with dropout regularization
layers. This allows us to run multiple forward passes through the model, with the dropout layer
activated, to check the uncertainty of the output state. The output of m forward passes, at timestep
t, is the matrix of state predictions, St+1 =

[
s
(1)
t+1 s

(2)
t+1 · · · s

(m)
t+1

]
. St+1 ∈ Rm×d, where d is

the dimension of each prediction. We denote Var(Sk), where k is a timestep, as the function that
calculates the maximum variance across all dimensions j′ of sk, where j′ = 1, 2, . . . , d. This can
be obtained from the covariance matrix of Sk (detailed in Appendix. D.2). The maximum variance
across all dimensions is used as the variance of the predictions and the uncertainty value. Our
uncertainty filtering mechanism, checking the accumulated maximum variance, can be written as:

Uα(St+1) =

{
TRUE (Unfamiliar), if

∑t+1
k=t0

Var(Sk) > α,

FALSE (Familiar), otherwise.
(10)

Here,
∑t+1

k=t0
(Var(Sk)) is the accumulated maximum variances of state prediction from a timestep

t0 that we start the reasoning process to current checking timestep t + 1. The function Uα(St+1)
returns TRUE if the state st+1 is unfamiliar. If the uncertainty is low, we will run a final forward
pass through the model, with the dropout layer deactivated, to get the deterministic state and returns-
to-go output. This helps avoid noise accumulation and supports beneficial counterfactual reasoning.

3.3 OPTIMIZING DECISION-MAKING WITH COUNTERFACTUAL EXPERIENCE

In this section, we describe how our counterfactual reasoning capability has been applied to improve
the agent’s decision-making. To demonstrate the effectiveness, we have selected the original DT
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model introduced by Chen et al. (2021) as the main backbone for the experiment. The learning
agent in this paper, denoted asM, is trained following Eq. 1 to minimize either CE loss for discrete
action space environments or Eq. 2 with MSE loss for continuous action space environments. For
discrete action space, the loss function is defined as:

LM(δ) = −
1

N

N∑
i=1

a
∗(i)
t+1 log

(
p(a

(i)
t+1 | h

(i)
t , s

(i)
t+1, g

(i)
t+1; δ)

)
. (11)

where a
∗(i)
t+1 is the encoded true label for the action of the i-th instance of N samples, and p(a

(i)
t+1 |

h
(i)
t , s

(i)
t+1, g

(i)
t+1; δ) is the probability output from the model. For continuous actions, the loss is:

LM(δ) =
1

N

N∑
i=1

(
∥a∗(i)t+1 − a

(i)
t+1∥2

)
. (12)

At each training step, we sample equal batches of trajectories from both the environment dataset
Denv and the counterfactual experience buffer Dcrdt. The agentM is trained on both data sources,
with the total loss calculated as the combination of the two losses LM(δ) = Lenv

M(δ) + L
crdt
M(δ). The

training procedure of agent M is described in Algorithm. 3 in Appendix. E. We also explore
potential combinations of our framework with other DT techniques in Appendix. F.8.

4 EXPERIMENTS

We conduct our experiments on both continuous action space environments (Locomotion, Ant,
and Maze2d from the D4RL benchmark (Fu et al., 2020)) and discrete action space environments
(Atari (Bellemare et al., 2013)) to address several key research questions: Does CRDT enhance
the underlying DT algorithm comparing to other variants in standard benchmarks (Sect. 4.1 and
Sect. 4.3)? Can CRDT improve DT’s generalizability when trained on a limited Denv dataset or
modified evaluating environments (Sect. 4.2 and Appendix. F.3)? What is the impact of selecting
out-of-distribution actions (Sect. 4.4.1)? Can CRDT enable DT to stitch trajectories without alter-
ing the underlying backbone architecture (Sect. 4.4.2)?

We compare our method with several baselines, including conventional RL and sequential modeling
techniques. For implementation details, refer to Appendix. F.1. Conventional methods include
Behavior Cloning (BC) (Pomerleau, 1988), model-free offline methods, such as Conservative Q-
Learning (CQL) (Kumar et al., 2020) and Implicit Q-Learning, (IQL) (Kostrikov et al., 2021b) and
model-based offline methods, such as MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020).
Sequential modeling baselines include simple backbone DT (Chen et al., 2021), Elastic Decision
Transformer (EDT) (Wu et al., 2024) and state-of-the-art Reinformer (REINF) (Zhuang et al., 2024).

4.1 DOES CRDT ENHANCE THE DT IN CONTINUOUS ACTION SPACE ENVIRONMENTS?

We present the experimental results of CRDT compared to other baselines on the standard Locomo-
tion benchmark and the Ant task from the D4RL dataset. As shown in Table. 1, CRDT consistently
enhances the performance of the simple backbone DT model across all datasets. Specifically, it
achieves an average of 3.5% improvement on the Locomotion tasks and a 2.7% improvement on the
Ant task. Notably, the largest gain occurs on the walker2d-mediumrlay dataset, with a significant
16.1% increase (please refer to Appendix. F.10 for a visualization of how CRDT’s counterfactual
action distribution differs from the original data distribution). On average, CRDT is also the best-
performing method, outperforming all other methods on the Locomotion task, and demonstrates
results comparable to the state-of-the-art reinforcement learning approach, IQL, and sequential mod-
eling approach, REINF, on the Ant task.

4.2 CAN CRDT IMPROVE DT’S PERFORMANCES GIVEN LIMITED TRAINING DATASET?

To evaluate the generalizability improvements of CRDT over DT, we conducted experiments using
only a limited subset of the Denv dataset. The experiments were carried out on Locomotion and
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Table 1: Performance comparison on Locomotion and Ant tasks. We rort the results over 5 seeds.
For each seed, evaluation is conducted over 100 episodes. The best result is shown in bold, and the
second-best is in italic. ♠ denotes the best Sequence Modeling approaches.

