
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

DiSK: Differentially Private Optimizer with Simplified Kalman Filter
for Noise Reduction

Xinwei Zhang*, Zhiqi Bu, Borja Balle, Mingyi Hong, Meisam Razaviyayn*, Vahab Mirrokni

Abstract
Differentially private optimizers have been widely used to train modern machine learning models
while protecting the privacy of training data. A popular approach to privatize an optimizer is to
clip the individual gradients and add sufficiently large noise to the clipped gradient. However, a
significant performance drop is observed when these optimizers are applied to large-scale model
(pre-)training. This degradation stems from the substantial noise injection required to maintain DP,
which disrupts the optimizer’s dynamics. This paper introduces DiSK, a novel framework designed
to significantly enhance the performance of differentially private (DP) optimizers. DiSK employs
Kalman filtering, a technique drawn from control and signal processing, to effectively denoise
privatized gradients and generate progressively refined gradient estimations. To ensure practical-
ity for large-scale training, we simplify the Kalman filtering process, minimizing its memory and
computational demands. We establish theoretical privacy-utility trade-off guarantees for DiSK,
and demonstrating provable improvements over standard DP optimizers like DPSGD. Extensive
experiments across diverse tasks, including vision tasks such as CIFAR-100 and ImageNet-1k and
language fine-tuning tasks such as GLUE, E2E, and DART, validate the effectiveness of DiSK. The
results showcase its ability to significantly improve the performance of DP optimizers, surpassing
state-of-the-art results under the same privacy constraints.

1. Introduction

In this paper, we aim to solve the empirical risk minimization (ERM) problem with the differential
privacy (DP) guarantee.

min
x∈Rd

F (x), F (x) =
1

N

∑
ξ∈D

f(x; ξ), (1)

where x ∈ Rd is the optimization variable, D is the training dataset with |D| = N samples
ξi, i ∈ {1, . . . , N}, and f(·) denotes the (possibly non-convex) loss function parameterized by
x and evaluated on sample ξ. The definition of DP is proposed by [16]:

Definition 1 ((ϵ, δ)-DP [16]) A randomized mechanism M is said to be (ϵ, δ)-differentially pri-
vate, if for any two neighboring datasets D,D′ (D,D′ differ only by one sample) and for any mea-
surable output set S, it holds that Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

The popular practical differentially private approaches to finding an (approximate) solution to
the ERM problem (1) are Differentially Private Stochastic Gradient Descent (DPSGD) [1] and its
variants, including DP-Adam and DP-Lora [46]. To protect DP, DPSGD applies the commonly used
Gaussian mechanism [1, 16] to privatize the mini-batch gradient at each iteration of the SGD opti-
mizer. The Gaussian mechanism provides a privacy guarantee by injecting a large enough Gaussian
noise into the algorithms’ output.

* xinweiz,razaviya@usc.edu

© .

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Algorithm 1 DPSGD algorithm
Input: x0,D, C, η, σDP
for t = 0, . . . , T − 1 do

Uniformly draw minibatch Bt from D
gt =

1
B

∑
ξi∈Bt clip (∇f(xt; ξi), C) +wt

where wt ∼ N (0, σ2
DP · Id)

xt+1 = xt − ηtgt,
end for

The DPSGD algorithm, presented in Al-
gorithm 1, first samples a mini-batch Bt of
size B and computes the per-sample gradient
at each step t. Then, it applies the Gaus-
sian mechanism by clipping the per-sample
gradient and injecting DP noise. The clip-
ping operation bounds the sensitivity of the
stochastic gradients to C, e.g., clip (∇f, C) =

min
{
1, C

∥∇f∥

}
∇f or C

∥∇f∥∇f. Finally, the al-
gorithm updates the model parameter with the privatized mini-batch gradient. It has been shown
that DPSGD guarantees (ϵ, δ)-DP with sufficiently large injected noise [1].

Theorem 2 (Privacy Guarantee [1]) Given N,B, T and C, there exist positive constants u, v,

such that for any ϵ < uB2T
N2 , δ > 0, by choosing σ2

DP ≥ v
C2T ln(1

δ
)

N2ϵ2
, Algorithm 1 is guaranteed to be

(ϵ, δ)-DP.

