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Abstract
Large Language Models are prone to biased
predictions and hallucinations, underlining the
paramount importance of understanding their
model-internal reasoning process. However,
achieving faithful attributions for the entirety of
a black-box transformer model and maintain-
ing computational efficiency is an unsolved chal-
lenge. By extending the Layer-wise Relevance
Propagation attribution method to handle atten-
tion layers, we address these challenges effec-
tively. While partial solutions exist, our method
is the first to faithfully and holistically attribute
not only input but also latent representations
of transformer models with the computational
efficiency similar to a single backward pass.
Through extensive evaluations against existing
methods on LLaMa 2, Mixtral 8x7b, Flan-T5 and
vision transformer architectures, we demonstrate
that our proposed approach surpasses alterna-
tive methods in terms of faithfulness and enables
the understanding of latent representations, open-
ing up the door for concept-based explanations.
We provide an LRP library at https://github.com/
rachtibat/LRP-eXplains-Transformers.

1. Introduction
The attention mechanism (Vaswani et al., 2017) became
an essential component of large transformers due to its
unique ability to handle multimodality and to scale to bil-
lions of training samples. While these models demonstrate
impressive performance in text and image generation, they
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Figure 1. By optimizing LRP for transformer-based architectures,
our LRP variant outperforms other state-of-the-art methods in
terms of explanation faithfulness and computational efficiency.
We further are able to explain latent neurons inside and outside the
attention module, allowing us to interact with the model. A more
detailed discussion on the differences between AttnLRP and other
LRP variants can be found in Appendix A.2.2. Heatmaps for other
methods are illustrated in Appendix Figure B.6. Legend: highly
(+), semi- (◦), not (−) suited. Credit: Nataba/iStock.

are prone to biased predictions and hallucinations (Huang
et al., 2023), which hamper their widespread adoption.

To overcome these limitations, it is crucial to understand
the latent reasoning process of transformer models. Re-
searchers started using the attention mechanism of trans-
formers as a means to understand how input tokens inter-
act with each other. Attention maps contain rich informa-
tion about the data distribution (Clark et al., 2019; Caron
et al., 2021), even allowing for image data segmentation.
However, attention, by itself, is inadequate for compre-
hending the full spectrum of model behavior (Wiegreffe
and Pinter, 2019). Similar to latent activations, attention
is not class-specific and solely provides an explanation for
the softmax output (in attention layers) while disregarding
other model components. Recent works (Geva et al., 2021;
Dai et al., 2022) have in fact discovered that factual knowl-
edge in Large Language Models (LLMs) is stored in Feed-
Forward Network (FFN) neurons, separate from attention
layers. Further, attention-based attribution methods such
as rollout (Abnar and Zuidema, 2020; Chefer et al., 2021a)
result in checkerboard artifacts, as visible in Figure 1 for
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a Vision Transformer (ViT). Researchers thus have turned
to model-agnostic approaches that aim to provide a holistic
explanation of the model’s behavior (Miglani et al., 2023),
including, e.g., perturbation and gradient-based methods.

Methods based on feature perturbation require excessive
amounts of compute time (and energy), and in order to ac-
cess latent attributions they require performing perturba-
tions at each layer separately, resulting in further exponen-
tial cost increase. This makes their application economi-
cally infeasible, especially for large architectures. In con-
trast, gradient-based methods benefit from the chain-rule
in automatic differentiation and can produce latent attribu-
tions for all layers in a single backward pass. While promi-
nent gradient-based methods, e.g. Input × Gradient (Si-
monyan et al., 2014), are highly efficient, they suffer from
noisy gradients and low faithfulness, as evaluated in Sec-
tion 4.1.

Another option is to take advantage of the versatility of
rule-based backpropagation methods, such as Layer-wise
Relevance Propagation (LRP). These methods allow for
the customization of propagation rules to accommodate
novel operations, allowing for more faithful explanations
and requiring only a single backward pass. As thoroughly
discussed in Appendix A.2.2, all previous attempts to ap-
ply LRP to transformers reused standard LRP rules (Ding
et al., 2017; Voita et al., 2021; Chefer et al., 2021b; Ali
et al., 2022). However, transformer architectures include
several functions for which standard LRP rules do not ad-
equately apply, such as softmax, bi-linear (matrix) multi-
plication (e.g. query-key multiplication) and layer normal-
ization. Additionally, the routing networks in Mixture of
Experts (MoE) models (Fedus et al., 2022) present notable
challenges due to their combination of these functions. As
a result, other previous attempts result in either numerical
instabilities or low faithfulness.

Our method represents a significant breakthrough in han-
dling the attribution problem in transformer architectures
by enabling an accurate attribution flow through non-linear
model components outperforming other existing methods
(including perturbation) by a large margin.

Contributions In this work, we introduce AttnLRP, an
extension of LRP within the Deep Taylor Decomposi-
tion framework (Montavon et al., 2017), with the particu-
lar requirements necessary for attributing non-linear trans-
former components accurately. AttnLRP allows explaining
transformer-based models with high faithfulness and effi-
ciency, while also allowing attribution of latent neurons and
providing insights into their role in the generation process
(see Figure 2).

1. We derive novel efficient and faithful LRP attribution
rules for non-linear attention within the Deep Taylor
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Figure 2. AttnLRP combined with ActMax allows to identify rel-
evant neurons and gain insights into their encodings. This allows
one to manipulate the latent representations and, e.g., to change
the output “Arctic” (by disabling the corresponding neuron) to
“Desert” or “Candy Store” (by activating the respective neurons).
See also Section 4.3.

Decomposition framework, demonstrating their supe-
riority over the state-of-the-art and successfully tack-
ling the noise problem in ViTs.

2. We illustrate how to gain insights into an LLM gener-
ation process by identifying relevant neurons and ex-
plaining their encodings.

3. We provide an efficient and ready-to-use open source
implementation of AttnLRP for transformers.

2. Related Work
We present an overview of related work for various model-
agnostic and transformer-specialized attribution methods.

2.1. Perturbation & Local Surrogates

In perturbation analysis, such as occlusion-based attribu-
tion (Zeiler and Fergus, 2014) or SHAP (Lundberg and
Lee, 2017), the input features are repeatedly perturbed
while the effect on the model output is measured (Fong
and Vedaldi, 2017). AtMan (Deb et al., 2023) is specifi-
cally adapted to the transformer architecture, where tokens
are not suppressed in the input space, but rather in the latent
attention weights.

Interpretable local surrogates, on the other hand, replace
complex black-box models with simpler linear models that
locally approximate the model function being explained.
Since the surrogate has low complexity, interpretability
is facilitated. Prominent methods include LIME (Ribeiro
et al., 2016) and LORE (Guidotti et al., 2018).

While these approaches are model-agnostic and memory
efficient, they have a high computational cost in terms of
forward passes. Furthermore, explanations generated on
surrogate models cannot explain the hidden representations

2



AttnLRP: Attention-Aware Layer-Wise Relevance Propagation

of the original model. Finally, latent attributions wrt. the
prediction must be computed for each layer separately, in-
creasing the computational cost further.

2.2. Attention-based

These methods take advantage of the attention mechanism
in transformer models. Although attention maps capture
parts of the data distribution, they lack class specificity
and do not provide a meaningful interpretation of the final
prediction (Wiegreffe and Pinter, 2019). Attention Roll-
out (Abnar and Zuidema, 2020) attempts to address the is-
sue by sequentially connecting attention maps of all lay-
ers. However, the resulting attributions are still not specific
to individual outputs and exhibit substantial noise. Hence,
(Gildenblat, 2023) has found that reducing noise in atten-
tion rollout can be achieved by filtering out excessively
strong outlier activations.

To enable class-specificity, the work of (Chefer et al.,
2021b) proposed a novel rollout procedure wherein the at-
tention’s activation is mean-weighted using a combination
of the gradient and LRP-inspired relevances. It is impor-
tant to note that this approach yields an approximation of
the mean squared relevance value, which diverges from the
originally defined notion of “relevance” or “importance” of
additive explanatory models such as SHAP (Lundberg and
Lee, 2017) or LRP (Bach et al., 2015). Subsequent em-
pirical observations by (Chefer et al., 2021a) revealed that
an omission of LRP-inspired relevances and a sole reliance
on a positive mean-weighting of the attention’s activation
with the gradient improved the faithfulness inside cross-
attention layers. Though, this approach can only attribute
positively and does not consider counteracting evidence.

Attention-rollout based approaches, while offering advan-
tages in terms of computational efficiency and conceptual
simplicity, have significant drawbacks. Primarily, they suf-
fer from a limited resolution in the input attribution maps,
resulting in undesirable checkerboard artifacts cf. Figure 1.
Moreover, they are unable to attribute hidden latent fea-
tures beyond the softmax output. Consequently, these ap-
proaches only provide explanations for a fraction of the
model, thereby compromising the fidelity and limiting the
feasibility of explanations within the hidden space.

2.3. Backpropagation-based

Input × Gradient (Simonyan et al., 2014) linearizes the
model by utilizing the gradient. However, this approach
is vulnerable to gradient shattering (Balduzzi et al., 2017;
Dombrowski et al., 2022), leading to noisy attributions in
deep models. Consequently, several works aim to denoise
these attributions. SmoothGrad (Smilkov et al., 2017) and
Integrated Gradients (Sundararajan et al., 2017) have at-
tempted to address this issue but have been unsuccessful in

the case of large transformers, as demonstrated in the ex-
periments in Section 4.1. (Chefer et al., 2021b) adapted
Grad-CAM (Selvaraju et al., 2017) to transformer models
by weighting the last attention map with the gradient.

Modified backpropagation methods, such as LRP (Bach
et al., 2015), decompose individual layer functions instead
of linearizing the entire model. They modify the gradient to
produce more reliable attributions (Arras et al., 2022). The
work (Ding et al., 2017) was the first to apply standard LRP
on non-linear attention layers, while (Voita et al., 2021)
proposed an improved variant building upon the Deep Tay-
lor Decomposition framework. Nonetheless, both variants
can lead to numerical instabilities in attributing the softmax
function and do not fulfill the conservation property (3) in
matrix multiplication. (Ali et al., 2022) considerably im-
proved attributions by recognizing that standard LRP rules
were not suitable for these operations and proposed to ex-
clude softmax and normalization operations from the com-
putational graph by stopping the relevance (gradient) flow
through them. However, it does not resolve the fundamen-
tal challenge of optimally applying LRP to non-linear op-
erations. In Appendix A.2.2, we provide a comprehensive
analysis about different LRP-variants.

3. Attention-Aware LRP for Transformers
First, we motivate LRP in the framework of additive ex-
planatory models. Then, we generalize the design of new
rules for non-linear operations. Finally, we apply our
methodology successively on each operation utilized in a
transformer model to derive efficient and faithful rules.

3.1. Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) (Bach et al.,
2015; Montavon et al., 2019) belongs to the family of ad-
ditive explanatory models, which includes the well-known
Shapley (Lundberg and Lee, 2017), Gradient × Input (Si-
monyan et al., 2014) and DeepLIFT (Shrikumar et al.,
2017) methods.

The underlying assumption of such models is that a func-
tion fj with N input features x = {xi}Ni=1 can be de-
composed into individual contributions of single input vari-
ables Ri←j (called “relevances”). Here, Ri←j denotes the
amount of output j that is attributable to input i, which,
when added together, equals (or is proportional to) the orig-
inal function value. Mathematically, this can be written as:

fj(x) ∝ Rj =

N∑
i

Ri←j (1)

If an input i is connected to several outputs j, e.g., a mul-
tidimensional function f, the contributions of each output j
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are losslessly aggregating together.

Ri =
∑
j

Ri←j . (2)

This provides us with “importance values” for the input
variables, which reveal their direct contribution to the fi-
nal prediction. Unlike other methods, LRP treats a neural
network as a layered directed acyclic graph, where each
neuron j in layer l is modeled as a function node f l

j that
is individually decomposed according to Equation (1). Be-
ginning at the model output L, the initial relevance value
RL

j ∝ fL
j is successively distributed to its prior network

neurons one layer at a time. Hence, LRP follows the flow
of activations computed during the forward pass through
the model in the opposite direction, from output fL back to
input layer f1.

This decomposition characteristic of LRP gives rise to the
important conservation property:

Rl−1 =
∑
i

Rl−1
i =

∑
i,j

R
(l−1,l)
i←j =

∑
j

Rl
j = Rl (3)

ensuring that the sum of all relevance values in each layer
remains constant. This property allows for meaningful at-
tribution, as the scale of each relevance value can be related
to the original function output fL.

3.1.1. DECOMPOSITION THROUGH LINEARIZATION

To design a faithful attribution method, the challenge lies in
identifying a meaningful distribution rule Ri←j . Possible
solutions encompass all decompositions that adhere to the
conservation property (3). However, for a decomposition
to be considered faithful, it should approximate the charac-
teristics of the original function as closely as possible.

In this paper, we take advantage of the Deep Taylor De-
composition framework (Montavon et al., 2017) to locally
linearize and decompose neural network operations into in-
dependent contributions. As a special case, we further es-
tablish the relationship between one derived rule and the
Shapley Values framework in Section 3.3.2.