Dataset Traditional Methods Sequence Modeling Methods
BC CQL IQL MOPO MOReL DT EDT REINF CRDT

halfcheetah-med 42.6 44.0 47.4 42.3 42.1 42.6 42.1 42.8♠ 42.82±2.3♠

halfcheetah-med-rep 36.6 45.5 42.4 53.1 40.2 36.1 37.8 38.3♠ 38.03±2.5
halfcheetah-med-exp 55.2 91.6 86.7 63.3 53.3 90.2 82.0 91.2 96.4±2.3♠

hopper-med 52.9 58.5 66.3 28.0 95.4 67.9 59.6 75.2♠ 67.94±1.5
hopper-med-rep 18.1 95.0 94.7 67.5 93.6 85.0 76.1 84.2 85.54±3.2♠

hopper-med-exp 52.5 105.4 91.5 23.7 108.7 108.7 92.4 107.6 110.37±0.1♠

walker2d-med 75.3 72.5 78.3 17.8 77.8 75.9 66.4 77.9 78.95±0.9♠

walker2d-med-rep 26.0 77.2 73.9 39.0 49.8 62.1 58.1 72.1 72.28±0.1♠

walker2d-med-exp 107.5 108.8 109.6 44.6 95.6 108.5 106.9 108.7 109.05±0.6♠

Locomotion 466.7 698.5 692.6 378.0 656.5 677.0 621.4 698.0 701.38±1.5
ant-med-rep - - 92.0 - - 90.0 85.0 91.6♠ 91.02±8.8
ant-med - - 93.9 - - 91.5 90.7 92.7 95.84±8.3♠

Ant - - 186 - - 181.5 175.7 184.3 186.86±8.5

Sc
or

e

Sc
or

e

(a) Halfcheetah-medium-replay (b) Hopper-medium-replay (c) Walker2d-medium-replay

(d) Maze2d-umaze (e) Maze2d-large

DT CRDT (Our) REINF

Figure 2: Performance comparison on limited subset of Denv dataset. We report the results over
5 seeds. For each seed, evaluation is conducted over 100 episodes. The X-axis represents the
percentage of the dataset used in the experiment.

Maze2d (more challenging environments as they required the ability to stitch suboptimal trajectories
(Zhuang et al., 2024)) tasks. We compared CRDT’s performance against the backbone DT model
and Reinformer, the second-best sequence modeling method according to Table. 1. The results of
this experiment are shown in Fig. 2. According to this figure, our method experiences the smallest
performance degradation in this setting. In the Halfcheetah and Hopper environments, where all
three methods exhibit similar performance at 100% dataset size, our method demonstrates only
about a 15% performance drop when trained on 10% of the dataset. In contrast, both REINF and
DT degrade by over 21%, with extreme cases approaching a 40% decline. On the Maze tasks, CRDT
performances drop approximately 25% on the umaze and 3% on the large dataset. In contrast, the
simple backbone DT approach cannot learn these environments (performance drop more than 90%)
and REINF performance drops approximately 45% given only 10% of the dataset.

4.3 DOES CRDT ENHANCE THE DT IN DISCRETE ACTION SPACE ENVIRONMENTS?

We also conducted experiments on four Atari games, which features discrete action spaces and more
complex observation spaces. These are the environments that were used in Chen et al. (2021). The
normalized scores are shown in Table. 2 (raw scores can be found in Table. 5 Appendix. F.4). Given
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Table 2: Performance comparison (scores normalized according to Table. 6 Appendix. F.4) on Atari
games (1% DQN-replay dataset). We report the results over 3 seeds. For each seed, evaluation is
conducted over 10 episodes. The best result is shown in bold. ♠ indicates games in which CRDT
improves the backbone DT approach.

Game BC DT CRDT (Ours)
Breakout 138.9±54.6 198.6±1.8 248.9±58.9♠

Qbert 17.4±13.4 7.2±0.2 7.5±0.6♠

Pong 85.2±78.3 140.2±63.6 102.2±67.6
Seaquest 2.1±0.2 5.7±6.3 7.4±0.5♠

Average 60.9±36.6 87.9±17.9 91.5±31.9♠

Table 3: Performance comparison with different action selection methods on walker2d-med-rep.

Variations Score
DT 62.1±2.2
W/o comparing g 67.4±2.1
W/o Uα(Sk) 69.6±2.8
a 68.4±3.45
a+ noise ϵ 69.3±4.4
CRDT (Ours) 72.3±0.1

the increased difficulty of the observation space, we anticipated that CRDT might not always out-
perform DT, as it could introduce higher levels of noise, even with mechanisms in place to prevent
noise accumulation. Nevertheless, CRDT improved DT in 3 out of the 4 games (highest improve-
ment of 25% on Breakout), though there was a performance drop in one. We believe that for these
complex environments, a larger neural network (we use the same network forM model for T and
O models) could lead to greater performance gains.

4.4 ABLATION STUDY

4.4.1 COMPARING CRDT WITH VARYING ACTION SELECTION METHODS

We conduct an ablation study on the two mechanisms that define our method: Counterfactual Ac-
tion Filtering and Counterfactual Action Selection, using the walker2d-medium-replay dataset. In
Table. 3, we compare the performance of the full CRDT against several variations: the version that
does not compare the returns-to-go (denoted as W/o comparing g), the version that does not utilize
the uncertainty quantifier Uα(Sk), the variation that simply samples an action a without considering
whether a is an out-of-distribution action, and the variation that samples an action a+ ϵ as the coun-
terfactual action, where ϵ is random Gaussian noise sampled from the range [0.01, 0.05]. The results
from this experiment show that simply adding data will improve the performance of backbone DT,
however, the improvement is less significant than when our framework CRDT is used. Full CRDT
improves the performance by 16%, while the closet variations, do not utilize Uα(Sk) and sample
action a+ ϵ, achieving only 12.0% and 11.6%.