Theorem 2 implies that the DP noise variance E[∥wt∥2] ≥ dσ2
DP is proportional to the number

of iterations T and the number of trainable model parameters d. When training small machine
learning models, e.g., regression and multi-layer perceptron, or fine-tuning partial model parameters
for large models, T or d or both are relatively small. Therefore, the impact of DP is not significant.
However, in modern deep learning, the model size d is huge and requires many pre-training steps T .
Therefore, the injected DP noise can be large in pre-training tasks or fine-tuning large foundation
models, which causes a significant performance drop.

1.1. Contributions

In this paper, we adopt the Kalman filter, a commonly used tool for accurately estimating signals
from a series of noisy observations in the control theory, to improve the quality of the gradient
estimates and the performance of DP optimizers. The main idea of our approach is to construct the
gradient dynamic using Hessian information and view the privatized gradient as a noisy observation
of the true gradient. With the gradient dynamics and the noisy observation, we apply the Kalman
filter to obtain an accurate estimation of the true gradient. With an improved estimate of the gradient,
the performance of DP optimizers can be improved. Due to the inefficiency of the Kalman filter,
we apply a series of simplifications to the algorithm to reduce its extra memory and computational
cost. We summarize our contribution as follows:

• Algorithm Design: We introduce DiSK, a novel Kalman filter-based approach designed to miti-
gate DP noise and enhance the performance of various DP optimizers.

• Algorithm Simplification: We simplify the Kalman filtering process to significantly reduce mem-
ory and computational overhead. This simplification requires only one additional forward step and
two extra optimizer states.

• Theoretical Analysis: We provide theoretical analyses of DiSK, demonstrating that with careful
hyperparameter selection, our approach provably improves convergence by a constant factor .

• Numerical Results: Extensive experiments across various models, datasets, and optimizers demon-
strate that DiSK significantly boosts DP training performance. Specifically, under the same privacy

2

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

budgets, DiSK exhibits substantial improvements in test accuracy for training-from-scratch scenar-
ios: a notable increase from 32.4% to 36.9% on the ImageNet-1k dataset, a considerable rise from
63% to 75% on CIFAR-10, and a remarkable improvement from 21% to 42% on CIFAR-100. Fur-
thermore, in fine-tuning tasks, DiSK demonstrates remarkable improvements: an increase from
from 85% to 89% on CIFAR-100 and an improvement from 81% to 86% on the GLUE dataset.
These results surpass state-of-the-art DP training performance under the same privacy guaran-
tees.

2. Algorithm design

In this section, we propose a general Differentially Private Optimization with Simplified Kalman
Filter for Noise reduction (DiSK) approach. The approach utilizes the gradient dynamic and applies
the Kalman filter to accurately estimate the true gradient from the noisy privatized gradient. We
simplify the Kalman filter for memory and computation-efficient training for modern deep learning
applications.

2.1. Gradient dynamic and Kalman filter

The Kalman filter estimates an unknown variable iteratively given a series of measurements over
time [43], see Appendix A.2 for an introduction to the Kalman filter. To apply the Kalman filter, we
construct the gradient’s system dynamics consisting of the system update and the observation.

The system update of the gradient can be derived as follows: By Taylor expansion, the change
of the gradient at iteration t can be expressed as:

∇F (xt) = ∇F (xt−1) +∇2F (xt−1)
⊤(xt − xt−1) +R(xt)

= ∇F (xt−1) +Ht(xt − xt−1) + vt,
(2)

where Ht ∈ Rd×d := ∇2F (xt−1) and vt =
1
2

∫ 1
0 (zxt + (1 − z)xt−1)

⊤∇3F (xt−1)(zxt + (1 −
z)xt−1)dz is the remainder. The observation of the system is defined as the privatized gradient gt,
which is a stochastic oracle of the true gradient:

gt =
1

B

∑
ξ∈B

clip (∇f(x, ξ), C) +wt = Ct∇F (xt) +w′
t, (3)

where Ct is a (noisy) observation matrix, and w′
t is the observation noise containing the DP noise

and the sub-sampling noise. Note that if the clipping operation is inactive, then Ct = Id
Combining the system update (2) and the observation (3), the gradient dynamics is:

∇F (xt) = ∇F (xt−1) +Ht(xt − xt−1) + vt, (System update)

gt = Ct∇F (xt) +wt, (Observation)
(4)

Note that Ht is the (time-varying) Hessian matrix; vt is a random variable that models the remain-
der; Ct,wt are random variables that model multiplicative and additive observation noise in the
privatized gradient. If Ht is known or can be estimated accurately, then we can apply the Kalman
filter that combines the system update and the observation of the gradient to improve the overall
estimation quality of the actual gradient beyond only using the observation gt. However, since it
is hard to compute the Hessian matrix in large-scale training, we further assume that Ht is also a
random matrix that can only be approximated.