We start by computing a first-order Taylor expansion at a
reference point x̃. For the purpose of simplifying the equa-
tion, we assume that the reference point x̃ is constant:

fj(x) = fj(x̃) +
∑
i

Jji(x̃) (xi − x̃i) +O(|x − x̃|2) (4)

=
∑
i

Jji xi + fj(x̃)−
∑
i

Jji x̃i +O(|x − x̃|2)︸ ︷︷ ︸
bias b̃j

where O is the approximation error in Big-O notation and
the Jacobian J is evaluated at reference point x̃, that is in the

following omitted for brevity1. The bias term represents the
constant portion of the function and the approximation er-
ror that cannot be directly attributed to the input variables.

We substitute the layer function with its first-order expan-
sion and assert its proportionality to a relevance value Rj

following Equation (1) through multiplication with a con-
stant factor c ∈ R with fj(x) ̸= 0.

Rj = fj(x) c =
∑
i

Jji xi
Rj

fj(x)︸ ︷︷ ︸
Ri←j

+ b̃j
Rj

fj(x)︸ ︷︷ ︸
Rb←j

Comparing with Equation (1), we identify Ri←j as the rel-
evance assigned to the input variables and Rb←j as the rel-
evance assigned to the bias term. Hence, the bias term ab-
sorbs a portion of the relevance Rj that is not allocated to
the input variables. This technically violates the conser-
vation property (3), as only Ri←j is further distributed to
prior layers reducing the amount of relevance per distribu-
tion step. However, (Bach et al., 2015) treats bias terms as
additional hidden neurons (with an activation value of one
and a weight that equals the bias value, connected to the
output) including them into the conservation property (3).
Consequently, we regard this relevance as preserved, rather
than lost. Alternatively, to strictly enforce conservation, the
absorbed relevance score of the bias term can be distributed
equally among the input variables, or the bias term can be
excluded completely, as explained in Appendix A.2.1.

To obtain a propagation rule for the input variables, we ap-
ply Equation (2) without the bias term. In addition, we
insert a stabilizing factor ε ≪ |fj(x)| ∈ R+ with the sign
of fj(x) to allow for the case fj(x) = 0:

Ri =
∑
j

Ri←j =
∑
j

Jji xi
Rj

fj(x) + ε sign(fj(x))
(5)

In the following, sign(fj(x)) ∈ {−1, 1} is omitted for
brevity. Note, that ε acts as bias term and absorbs a negli-
gible amount of the relevance.

To benefit from GPU parallelization, this formula can be
written in matrix form:

⇒ Rl−1 = x ⊙ J⊤ · Rl ⊘ (f(x) + ε)

where ⊙ denotes the Hadamard product, ⊘ element-wise
division and Rl a relevance vector at layer l. This formula
can be efficiently implemented in automatic differentiation
libraries, such as PyTorch (Paszke et al., 2019). Compared
to a basic backward pass, we have additional computational
complexity for the element-wise operations.

1if x̃ = x, this is equivalent to Gradient × Input. We have
taken the DTD perspective to highlight the bias term, which is
important for the upcoming discussion.
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3.2. Attributing the Multilayer Perceptron

Commonly a Multilayer Perceptron consists of a linear
layer with a (component-wise) non-linearity producing in-
put activations for the succeeding layer(s):

zj =
∑
i

Wji xi + bj (6)

aj = σ(zj) (7)

where Wji are the weight parameters and σ constitutes a
(component-wise) non-linearity.

3.2.1. THE ε- AND γ-LRP RULE

Linearizing linear layers (6) at any point x ∈ RN results in
the fundamental ε-LRP (Bach et al., 2015) rule

Rl−1
i =

∑
j

Wjixi

Rl
j

zj(x) + ε
(8)

The bias bj of Equation (6) and ε absorb a portion of the
relevance. The proof is omitted for brevity. We employ the
ε-LRP rule on all linear layers, unless specified otherwise.

In models with many layers, the gradient of a layer can
cause noisy attributions due to the gradient shattering ef-
fect (Balduzzi et al., 2017; Dombrowski et al., 2022). To
mitigate this noise, it is best practice to use the γ-LRP rule
(Montavon et al., 2019), an extension to improve the signal-
to-noise ratio. We have observed that this effect is signifi-
cantly pronounced in ViTs while LLMs lack visible noise.
Therefore, we only apply the γ-LRP rule to linear layers in
ViTs. For more details, please refer to Appendix A.2.3.

3.2.2. HANDLING ELEMENT-WISE NON-LINEARITIES

Since element-wise non-linearities have only a single input
and output variable, the decomposition of Equation (1) is
the operation itself. Therefore, the entire incoming rele-
vance Rl

j can only be assigned to the single input variable.

Rl−1
i = Rl

i (9)

The identity rule (9) is applied to all element-wise opera-
tions with a single input and single output variable.

3.3. Attributing Non-linear Attention

The heart of the transformer architecture (Vaswani et al.,
2017) is non-linear attention

A = softmax

(
Q · K⊤√

dk

)
(10)

O = A · V (11)

softmaxj(x) =
exj∑
k e

xk
(12)

where (·) denotes matrix multiplication, K ∈ Rb×sk×dk

is the key matrix, Q ∈ Rb×sq×dk is the queries matrix,
V ∈ Rb×sk×dv the values matrix, and O ∈ Rb×sk×dv is
the final output of the attention mechanism. b is the batch
dimension including the number of heads, and dk, dv indi-
cate the embedding dimensions, and sq, sk are the number
of query and key/value tokens.

First and foremost, the softmax function is highly non-
linear. In addition, the matrix multiplication is bilinear,
i.e., linear in both of its input variables. In the following,
we will derive relevance propagation rules for each of these
operations, taking into account considerations of efficiency.

3.3.1. HANDLING THE SOFTMAX NON-LINEARITY

In Section 3.1.1, we present a generalized approach to lin-
earization that incorporates bias terms, allowing for the ab-
sorption of a portion of the relevance. However, (Ali et al.,
2022) advocates for a strict adherence to the conservation
property (3) and argues that a linear decomposition of a
non-linear function should typically exclude a bias term.
While we see the virtue of this approach for operations such
as RMSNorm (Zhang and Sennrich, 2019) or matrix mul-
tiplication, where f(0) = 0, we contend that a lineariza-
tion of the softmax function should inherently incorporate
a bias term. This is due to the fact that even when the input
is zero, the softmax function yields a value of 1

N (where N
represents the dimension of the inputs) which is analogous
to a virtual bias term.

Proposition 3.1 Decomposing the softmax function by a
Taylor decomposition (4) at reference point x yields the fol-
lowing relevance propagation rule:

Rl−1
i = xi(R

l
i − si

∑
j

Rl
j) (13)

where si denotes the i-th output of the softmax function.
The hidden bias term, which contains the approximation
error, consequently absorbs a portion of the relevance.

The proof can be found in Appendix A.3.1. In Ap-
pendix A.2.4, we explore the implications of vanishing gra-
dients and temperature scaling on attributing the softmax
function, which is important when attributing softmax out-
side of the attention mechanism, e.g. at the classification
output. Note, that the works (Ding et al., 2017; Voita et al.,
2021; Chefer et al., 2021b; Ali et al., 2022) propose to han-
dle the bias term differently to strictly enforce the conserva-
tion property (3). Most variants can lead to severe numer-
ical instabilities as discussed in Appendix A.2.1 and seen
empirically in our preliminary experiments.
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3.3.2. HANDLING MATRIX-MULTIPLICATION

Since f(0, 0) = 0 holds, it is desirable to decompose the
matrix multiplication without a bias term. To achieve this,
we break down the matrix multiplication into an affine op-
eration involving summation and a bi-linear part involving
element-wise multiplication.

Ojp =
∑
i

AjiVip︸ ︷︷ ︸
bi-linear part

The summation already provides a decomposition in the
form of Equation (1), and we only need to decompose the
individual summands AjiVip.

Proposition 3.2 Decomposing element-wise multiplication
with N input variables of the form

fj(x) =
N∏
i

xji

by Shapley (with baseline zero) or Taylor decomposition (4)
at reference point x (without bias or distributing the bias
uniformely) yields the following uniform relevance propa-
gation rule:

Rl−1
ji =

1

N
Rl

j . (14)

The proof can be found in Appendix A.3.2. Consequently,
the combined rule can be effectively computed using:

Proposition 3.3 Decomposing matrix multiplication with
a sequential application of the ε-rule (8) and the uniform
rule (14) on the summands yields the following relevance
propagation rule for Aji:

Rl−1
ji =

∑
p

AjiVip

Rl
jp

2 Ojp + ε
(15)

There is no bias term absorbing relevance, whereas ε ab-
sorbs a negligible quantity. For Vip, we sum over the j
indices. The proof can be found in Appendix A.3.3. By
employing this rule, we maintain strict adherence to the
conservation property (3), as explained in Appendix A.3.5.

3.3.3. HANDLING NORMALIZATION LAYERS

Commonly used normalization layers in Transformers in-
clude LayerNorm (Ba et al., 2016) and RMSNorm (Zhang
and Sennrich, 2019). These layers apply affine transforma-
tions and non-linear normalization sequentially.

LayerNorm(x) =
xj − E[x]√
Var[x] + ε

γj + βj (16)

RMSNorm(x) =
xj√

1
N

∑
k x

2
k + ε

γj (17)

where ε, γj , βj ∈ R. Affine transformations such as the
multiplicative weighting of the output or the subtraction of
the mean value are linear operations that can be attributed
by the ε-LRP rule. Normalization, on the other hand, is
non-linear and requires separate considerations. As such,
we focus on the following function:

fj(x) =
xj

g(x)
(18)

where g(x) =
√

Var[x] + ε or g(x) =
√

1
N

∑
k x

2
k + ε.

The work (Ali et al., 2022) demonstrates that when lin-
earizing LayerNorm at x, the bias term absorbs most of
the relevance equal to Var[x]/(Var[x] + ε), effectively ab-
sorbing 99% of the relevance with commonly used values
of ε = 10−6 and Var[x] = 1. Hence, a linearization at x is
not meaningful. As a solution, (Ali et al., 2022) proposes to
regard g(x) as a constant, which transforms the normaliza-
tion operation (18) into a (linear) element-wise operation,
on which the identity rule (9) can be applied, as discussed
in Appendix A.2.2. In the following, we prove that this
heuristic can be derived from the Deep Taylor Decomposi-
tion framework.

Proposition 3.4 Decomposing LayerNorm or RMSNorm by
a Taylor decomposition (4) with reference point 0 (without
bias or distributing the bias uniformly) yields the identity
relevance propagation rule:

Rl−1
i = Rl

i (19)

There is no bias that absorbs relevance. The proof is
given in Appendix A.3.4. This rule enforces a strict no-
tion of conservation, while being highly efficient by ex-
cluding normalization operations from the computational
graph. Experiments in Section 4.1 provide evidence that
this simplification is faithful.

3.4. Understanding Latent Features

As we iterate through each layer during the attribution pro-
cess with AttnLRP, we obtain relevance values for each la-
tent neuron as a by-product. Ranking this latent relevance
enables us to identify neurons and layers that are most in-
fluential for the reasoning process of the model (Achtibat
et al., 2023). The subsequent step is to reveal the concept
that is represented by each neuron by finding the most rep-
resentative reference samples that explain the neuron’s en-
coding. A common technique is Activation Maximization
(ActMax) (Nguyen et al., 2016), where input samples are
sought that give rise to the highest activation value. We
follow up on these observations and present the follow-
ing strategy for understanding latent features: (1) Collect
prompts that lead to the highest activation of a unit. (2) Ex-
plain the unit’s activation using AttnLRP, allowing to nar-
row down the relevant input tokens for the chosen unit.
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Figure 3. There are two approaches for understanding knowledge
neurons: (a) Neuron 3948 at the last non-linearity in FFN 17
of the Phi-1.5 model selects a weight row to add to the residual
stream. This weight row projected on the vocabulary spans top-
ics about ice, cold places and winter sport. (b) Sentences that
maximally activate this neuron contain references about coldness.
Attributing the neuron with AttnLRP highlights the most relevant
tokens inside the input sentences. Inspired by (Voita et al., 2023).

In this work, we concentrate on knowledge neurons (Dai
et al., 2022; Voita et al., 2023) that are situated at the last
non-linearity in FFN layers z = GELU(W1x). These
neurons possess intriguing properties, as shown in Fig-
ure 3: They encode factual knowledge and upon activation,
the corresponding row of the second weight matrix W2 is
added to the residual stream directly influencing the out-
put distribution of the model. By projecting this weight
row onto the vocabulary, a distribution of the most proba-
ble tokens across the vocabulary is obtained (Geva et al.,
2022). Applying AttnLRP on ActMax reference samples
and projecting the weight row on the vocabulary allow us
to understand in which context a neuron activates and how
its activation influences the prediction of the next token. In
contrast to (Ali et al., 2022), AttnLRP also allows analyz-
ing the key and value linear layers inside attention modules.

4. Experiments
Our experiments aim to answer the following questions:

(Q1) How faithful are our explanations compared to other
state-of-the-art approaches?

(Q2) How efficient is LRP compared to perturbation-based
methods?