4.4.2 CAN CRDT ENABLE DT TO STITCH TRAJECTORIES?

Table. 7 in Appendix F.7 presents the results of the experiment conducted in the environment shown
in Fig. 1. In this environment, all states, apart from the goal, receive a reward of 0. Reaching the
goal state receives a reward of +1. We expect that, if traditional DT is used, the agent would struggle
to learn this environment due to the lack of stitching ability and the lack of optimal data. The results
in the table support our expectations, indicating that the traditional DT achieves only around a 40%
success rate, whereas our CRDT approach achieves nearly 90%. Although our approach has not
been designed to achieve stitching ability during training, such as in Wu et al. (2024) and Zhuang
et al. (2024), our agent acquires this ability by training on data that has already been stitched together
through the process of counterfactual reasoning and the generation of higher-return counterfactual
experiences. This also explains the performance in the Ant dataset in Table. 1 and the Maze2d
dataset (especially when the data is small) in Fig. 2, both of which require trajectory stitching.
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5 RELATED WORK

5.1 OFFLINE REINFORCEMENT LEARNING AND SEQUENCE MODELING

Offline RL (Levine et al., 2020) refers to the task of learning policies from a static dataset Denv of
pre-collected trajectories. It has found successful applications in robotic manipulation (Kalashnikov
et al., 2018; Mandlekar et al., 2020) and healthcare (Wang et al., 2018; Tang et al., 2022). Traditional
methods used to solve offline RL can be classified into model-free offline RL and model-based
RL approaches. Model-free methods aim to constrain the learned policy close to the behaviour
policy (Levine et al., 2020), through techniques such as learning conservative Q-values (Kumar
et al., 2020; Xie et al., 2021; Kostrikov et al., 2021a), applying uncertainty quantification to the
predicted Q-values (Agarwal et al., 2020; Levine et al., 2020), and incorporating regularization based
on importance sampling (Sutton et al., 2016; Liu et al., 2019). Other methods include imposing state
and action constraints using various distance metrics, such as imitation loss (Fujimoto et al., 2019),
MSE constraint (Fujimoto & Gu, 2021), or KL divergence (Liu et al., 2022). Model-based offline RL
methods (Yu et al., 2020; Kidambi et al., 2020; Yu et al., 2021; Rigter et al., 2022), involve learning
the dynamic model of the environment, then, generating rollouts from the model to optimize the
policy. Our method is more aligned with model-based approaches, as we use a model to generate
counterfactual samples. However, the difference is that we only sample low selection action.

Before the development of Decision Transformer (DT), upside-down reinforcement learning (Sri-
vastava et al., 2019; Schmidhuber, 2019) applied supervised learning techniques to address RL tasks.
In 2021, Chen et al. (2021) introduced Decision Transformer (DT) and the concept of incorporating
returns into the sequential modeling process to predict optimal actions. In the same year, Trajec-
tory Transformer (TT) (Janner et al., 2021) presented a different approach to representing input
trajectories. Inspired by both DT and TT, numerous methods have since been proposed to enhance
performance, focusing on areas such as architecture (Kim et al., 2023; Bar-David et al., 2023),
pretraining (Xie et al., 2023), online fine-tuning (Zheng et al., 2022), dynamic programming (Yam-
agata et al., 2023), and trajectory stitching (Wu et al., 2024; Zhuang et al., 2024). However, up to
our knowledge, there has been no work that seeks to integrate counterfactual reasoning with DT.

5.2 COUNTERFACTUAL REASONING IN CONVENTIONAL REINFORCEMENT LEARNING

Several methods have explored the application of counterfactual reasoning in RL (Buesing et al.,
2018; Oberst & Sontag, 2019; Pitis et al., 2020; Mesnard et al., 2020; Pitis et al., 2022; Killian
et al., 2022) and imitation learning (IL)(Sun et al., 2023). While these approaches leverage coun-
terfactual reasoning, they are not directly comparable to our method. The key distinction lies in
their reliance on the Structural Causal Model (SCM) framework (Pearl & Mackenzie, 2018). These
works necessitate either a pre-defined causal graph or the learning of such a graph from data. In
contrast, our approach is rooted in the Potential Outcomes (PO) framework (Rubin, 1978; Robins
& Hernan, 2008), which focuses on estimating the effects of interventions without the need for a
specified causal graph. This allows us to avoid the need to learn the causal graph. Our approach
aligns more closely with works that estimate counterfactual outcomes for treatments in sequential
data (Melnychuk et al., 2022; Frauen et al., 2023; Wang et al., 2018; Li et al., 2020); all of which
adopt the PO framework. However, the main contribution of our work lies in integrating these esti-
mated outcomes to enhance the decision-making of the underlying DT agent (refer to Appendix G
for the relation of CRDT to causal inference and counterfactual reasoning).

6 DISCUSSION

In this paper, we present the CRDT framework, which integrates counterfactual reasoning with DT.
Our experiments show that CRDT improves DT and its variants on standard benchmarks and in
scenarios with small datasets while generalizing to modified evaluation environments. Additionally,
the agent achieves trajectory stitching without architectural changes. However, training separate
Transformer models adds complexity. Future work could explore combining these models, as they
share inputs, or training in an iterative manner using generated counterfactual samples as training
data, though careful consideration is needed.
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Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Haru-
tyunyan, Will Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit
assignment in model-free reinforcement learning. arXiv preprint arXiv:2011.09464, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Jerzy Neyman. On the application of probability theory to agricultural experiments. essay on prin-
ciples. Ann. Agricultural Sciences, pp. 1–51, 1923.

Michael Oberst and David Sontag. Counterfactual off-policy evaluation with gumbel-max structural
causal models. In International Conference on Machine Learning, pp. 4881–4890. PMLR, 2019.

Judea Pearl and Dana Mackenzie. The book of why. 2018.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 33:3976–3990, 2020.

Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based counterfac-
tual data augmentation. Advances in Neural Information Processing Systems, 35:18143–18156,
2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in neural information processing systems, 35:16082–16097,
2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

James Robins and Miguel Hernan. Estimation of the causal effects of time-varying exposures.
Chapman & Hall/CRC Handbooks of Modern Statistical Methods, pp. 553–599, 2008.

James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural models and
causal inference in epidemiology, 2000.