3

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Algorithm 2 DiSK
1: Input: x0,D, η, γ, κ, C, σDP

2: Initialize: g̃−1 = g0,d−1 = 0
3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: Compute gt =

1
B

∑
ξ∈Bt clip

(
1−κ
κγ ∇f(xt + γdt−1; ξ) + (1− 1−κ

κγ)∇f(xt; ξ), C
)
+wt

where wt ∼ N (0, σ2
DP · Id)

6: g̃t = (1− κ)g̃t−1 + κgt # Apply filter
7: xt+1 = OptimizerUpdate(xt, η, g̃t) # Parameter update
8: dt = xt+1 − xt # Record update direction
9: end for

When Ct and Ht are random, the Kalman filter for the above system (4) is [45]:

g̃t|t−1 = g̃t−1 + H̃t(xt − xt−1) (Prediction)

Pt|t−1 = Pt−1 +ΣH,t +Σv,t

Kt = Pt|t−1 E[Ct](Σwt + E[Ct](ΣC,tSt +Pt|t−1)E[Ct]
⊤ − ΣH,t)

−1 (5)

g̃t = g̃t|t−1 +Kt(gt − E[Ct]g̃t|t−1) (Correction)

Pt = (I−Kt E[Ct])Pt|t−1, St = E[g̃tg̃⊤
t],

where P denotes the covariance matrix of g̃, Σ denotes the covariance matrices of the random
variables, and H̃t is an instantiation/observation of the unknown Hessian matrix Ht. Instead of
directly using gt with large variance, the output of the Kalman filter g̃t has a smaller variance and
therefore improves the performance of DP optimizers.

2.2. Algorithm simplification

Equations (5) is the general form of a Kalman filter for arbitrary optimizers and is generally hard
to implement. To obtain a memory-efficient, implementable algorithm, we make the following
simplification. Detailed simplification steps is given in Appendix A.4.

1. Use constant C = Id.
2. Use the finite difference of stochastic gradients to approximate Hdt−1, i.e.,

Htdt−1 =
∇F (xt + γdt−1)−∇F (xt)

γ
+∆(γ) ≈ 1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
.

3. Simplify the covariance matrix ΣH = σ2
HId, and Pt = ptId,Kt = ktId.

4. Simplify the Kalman gain to a time-invariant constant, i.e., kt = κ,∀t.

With the above simplification, (5) simplifies to Algorithm 2. In the simplified algorithm, we
compute and privatize the linear combination of the gradient evaluated at two points, xt,xt + γdt.
Then g̃t is an exponential weighted averaging of the privatized gradient, which serves as the input
to the base optimizer (Line 10).
Memory and computation cost: Algorithm 2 requires one additional forward step to compute
∇f(xt + γdt−1; ξ) and two additional buffers to store g̃t and dt. It would, at most, double the
computational and memory costs compared with the base algorithm.

4

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

2.3. Theoretical analysis

2.3.1. CONVERGENCE ANALYSIS

We provide the following convergence results for Algorithm 2, assuming σDP being a constant. For
the optimal choice of γ for evaluating the Hessian matrix, we have:

Theorem 3 Assume f(·; ξ) in (1) is G-Lipschitz and L-smooth for all ξ ∈ D, and the stochastic
gradient variance is bounded by σ2

SGD. For any σ2
DP, choosing C ≥ (1 + 2(1−κ)

κ)G, κ, η satisfy
η < 1+κ

2L(1+2(1−κ)2βL(2+|1+γ|Cγ))
, κ > 1 − 1√

1+4η2L2+|1+γ|(κ+2η2L2Cγ)
, and run Algorithm 2 for T

iterations. Then,
1

T

T∑
t=0

E ∥∇F (xt)∥2 ≤ 2(F (x0) + β ∥∇F (x0)∥2 − F ⋆)