(Q3) Can we understand latent representations and interact
with LLMs?

4.1. Evaluating Explanations (Q1)

A reliable measure of faithfulness of an explanation are
input perturbation experiments (Samek et al., 2017; Hed-
ström et al., 2023). This approach iteratively substitutes
the most important tokens in the input domain with a base-
line value. If the attribution method accurately identified
the most important tokens, the model’s confidence in the
predicted output should rapidly decrease. The other way
around, perturbing the least relevant tokens first, should
not affect the model’s prediction and result in a slow de-
cline of the model’s confidence. For more details, see Ap-
pendix B.2. Despite its drawbacks, such as potentially in-
troducing out-of-distribution manipulations (Chang et al.,
2018) and sensitivity towards the chosen baseline value,
this approach is widely adopted in the community. (Brocki
and Chung, 2023; Blücher et al., 2024) have addressed this
criticism and introduced an enhanced metric by quantifying
the area between the least and most relevant order pertur-
bation curves to obtain a robust measure. Hence, we will
employ this improved metric to measure faithfulness. Ap-
pendix Figure B.5 illustrates a typical perturbation curve.

In order to assess plausibility, we utilize the SQuAD v2
Question-Answering (QA) dataset (Rajpurkar et al., 2018),
which includes a ground truth mask indicating the correct
answer within the question. We calculate attributions for
accurately answered questions and determine the top-1 ac-
curacy of the most relevant token and the Intersection over
Union (IoU) between the positive attribution values and the
ground truth mask. This approach assumes that the model
solely relies on the information provided in the ground truth
mask, which is not entirely accurate but sufficient for iden-
tifying a trend.

4.1.1. BASELINES

We evaluate the faithfulness on two self-attention models,
a ViT-B-16 (Dosovitskiy et al., 2021) on ImageNet (Deng
et al., 2009) classification and the LLaMa 2-7b (Touvron
et al., 2023) model on IMDB movie review (Maas et al.,
2011) classification as well as next word prediction of
Wikipedia (Wikimedia Foundation, 2023). Additional re-
sults for ViT-L-16 and ViT-L-32 are in Appendix Table B.6.
To assess plausability, we employ two instruction-finetuned
models on the SQuAD v2 dataset: the MoE model Mix-
tral 8x7b (Jiang et al., 2024) and the encoder-decoder
model Flan T5-XL (Chung et al., 2022). We denote our
method as AttnLRP and compare it against a broad spec-
trum of methods including Input×Gradient (I×G), Inte-
grated Gradients (IG), SmoothGrad (SmoothG), Attention
Rollout (AttnRoll), Gradient-weighted Attention Rollout
(G×AttnRoll) and Conservative Propagation (CP)-LRP. As
explained in Appendix A.2.3, we propose to apply the γ-
rule for AttnLRP in the case of ViTs. For better compari-
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Table 1. Faithfulness scores as area between the least and most relevant order perturbation curves (Blücher et al., 2024) on different
models and datasets. To assess plausibility, the (top-1) accuracy along with the IoU in parentheses are depicted for SQuAD v2. Methods
marked with (∗) have been proposed here. Additional results for ViT-L-16 and ViT-L-32 are in Appendix Table B.6.

Methods ViT-B-16 LLaMa 2-7b Mixtral 8x7b Flan-T5-XL
ImageNet ↑ IMDB ↑ Wikipedia ↑ SQuAD v2 ↑ SQuAD v2 ↑

Random 0.01± 0.01 −0.01± 0.05 −0.07± 0.13 0.03 (0.09) 0.03 (0.08)

Input×Grad (Simonyan et al., 2014) 0.80± 0.03 0.12± 0.05 0.18± 0.13 0.56 (0.35) 0.60 (0.39)
IG (Sundararajan et al., 2017) 1.54± 0.03 1.23± 0.05 4.05± 0.13 0.68 (0.44) 0.10 (0.16)
SmoothGrad (Smilkov et al., 2017) −0.04± 0.03 0.25± 0.05 −2.22± 0.14 0.47 (0.24) 0.05 (0.09)

GradCAM (Chefer et al., 2021b) 0.27± 0.04 −0.82± 0.05 2.01± 0.15 0.82 (0.72) 0.81 (0.70)
AttnRoll (Abnar and Zuidema, 2020) 1.31± 0.03 −0.64± 0.05 −3.49± 0.15 0.05 (0.10) 0.02 (0.08)
Grad×AttnRoll (Chefer et al., 2021a) 2.60± 0.03 1.61± 0.05 9.79± 0.14 0.91 (0.40) 0.94 (0.53)

AtMan (Deb et al., 2023) 0.70± 0.02 −0.20± 0.05 3.31± 0.15 0.86 (0.83) 0.88 (0.80)
KernelSHAP (Lundberg and Lee, 2017) 4.71± 0.03 - - - -

CP-LRP (ε-rule, Ali et al. (2022)) 2.53± 0.02 1.72± 0.04 7.85± 0.12 0.50 (0.40) 0.91 (0.83)
CP-LRP (γ-rule for ViT, as proposed here)* 6.06± 0.02 - - - -
AttnLRP (ours)* 6.19± 0.02 2.50± 0.05 10.93± 0.13 0.96 (0.72) 0.94 (0.84)

son, we also included an enhanced CP-LRP baseline, which
also uses the γ-rule in the ViTs experiment. The LRP vari-
ants introduced by (Voita et al., 2021; Chefer et al., 2021b)
are excluded due to numerical instabilities observed in pre-
liminary experiments, see also Appendix A.2.1. Further,
we utilize the Grad-CAM adaptation described in (Chefer
et al., 2021b). Specifically, we weight the last attention
map with the gradient. For a fair comparison, we attribute
all methods without the softmax at the classification out-
put, except AtMan which relies on it. KernelSHAP is
only evaluated on vision transformers due to prohibitive
computational costs on larger LLMs. Finally, we expand
upon AtMan by incorporating it into encoder-decoder mod-
els by suppressing tokens in all self-attention layers within
the encoder, while only doing so in cross-attention layers
within the decoder. For AtMan, SmoothGrad and Rollout-
methods we perform a hyperparameter sweep over a subset
of the dataset. More details about baseline methods and the
hyperparameter search are in Appendix A.1 and B.3. We il-
lustrate example heatmaps for SQuAD v2 in Appendix B.7.

4.1.2. DISCUSSION

In Table 1, we can observe that AttnLRP consistently out-
performs all the state-of-the-art methods in terms of faith-
fulness. In models with a higher number of non-linearities
(higher complexity), AttnLRP demonstrates substantially
higher accuracy compared to CP-LRP. While the relative
improvement to CP-LRP is 3% for Flan-T5-XL, which
only utilizes standard attention layers, AttnLRP achieves
a remarkable 46% improvement over CP-LRP in terms of
top-1 accuracy in Mixtral 8x7b, that incorporates additional
expert layers with softmax non-linearities and FFN lay-

ers with non-linear weighting. In Appendix B.4, we dis-
cuss the architectural differences and conduct an ablation
study on different model components to demonstrate this
effect. We also observe that gradient-based approaches sig-
nificantly suffer from noisy attributions, as reflected by the
low faithfulness and illustrated in example heatmaps in Ap-
pendix B.7. CP-LRP with ε applied on all layers (as pro-
posed in Ali et al. (2022)), also suffers from noisy gradi-
ents in ViTs. Applying instead the γ-rule for CP-LRP and
AttnLRP in ViTs improves the faithfulness substantially.
Whereas AtMan and GradCAM do not perform well in un-
structured tasks, i.e., next word prediction or classification,
they achieve a high score in QA tasks. While G×AttnRoll
better reflects the model behavior compared to AtMan and
GradCAM, it is affected by considerable background noise,
resulting in a low IoU score in the SQuAD v2 dataset.

4.2. Computational Complexity and Memory
Consumption (Q2)

Table 2 illustrates the computational complexity and mem-
ory consumption of a single LRP-based attribution and
linear-time perturbation, such as AtMan or a Shapley-based
method (Fatima et al., 2008). Linear-time perturbation
requires NT forward passes, but has only a memory re-
quirement of O(1). Since LRP is a backpropagation-based
method, gradient checkpointing (Chen et al., 2016) tech-
niques can be applied. In checkpointing, LRP requires
two forward and one backward pass, while the memory re-
quirement scales logarithmic with the number of layers. In
Appendix B.8, we benchmark energy, time and memory
consumption of LRP against perturbation-based methods
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Table 2. Computational and memory complexity of LRP-based
and linear-time perturbation methods measured w.r.t. a single for-
ward pass. NL: number of layers, NT : number of tokens

Methods Computational Memory
Complexity Consumption

LRP Checkpointing O(1) O(
√
NL)

Perturbation (linear) O(NT ) O(1)

across context- and model-sizes.

4.3. Understanding & Manipulating Neurons (Q3)

In our investigation, we use the Phi-1.5 model (Li et al.,
2023), which has a transformer-based architecture with
a next-word prediction objective. We obtain reference
samples for each knowledge neuron by collecting the
most activating sentences over the Wikipedia summary
dataset (Scheepers, 2017).

To illustrate, we consider the prompt: ‘The ice bear
lives in the’ which gives the corresponding predic-
tion: ‘Arctic’. Using AttnLRP, we determine the most
relevant layers for predicting ‘Arctic’ as well as the spe-
cific neurons within the FFN layers contributing to this pre-
diction. Our analysis reveals that the most relevant neurons
after the first three layers are predominantly situated within
the middle layers. Notably, one standout neuron #3948 in
layer 17 activates on reference samples about cold tem-
peratures, as depicted in Figure 3. This observation is fur-
ther validated by projecting the weight matrix of the second
FFN layer onto the vocabulary. The neuron shifts the out-
put distribution of the model to cold places, winter sports
and animals living in cold regions.

Analogously, for the prompt ‘Children love to
eat sugar and’ with the prediction ‘sweets’, the
most relevant neuron’s (layer 18, neuron #5687) pro-
jection onto the vocabulary signifies a shift in the model’s
focus towards the concept of candy, temptation and sweet-
ness in the vocabulary space. We interact with the model by
deactivating neuron #3948, and strongly amplifying the
activation of neuron #5687 in the forward pass. This ma-
nipulation yields the following prediction change:

Prompt: Ice bears live in the
Prediction: sweet, sugary treats of the
candy store.

We further notice that neuron #4104 in layer 17 en-
codes for dryness, thirst and sand. Increasing its activation
changes the output to ‘desert’ (illustrated in Figure 2).

With AttnLRP, we are able to trace the most important
neurons in models with billions of parameters. This al-
lows us to systematically navigate the latent space to en-

able targeted modifications to reduce the impact of cer-
tain concepts (for example, ‘coldness’) and enhance the
presence of other concepts (for example, ‘dryness’), re-
sulting in discernible output changes. Such an approach
holds significant implications for transformer-based mod-
els, which have been difficult to manipulate and explain
due to inherent opacity and size.

5. Conclusion
We have extended the Layer-wise Relevance Propagation
framework to non-linear attention, proposing novel rules
for the softmax and matrix-multiplication step and provid-
ing interpretations in terms of Deep Taylor Decomposition.
Our AttnLRP method stands out due to its unique combina-
tion of simplicity, faithfulness, and efficiency. We demon-
strate its applicability both for LLMs as well as ViTs, utiliz-
ing the denoising effect of the γ-rule. In contrast to other
backpropagation-based approaches, AttnLRP enables the
accurate attribution of neurons in latent space (also within
the attention module), thereby introducing novel possibili-
ties for real-time model interaction and interpretation.

Limitations & Open Problems
Adjusting the γ-parameter in ViTs remains crucial to
achieve accurate attributions. To reduce memory consump-
tion, the impact of quantization on attributions and custom
GPU kernels for LRP rules should be investigated.
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M. M. (2023). Quantus: An explainable ai toolkit for
responsible evaluation of neural network explanations
and beyond. Journal of Machine Learning Research,
24(34):1–11.

Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H.,
Chen, Q., Peng, W., Feng, X., Qin, B., et al. (2023). A
survey on hallucination in large language models: Prin-
ciples, taxonomy, challenges, and open questions. arXiv
preprint arXiv:2311.05232.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A.,
Savary, B., Bamford, C., Chaplot, D. S., Casas, D. d. l.,
Hanna, E. B., Bressand, F., et al. (2024). Mixtral of ex-
perts. arXiv preprint arXiv:2401.04088.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Al-
sallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N.,
Araya, C., Yan, S., et al. (2020). Captum: A unified and
generic model interpretability library for pytorch. arXiv
preprint arXiv:2009.07896.

Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gu-
nasekar, S., and Lee, Y. T. (2023). Textbooks are all
you need ii: phi-1.5 technical report. arXiv preprint
arXiv:2309.05463.

Lundberg, S. M. and Lee, S. (2017). A unified approach
to interpreting model predictions. In Advances in Neural
Information Processing Systems 30, pages 4765–4774.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for senti-
ment analysis. In Proceedings of the 49th annual meet-
ing of the association for computational linguistics: Hu-
man language technologies, pages 142–150.

Mao, C., Jiang, L., Dehghani, M., Vondrick, C., Suk-
thankar, R., and Essa, I. (2021). Discrete representa-
tions strengthen vision transformer robustness. In Inter-
national Conference on Learning Representations.