Donald B Rubin. Bayesian inference for causal effects: The role of randomization. The Annals of
statistics, pp. 34–58, 1978.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

Maximilian Seitzer, Bernhard Schölkopf, and Georg Martius. Causal influence detection for improv-
ing efficiency in reinforcement learning. Advances in Neural Information Processing Systems, 34:
22905–22918, 2021.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
ization bounds and algorithms. In International conference on machine learning, pp. 3076–3085.
PMLR, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhu-
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A STICHING BEHAVIOR IN SEQUENTIAL MODELING

Va
lu
e

Timesteps

Figure 3: Given two trajectories
(
sat−1, st, s

a
t+1

)
,
(
sbt−1, st, s

b
t+1

)
. We want our agent to be able to

start from state sbt−1, however, can reach state sat+1

Trajectory stitching is an ability that has received great attention lately in offline RL, specifically,
in sequential modeling. It has been proven that traditional sequential modeling approaches, such
as Chen et al. (2021), lack the ability to stitch suboptimal trajectories to form optimal trajectories
(Kumar et al., 2020; Zhuang et al., 2024; Wu et al., 2024). An example of this is given in the
toy environment provided in Fig. 1(a) and Fig. 3. Let’s consider the scenario of two trajectories(
sat−1, st, s

a
t+1

)
,
(
sbt−1, st, s

b
t+1

)
where

(
sat−1, st, s

a
t+1

)
is sampled from the set of blue trajectories

(good trajectories that lead to the goal) and
(
sbt−1, st, s

b
t+1

)
is sampled from the set of green trajec-

tories (bad trajectories that do not lead to the goal). We anticipate that a sequence model trained
on these trajectories will likely follow the subsequent states in a way that aligns with the provided
trajectories. This means that the agent starting from the bottom-left potentially follows the green
trajectories to the top-right of the maze and will not reach the goal. We want, however, to stitch
these trajectories together, meaning that we want our agent to be able to start from sbt−1 but end up
being in sat+1.

The explanation for why traditional DT does not have stitching ability arises from the agent’s training
conditions. Specifically, when using traditional DT, the prediction of the next state-action pair is
conditioned on an initial target return (g0). If g0 is set to 0, the ball will smoothly follow the green
trajectory, as this is the more common data and the returns-to-go at the crossroad (the point where
the green and blue trajectories intersect) are still equal to 0. On the other hand, if conditioned on a
return of 1, the ball is likely to take a random action because g0 = 1 represents an out-of-distribution
(OOD) returns-to-go from the bottom-left corner of the maze. In both cases, the ball fails to reach
the goal. Previous works, such as Wu et al. (2024) and Zhuang et al. (2024) address this problem by
modifying the training condition of the DT agent. Our approach, on the other hand, addresses this
problem by generating better trajectories based on the idea of potential outcome, thus, guiding the
agent to reach the goal.
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B POTENTIAL OUTCOME FRAMEWORK AND ASSUMPTIONS FOR CAUSAL IDENTIFICATION

We build upon the potential outcomes framework (Neyman, 1923; Rubin, 1978) and its extension to
time-varying treatments and outcomes (Robins & Hernan, 2008). In order to identify the counterfac-
tual outcome distribution over time, the following three standard assumptions for the data-generating
process are required:

Assumption A.1 (Consistency): If Āt = āt is a fixed sequence of treatments for a particular
patient, then Yt+1[āt] = Yt+1. This implies that the potential outcome under the treatment sequence
āt corresponds to the observed (factual) outcome for the patient, conditional on Āt = āt.

Mapping to offline RL, consistency means that for any given action at the observed next state st+1

and returns-to-go gt+1 reflect the true outcome of the action. In the context of offline RL this
assumption holds given that observational data is collected from behaviour policies πβ that were
trained in the same environment; therefore, the data reflects the actual dynamics of the environment.

Assumption A.2 (Sequential Overlap): For every history, there is always a non-zero probability of
receiving or not receiving any treatment over time:

0 < P (At = at|H̄t = h̄t) < 1, if P (H̄t = h̄t) > 0,

where h̄t is a particular historical experience.

For offline RL, sequential overlap guarantees that for any observed history ht, every action at has
a non-zero probability of being chosen. This assumption is met if Denv provides adequate coverage
of the state-action space. If the behaviour policy πβ used to collect the data explores a wide range
of actions under different histories, we can reasonably assume that the sequential overlap condition
hold.

Assumption A.3 (Sequential Ignorability): This states that the current treatment is independent of
the potential outcome, given the observed history:

At ⊥ Yt+1[at] | H̄t,∀at.

This means there are no unmeasured confounders that simultaneously influence both the treatment
and the outcome.

Sequential ignorability implies that the observed history ht includes all relevant information that
influences both the agent’s actions and the potential future outcomes. Since we only perform coun-
terfactual reasoning on observed data in Denv, we rely on the assumption that the dataset sufficiently
captures the relevant factors affecting the treatments and the resulting outcomes.

In prior works, these assumptions are applied to both environments with discrete or continuous
treatments (Melnychuk et al., 2022; Frauen et al., 2023; Bahadori et al., 2022)
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C DETAILS OF DT LEARNING TO REASON COUNTERFACTUALLY

Algorithm 1 Learrning to Reason Counterfactually Algorithm

Require: Offline environment dataset Denv.
1: Initialize: Treatment model T , Outcome model O.
2: for k = 1, . . . ,K do

3: Sample batch: τ =
(
g
(i)
t , s

(i)
t , a

(i)
t

)T
t=1

, i = 1, 2, . . . , N from Denv.
4: Update T by minimizing loss LT (θ) with Eq. 4 or Eq. 5 using data from τ .
5: Update O by minimizing loss LO(η) with Eq. 7 using data from τ .
6: end for

D DETAILS OF DT COUNTERFACTUAL REASONING

Algorithm 2 DT Counterfactual Reasoning Algorithm

Require: Offline environment dataset Denv, Treatment model T , Outcome model O, number of
action sampled na, number of experiences wanted ne, and function Uα(St+1) from Eq. 10.

1: Initialize: Counterfactual experience buffer Dcrdt.
2: for k′ = 1, . . . ,K ′ do

3: Sample batch: τ ′ =
(
g
(i)
t , s

(i)
t , a

(i)
t

)T
t=1

, i = 1, 2, . . . , N ′ from Denv.

4: for τ ′(i) in τ do
5: for t = T

2 to T do
6: Init: ht−1 = (g1, s1, a1, . . . , gt−1, st−1, at−1).
7: â

(j)
t ← T (ht−1, st, gt; θ), j = 1, 2, . . . , n ▷ Sample na counterfactual treatments.

8: Init: ĥ(j)
t = (g1, s1, a1, . . . , gt, st, â

(j)
t ).

9: ŝ
(j)
t+1, ĝ

(j)
t+1 ← O(ĥ

(j)
t ).