C1ηT

+
2(β + η2L)κ2

C1η

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
, (6)

where Cγ = 1+4(2+1/κ+|1+γ|)
γ2 , C1 = (1+κ−2ηL)−4(β+η2L)(1−κ)2L2η (2 + |1 + γ|Cγ) > 0,

and β ≥ η(1−κ)/2+η2L(1−κ)2(1+4η2L2+|1+γ|(κ+2η2L2Cγ)
1−(1−κ)2(1+4η2L2+|1+γ|(κ+2η2L2Cγ)

≥ 0 are some non-negative constants.

The proof is given in Appendix B. The convergence result for the general choice of γ ̸= 0 is given
in Theorem 6, which has a slightly different choice of κ, β.
Corollary 4 Under the conditions of Theorem 3, by optimizing η, β, κ, and define Cκ = κ/Lη

= min
{

∥∇F (x0)∥2
2L(F (x0)−F ⋆) , 1

}
, Algorithm 2 satisfies:

E[∥∇F (xt)∥2] ≤ 4

√
CκL(F (x0)− F ⋆))(2σ2

SGD/B + dσ2
DP)

T
= O

(√
d

T

)
. (7)

2.3.2. PRIVACY-UTILITY TRADE-OFF

In Algorithm 2, the step for DP protection that applies the Gaussian mechanism is in Lines 4 and
5. Instead of ∇f(xt; ξ), we treat 1−κ

κγ ∇f(xt − γdt−1; ξ) + (1− 1−κ
κγ)∇f(xt; ξ) as the per-sample

gradient and apply the Subsampled Gaussian mechanism to privatize it. Therefore, Algorithm 2
and DPSGD share the same privacy guarantee, as the privacy proof directly follows the Subsampled
Gaussian mechanism and the composition of T iterations in Theorem 2.

Combining Theorem 2 and Theorem 3, we directly obtain the privacy-utility trade-off:
Theorem 5 Under the assumptions in Theorem 3. Run Algorithm 2 for T =

√
2NϵσSGD

C
√

Bd ln(1/δ)
itera-

tions, κ, β are chosen the same as in Corollary 4, then we have:

E ∥∇F (xt)∥2 ≤
8CσSGD

√
CκL(F (x0)− F ⋆)d ln(1/δ)√

BNϵ
= O

(√
d ln(1/δ)

Nϵ

)
(8)

Similarly, the privacy-utility utility trade-off of Algorithm 2 reduces by a constant factor of
√
1/Cκ

compared with vanilla DPSGD. To the best of our knowledge, this is the first known result of the
theoretical performance reduction for the DPSGD-type algorithm without additional assumptions
on the problem.

Let us comment on the value of the reduction factor. When ∥∇F (x0)∥2 < 2L(F (x0) − F ⋆),√
1/Cκ is greater than one and applying DiSK improves upon vanilla DPSGD. Case I: For (µ-

strongly) convex problems, it is guaranteed that 2µ(F (x0) − F ⋆) ≤ ∥∇F (x0)∥2 ≤ 2L(F (x0) −
F ⋆). Therefore, the factor Cκ ∈ [µ/L, 1]. Case II: When training highly non-convex deep learning
models, the Lipschitz constant L can be large [17], and 2L(F (x0) − F ⋆) can be much larger than
∥∇F (x0)∥2, which results in a considerable performance improvement compared with DPSGD.

5

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

(a) MNIST (b) CIFAR-10 (c) CIFAR-100
Figure 1: Test accuracy of pre-training on MNIST, CIFAR-10, and CIFAR-100 datasets with and
without DiSK for different privacy budgets.

Table 1: Test accuracy of fine-tuning result on the GLUE dataset.