Miglani, V., Yang, A., Markosyan, A., Garcia-Olano, D.,
and Kokhlikyan, N. (2023). Using captum to explain
generative language models. In Proceedings of the
3rd Workshop for Natural Language Processing Open
Source Software (NLP-OSS 2023), pages 165–173.

11



AttnLRP: Attention-Aware Layer-Wise Relevance Propagation

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., and
Müller, K.-R. (2019). Layer-wise relevance propagation:
an overview. Explainable AI: interpreting, explaining
and visualizing deep learning, pages 193–209.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and
Müller, K.-R. (2017). Explaining nonlinear classifica-
tion decisions with deep taylor decomposition. Pattern
recognition, 65:211–222.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and
Clune, J. (2016). Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks.
Advances in neural information processing systems, 29.
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Appendix

A. Appendix I: Methodological Details
This appendix provides further details on the methods pre-
sented in the paper. In particular, we focus on the AttnLRP
method, provide implementation details, discuss the stabil-
ity of the bias term, highlight the difference between other
LRP variants, discuss the noise problem in Vision Trans-
formers and illustrate the effects of temperature scaling on
attributing the softmax function. Finally, we provide proofs
for the four propositions presented in the main paper.

A.1. Details on Baseline Methods

In the following, we present an overview of the baseline
methods and their hyperparamter choices.

A.1.1. INPUT × GRADIENT

Gradients are one of the most straightforward approaches
to depict how sensitive the trained model is with respect
to each individual given feature (traditionally of the input
space). By weighting the gradient with the input features,
the model is locally linearized (Simonyan et al., 2014):

I × G(x) =
∂fc(x)
∂x

× x (20)

Due to the gradient shattering effect (Balduzzi et al., 2017)
which is a known phenomenon (especially in the ReLU-
based CNNs), heatmaps generated by I×G are very noisy,
making them in many cases not meaningful.

A.1.2. INTEGRATED GRADIENTS

To tackle the noisiness of I×G, the idea to integrate gradi-
ents along a trajectory has been proposed. Here, the gra-
dients of different (m) interpolated versions of the input x,
noted by x′, are integrated as (Sundararajan et al., 2017):

IG(x) = (x − x′)
∫ 1

α=0

∂fj(x′ + α× (x − x′))
∂x

dx

≈ (x − x′)
m∑

k=1

∂fj(x′ + k
m × (x − x′))
∂x

× 1

m

(21)

We utilize zennit (Anders et al., 2021) and its default
settings to compute Integrated Gradients attribution maps
i.e. m = 20.

A.1.3. SMOOTHGRAD

A different technique towards the reduction of noisy gra-
dients is smoothing the gradients (Smilkov et al., 2017)
through generating (m) various samples in the neighbor-
hood of input x as xε = x +N (µ, σ2) and computing the
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average of all gradients:

SmoothGrad(x) =
1

m

m∑
1

∂fj(xε)

∂xε
(22)

In this work, we set µ = 0 and perform a hyperparame-
ter search for σ to find the optimal parameter. We utilize
zennit (Anders et al., 2021) and its default settings to
compute SmoothGrad attribution maps i.e. m = 20.

A.1.4. ATTENTION ROLLOUT

Self-Attention rollout (Abnar and Zuidema, 2020) capital-
izes on the intrinsic nature of the attention weights matrix
A ∈ Rb×sq×sk as a representative measure of token im-
portance. It generates a sq × sk matrix where each row is
normalized to form a probability distribution, representing
the importance of each query token to all key tokens. The
attention scores along the head dimension are averaged:

Ā = Eb[A]

where Eb denotes the expectation along the head dimension
b of the attention map. To compute the relevance of hidden
layer tokens (h) to the original input tokens (i), an iterative
multiplication of the attention matrices on the left side is
sufficient. Hence, the key dimension represents the inputs
and the query dimension the outputs. To account for the
residual connection through which the information of the
previous tokens flows, an identity matrix I is added:

Rh,i
k = (I + Āh,h

) · Rh,i
k−1 (23)

where k = 1 corresponds to the input layer and Rh,i
0 is

initialized with the identity matrix I, h denotes the hidden
feature space, and i stands for input dimension.

(Chefer et al., 2021a) build upon self-attention rollout and
weights the attention matrix with the gradient. Addition-
ally, the weighted attention map is denoised by computing
the mean value of only positive values.

Ā = Eb[(∇A ⊙ A)+]

For encoder-decoder models, (Chefer et al., 2021a) present
several additional considerations that are not mentioned
here for brevity.

(Gildenblat, 2023) notes, that the rollout attributions can
further be improved by discarding outlier values. For that,
we define a discard threshold dt ∈ [0, 1] used to compute
the quantile Q(dt), where dt represents the proportion of
the data below the quantile e.g. with cumulative distribution
function P (Ā ≤ Q(dt)) = dt.

Ām,n =

{
0 if Ām,n > Q(dt)

Ām,n otherwise

A.1.5. ATMAN

AtMan (Deb et al., 2023) perturbs the pre-softmax activa-
tions along the k-dimension:

H = Q · K⊤

H̃ = H ⊙ (1 − pi)

where H ∈ Rb×sq×sk , and 1 ∈ [1]b×sq×sk a matrix con-
taining only 1. pi denotes a matrix ∈ Rb×sq×sk with

pi
lmn =

{
p for n = i

0 for n ̸= i

Thus, for a single token i ∈ {1, 2, ..., N}, we suppress all
values along the column/key-dimension with a suppression
factor p. The suppression factor is a hyperparameter that
must be tuned to the dataset and model. For ViTs, addi-
tional cosine similarities are computed to suppress corre-
lated tokens as detailed in (Deb et al., 2023). For that, an
additional hyperparameter denoted as t for threshold must
be optimized in ViTs only.

A.1.6. KERNELSHAP

LIME computes attributions by fitting an additive surro-
gate model (Ribeiro et al., 2016). KernelSHAP (Lundberg
and Lee, 2017) is a special case of LIME, that sets the
loss function, weighting kernel and regularization terms of
LIME such that LIME recovers Shapley values. Hence,
KernelSHAP allows theoretically to obtain Shapley Values
more efficiently than directly computing Shapley Values.

To apply KernelSHAP in the vision domain, we divide the
input image into N super-pixels using the Simple Linear It-
erative Clustering (SLIC) algorithm (Achanta et al., 2012).
We use captum (Kokhlikyan et al., 2020) with its default
settings to compute the attributions i.e. number of samples
per attributions set to 2000 and baseline value set to 0.5.
A baseline value of 0 resulted in lower faithfulness. For
SLIC, we set N = 100 with compactness set to 10.

A.2. Details on AttnLRP

This section provides more details on AttnLRP and justifies
the specific parameter choices made in our work (e.g., use
of γ-LRP in Vision Transformers).

A.2.1. CONSERVATION & NUMERICAL STABILITY OF
BIAS TERMS

The total relevance Rj of a layer output, i.e. linearized
function fj(x) =

∑
i Jji xi + b̃j , is computed by sum-

ming the contributions of the input variables Ri←j , repre-
sented by Jji xi, and adding the contribution of the bias
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term Rb←j , represented by b̃j .

Rj =
∑
i

Ri←j +Rb←j ,

The relevance of the input variables is solely determined by
the input variables themselves

Ri =
∑
j

Ri←j =
∑
j

Jji xi
Rj

fj(x)
,

while the relevance of the bias term itself is calculated as

Rb←j = b̃j
Rj

fj(x)
.

If we want to compute the relevance of the input vari-
ables Ri while ensuring strict adherence to the conserva-
tion property (3), we must exclude the bias term, so that
it does not absorb part of the relevance. In the literature,
we find two common practices: Either distributing the bias
term uniformely on the input variables (Binder et al., 2016;
Voita et al., 2021) or applying the identity rule (Ding et al.,
2017; Chefer et al., 2021b). Both approaches can lead to
severe numerical instabilities in specific cases that are chal-
lenging to identify. Therefore, we will dedicate some time
to explain the issue in greater detail.

Remark A.2.1 Enforcing strict conservation (3) on a func-
tion, where

∃i, j ∈ N : xi = 0 ∧ fj(x) ̸= 0,

by distributing the relevance of the bias term of its lin-
earization uniformly on the input variables or applying the
identity rule with i = j may lead to numerical instabilities.

Distributing the bias term: We can distribute the relevance
value of the bias term uniformly across the input variables
by assuming that the bias term is part of the input variables:

Rl
j =

∑
i

R̃
(l−1,l)
i←j =

N∑
i

(
R

(l−1,l)
i←j +

R
(l−1,l)
b←j

N

)
,

where N represents the number of input variables. Hence,

Rl
i =

∑
j

R̃
(l−1,l)
i←j =

∑
j

(
Jji xi +

b̃j
N

)
Rl

j

fj(x)
.

However, we may encounter numerical instabilities, but
these effects will only become visible in the next sequential
relevance propagation at the prior layer, not at this layer yet.
For example in the softmax function, we may encounter a
situation where ∃i, j ∈ N with xl−1

i = 0 but f l
j(x) > 0. If a

non-zero relevance value from layer l is assigned to f l
j(x),

then its relevance value is propagated to the input variable
xl−1
i through the relevance message:

R̃
(l−1,l)
i←j =

b̃j
N

Rl
j

f l
j(x) + ε

Assuming we apply the ε-rule in succession, the relevance
in the prior layer is given by:

R
(l−2,l−1)
k←i = Jik xl−2

k

Rl−1
i

0 + ε

Here, we divide by xl−1
i = f l−1

i = 0. Since ε is very
small, this term explodes and causes numerical instabili-
ties. Hence, assigning a non-zero relevance value to an in-
put that equals zero leads to numerical instabilities. Note,
that these instabilities would not occur if Rl−1

i = 0 e.g.
R

(l−1,l)
i←j = 0. Functions where f(0) = 0 do not encounter

this issue, because zero output activations will not receive
any relevance in following layers e.g. Rl

j = 0 using all
rules described in this paper.

Applying the identity rule: Alternatively, we can apply the
identity rule as follows:

Rl−1
i = Rl

i

Here, numerical instabilities might also arise in the sub-
sequent relevance propagation, not at this layer. With the
same reasoning as before, the identity rule propagates a
non-zero relevance value to an input variable that is zero.

Omitting the bias term: For the sake of completeness, we
mention that omitting the bias term entirely is also an op-
tion. In this case, the relevance propagation equation is:

Rl−1
i =

∑
j

Jji xi

Rl
j∑

i Jji xi + ε

Here, we no longer divide by the original function fj(x),
but by its linearization without the bias term. However, it
is important to ensure that no sign flips occur, as

∑
i Jji xi

might have a different sign than fj(x).

Remark A.2.2 Enforcing strict conservation (3) by omit-
ting the bias term of a linearization (4) can lead to sign
flips in the relevance scores.

Summary: In summary, applying the identity rule, dis-
tributing its relevance value uniformly across the input vari-
ables or omitting the bias term completely are possible ap-
proaches, but they have their considerations and potential
challenges. Regarding the softmax non-linearity, (Voita
et al., 2021) distributes the bias term equally on all input
variables, while (Ding et al., 2017; Chefer et al., 2021b)
apply the element-wise identity rule (9). Both variants can
lead to severe numerical instabilities.
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A.2.2. HIGHLIGHTING THE DIFFERENCE BETWEEN
VARIOUS LRP METHODS

In Table A.3, we illustrate the different strategies employed
for LRP in the past.

Softmax: (Voita et al., 2021) linearizes at x but distributes
the bias term equally on all input variables, while (Ding
et al., 2017; Chefer et al., 2021b) apply the element-wise
identity rule (9). More specifically, (Ding et al., 2017) did
not discuss the softmax function explicitly, but they skip
all non-linear activation functions. Therefore, we assume
that (Ding et al., 2017) applies the identity rule also to the
softmax function. Both variants enforce a strict notion of
the conservation principle (3), but can lead to severe nu-
merical instabilities as discussed in Appendix A.2.1. (Ali
et al., 2022) regards the attention matrix A in Equation (11)
as constant, attributing relevance solely through the value
path by stopping the relevance flow through the softmax.
Consequently, the query and key matrices can no longer be
attributed, which reduces the faithfulness and makes latent
explanations in query and key matrices infeasible. Finally,
AttnLRP linearizes at x with a bias term that absorbs part
of the relevance. The presence of a bias term in AttnLRP
is justified because the softmax function yields a value of
1/N even when the input is zero. This is analogous to a bias
term and is necessary to account for this behavior. This
ensures not only numerically robust attributions, but also
improves the faithfulness considerably.

In Figure A.4, we illustrate different attribution maps for
all four options to handle the softmax function. The
given section is from the Wikipedia article on Mount
Everest. The model is expected to provide an answer
for the question ‘How high did they climb in
1922?’ and for the correctly predicted next token
3 of the answer ‘According to the text, the
1922 expedition reached 8,’ is the attribution
computed by initializing the relevance at the predicted to-
ken with its logit value.