10: if ĝt+1 < gt+1 and not Uα(St+1) then ▷ Check for all â(j)t .
11: at, st+1, gt+1 = ât, ŝt+1, ĝt+1.
12: else ▷ If all â(j)t fail.
13: Break.
14: end if
15: if t = T and len(Dcrdt) < ne then Dcrdt ← τ ′(i).
16: end if
17: end for
18: end for
19: end for

D.1 COUNTERFACTUAL ACTION SELECTION IN CONTINUOUS ACTION SPACE

We aim to select na actions as our counterfactual actions. The selection of these actions in a con-
tinuous action space environment is inspired by the theory of maximum Gaussian random variables
(Kamath, 2015). The expectation of maximum of Gaussian random variables are bounded as:

0.23σ ·
√

ln(n) ≤ E [max(x− µ)] ≤
√
2σ ·

√
ln(n).

where µ is the mean of the distribution and σ is the standard deviation. Applying this equation to
our approach, wherein continuous action is assumed to follow a normal Gaussian distribution. Thus,
for an action at, at timestep t, we can rewritten the equation into:

0.23σ ·
√
ln(n) ≤ E [max(at − µt)] ≤

√
2σt ·

√
ln(n),

or
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0.23σ ·
√
ln(n) + µt ≤ E [max(at)] ≤

√
2σt ·

√
ln(n) + µt.

We choose to use the upper bound of this equation as the bound for our outlier actions, thus, from
this bound, we will start searching for a number of na outlier actions. The bound can be written as:

E [max(at)] ≤ µt +
√
2σt

√
ln(nenc).

As Φ−1 (0.08) ≈ −
√
2. We can derive our formula to calculate each action:

at = µt − Φ−1 (0.08− j · β)σt

√
ln(nenc).

where β is the step size and j = 0, 1, . . . , na indicates the index of the j-th action from the total
na sampled counterfactual actions. Φ−1 is the quantile function of the standard normal distribution.
When j = 0, the value of Φ−1 (0.08− j · β) = Φ−1 (0.08) ≈ −

√
2, thus:

µt − Φ−1 (0.08)σt

√
ln(nenc) ≈ µt +

√
2σt

√
ln(nenc).

Here, nenc denotes the number of times the model has encountered an input (ht, st+1, gt+1). In a
continuous environment, recording the counting for such input is difficult. Thus, we employed a
hashing function, specifically, we used the hashlib.md5() hashing function 3 in our implementation
to record the input as key and the counting as the value in a dictionary. As MD5 hashing looks for
an exact match of data, we expect that such hashing process will only help with saving memory and
not affect the overall result of the method.

D.2 COMPUTE THE MAXIMUM VARIANCE BETWEEN PREDICTIONS

In this section, we present our method that was used to compute the maximum variance of the
predictions in St+1 using the function Var(Sk). St+1 =

[
s
(1)
t+1 s

(2)
t+1 · · · s

(m)
t+1

]
is the matrix of

state predictions at timestep t+ 1, output from m forward passes of the Outcome model O that was
trained with dropout regularization layers.

Thus, St+1 ∈ Rm×d, where m is the number of predictions and d is the dimension of each predic-
tion. Each row of St+1, denoted as s(i)t+1 =

[
s
(i,1)
t+1 s

(i,2)
t+1 · · · s

(i,d)
t+1

]
, represents a predicted state

at timestep t+ 1, where i = 1, 2, . . . ,m. Each s
(i)
t+1 is a d-dimensional vector representing the state

in the predicted space.

The variance for each dimension of the predicted states is computed using the covariance matrix of
St+1. The covariance matrix Σk ∈ Rd×d is defined as:

Σk =
1

m− 1

m∑
i=1

(
s
(i)
t+1 − s̄t+1

)(
s
(i)
t+1 − s̄t+1

)T
,

where s̄t+1 is the mean of the predicted states, s̄t+1 = 1
m

∑m
i=1 s

(i)
t+1.

The variance for each dimension j′ (for j′ = 1, 2, . . . , d) is then extracted from the diagonal ele-
ments of Σk, denoted as:

Var(s
(j′)
t+1) = Σk,j′j′ .

This allows us to get the maximum variance across all dimensions:

Var(Sk=t+1) = max (Σk,11,Σk,22, . . . ,Σk,dd) .

3https://docs.python.org/3/library/hashlib.html
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In environments with image observation space such as Atari games, calculating the covariance
matrix from raw observations is computationally expensive. Thus, we use the encoded ob-
servations, from the Outcome model, to form the prediction matrix instead. Thus St+1 =[
ϕ(s)

(1)
t+1 ϕ(s)

(2)
t+1 · · · ϕ(s)

(m)
t+1

]
, where ϕ(s) denotes the encoding.

D.3 CHOOSING THE UNCERTAINTY THRESHOLD

Our strategy to determine the uncertainty threshold α for each testing environment and dataset is
inspired by the process used in (Kidambi et al., 2020). Specifically, we compute the accumulated
maximum variance

∑t+1
k=t0

max (Var(Sk)) over several batch data (we use 1000 samples in this
paper) sampled from the static dataset Denv . Then, we compute the mean µd, the standard deviation
σd over all the accumulated maximum variance that we have collected. The uncertainty threshold is
then α = µd + σd · ς . We tune the value of ς in steps of 0.5. The final uncertainty threshold α for
each environment is presented in Appendix. F.11.

E DETAILS OF DT OPTIMIZE DECISION-MAKING WITH COUNTERFACTUAL EXPERIENCE

Algorithm 3 Optimize Decision-Making with Counterfactual Data Algorithm

Require: Offline environment dataset Denv, Counterfactual experience buffer Dcrdt.
1: Initialize:M agent.
2: for k = 1, . . . ,K do

3: Sample batch: τ =
(
g
(i)
t , s

(i)
t , a

(i)
t

)T
t=1

, i = 1, 2, . . . , N from Denv.
4: Calculate loss Lenv

M(δ) with Eq. 11 or Eq. 12 using data from τ .

5: Sample batch: τ ′ =
(
g
(i)
t , s

(i)
t , a

(i)
t

)T
t=1

, i = 1, 2, . . . , N ′ from Dcrdt.

6: Calculate loss Lcrdt
M(δ) with Eq. 11 or Eq. 12 using data from τ ′.

7: UpdateM by minimizing loss LM(δ) = Lenv
M(δ) + L

crdt
M(δ).