Task
(ϵ = ∞) ϵ = 6.7 ϵ = 1
Non-DP DP KF-DP KF-DPLora DP KF-DP KF-DPLora

MNLI 87.6 83.2 84.8 85.9 80.7 82.0 84.7
QNLI 92.8 87.5 88.9 90.5 86.0 88.7 90.3
SST-2 94.8 91.5 92.8 93.1 91.4 91.5 92.9
QQP 91.9 85.8 88.5 89.0 84.2 86.9 87.8

3. Numerical experiments

In this section, we empirically validate the proposed approach. We perform pre-training and fine-
tuning on various image classification (CV) and natural language processing (NLP) tasks using
different base algorithms, privacy budgets, and models. In the results, we use KF- to denote the
DP algorithm with DiSK. In the experiments, we tune the hyper-parameters using a grid search.
Specifically, we conduct a grid search on the batch size B, total epochs E = NT/B, and step size
η for each given privacy budget ϵ. For all experiments, we fix the privacy parameter δ = 1/N1.1

to obtain a reasonable privacy notion. Detailed discussions on the model, data, and base algorithms
are in Appendix C.1, and hyper-parameter choices are discussed in Appendix C.2.
CV tasks: We first train the CV models with randomly initialized weights on different image
datasets. The results for 5-layer CNN on the MNIST dataset, 5-layer CNN on the CIFAR-10 dataset,
and WRN-16-4 on the CIFAR-100 datasets with different privacy budgets are given in Figure 1. The
algorithm performance with DiSK significantly outperforms the base algorithm across all used pri-
vacy budgets. Additional results for the training curves, results on Imagenet-1k, and ablation studies
on hyper-parameter choices are provided in Appendix C.3.
NLP tasks: The final test accuracy for the GLUE dataset is given in Table 1. We follow the same
training script and hyper-parameter choices in the experiments as Bu et al. [8]. Compared with the
base algorithm (DPAdamW), DiSK improves the average final accuracy on all tasks by 3.4% when
ϵ = 1 and 2.6% when ϵ = 6.7. Additional results are provided in Appendix C.4.

4. Conclusion

This paper proposed DiSK, an approach to improve DP optimizers’ performance. The approach
uses the Kalman filter that combines the noisy observation of the privatized gradient and the dy-
namics of the true gradient to improve the gradient estimation quality. We provide the theoretical
result for the proposed DiSK, and conduct numerical experiments to show that DP optimizers with
DiSK outperform the ones without it on various datasets and models for pre-training and fine-tuning
tasks.

6

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 308–318, 2016.

[2] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In
International conference on machine learning, pages 699–707. PMLR, 2016.

[3] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially
private learning with adaptive clipping. Advances in Neural Information Processing Systems,
34:17455–17466, 2021.

[4] Apurva Badithela and Peter Seiler. Analysis of the heavy-ball algorithm using integral
quadratic constraints. In 2019 American control conference (ACC), pages 4081–4085. IEEE,
2019.

[5] Wenxuan Bao, Francesco Pittaluga, Vijay Kumar BG, and Vincent Bindschaedler. Dp-mix:
mixup-based data augmentation for differentially private learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

[6] Barbara Bittner and Luc Pronzato. Kalman filtering in stochastic gradient algorithms: con-
struction of a stopping rule. In 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 2, pages ii–709. IEEE, 2004.

[7] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimiza-
tion on large model at small cost. In International Conference on Machine Learning, pages
3192–3218. PMLR, 2023.

[8] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differen-
tially private deep learning made easier and stronger. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[9] Xin Chen, Yujie Tang, and Na Li. Improve single-point zeroth-order optimization using high-
pass and low-pass filters. In International Conference on Machine Learning, pages 3603–
3620. PMLR, 2022.

[10] Christopher A Choquette-Choo, Krishnamurthy Dj Dvijotham, Krishna Pillutla, Arun Ganesh,
Thomas Steinke, and Abhradeep Guha Thakurta. Correlated noise provably beats independent
noise for differentially private learning. In The Twelfth International Conference on Learning
Representations, 2024.

[11] Saman Cyrus, Bin Hu, Bryan Van Scoy, and Laurent Lessard. A robust accelerated optimiza-
tion algorithm for strongly convex functions. In 2018 Annual American Control Conference
(ACC), pages 1376–1381. IEEE, 2018.

[12] Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

7

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[14] Li Deng. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2020.

[16] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Theoret-
ical Computer Science, 9(3-4):211–407, 2014.

[17] Calypso Herrera, Florian Krach, and Josef Teichmann. Estimating full lipschitz constants of
deep neural networks. arXiv preprint arXiv:2004.13135, 2020.