While the relevance values for AttnLRP or CP-LRP are be-
tween [−4, 4], distributing the bias uniformely on the input
variables or applying the identity rule leads to an explo-
sion of the relevances between [−1015, 1015]. As a con-
sequence, the heatmaps resemble random noise. AttnLRP
highlights the correct token the strongest, while CP-LRP
focuses strongly on the start-of-sequence <s> token and
exhibits more background noise e.g. irrelevant tokens such
as ‘Context’, ‘attracts’, ‘Everest’ are highlighted, while At-
tnLRP does not highlight them or assigns negative rele-
vance. In Appendix B.7, we compare also other baseline
methods. Note, that the model attends to numerous tokens
within the text which enables it to derive conclusions. Con-
sequently, an attribution that reflects the model behavior
will highlight more than just the single accurate answer

token. The faithfulness experiments in Table 1 demon-
strate, that AttnLRP captures the model reasoning most ac-
curately.

Matrix Multiplication: Applying the ε-rule (8) on bi-linear
matrix multiplication (11) violates the conservation prop-
erty (3) as proved in Appendix A.3.5. To the best of our
knowledge, (Ding et al., 2017) applies the standard ε-rule.
(Voita et al., 2021) utilizes the z+-rule (25), that similar
to the ε-rule also violates the conservation property (3) in
bi-linear matrix multiplication (proof in Appendix A.3.5 is
valid for z+-rule). While (Chefer et al., 2021b) also applies
the ε-rule, an additional normalization step is performed
by dividing both arguments by the summation of its abso-
lute values. This ensures conservation but is not conform
with the DTD framework. (Ding et al., 2017; Chefer et al.,
2021b) set the ε parameter to 0, which may increases nu-
merical instabilities. Hence, we call their LRP variants in
Table A.3 0-LRP.

Since (Ali et al., 2022) regards the softmax output as con-
stant and does not propagate relevance through it, the ma-
trix multiplication is not bi-linear anymore, but becomes
linear. Hence, the application of the ε-rule does not vio-
late the conservation principle and attributes only the value
path. (Ali et al., 2022) sets the ε parameter to zero, hence
we call their LRP variant in Table A.3 0-LRP.

Finally, AttnLRP also applies the ε-rule on bi-linear ma-
trix multiplication. In addition, a novel uniform rule (14)
derived from the DTD framework is incorporated that en-
sures conservation and high faithfulness.

Layer Normalization: The works (Chefer et al., 2021b; Ali
et al., 2022) and AttnLRP apply the identity rule on nor-
malization functions (18), while using the ε-rule on all lin-
ear components of LayerNorm, if applicable. More specif-
ically, (Ali et al., 2022) proposes to regard g(x) in (18)
as a constant, which transforms the normalization opera-
tion, and hence the complete LayerNorm layer, into a linear
layer, on which the ε-rule is applied. However, this is sim-
ilar to applying the identity rule (9) on the normalization
itself, because it becomes element-wise with a single in-
put and output variable (see Section 3.2.2), while applying
the ε-rule on all other linear components of LayerNorm.
(Voita et al., 2021) linearizes at x and distributes the bias
term equally on all input variables, which can lead to nu-
merical instabilities as discussed in Appendix A.2.1.

Vision Transformer: The studies by (Ding et al., 2017;
Voita et al., 2021; Ali et al., 2022) concentrate on the
attribution in natural language processing (NLP) models
and do not address vision transformers. Their methodolo-
gies, as demonstrated in Table 1 (and Appendix A.2.1), fail
when implementing the ε-rule, leading to gradient shatter-
ing and low faithfulness. To mitigate noisy attributions,
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(Chefer et al., 2021b) suggests employing on-top of LRP
an attention rollout (Abnar and Zuidema, 2020) proce-
dure which is additionally enhanced via gradient weight-
ing. This yields an approximation of the mean squared rel-
evance value, which diverges from the originally defined
notion of “relevance” or “importance” of additive explana-
tory models. Subsequent empirical observations by (Chefer
et al., 2021a) revealed that an omission of LRP-inspired rel-
evances and a sole reliance on a positive mean-weighting
of the attention’s activation with the gradient improved the
faithfulness. Though, this approach can only attribute pos-
itively, does not consider counteracting evidence, and does
not allow to attribute latent neurons outside the attention’s
softmax output. AttnLRP, in contrast, adopts the γ-rule in-
stead of the ε-rule in linear layers, achieving highly faithful
attributions without the necessity for a rollout mechanism.
However, the γ parameter must be tuned to the model and
dataset to obtain optimal attributions, as discussed in Ap-
pendix A.2.3.

A.2.3. TACKLING NOISE IN VISION TRANSFORMERS

Since backpropagation-based attributions utilize the gradi-
ent, they may produce noisy attributions in models with
many layers, where gradient shattering and noisy gradients
appear (Balduzzi et al., 2017; Dombrowski et al., 2022).
Hence, various adaptions of the ε-LRP rule were devel-
oped to strengthen the signal-to-noise ratio by dampen-
ing counter-acting activations (Bach et al., 2015; Montavon
et al., 2019). Here, we use the generalized γ-rule that en-
compasses all other proposed rules in the literature (Mon-
tavon et al., 2019). Let zij be the contribution of input i to
output j, e.g. Wjixi, and zj the neuron output activation.
Then depending on the sign of zj :

R
(l, l+1)
i←j =


zij+γz+

ij

zj+γ
∑

k z+
kj

Rl+1
j if zj > 0

zij+γz−ij

zj+γ
∑

k z−kj

Rl+1
j else

(24)

with γ ∈ R>0, (·)+ = max(· , 0) and (·)− = min(· , 0). If
γ = ∞, it is equivalent to the LRP z+-rule, which is given
as

R
(l, l+1)
i←j =

(wijxi)
+

z+j
Rl+1

j (25)

by only taking into account positive contributions z+j =∑
i(wijxi)

+ with (·)+ = max(0, ·).
Remarkably, our observations reveal that attributions in
LLMs demonstrate high sparsity and lack visible noise,
while ViTs are susceptible to gradient shattering. We hy-
pothesize that the discrete nature of the text domain may
affect robustness (Mao et al., 2021). Therefore, we only
apply the γ-rule in ViTs in the convolutional and linear

FFN layers outside the attention module. To further in-
crease the faithfulness, the γ-rule can be also applied on
softmax layers. Since the output of the softmax is always
greater than zero, we apply the simplified z+-rule (special
case of γ-rule). The z+-rule applied on a linearization (4)
for softmax results in:

Rl−1
i =

∑
j

(Jji xi)
+

Rl
j∑

k(Jjk xk)+ + b̃+j
(26)

This formula is computationally more expensive to evalu-
ate than the original rule for softmax derived in Proposi-
tion 3.1. Should efficiency be a priority, it is recommended
to bypass the softmax layer as proposed in CP-LRP, which
prevents relevance from passing through the softmax func-
tion and reduces gradient shattering caused by this layer.
Then, for all other components of the model, AttnLRP rules
are recommended, with the application of the γ-rule to lin-
ear layers only. This is especially true, given that the dis-
crepancy in faithfulness between AttnLRP and γCP-LRP
is minimal for standard vision architectures (Dosovitskiy
et al., 2021) evaluated in Table 1 and Table B.6, that incor-
porate only standard attention and FFN layers.

A.2.4. IMPACT OF TEMPERATURE SCALING ON THE
SOFTMAX RULE

Temperature scaling controls the entropy within the soft-
max probability distribution, thereby influencing the pre-
dictability of subsequent next token predictions at the clas-
sification output. A high temperature value tends to flat-
ten the softmax output distribution (more randomness),
whereas a small temperature parameter sharpens the distri-
bution (less randomness). This scaling is done by dividing
the input x by the temperature T ∈ R prior to applying the
softmax function.

sj(x) =
exj/T∑
i e

xi/T

Recall that the derivative of the softmax function has two
cases, which depend on the output j and input i indices:

∂sj
∂xi

=

{
sj(1− sj) for i = j

−sjsi for i ̸= j

In the scenario where sj ≈ 1, the derivative for i = j van-
ishes. This occurs e.g. for extremely low temperature val-
ues or exceptionally high confidence in the model’s clas-
sification output. This poses an issue for the Deep Tay-
lor Decomposition (Montavon et al., 2017) derived in Sec-
tion 3.1.1, because DTD decomposes the softmax function
by utilizing the gradient (jacobian) term Jjixi for calculat-
ing attributions. If the gradient vanishes, the bias term will
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Table A.3. Conceptual differences between various-LRP methods and their implications. “Layer Normalization” refers here only to the
normalization function (18) itself and not to the learnable parameters of LayerNorm or RMSNorm.

Methods Softmax Matrix Multiplication Layer Normalization
(Ding et al., 2017) Identity rule 0-LRP not available

(bi-linear)
⇒ unstable (Appendix A.2.1) ⇒ violates conservation

(Voita et al., 2021) Taylor decomposition at x z+-LRP Taylor decomposition at x
(distributes the bias uniformly) (bi-linear) (distributes the bias uniformly)
⇒ unstable (Appendix A.2.1) ⇒ violates conservation ⇒ unstable (Appendix A.2.1)

(Chefer et al., 2021b) Identity rule 0-LRP Identity rule
& post-hoc normalization

(bi-linear)
⇒ unstable (Appendix A.2.1) ⇒ ensures conservation ⇒ ensures conservation

& faithful
(Ali et al., 2022) Regarded as constant 0-LRP Identity rule

(linear only)

⇒ stable & no attribution ⇒ ensures conservation ⇒ ensures conservation
inside attention module & faithful

AttnLRP Taylor decomposition at x ε-LRP Identity rule
(with bias) & uniform rule

(bi-linear)
⇒ stable & faithful ⇒ ensures conservation ⇒ ensures conservation

& faithful & faithful

capture all the relevance, stopping the relevance flow alto-
gether. This effect is also generally described by (Shriku-
mar et al., 2017).

Within the attention mechanism, this limitation is circum-
vented by multiplying the softmax output with the value
path, ensuring that relevance is transmitted via the uni-
form rule to the value path, akin to CP-LRP (refer to Ap-
pendix A.2.2). However, in instances where the softmax
function is utilized independently, this becomes problem-
atic as the relevance flow could be distorted.

To see this, consider Proposition 3.1 (13): Rl−1
i might be

zero if Rl
j = 0 ∀j ̸= i with si = 1:

Rl−1
i = xi(R

l
i − si

∑
j

Rl
j) = xi(R

l
i −Rl

i) = 0

Therefore, we suggest utilizing an increased temperature
scaling value when explaining the softmax classification
output to prevent that the softmax saturates i.e. the gradient
vanishes. Nonetheless, the attribution of the classification
output has not been investigated in this work (the softmax
layer is always removed and LRP only applied to the logit
outputs). An analysis of these effects remain an interesting
topic for future work.

A.3. Proofs

In the following, we provide proofs for the rules presented
in the main paper, and that the application of the ε-rule
on bi-linear matrix multiplication violates the conservation
property.

A.3.1. PROPOSITION 3.1: DECOMPOSING SOFTMAX

In this subsection, we demonstrate the decomposition of
the softmax function by linearizing (4) it at x . We begin
by considering the softmax function:

sj(x) =
exj∑
i e

xi

The derivative of the softmax has two cases, which depend
on the output and input indices i and j:

∂sj
∂xi

=

{
sj(1− sj) for i = j

−sjsi for i ̸= j

Consequently, a Taylor decomposition (4) yields:

fj(x) = sj

(
xj −

∑
i

sixi

)
+ b̃j
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We differentiate between two cases, namely (i) when we
attribute relevance from output j to input i ̸= j and (ii)
when we attribute from output j to input i = j.

R
(l−1,l)
i←j =

{
(xi − sixi) R

l
i for i = j

−sixi R
l
j for i ̸= j

Applying equation (5), we obtain:

Rl−1
i =

∑
j

R
(l−1,l)
i←j = xi(R

l
i − si

∑
j

Rl
j)

In Appendix A.2.4, we discuss the implications of van-
ishing gradients and temperature scaling on attributing the
softmax function.

A.3.2. PROPOSITION 3.2: DECOMPOSING
MULTIPLICATION

The aim in is subsection is to decompose the multiplication
of N input variables.

fj(x) =
N∏
i

xji

We start by performing a Taylor decomposition (4), then
we derive the same decomposition with Shapley.

Taylor decomposition: The derivative is

∂fj
∂xji

=

N∏
k ̸=i

xjk

Consequently, a Taylor decomposition (4) at x yields

fj(x) =
N∑
i

∂fj
∂xji

xji+b̃j = N

N∏
k

xjk+b̃j = Nfj(x)+b̃j

We can either omit the bias term or equally distribute it
on the input variables to strictly enforce the conservation
property (3). Here, we demonstrate how to distribute the
bias term uniformly.

R
(l−1,l)
ji←j =

(
fj +

b̃j
N

)
Rl

j

Nf(x)j + b̃j
=

1

N
Rl

j

Since each input with index ji at layer l − 1 is only con-
nected to one output with index j at layer l, we have only
a single relevance propagation message. Hence, it follows
from Equation (2):

Rl−1
ji = R

(l−1,l)
ji←j =

1

N
Rl

j

For omitting the bias term, repeat the proof with b̃j = 0.