8: end for
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F ADDITIONAL EXPERIMENT DETAILS

F.1 DETAILS OF BASELINES

In our paper, we have compare CRDT against a number of baselines including including conven-
tional RL and sequential modeling techniques. Conventional methods include Behavior Cloning
(BC) (Pomerleau, 1988), model-free offline methods, such as Conservative Q-Learning (CQL) (Ku-
mar et al., 2020) and Implicit Q-Learning, (IQL) (Kostrikov et al., 2021b) and model-based offline
methods, such as MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020). Sequential modeling
baselines include simple backbone DT (Chen et al., 2021), Elastic Decision Transformer (EDT) (Wu
et al., 2024) and state-of-the-art Reinformer (REINF) (Zhuang et al., 2024). In this section, we will
clarify which results we have get from the original paper, and which results we have reproduced and
where the source code is from. Given limited computational resources, our focus is on reproducing
the result of sequential modeling approaches, which are our direct comparing baselines.

• The results of BC in Table. 1 comes from the REINF paper (Zhuang et al., 2024), whereas
the results of BC in Table. 2 is from the original DT paper (Chen et al., 2021).

• The results of model-free offline RL methods, CQL and IQL, are in Table. 1, also comes
from the REINF paper (Zhuang et al., 2024). While the results of model-based offline RL
methods, MOPO and MOReL, are obtained straight from their original papers (Yu et al.,
2020; Kidambi et al., 2020).

• The results of EDT and REINF, in Table. 1, are reproduced using the source codes provided
by the authors (MIT licence)4 for all the Locomotion tasks and Ant tasks, using the hyper-
parameters that were provided in the associated papers. For REINF, we also ran the source
code on the Ant environments for a comprehensive comparison, the hyperparameters that
were used are the default hyperparameters that come with the code. For Maze tasks in
Fig.2, we reproduce the results of REINF using the hyperparameters provided in the paper.

• All the results of DT are reproduced using the source code provided by the authors (MIT
licence)5.

F.2 DETAILS OF DATASET AND ENVIRONMENTS

We compare our CRDT algorithm against baselines on several datasets. These include those with
continuous action space environments and those that come with discrete action space environments.
This is to provide a comprehensive test for the Counterfactual Action Selection and the Counterfac-
tual Action Filtering mechanism. In this section, we provide an overview of the testing environment.

Continuous action space environments include Locomotion, Ant, and Maze2d tasks from the D4RL
benchmark (Fu et al., 2020). The environments within Locomotion include hopper, halfcheetah
and walker. For each of the Locomotion environments and the Ant environments, we have 3 types
of dataset medium-replay (med-rep), medium (med), and medium-expert (med-exp). The environ-
ments within Maze2d environments include large and umaze; each of these environments has its
corresponding dataset maze2d-large and maze2d-umaze. We obtain the datasets for Locomotion
and Maze tasks using the code associated with the Reinformer paper (Zhuang et al., 2024), while,
the dataset for Ant tasks are collected using the code associated with the Elastic Decision Trans-
former paper (Wu et al., 2024). We evaluate our algorithms using gym environments from gym
package ver. 0.18.3 (Brockman, 2016).

Discrete action space environments include Breakout, Qbert, Pong and Seaquest. The data for
these environments were collected using the code provided in the original Decision Transformer
paper (Chen et al., 2021). We also use the evaluation code provided in this paper to evaluate our
algorithm. Specifically, we use ale-py package ver. 0.8.1 (Bellemare et al., 2013) for evaluation.

F.3 HOW IS THE PERFORMANCE OF CRDT ON MODIFIED EVALUATING ENVIRONMENTS?

We further evaluate CRDT’s generalizability by testing its performance in modified environments,
where the dynamics differ from those in the Denv dataset generated by the behaviour policy πβ . Out

4https://github.com/kristery/Elastic-DT, https://github.com/Dragon-Zhuang/Reinformer
5https://github.com/kzl/decision-transformer
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Table 4: Performance comparison on modified evaluating environments. We report the results over
5 seeds. For each seed, evaluation is conducted over 100 episodes. The best result is shown in bold.

Dataset Modification DT REINF CRDT (Ours)
hopper-med-rep head 326.5 348.0 359.54 ± 47.5
hopper-med-rep thigh 2930.5 2841.6 2879.4 ± 421.5
halfcheetah-med-rep head 582.1 371.6 617.2 ± 32.3
halfcheetah-med-rep thigh 1966.6 1345.2 2070.8 ± 264.6

of the four environments tested, in Table. 4, CRDT improves DT’s performance in three. In contrast,
REINF shows weaker results in these environments, likely due to its architecture, which forces it
to maximize returns within Denv—a condition that may not hold in the modified environments.
CRDT excels compared to the original DT method because it generates additional counterfactual
experiences, enabling it to cover a broader range of scenarios than the Denv dataset alone.

F.4 ATARI RAW SCORES

Table 5: Performance comparison (raw score) on various Atari games. We report the results over 3
seeds. For each seed, evaluation is conducted over 10 episodes. The best result is shown in bold. ♠
indicates games in which CRDT improves the backbone DT approach.

Game BC DT CRDT (Ours)
Breakout 138.9 ± 17.3 57.6 ± 1.5 71.7 ± 18.5♠

Qbert 2464.1 ± 1948.2 1118.6 ± 195.6 1155.3 ± 89.2♠

Pong 9.7 ± 7.2 29.5 ± 1.9 15.8 ± 3.34
Seaquest 968.6 ± 133.8 2494.0 ± 2732.6 3190.6 ± 264.6♠

Table 6: Atari Baseline Scores.

Game Random Gamer
Breakout 2 30
Qbert 164 13455
Pong -21 15
Seaquest 68 42055

We present the raw score of the experiments on Atari games in Table. 5. These results correspond to
the normalized results presented in Table. 2. For the purpose of normalization, we used the data in
Table. 6. This is similar to the process of normalization that have been used in Chen et al. (2021).