[18] Bin Hu and Laurent Lessard. Dissipativity theory for nesterov’s accelerated method. In Inter-
national Conference on Machine Learning, pages 1549–1557. PMLR, 2017.

[19] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and
Zheng Xu. Practical and private (deep) learning without sampling or shuffling. In International
Conference on Machine Learning, pages 5213–5225. PMLR, 2021.

[20] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Ba-
sic Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL
https://doi.org/10.1115/1.3662552.

[21] Anastasiia Koloskova, Ryan McKenna, Zachary Charles, John Rush, and H Brendan McMa-
han. Gradient descent with linearly correlated noise: Theory and applications to differential
privacy. Advances in Neural Information Processing Systems, 36, 2023.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[23] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95,
2016.

[24] Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models
can be strong differentially private learners. In International Conference on Learning Repre-
sentations, 2021.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[26] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2022.

8

https://doi.org/10.1115/1.3662552

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

[27] Zelun Luo, Daniel J Wu, Ehsan Adeli, and Li Fei-Fei. Scalable differential privacy with
sparse network finetuning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5059–5068, 2021.

[28] Hesameddin Mohammadi, Meisam Razaviyayn, and Mihailo R Jovanović. Tradeoffs between
convergence rate and noise amplification for momentum-based accelerated optimization algo-
rithms. IEEE Transactions on Automatic Control, 2024.

[29] Michael Muehlebach and Michael Jordan. A dynamical systems perspective on nesterov accel-
eration. In International Conference on Machine Learning, pages 4656–4662. PMLR, 2019.

[30] Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun
Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Na-
dia Irwanto, Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar,
Ankit Gupta, Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and
Nazneen Fatema Rajani. DART: Open-domain structured data record to text generation. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 432–447, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.37. URL
https://aclanthology.org/2021.naacl-main.37.

[31] Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. The E2E dataset: New challenges
for end-to-end generation. In Proceedings of the 18th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, Saarbrücken, Germany, 2017. URL https://arxiv.
org/abs/1706.09254. arXiv:1706.09254.

[32] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson.
Tempered sigmoid activations for deep learning with differential privacy. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 9312–9321, 2021.

[33] Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties.
Institute for Systems and Robotics, 43(46):3736–3741, 2004.

[34] Carsten W Scherer, Christian Ebenbauer, and Tobias Holicki. Optimization algorithm syn-
thesis based on integral quadratic constraints: A tutorial. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pages 2995–3002. IEEE, 2023.

[35] Li Shen, Congliang Chen, Fangyu Zou, Zequn Jie, Ju Sun, and Wei Liu. A unified analysis
of adagrad with weighted aggregation and momentum acceleration. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[36] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147. PMLR, 2013.

[37] James Vuckovic. Kalman gradient descent: Adaptive variance reduction in stochastic opti-
mization. arXiv preprint arXiv:1810.12273, 2018.

[38] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter. Kalman filtering and
neural networks, pages 221–280, 2001.

9

https://aclanthology.org/2021.naacl-main.37
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

[39] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353–355, 2018.

[40] Bao Wang, Quanquan Gu, March Boedihardjo, Lingxiao Wang, Farzin Barekat, and Stanley J
Osher. Dp-lssgd: A stochastic optimization method to lift the utility in privacy-preserving
erm. In Mathematical and Scientific Machine Learning, pages 328–351. PMLR, 2020.

[41] Haoqian Wang, Yi Luo, Wangpeng An, Qingyun Sun, Jun Xu, and Lei Zhang. Pid controller-
based stochastic optimization acceleration for deep neural networks. IEEE transactions on
neural networks and learning systems, 31(12):5079–5091, 2020.

[42] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differ-
ential privacy and analytical moments accountant. In The 22nd international conference on
artificial intelligence and statistics, pages 1226–1235. PMLR, 2019.

[43] Greg Welch, Gary Bishop, et al. An introduction to the Kalman filter. Chapel Hill, NC, USA,
1995.

[44] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Trans-
formers: State-of-the-art natural language processing. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/2020.emnlp-demos.6.

[45] Yilin Wu, Qian Zhang, and Zhiping Shen. Kalman filtering with multiplicative and additive
noises. In 2016 12th World Congress on Intelligent Control and Automation (WCICA), pages
483–487. IEEE, 2016.

[46] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath,
Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private
fine-tuning of language models. In International Conference on Learning Representations,
2021.