Shapley: The Shapley value (Lundberg and Lee, 2017) is
defined as:

ϕi(f) =
∑
S⊆N
i/∈S

|S|!(N − |S| − 1)!

N !
(f(S ∪ {i})− f(S))

(27)
where ϕi(v) is the Shapley value of the feature i and value
function f . N denotes the set of all features, and S denotes
a feature subset (coalition).

With respect to multiplication, zero is the absorbing ele-
ment. Hence, we choose zero as our baseline value, and
the Shapley value function becomes:

f(S ∪ {i}) =
∏
k

xk

f(S) = 0

f(S ∪ {i})− f(S)) =
∏
k

xk

The symmetry theorem (Fryer et al., 2021) of Shapley
states that the contributions of two feature values i and l
should be the same if they contribute equally to all possible
coalitions

f(S ∪ {i}) = f(S ∪ {l})
∀S ⊆ {1, 2, ...N}\{i, l}

then ϕi(f) = ϕl(f). In addition, the efficiency theorem
(Fryer et al., 2021) states that the output contribution is
distributed equally amongst all features. Hence, the out-
put contribution is equal to the sum of coalition values of
all features i, ∑

i

ϕi(f) = f(N)

Both theorems are applicable and hence it follows:

ϕi(f) =
1

N
f(N)

In the case of LRP, we identify f(N) as Rl
j and ϕi(f) as

Rl−1
ji .

A.3.3. PROPOSITION 3.3: DECOMPOSING BI-LINEAR
MATRIX MULTIPLICATION

Consider the equation for matrix multiplication, where we
treat the terms as single input variables by substituting them
with ujip = AjiVip

Ojp =
∑
i

AjiVip =
∑
i

ujip

In this case, the function already is in the form of an addi-
tive decomposition (1). Therefore,

R
(l−1,l)
jip←jp ∝ ujip
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This can also be seen, by noticing that
∑

i ujip is a linear
operation, since a single variable is left. Hence, it can be
regarded as a linear layer (6) characterized with constant
weights of one and a bias of zero. We already derived the
solution to applying a linearization (4) to a linear layer: the
ε-rule (8). Therefore, the solution is:

R
(l−1,l)
jip←jp = ujip

Rl
jp

Ojp + ε
= AjiVip

Rl
jp

Ojp + ε

Since each input with index jip at layer l − 1 is only con-
nected to one output with index jp at layer l, we have only
a single relevance propagation message. Hence, it follows
from equation (2):

Rl−1
jip = R

(l−1,l)
jip←jp

Next, we decompose the individual terms ujip using the
uniform rule from the previous Section A.3.2 to obtain rel-
evance messages for Aji:

R
(l−1,l−1)
ji←jip =

1

2
Rl−1

jip

Each input Aji is connected to p outputs ujip. Hence, to
obtain the relevance values attributed to Aji, we must ag-
gregate all relevance messages from output jip to inputs ji
via Equation (2):

Rl−1
ji =

∑
p

R
(l−1,l−1)
ji←jip =

∑
p

1

2
Rl−1

jip

Rl−1
ji =

∑
p

AjiVip

Rl
jp

2(Ojp + ε)

Because ε ≪ |Ojp|, we simplify the final solution:

Rl−1
ji =

∑
p

AjiVip

Rl
jp

2 Ojp + ε

The proof for Vip follows a similar approach by summing
over the j indices instead of p. In Appendix A.3.5, we proof
that this rule does not violate the conservation property (3)
in contrast to the standard ε-rule.

A.3.4. PROPOSITION 3.4: LAYER NORMALIZATION

Consider layer normalization of the form

fj(x) =
xj

g(x)

where g(x) =
√

Var[x] + ε or g(x) =
√

1
N

∑
k x

2
k + ε.

The derivative is

∂fj
∂xi

=
1

g(x)2

{
g(x)− xj

∂g(x)
∂xi

for i = j

−xj
∂g(x)
∂xi

for i ̸= j
(28)

In LayerNorm (Ba et al., 2016), we assume for simplicity
E[x] = 0, then the partial derivative simplifies to

V[x] = E[x2]− E[x]2 = E[x2]
∂V[x]
∂xi

=
2

N
xi

Further, the partial derivative of RMSNorm (Zhang and
Sennrich, 2019) is

∂RMSNorm
∂xi

=
xi√

N
∑

k xk

At reference point x̃i = 0, the diagonal elements in Equa-
tion (28) i ̸= j are zero, yielding the Taylor decomposition:

fi(x) =
∂fi
∂xi

∣∣∣
x̃i=0

xi + b̃i =
xi

ε
+ b̃i

To enforce a strict notion of the conservation property (3),
the bias term b̃i can be excluded or evenly distributed across
the input variables. Because we have only a single input
variable, the bias can be considered as part of xi.

Rl−1
i =

(xi

ε
+ b̃i

) Rl
i

xi

ε + b̃i
(29)

Since there is only one input variable and one output, the
decomposition is equivalent to the identity function, as dis-
cussed in the Section 3.2.2 about component-wise non-
linearities. Thus, we conclude that the identity rule applies
in this case.

Rl−1
i = Rl

i (30)

Note, that this rule is numerically stable because fj(0) = 0
as discussed in Section A.2.1.

A.3.5. VIOLATION OF THE CONSERVATION PROPERTY
IN BI-LINEAR MATRIX MULTIPLICATION

In the following we proof that the application of the
ε-rule (8) without the uniform rule (14) on bi-linear matrix
multiplication violates the conservation property (3). We
reiterate and generalize the Lemma 3 of (Chefer et al.,
2021b) which establishes that 0-LRP (ε = 0) violates con-
servation.

Recall, that matrix multiplication is defined as:

Ojp =
∑
i

AjiVip

The ε-rule is the solution to applying a linearization (4) to
a linear layer (6). For computing relevance values for Aji

using the ε-rule, we treat Vip as a constant weight matrix
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with zero bias, and similarly for attributing Aji. The de-
rived relevance propagation rules are given by:

R̃l−1
ji (Aji) =

∑
p

AjiVip

Rl
jp

Ojp + ε

R̃l−1
ip (Vip) =

∑
j

AjiVip

Rl
jp

Ojp + ε

The conservation property (3) states, that the total relevance
at layer l must be equal to the total relevance at layer l− 1.

The total relevance at layer l is given by

Rl =
∑
j,p

Rl
jp

and the total relevance at layer l − 1 is computed by:

Rl−1 =
∑
j,i

R̃l−1
ji +

∑
i,p

R̃l−1
ip = 2

∑
j,p

Ojp

Ojp + ε
Rl

jp ≈ 2Rl

with ε ≪ |Ojp|. This results in a violation of the conser-
vation property as Rl ̸= Rl−1. However, by employing
Proposition 3.3 (15), that is a sequential application of the
ε-rule and uniform rule (14), we ensure conservation by
dividing with the factor 2:

Rl−1 =
∑
j,i

Rl−1
ji +

∑
i,p

Rl−1
ip =

∑
j,p

Ojp

Ojp + ε
Rl

jp ≈ Rl

It is evident that ε absorbs a negligible proportion of the
relevance to safeguard numerical stability. The proof is also
valid for the z+-rule (25), where only positive contributions
are taken into consideration.

B. Appendix II: Experimental Details
In the following sections, we provide additional details
about the experiments performed.

B.1. Models and Datasets

For ImageNet faithfulness, we utilized the pretrained Vi-
sion Transformer B-16, L-16 and L-32 weights of the Py-
Torch model zoo (Paszke et al., 2019). We randomly se-
lected 3200 samples (fixed set for all baselines) such that
the standard error of mean converges to below 1% of the
mean value.

For Wikipedia and IMDB faithfulness, we evaluated the
pretrained LLaMa 2-7b hosted on huggingface (Wolf et al.,
2019) on 4000 randomly selected validation dataset sam-
ples (fixed set for all baselines). For SQuAD v2, we utilize
the pretrained Flan-T5 and Mixtral 8x7b weights hosted on
huggingface. Further, for Wikipedia next word prediction
we evaluated the model on a context size of 512 (from be-
ginning of article until context length is reached), while the
context size in SQuAD v2 varies between 169 to 4060. Al-
though Flan-T5 was trained on a smaller context size of
2000 tokens, the relative positional encoding allows it to
handle longer context sizes with at least 8192 tokens (Sha-
ham et al., 2023).

All computations are performed in the Brain Floating Point
(bfloat16) half-precision format to save memory consump-
tion. bfloat16 trades precision for a higher dynamic range
than standard float16, and hence prevents numerical errors
due to overflow. In this regard, the impact of quantized
number formats on (Attn)LRP attributions remains a topic
to be investigated. In addition, all linear weights in Mix-
tral 8x7b are quantized to the 4 bit integer format using
bitsandbytes (Dettmers et al., 2024) (but computation still
performed in bfloat16).

SQuAD v2 encompasses numerous questions that are ei-
ther unanswerable or subject to incorrect predictions by the
model. Consequently, only instances where the model ac-
curately predicts the correct response are considered. Ad-
ditionally, only the testset is utilized to mitigate a potential
overfitting bias during the training phase, if applicable. Fi-
nally, for SQuAD v2 top-1 accuracy and IoU, we utilized
the following prompt:

Context: [text of dataset sample]
Question: [question of dataset sample]
Answer:

Flan-T5 does not require a system prompt, while for Mix-
tral 8x7b we use before the context the system prompt:

Use the context to answer the question.
Use few words.
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CP-LRP

Softmax Distribute Bias

AttnLRP

Softmax Identity Rule

Figure A.4. Comparison of four different LRP variants computed on a LLaMa 2-7b model. The given section is from the Wikipedia
article on Mount Everest. The model is expected to provide the next answer token for the question ‘How high did they climb
in 1922? According to the text, the 1922 expedition reached 8,’. For the correctly predicted token 3 the
attribution is computed. Distributing the bias uniformely on the input variables (Softmax Distribute Bias) or applying the identity
rule (Softmax Identity Rule) leads to numerical instabilities. For “Softmax Distribute Bias” and “Softmax Identity Rule”, we applied
AttnLRP rules on all layers except for the softmax function. AttnLRP highlights the correct token the strongest, while CP-LRP focuses
strongly on the start-of-sequence <s> token and exhibits more background noise e.g. irrelevant tokens such as ‘Context’, ‘attracts’,
‘Everest’ are highlighted, while AttnLRP does not highlight them or assigns negative relevance.

Because Flan-T5 typically provides the correct answer
directly, we explain the first token of the answer only.
Conversely, Mixtral 8x7b generates full sentences; within
these, we identify the positions of the answer tokens and
explain all tokens that constitute the correct answer only.
To achieve this, we calculate heatmaps for each answer to-
ken and add these heatmaps to produce the final heatmap.

For gradient-based methods, this process can be paral-
lelized by initiating the backward pass at the designated
token positions with the logit output for LRP and with the
value 1 for all other baselines, while initializing the remain-
ing output tokens with zero.

For IMDB, we added a last linear layer to a frozen
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LLaMa 2-7b model and finetuned only the last layer, which
achieves 93% accuracy on the validation dataset.

If we encountered NaN values for a sample, we removed it
from the evaluation. This happened for Grad × AttnRollout
and AtMan in the Wikipedia dataset. However, the standard
error of the mean remains small, as can be seen in Table 1.

B.2. Input Perturbation Metrics

In the following, we summarize the perturbation process
introduced by (Samek et al., 2017) in a condensed manner.

Given an attributions map Rl
i(xi) per input features x =

{xi}Ni=1 in layer l. H denotes a set of relevance values for
all input features xi:

H = (R0
0(x0), R

0
1(x1), ..., R

0
N−1(xN−1)) (31)

Then, the flipping perturbation process iteratively substi-
tutes input features with a baseline value b ∈ RN (the
baseline might be zero, noise generated from a Gaussian
distribution, or pixels of a black image in the vision task).
Another reverse equivalent variant, referred as insertion,
begins with a baseline b and reconstructs the input x step-
wise. The function performing the perturbation is denoted
by gF for flipping and gI for insertion. The perturbation
procedure is either conducted in a MoRF (Most Relevant
First) or LeRF (Least Relevant First) manner based on the
sorted members of H. Regardless of the replacement func-
tion, the MoRF and LeRF perturbation processes can be
defined as recursive formulas at step k = {0, 1, ..., N −1}:

MoRF Pert. Process =


x0MoRF = x
xkMoRF = g(F |I)(xk−1MoRF ,b)
xN−1MoRF = b

where xk
MoRF denotes the perturbed input feature x at step

k in MoRF process.

LeRF Pert. Process =


x0
LeRF = b

xk
LeRF = g(F |I)(xk−1LeRF ,b)

xN−1
LeRF = x

where xkLeRF denotes the perturbed input feature x at step
k in LeRF process.

Results of these processes are perturbed input sets of
XF

MoRF = (x0MoRF , x1MoRF , ..., xN−1MoRF ) and XF
LeRF =

(x0LeRF , x1LeRF , ..., xN−1
LeRF ). By feeding these sets to the

model and computing the corresponding logit output fj , a
curve will be induced and consequently the area A under
the curve can be calculated:

AF
MoRF = AI

LeRF =
1

N

N−1∑
k=0

fj(xk
MoRF ) (32)

where xkMoRF ∈ XF
MoRF or xkMoRF ∈ X I

LeRF .