F.5 CHANGING COUNTERFACTUAL EXPERIENCE SIZE

We conduct this experiment to show the impact of varying the number of counterfactual experiences
ne recorded in Dcrdt. The experiment was conducted on the 10% of the walker2d-medium-replay
dataset. Our expectation is that a higher number of experiences the higher the performance. We
evaluate the performance with 4000 samples (corresponding to the 10% result in Fig. 2(c)), 8000
samples, and 16000 samples; the result is presented in Fig. F.1. The figure reveals an upward trend in
performance as the number of recorded samples increases, validating our expectation. With 16000
samples, CRDT achieves approximately 59 points (10 points higher than when using 4000 samples),
closely approaching the performance of DT trained on the entire dataset (approximately 62 points
as shown in Table. 1). However, the performance gains also diminish as the number of samples
increases. While the improvement from 4000 to 8000 samples is around 6 points, the increase from
8000 to 16000 samples is only about 3 points. Moreover, generating more counterfactual experi-
ences demands greater computational resources, underscoring the balance between performances
and computational resources.
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Figure F.1: The impact of varying the number of counterfactual experiences ne in DCRDT on the
performance. The agent is trained using the 10% walker2d-medium-replay dataset. The terms
CRDT 4000, 8000, and 16000 refer to configurations of CRDT with ne set to 4000, 8000, and 16000
samples, respectively. We report the results over 5 seeds. For each seed, evaluation is conducted
over 100 episodes.

Sc
or
e

Figure F.2: The impact of varying the number of search action na. The agent is trained with
walker2d-medium-replay dataset. We report the results over 5 seeds. For each seed, evaluation
is conducted over 100 episodes.

F.6 CHANGING NUMBER OF SEARCH ACTIONS

We conduct an additional experiment to assess the impact of varying the number of search actions,
na, on the walker2d-medium-replay dataset. We specifically test 3, 5, 7, and 9 actions, with the
results presented in Fig. F.2. As shown, increasing the number of actions generally improves the
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performance of the DT agent, aside from an outlier when na = 3. However, using na = 3 also re-
sults in a significantly higher variance in performance and produces the lowest score among the four
configurations. This finding aligns with our expectation that increasing the number of actions would
broaden the diversity of covered states, enabling the agent to learn more about the environment and
improve its performance.

F.7 TOY ENVIRONMENT RESULTS

Table 7: Performance comparison on the toy environment in Fig. 1. The dataset ratio is between the
number of green trajectories versus the number of blue trajectories.

Dataset DT CRDT (Ours)
10:1 0.37±0.30 0.83±0.14
20:1 0.41±0.36 0.90±0.07
50:1 0.39±0.18 0.92±0.15

The result is provided in Table. 7, corresponding to the analysis in Sect. 4.4.2.

F.8 CRDT (REINF) AND CRDT (EDT)

In Table 8, we present the results of using CRDT with REINF (Zhuang et al., 2024) and EDT (Wu
et al., 2024) as the backbone algorithms. A note here is that we only replace decision-making agent
M with the new backbone and not model T and O.

CRDT (REINF)

Although CRDT with REINF shows slight improvements over CRDT with the original DT on the
Locomotion and Ant tasks, its performance is significantly lower on the Maze2d tasks. We at-
tribute this decline in performance to the increased difficulty of the Maze2d tasks. Additionally,
the underlying REINF algorithm likely requires parameter tuning, especially when integrating new
counterfactual experiences. This tuning was not conducted in our study, which may have led to the
observed decrease in performance. Here, we used the original parameters provided in the REINF
paper for the backbone algorithm. Overall, CRDT with the Reinformer backbone still improve the
results of REINIF, as presented in Table 1, albeit only marginally.

CRDT (EDT)

Similarly, the result of using EDT as the decision-making also indicates an improve in performance
over Locomotion tasks when comparing to the EDT’s results provided in Table 1. We saw a no-
ticeable improvement on walker2d-med-rep task of approximately 20%. The result on Ant tasks
indicates a marginally improvement. The result overall performance, however, is still not as good as
when using CRDT (DT) or CRDT (REINF).

F.9 COMPARISON ON RANDOM DATASET

Refer to Table. 9, we compare the performance of CRDT against other sequential modelling meth-
ods on the random dataset. CRDT outperforms other methods on halfcheetah and walker2d en-
vironments. A note here is that we did not perform parameters tuning for REINF and EDT, but
used the suggested parameters for med-rep dataset from their papers. Interestingly, DT performs
unexpectedly well on hopper-rand, which is a noteworthy observation.

F.10 VISUALIZING THE DISTRIBUTION OF COUNTERFACTUAL ACTIONS AND ORIGINAL
ACTIONS

We refer to Fig. F.3 and F.4, where we illustrate the frequency distribution of action values across
dimensions in the walker2d-med-rep and halfcheetah-med-exp respectively, between the counter-
factual and the original actions. We compute the value over the whole original dataset provided
by D4RL, while for the counterfactual samples, we compute the value over 4000 samples. One
can see that in Fig. F.3, the distribution across the last 5 dimensions differs, while in Fig. F.4,
the differences are in all 6 dimensions. We hypothesize that these significant distribution differences
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Table 8: Performance comparison between CRDT (DT) versus CRDT (REINF) versus CRDT (EDT)
on Locomotion, Ant, and Maze tasks. We report the results over 5 seeds. For each seed, evaluation
is conducted over 100 episodes.

Dataset Sequence Modeling Methods
CRDT (DT) CRDT (REINF) CRDT (EDT)

halfcheetah-med 42.8±2.32 43.0±1.51 43.1±0.36
halfcheetah-med-rep 38.0±2.54 36.8±2.01 36.0±2.21
halfcheetah-med-exp 96.4±2.32 94.4±1.74 72.3±9.19
hopper-med 67.9±1.56 74.2±6.37 54.4±7.56
hopper-med-rep 85.5±3.24 85.2±2.29 70.2±8.71
hopper-med-exp 110.3±0.14 110.3±0.63 108.7±2.92
walker2d-med 78.9±0.91 79.2±2.73 65.4±1.51
walker2d-med-rep 72.2±0.11 70.0±2.29 72.6±21.7
walker2d-med-exp 109.05±0.63 108.7±0.46 107.2±0.22
Total Locomotion 701.38±1.53 701.88±2.22 630.2±6.29
ant-med-rep 91.0±8.84 92.1±0.55 87.2±3.57
ant-med 95.84±8.32 95.2±1.13 90.2±4.60
Total Ant 186.8±8.58 187.3±0.84 177.4±4.08
maze2d-umaze 55.2±9.20 41.3±4.39 -
maze2d-large 42.3±3.74 47.7±13.6 -
Total Maze2d 97.5 ±6.47 89 ±8.99 -

Table 9: Performance comparison between DT, REINF, EDT, CRDT on random D4RL dataset. We
report the results over 3 seeds. For each seed, evaluation is conducted over 100 episodes.