[47] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems, 31,
2018.

[48] Xinwei Zhang, Mingyi Hong, and Nicola Elia. Understanding a class of decentralized and
federated optimization algorithms: A multirate feedback control perspective. SIAM Journal
on Optimization, 33(2):652–683, 2023.

[49] Xinwei Zhang, Zhiqi Bu, Mingyi Hong, and Meisam Razaviyayn. Doppler: Differen-
tially private optimizers with low-pass filter for privacy noise reduction. arXiv preprint
arXiv:2408.13460, 2024.

10

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Appendix A. Additional discussion

A.1. Related Works

Optimization with filters and controllers: The use of filters and controllers in designing and
analyzing optimization algorithms has a rich history. Researchers have leveraged high-pass and
low-pass filters to enhance gradient estimation in zeroth-order optimization [9], employed PID con-
trollers for both centralized and distributed optimization [41], and analyzed optimizers through the
lens of control theory, treating them as dynamic systems [4, 11, 18, 23, 28, 29, 34, 48].

Kalman filter for optimization: The Kalman filter has been utilized in convex optimization
for reducing stochastic gradient noise [6, 37]. Vuckovic [37] uses the dynamics of the optimization
variable and the gradient to construct the Kalman filter to analyze and improve the performance of
momentum methods. Bittner and Pronzato [6] uses gradient and Hessian as its states to construct
the dynamic system for SGD to construct a stopping rule. However, these approaches, with their
direct application of the Kalman filter, incur prohibitively high computational and memory costs,
ranging from O(d3) to O(d6), rendering them impractical for training large-scale machine learning
models.

Improving DP optimization: Numerous techniques have been proposed to enhance DP opti-
mization by mitigating the impact of DP noise. These include adaptive gradient clipping methods
that dynamically adjust clipping thresholds [3, 8], parameter-efficient training strategies employing
adapters, low-rank weights, or quantization [27, 46, 46], and the design of specialized model archi-
tectures less susceptible to noise perturbations [12, 32, 40]. Furthermore, drawing inspiration from
signal processing, researchers have explored the use of colored high-frequency DP noise to separate
it from the gradient [21] and the application of low-pass filters to extract the gradient signal from
noisy observations [49].

A.2. Background on Kalman Filter

In this section, we provide an introduction and derivation of the Kalman filter. Kalman filter is
introduced in [20] and wildly used for control systems in accurately estimating system states with
noisy observation and known system dynamics. Specifically, given a linear system with System
update and Observation:

θt = Atθt−1 + ut + vt, (System update)

ψt = Ctθt +wt, (Observation)

where At ∈ Rdθ×dθ , Ct ∈ Rdψ×dθ are the transition and observation matrices; θt ∈ Rdθ is the
unknown variable to be estimated; ψt ∈ Rdψ denotes the observation of the system; ut ∈ Rdθ

denotes the known input; and vt ∈ Rdθ ,wt ∈ Rdψ are the process and observation noises that
follow Gaussian distribution N (0,Σv),N (0,Σw), respectively. Then, the Kalman filter takes the
following form [20, 43]:

θ̃t|t−1 = Atθ̃t−1 + ut (Prediction)

Pt|t−1 = AtPt−1 +Σv

Kt = Pt|t−1C
⊤
t (CtPt|t−1C

⊤
t +Σw)

−1

θ̃t = (I−KtCt)θ̃t|t−1 +Ktψt (Correction)

11

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Pt = (Idθ −KtCt)Pt|t−1.

The filter first predicts the state θ̃t|t−1 by the system dynamics, and compute the filter gain Kt ∈
Rdθ×dψ based on the covariance matrix Pt ∈ Rdθ×dθ , and corrects the prediction with system
observation ψt to obtain θ̃t. The Kalman filter makes use of both the noisy observation and the
prior knowledge of the system dynamics to obtain an accurate estimation of the state θt. The goal
of the Kalman filter is to estimate θt with the observation of ψt with the least mean-square error,
and serves as the Best Linear Unbiased Estimator (BLUE) [43].

Derivation: First, we denote the estimation of θt as θ̃t, and the covariance of θt − θ̃t as

Pt = E[(θt − θ̃t)(θt − θ̃t)⊤].