It is notable that the area below the least relevant order in-
sertion curves are identical to the most relevant order flip-
ping curves and that the area below the least relevant or-
der flipping curves are identical to the most relevant or-
der insertion curves. Hence, by using X I

MoRF , AI
MoRF =

AF
LeRF can be computed similarly. A faithful explainer re-

sults in a low value of AF
MoRF or AI

LeRF . Further, a faith-
ful explainer is expected to have large AF

LeRF or AI
MoRF

values.

Ultimately to reduce introducing out-of-distribution ma-
nipulations and the sensitivity towards the chosen baseline
value, the work of (Blücher et al., 2024) proposes to lever-
age both insights and to obtain a robust measure as

∆AF = AF
LeRF −AF

MoRF

∆AI = AI
MoRF −AI

LeRF

where a higher score signifies a more faithful explainer.

We performed all faithfulness perturbations with a baseline
value of zero. In the case of LLMs, we aggreated the rele-
vance for each token and flipped the entire embedding vec-
tor of input tokens to the baseline value. For ViTs, we used
the relevances of the input pixels and flipped input pixels
to the baseline value.

B.3. Hyperparameter search for Baselines

As describes in Appendix A.1, several baseline attribu-
tion methods have hyperparameters that must be tuned
to the datasets. The default parameters are described
in Appendix A.1, and to reduce the search space, we
optimize a subset of the hyperparameters. The hy-
perparameters of SmoothGrad (σ ∈ [0.01, 0.25]), At-
Man (suppression value ∈ [0.1, 1.0] and threshold ∈
[0, 1.0]), AttnRoll (discard threshold ∈ [0.90, 1.00]), and
G×AttnRoll (discard threshold ∈ [0.90, 1.00]) are selected
to be optimized. The used hyperparameters for the pertur-
bation experiments are available in the captions of Tables
B.6, B.7, B.8 and B.9.

For LLMs, we have not noticed a significant impact on
the heatmaps for different discard threshold values of
G×AttnRoll. For AttnRoll, the impact is minimal. Hence,
we choose the default value of 1 (nothing is discarded, as
proposed in the original works (Abnar and Zuidema, 2020;
Chefer et al., 2021a)).

Regarding SQuAD v2, we set AtMan’s p = 0.7 for Mixtral

23



AttnLRP: Attention-Aware Layer-Wise Relevance Propagation

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

AttnLRP, AUC=6.19±0.02

G×AttnRoll, AUC=2.60±0.03

AtMan, AUC=0.70±0.02

SmoothGrad, AUC=-0.04±0.03

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

AttnLRP, AUC=1.48±0.02

G×AttnRoll, AUC=4.01±0.03

AtMan, AUC=5.57±0.03

SmoothGrad, AUC=3.63±0.03

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

AttnLRP, AUC=7.67±0.02

G×AttnRoll, AUC=6.22±0.02

AtMan, AUC=6.27±0.03

SmoothGrad, AUC=3.58±0.03

Perturbation Steps (k)

L
og

it
s

(f
j
)

Perturbation Steps (k)

L
og

it
s

(f
j
)

Perturbation Steps (k)

L
og

it
s

(f
j
)

Perturbation Steps (k)

L
og

it
s

(f
j
)

Figure B.5. Comparison of the AttnLRP (ours) with the γ-rule, Grad×AttnRoll (Chefer et al., 2021a), AtMan (Deb et al., 2023), and
SmoothGrad (Smilkov et al., 2017) techniques through the perturbation experiment (faithfulness) on the ViT-B-16 using 3200 random
samples of ImageNet. From left to right, the plots correspond to fj(XF

LeRF ) − fj(XF
MoRF ) (large area is good), fj(XF

MoRF ) (steep
decline is good), and fj(XF

LeRF ) (slow decline is good). “AUC” denotes the Area under Curve.

8x7b and p = 0.9 for Flan-T5-XL. For SmoothGrad, we
set σ = 0.1 for Mixtral 8x7b and Flan-T5-XL.

B.4. Impact of Model Architectural Choices on
AttnLRP Performance

We evaluated AttnLRP on three model classes that incor-
porate different types of layers.

Flan-T5: This encoder-decoder architecture employs self-
attention and cross-attention layers (33). The FFN layers
are a sequential application of linear layers with GELU
non-linearities inbetween.

LLaMa 2: This decoder architecture utilizes only self-
attention layers (33). However, in the FFN layers, we
have an additional element-wise non-linear weighting with
a SiLU non-linearity (34).

Mixtral 8x7b: This mixture of experts model uses self-
attention layers (33) and FFN layers with non-linear
weighting (34) like the LLaMa 2. In addition, there are
FFN routing layers with a softmax weighting (35).

Attention: Softmax(Wq x (Wk x)⊤) Wv x (33)
FFN × Non-Linearity: SiLU(W1 x)⊙ W2 x (34)

Routing:
∑
i

Softmax(TopK(Wg x))i FFNi(x) (35)

where Wq , Wk, Wv , W1, W2, Wg are linear weight param-
eters, (⊙) is element-wise multiplication, i ∈ N the number
of expert FFN layers and TopK is returning the top-k ele-
ments.

In Table B.4, we study the impact of AttnLRP rules w.r.t.

CP-LRP on all three different layer types (33), (34) and
(35). We start as baseline with all rules of CP-LRP on all
layer types, then we successively substitute CP-LRP rules
with AttnLRP rules for specific layer types.

For CP-LRP, we use the rules described in Appendix A.2.2.
In the original work of (Ali et al., 2022), FFN layers
weighted with non-linearities and routing layers are not dis-
cussed. Analogously to the argumentation in their work,
we regard the non-linearity as constant weight and attribute
only through the FFN path using the ε-rule.

As demonstrated in Table B.4, the application of AttnLRP
rules enhances the performance across all layers, regardless
of their type. Moreover, the rate of improvement increases
with the number of non-linearities present in the model.

B.5. LRP Composites for ViT

Applying the ε-rule on all linear layers inside LLMs is suf-
ficient to obtain faithful and noise-free attributions. How-
ever, for the vision transformers, we apply the γ-rule on
all linear layers (including the convolutional layers) out-
side the attention module. Since the γ-rule has a hyperpa-
rameter, the work (Pahde et al., 2023) proposed to tune the
parameter using a grid-search. This optimization search (or
in an LRP context known as composite search) is compu-
tational highly demanding.

The vision transformer consists of many linear layers. Our
proposed approach is to use different γ values across dif-
ferent layer types.
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Table B.4. This Table is an extension of Table 1: Faithfulness scores as area between the least and most relevant order perturbation
curves on LLaMa 2 alongside the top-1 accuracy and IoU in parenthesis for Flan-T5 and Mixtral 8x7b. We start as baseline with all
rules of CP-LRP on all layer types, then we successively substitute CP-LRP rules with AttnLRP rules for specific layer types if they
exist in the model. We observe that AttnLRP’s improvement is not confined to the attention mechnism alone, but all layers that contain
operations that are not attributable with other LRP variants. The more complex the architecture, the better the performance of AttnLRP
compared to CP-LRP.

Method on Layer LLaMa 2-7b Mixtral 8x7b Flan-T5-XL
IMDB ↑ Wikipedia ↑ SQuAD v2 ↑ SQuAD v2 ↑

Baseline (All Layers)
CP-LRP 1.72 7.85 0.50 (0.40) 0.90 (0.83)

+ Attention Mechanism
AttnLRP 2.09 9.49 0.70 (0.53) 0.94 (0.84)

+ FFN × Non-Linearity
AttnLRP 2.50 10.93 0.78 (0.57) -

+ Routing Layer
AttnLRP - - 0.96 (0.72) -

According to (Vaswani et al., 2017) the attention module
consists of several linear layers which we refer to as Lin-
earInputProjection.

Q = WqX + bq

K = WkX + bk

V = WvX + bv

In the attention layer, after the softmax (11), there exists
another linear layer performing the output projection back
into the residual stream, denoted as LinearOutputProjec-
tion:

y = WoO + bo

The other layers in the whole network, will be referred to
as Linear.

The perturbation experiment had been conducted over
these layers using different types of rules including Ep-
silon, ZPlus, Gamma, and AlphaBeta (with α = 2 and
β = 1 according to (Montavon et al., 2019)).

The most faithful composite, that we obtained for AttnLRP
and CP-LRP, is in Table B.5. More details over the statistics
of the conducted experiments are available in Figures B.14,
B.15, B.16, B.17, B.18.

B.6. Additional Perturbation Evaluations on Vision
Transformers

Table B.6 presents additional perturbation results for the
vision transformers ViT-L-16 and ViT-L-32 evaluated on
ImageNet. Our method surpasses all comparative base-
lines, while the proposed enhancement, γCP-LRP (which
applies the γ-rule across all linear layers for CP-LRP (Ali

Table B.5. Proposed composite for the AttnLRP and CP-LRP
methods used for the Vision Transformer.

Layer Type Rule Proposed

Convolution Gamma(γ = 0.25)
Linear Gamma(γ = 0.05)
LinearInputProjection Epsilon
LinearOutputProjection Epsilon

et al., 2022)), remains highly competitive. In more com-
plex model architectures that incorporate a greater vari-
ety of non-linearities, our method demonstrates more su-
periority, as elaborated in Appendix B.4. Tuning the γ-
parameter for γCP-LRP and AttnLRP in a grid-search (see
Appendix B.5) resulted for both models in the same com-
posite described in Table B.5. However, there is no assur-
ance that other models share the same γ parameters.

B.7. Attributions on SQuAD v2

In Figure B.7 and Figure B.8, we illustrate attributions on
the Mixtral 8x7b for different state-of-the-art methods on
the SQuAD v2 dataset. In Figure B.9, we depict attribu-
tions for Flan-T5-XL. For comparison, we also visualize a
random attribution with Gaussian noise.

The similarity between AttnLRP and CP-LRP in Flan-T5-
XL are in line with the quantitative evaluation from Table 1,
which shows a small, but consistent advantage of AttnLRP
over CP-LRP wrt. top-1 accuracy, while in Mixtral 8x7b
and LLaMa 2, AttnLRP substantially outperforms, which
is also visible in the heatmaps. This is due to the different
number of non-linearities present in the models: Flan-T5-
XL consists only of standard attention layers, while LLaMa
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Original Image I×G IG Smooth Grad AttnRoll G×AttnRoll AtMan Kernel SHAP CP-LRP (Ali et al.) γCP-LRP AttnLRP (ours)

Figure B.6. Explanation heatmaps of the methods used for the perturbation experiments on the vision transformer ViT-B-16. A checker-
board effect is visible for almost every method, especially in AttnRoll (Abnar and Zuidema, 2020), G×AttnRoll (Chefer et al., 2021a),
and AtMan (Deb et al., 2023). We improve upon CP-LRP (Ali et al., 2022) by applying the γ-rule as described in B.5. While qualita-
tively γCP-LRP (with γ extension for ViT) and AttnLRP give similar explanations, quantitative results in Table 1 and Table B.6 show a
consistent improvement of AttnLRP over γCP-LRP in terms of faithfulness. Moreover, attributing query and key linear layers within the
attention layer is possible with AttnLRP only, while it is not possible with CP-LRP. We leave these further explorations for future work.
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Table B.6. Faithfulness scores as area between the least and most relevant order perturbation curves (Blücher et al., 2024) for ViT-L-16
and ViT-L-32 on ImageNet. For ViT-L-16, we set for SmoothGrad σ = 0.01, for AtMan p = 1.0 and t = 0.1, for AttnRoll dt = 0.90,
and for G×AttnRoll dt = 0.92. For ViT-L-32, we set for SmoothGrad σ = 0.01, for AtMan p = 1.0 and t = 0.1, for AttnRoll
dt = 0.95, and for G×AttnRoll dt = 1.0.

Method ViT-L-16 ViT-L-32
ImageNet ↑ ImageNet ↑

Random 0.01± 0.01 0.01± 0.01

Input×Grad (Simonyan et al., 2014) 1.20± 0.06 0.98± 0.07
IG (Sundararajan et al., 2017) 0.96± 0.07 1.45± 0.06
SmoothGrad (Smilkov et al., 2017) −0.10± 0.01 −0.09± 0.04

GradCAM (Chefer et al., 2021b) 0.19± 0.06 2.21± 0.08
AttnRoll (Abnar and Zuidema, 2020) 1.41± 0.08 1.90± 0.07
Grad×AttnRoll (Chefer et al., 2021a) 2.86± 0.06 2.69± 0.06

AtMan (Deb et al., 2023) 1.58± 0.08 0.09± 0.05
KernelSHAP (Lundberg and Lee, 2017) 4.35± 0.04 4.90± 0.03

CP-LRP (ε-rule, Ali et al. (2022)) 4.96± 0.05 4.07± 0.05
CP-LRP (γ-rule for ViT, as proposed here) 6.97± 0.04 5.99± 0.04
AttnLRP (ours) 7.17± 0.04 6.06± 0.04

2 and Mixtral 8x7b have additional FFN layers with non-
linear weighting or routing layers making the attribution
process more difficult for CP-LRP. This effect is studied
in Appendix B.4. In general, gradient-based methods such
as G×I, SmoothGrad, IG and Grad-CAM are noisy and of-
ten not informative. Attention Rollout and Grad×Attention
Rollout suffer from background noise. While the perfor-
mance of AtMan is in some cases excellent as in Fig-
ure B.9, the method fails in other cases as in Figure B.7.