Dataset Sequence Modeling Methods
DT EDT REINF CRDT

halfcheetah-rand 2.01±2.27 0.82±2.58 - 2.21±2.28
hopper-rand 10.5±0.27 3.97±0.39 9.98±0.30 9.59±0.44
walker2d-rand 1.20±0.10 0.77±0.35 0.71±0.17 2.60±0.42

may have contributed to the greater improvement in the walker2d-med-rep and halfcheetah-med-exp
environments, as demonstrated in Table 1.

F.11 DETAILS OF HYPERPARAMETERS

In this paper, we have introduced a number of new parameters. This is divided into those that
were used in discrete action space environments and those that were used in continuous action
space environments. Apart from these parameters, we also have the parameters of the backbone DT
algorithm. The same hyperparameters were used for the Treatment model T , the Outcome modelO
and the agentM.

Continuous Action Space Environments

We follow the hyperparameters proposed in the original paper by Chen et al. (2021), apart from those
being specified. These parameters are applied to all of the 3 models and are provided in Table. 10.

Table 10: DT’s Parameters for Continuous Action Space Environments.

Dataset Batch Size K Learning Rate No. Layers Atten. Heads
maze2d-large 64 10 0.0004 5 8
maze2d-umaze 64 20 0.0001 3 8
Others 64 20 0.0001 3 1

Additional parameters that we have introduced in this paper include the number of search actions
na, the step size β when searching for the action, the uncertainty threshold α, and the number of
experiences ne. For simplicity, we opt for using a step size β = 0.01 for all environments. The
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Figure F.3: Frequency distribution of action values across dimensions in the walker2d-med-rep
environment. The histograms represent the percentage frequency of action values for each of the six
dimensions, offering insights into the distribution patterns of actions in the dataset.

Figure F.4: Frequency distribution of action values across dimensions in the halfcheetah-med-exp
environment. The histograms represent the percentage frequency of action values for each of the six
dimensions, offering insights into the distribution patterns of actions in the dataset.

parameter α is determined through the process outlined in Appendix D.3. These parameters are
provided in Table. 11.

Table 11: New Hyperparameters for Continuous Action Space Environments.

Dataset na α ne

halfcheetah-med-rep 5 4.2 1000
halfcheetah-med 7 2.5 1000
halfcheetah-med-exp 5 0.3 1000
hopper-med-rep 5 0.7 1000
hopper-med 7 0.7 4000
hopper-med-exp 5 0.4 4000
walker2d-med-rep 7 1.8 4000
walker2d-med 5 1.8 1000
walker2d-med-exp 5 0.4 4000
ant-med-rep 5 0.8 4000
ant-med 5 1.5 2000
maze2d-umaze 5 0.1 2000
maze2d-large 5 0.1 2000
halfcheetah-med-rep (less data) 5 0.1 4000
hopper-med-rep (less data) 5 0.7 4000
walker2d-med-rep (less data) 7 1.8 4000
maze2d-umaze (less data) 5 0.1 4000
maze2d-large (less data) 5 0.1 4000

Discrete Action Space Environments

For discrete action space environments (Atari), we follow the hyperparameters proposed in the orig-
inal paper by Chen et al. (2021) and apply it to all 3 models. The selected parameters are provided
in Table 12.
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Table 12: DT’s Parameters for Discrete Action Space Environments.

Games K Learning Rate No. Layers Atten. Heads
Breakout, Qbert, Seaquest 30 0.0006 6 8
Pong 50 0.0006 6 8

Table 13: New Hyperparameters for Discrete Action Space Environments.

Games α ne

Pong, Seaquest, Breakout 10 500
Qbert 75 500

We introduce three key parameters: the outlier action threshold γ, the number of experiences ne, and
the uncertainty threshold α. As in continuous action space environments, the uncertainty threshold
α is determined using the method described in Appendix D.3. The action threshold γ is tuned over
the range [0.1, 0.3] with a step size of 0.05, and a value of 0.25 is selected for all four evaluation
environments. For ne, a value of 500 transitions is chosen, constrained by available computational
resources. The selected parameters are summarized in Table 13.

G RELATION TO CAUSAL INFERENCE AND COUNTERFACTUAL REASONING

Although CRDT is inspired by causal inference and counterfactual reasoning, the method did not
explicitly establish a formal causal structure learning process, such as constructing a causal graph
or a Structural Causal Model (SCM) (Pearl & Mackenzie, 2018). The method is more closely
related to the potential outcome framework (Neyman, 1923; Rubin, 1978) and its extension to time-
varying treatments and outcomes (Robins & Hernan, 2008), which did not explicitly require a causal
graph (Pearl & Mackenzie, 2018). The proposed counterfactual reasoning process in CRDT also
differs from “Pearl-style counterfactual reasoning”, which requires the inference of the posterior
distribution of exogenous noise variable and intervention on the parental variables. In CRDT, we
assume that the noise is implicit in the dynamic model. The method, however, leverages several
concepts from these frameworks.

Specifically, our method estimates the outcomes of different treatments using an Outcome Net-
work, which aligns with prior work in adapting machine learning methods for causal effect infer-
ence (Shalit et al., 2017; Jacob, 2021; Melnychuk et al., 2022), where neural networks were used
to estimate treatment effects by modeling counterfactual outcomes. While the potential outcome
framework does not strictly require a causal graph and the choice of the underlying ML algorithm
is very flexible (Jacob, 2021), in CRDT, we purposefully chose Transformers architecture for both
the Treatment and Outcome networks due to their ability to capture long-term dependencies through
attention mechanisms. The attention scores within the Transformer architecture underpinning these
networks can serve as a simple causal masking mechanism (Pitis et al., 2020; Seitzer et al., 2021;
Pitis et al., 2022). Furthermore, our framework assumes the three key causal assumptions, namely
Consistency, Sequential Overlap, and Sequential Ignorability, as detailed in Appendix B. These con-
nections demonstrate how causal inference concepts underpin our framework, even if they are not
formalized in the traditional sense.
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