In Figure B.7 and B.8 for Mixtral 8x7b, most methods fail
to highlight the correct answer tokens most strongly, ex-
cept AttnLRP, confirming the quantitative evaluation from
Table 1.

In Figure B.9, the heatmaps of I×G or Grad-CAM seem
to be inverted, hence we experimented with inverting the
attributions on a subset, however we did not notice im-
provement and applied the rules with their original defini-
tion. AtMan produces highly sparse attributions, assigning
large positive relevance to the answer token 18, however,
also assigning a similar amount of relevance to the token
much, which is part of the question. AttnLRP and CP-
LRP identify the token 18 as being the most relevant token
and also relate it (by assigning positive and negative rele-
vance) to other information in the text such as 27.7, 132
or average. We conjecture that such targeted contrasting
reflects the reasoning process of the model (e.g., is nec-
essary to distinguish between related questions about how
many tons are blown out vs. how many tons remain on the
ground). A systematic analysis of these effects remain an
interesting topic for future work.

B.8. Benchmarking Cost, Time and Memory
Consumption

We benchmark the runtime and peak GPU memory con-
sumption for computing a single attribution for LLaMa
2 with batch size 1 on a node with four A100-SXM4
40GB, 512 GB CPU RAM and 32 AMD EPYC 73F3
3.5 GHz. Because AtMan, LRP and AttnRollout-variants
need access to the attention weights, we did not use flash-
attention (Dao et al., 2022).

To calculate energy cost, we assume a price of 0.16 $ per
kWh of energy, and that a single A100 GPU consumes on
average 130W. Figure B.10 depicts the cost, the runtime
and peak GPU memory consumption. Since perturbation-
based methods are memory efficient, a 70b model with full
context size of 4096 is attributable. However, LRP with
checkpointing requires more memory than a node supplies.

B.9. Attributions of Knowledge Neurons

Figure B.11, B.12 and B.13 illustrate the top 10 sentences
in the Wikipedia summary dataset that maximally activate
a knowledge neuron. We applied AttnLRP to highlight the
tokens inside these reference samples. We observe that
knowledge neurons exhibit remarkable disentanglement,
e.g., neuron #256 of layer 18 shown in Figure B.11
seems to encode concepts related to transport systems (rail-
ways in particular), while neuron #2207 of layer 20
shown in Figure B.12 seems to encode the concept teacher,
in particular a teacher, in an unusual context (e.g., inappro-
priate behavior, sexual misconduct). The degree of disen-
tanglement should be studied in future work.
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RandomAttention Rollout

Grad-weighted Attention Rollout SmoothGrad

CP-LRPIntegrated Gradient

AttnLRP Input x Gradient

Question: In what country is Normandy located?
Answer: France

AtMan Grad-CAM

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were
the people who in the 10th and 11th centuries gave their name to Normandy,
a region in France. They were descended from Norse (”Norman” comes from
”Norseman” ) raiders and pirates from Denmark, Iceland and Norway who, under
their leader Rollo, agreed to swear fealty to King Charles III of West Francia.
Through generations of assimilation and mixing with the native Frankish and
Roman-Gaulish populations, their descendants would gradually merge with the
Carolingian-based cultures of West Francia. The distinct cultural and ethnic
identity of the Normans emerged initially in the first half of the 10th century,
and it continued to evolve over the succeeding centuries.
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The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were
the people who in the 10th and 11th centuries gave their name to Normandy,
a region in France. They were descended from Norse (”Norman” comes from
”Norseman” ) raiders and pirates from Denmark, Iceland and Norway who, under
their leader Rollo, agreed to swear fealty to King Charles III of West Francia.
Through generations of assimilation and mixing with the native Frankish and
Roman-Gaulish populations, their descendants would gradually merge with the
Carolingian-based cultures of West Francia. The distinct cultural and ethnic
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Figure B.7. Evaluation on the Mixtral 8x7b model: We compute attributions for different state-of-the-art methods for the answer token
“France”. Gradient-based methods such as G×I, SmoothGrad, IG or Grad-CAM are noisy. Grad×Attn Rollout suffers from background
noise. While AtMan usually generates sparse heatmap, in this case it fails (compare Figure B.9). CP-LRP highlights “Normandy” the
strongest, while AttnLRP highlights the correct token “France”. For comparison, we also visualize a random attribution with Gaussian
noise.
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Question: This person proposed explanations for the origins of earthquakes and the formation of mountains, 
              what was his name?
Answer: Ibn Sina

AtMan Grad-CAM
Some modern scholars, such as Fielding H. Garrison, are of the opinion that
the origin of the science of geology can be traced to Persia after the Muslim
conquests had come to an end. Abu al-Rayhan al-Biruni (973–1048 CE) was
one of the earliest Persian geologists, whose works included the earliest writings
on the geology of India, hypothesizing that the Indian subcontinent was once a
sea. Drawing from Greek and Indian scientific literature that were not destroyed
by the Muslim conquests, the Persian scholar Ibn Sina (Avicenna, 981–1037)
proposed detailed explanations for the formation of mountains, the origin of
earthquakes, and other topics central to modern geology, which provided an
essential foundation for the later development of the science. In China, the
polymath Shen Kuo (1031–1095) formulated a hypothesis for the process of
land formation: based on his observation of fossil animal shells in a geological
stratum in a mountain hundreds of miles from the ocean, he inferred that the
land was formed by erosion of the mountains and by deposition of silt.
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Figure B.8. Evaluation on the Mixtral 8x7b model: We compute attributions for different state-of-the-art methods for all tokens at the
same time inside the answer “Ibn Sina”. Gradient-based methods such as G×I, SmoothGrad and IG are noisy. Grad-CAM highlights
the correct tokens except it misses the beginning token “I” of the word “Ibn”. Likewise AtMan fails to highlight all tokens. Grad×Attn
Rollout suffers from background noise. CP-LRP resembles random noise, while AttnLRP highlights the correct tokens “Ibn Sina” in its
entirety. For comparison, we also visualize a random attribution with Gaussian noise.
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Question: How many tons of dust are blown out of the Sahara each year?
Answer: 182 million

Figure B.9. Evaluation on the Flan-T5-XL model: We compute attributions for different state-of-the-art methods on the first token of the
answer (highlighted in red). Gradient-based methods such as G×I, SmoothGrad, IG or Grad-CAM are noisy. Grad×Attn Rollout suffers
from background noise. AtMan produces highly sparse attributions, assigning an equal amount of relevance to a token, which is part
of the question, as to token 18. CP-LRP has a different weighting of the tokens e.g. the word ‘much’ in the question is not highlighted
by CP-LRP, while AttnLRP highlights it stronger and AtMan focuses excessively on it. For comparison, we also visualize a random
attribution with Gaussian noise.
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Figure B.10. From left to right: Cost in dollar, time in seconds and peak GPU memory in gigabytes for AttnLRP and linear-time
perturbation. Evaluated on LLaMa 2-70b and LLaMa 2-13b models on a node with four A100-SXM4 40GB. G×AttnRollout is in the
range of AttnLRP and omitted for clarity of visualization. Because AttnLRP consumes more than 160 GB of RAM, the curves for the
70b model stop. Measured at fixed intervals of context size 32, 64, 128, 256, 512, 1024, 2048, 3000, 4096.

Table B.7. ViT-B-16 Perturbation Experiment (Faithfulness). For SmoothGrad, we set σ = 0.01, for AtMan p = 1.0 and t = 0.1, for
AttnRoll dt = 0.99, and for G×AttnRoll dt = 0.91. “all epsilon” indicates that the ε-rule has been used on the linear and convolutional
layers. The term “best” refers to the utilization of LRP with the composite proposed in B.5. ∆AF denotes the area under the curve for
a flipping perturbation experiment which leverages both AF

MoRF of the most relevant first order, and AF
LeRF of least relevant first order.

(∆AF = AF
LeRF −AF

MoRF ). As discussed in Section B.2, this is equivalent to insertion perturbation.

Methods ViT-B-16
ImageNet

(↑)∆AF (↓)AF
MoRF (↑)AF

LeRF

Random 0.01 4.71 4.71
I×G 0.90 2.78 3.69
IG 1.54 2.55 4.10
SmoothG -0.04 3.63 3.58
GradCAM 0.27 5.35 5.63
AttnRoll 1.31 4.866 6.17
G×AttnRoll 2.60 4.01 6.22
AtMan 0.70 5.57 6.27
CP-LRP (all epsilon) 2.53 2.45 4.98
γCP-LRP (best) 6.06 1.53 7.59
AttnLRP (all epsilon) 2.79 5.22 2.42
AttnLRP (best) 6.19 1.48 7.67
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Table B.8. Wikipedia Perturbation Experiment (Faithfulness). For SmoothGrad, we set σ = 0.1, for AtMan p = 1.0, for AttnRoll
dt = 1, and for G×AttnRoll dt = 1. ”all epsilon” indicates that the ε-rule has been used on all linear layers. ∆AI denotes the area
under the curve for the insertion perturbation experiment which leverages both AI

MoRF of the most relevant first order, and AI
LeRF of

least relevant first order. (∆AI = AI
MoRF −AI

LeRF ). As discussed in Section B.2, this is equivalent to flipping perturbation.

Methods LLaMa 2-7b
Wikipedia

(↑)∆AI (↑)AI
MoRF (↓)AI

LeRF

Random -0.07 2.31 2.38
I×G 0.18 1.27 1.09
IG 4.05 3.74 -0.31
SmoothG -2.22 0.68 2.90
GradCAM 2.01 2.36 0.35
AttnRoll -3.49 1.46 4.95
G×AttnRoll 9.79 8.79 -1.00
AtMan 3.31 4.06 0.76
CP-LRP (all epsilon) 7.85 6.43 -1.42
AttnLRP (all epsilon) 10.93 9.08 -1.85

Table B.9. IMDB Perturbation Experiment (Faithfulness), For SmoothGrad we set σ = 0.05, for AtMan p = 0.7, for AttnRoll dt = 1,
and for G×AttnRoll dt = 1. ”all epsilon” indicates that the ε-rule has been used to propagate relevance to the layers. ∆AI demonstrates
the area under the curve for the perturbation experiment of the type Insertion which leverages insights from both AI

MoRF of the most
relevant first order, and AI

LeRF of least relevant first order. (∆AI = AI
MoRF −AI

LeRF ). As discussed in Section B.2, this is equivalent
to flipping perturbation.

Methods LLaMa 2-7b
IMDB

(↑)∆AI (↑)AI
MoRF (↓)AI

LeRF

Random -0.01 -0.47 -0.46
I×G 0.12 -0.69 -0.81
IG 1.23 -0.06 -1.29
SmoothG 0.25 -0.74 -0.98
GradCAM -0.82 -1.10 -0.28
AttnRoll -0.64 -0.64 0.00
G×AttnRoll 1.61 0.77 -0.84
AtMan -0.05 -0.54 -0.49
CP-LRP (all epsilon) 1.72 0.50 -1.22
AttnLRP (all epsilon) 2.50 1.12 -1.38
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Figure B.11. AttnLRP attributions on top 10 ActMax sentences
collected over the Wikipedia summary dataset for neuron #256,
in layer 18. The knowledge neuron seems to activate for trans-
port systems (railways in particular).

Figure B.12. AttnLRP attributions on top 10 ActMax sentences
collected over the Wikipedia summary dataset for neuron #2207,
in layer 20. The knowledge neuron is activating for ‘teacher’,
in unusual context such as inappropriate behavior, sexual miscon-
duct etc.

Figure B.13. AttnLRP attributions on top 10 ActMax sentences
collected over the Wikipedia summary dataset for neuron #922,
in layer 18. The knowledge neuron seems to be activating for
scientific descriptions of plants.
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Figure B.14. Statistics on Rules used for softmax layers: Either
applying z+, ε-rule, or regarding as constant as proposed in CP-
LRP. Propagating relevance values through (specifically by ap-
plying z+ rule) softmax improves the faithfulness of explanations
compared to the case where we block its propagation.
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AlphaBeta z+ Gamma(γ = 0.05) Gamma(γ = 0.1) Gamma(γ = 0.25)
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Figure B.15. Statistics on Rules used for Convolution layers: Ap-
plying z+ and AlphaBeta proposes acceptable results however the
most faithful results can be reached via Gamma(γ = 0.25).
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Figure B.16. Statistics on Rules used for Linear layers: Similar to
Convolution layers, Gamma seems more promising however with
different γ value (0.05 in this case).
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Figure B.17. Statistics on Rules used for LinearInputProjection
layers: Gamma and ϵ rules are competitive in this case, how-
ever since there is larger difference between the minimum and
the lower quartile in Gamma rules, the most faithful choice will
be ϵ-rule.
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Figure B.18. Statistics on Rules used for LinearOutputProjection
layers: The ϵ-rule outperforms other rules clearly.
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