Then, based on the knowledge at time t− 1, the system dynamics give an unbiased prediction:

θ̃t|t−1 = Aθ̃t−1 + ut, (9)

and its covariance is

Pt|t−1 = E[(θt − θ̃t|t−1)(θt − θ̃t|t−1)
⊤] = APt−1A

⊤ +Σv. (10)

With θ̃t|t−1, we have an (unbiased) prediction of the observation ψ̃t|t−1 = Cθ̃t|t−1 at time t−1. At
time t, by observing ψt, we have the prediction error ∆ψt = ψt − ψ̃t|t−1 = ψt −Cθ̃t|t−1. Since
the system is linear, we would like to use the prediction error to correct the prediction:

θ̃t = θ̃t|t−1 +Kt∆ψt = Ktψt + (I−KtC)θ̃t|t−1. (11)

The goal of the Kalman filter is to minimize the mean-square error: minK E[
∥∥∥θt − θ̃t∥∥∥2], which is

equivalent to minimizing tr(Pt). From the definition of θ̃t, we have:

Pt = E[(θt − θ̃t)(θt − θ̃t)⊤]
= E[(θt −Ktψt + (I−KtC)θ̃t|t−1)(θt −Ktψt + (I−KtC)θ̃t|t−1)

⊤]

= E[(θt − θ̃t|t−1 −KtC(θt − θ̃t|t−1)−Ktwt)(θt − θ̃t|t−1 −KtC(θt − θ̃t|t−1)−Ktwt)
⊤]

= Pt|t−1 −KtCPt|t−1 − (KtCPt|t−1)
⊤ +Kt(CPt|t−1C

⊤ +Σw)K
⊤
t .

Taking partial derivative to the trace of Pt with respect to Kt, and set it to zero, we have:

∂tr(Pt)

∂Kt
= −2(CPt|t−1)

⊤ + 2(CPt|t−1C
⊤ +Σw)K

⊤
t = 0,

which gives
Kt = Pt|t−1C

⊤(CPt|t−1C
⊤ +Σw)

−1. (12)
Substitute Kt back to Pt, we can simplify

Pt = Pt|t−1 −KtCPt|t−1 − (KtCPt|t−1)
⊤ +Kt(CPt|t−1C

⊤ +Σw)K
⊤
t

= Pt|t−1 −KtCPt|t−1 = (I−KtC)Pt|t−1.
(13)

Combining (9)-(13) together, we have the update of the Kalman filter:

θ̃t|t−1 = Aθ̃t−1 + ut

12

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Pt|t−1 = APt−1A
⊤ +Σv

Kt = Pt|t−1C
⊤(CPt|t−1C

⊤ +Σw)
−1

θ̃t = (I−KtC)θ̃t|t−1 +Ktψt

Pt = (I−KtC)Pt|t−1.

Variants of Kalman filter: Kalman filter is designed for estimating the states following lin-
ear dynamics and achieves optimal performance, i.e., gives the smallest mean square error of the
estimation when the system is linear [43]. Extended Kalman filter (EKF) and unscented Kalman
filter (UKF) are developed to deal with non-linear systems. EKF linearizes the non-linear system at
each step and performs the Kalman filter on the linearized system [33], while UKF takes the effect
of the system non-linearity to the noise distribution into consideration and applies the unscented
transform on the noise distribution and applies the Kalman filter on the system and the noise distri-
bution [38]. Other extensions of the Kalman filter have been developed for special cases, including
multiplicative noise and noisy input ut [45].

A.3. Other system dynamics for DPSGD

In this section, we would like to discuss other possible formulations of the system dynamics for
DPSGD to apply the Kalman filter.

Optimization variable and gradient version 1: Other than only using the gradients’ dynamics
in the main paper, we can construct the dynamic system with both the optimization variable x and
the gradient ∇F (x) as its states [37]:[

xt+1

∇F (xt+1)

]
=

[
I −ηI
0 I

] [
xt

∇F (xt)

]
+

[
ηwt

0

]
,

yt = xt.

However, this dynamic is inaccurate as the dynamics of the gradient are simplified to ∇F (xt+1) =
∇F (xt). Although the update can further incorporate with the momentum methods, i.e., by adding
a momentum mt into the system, it fails to reveal the actual dynamic of the system.

Optimization variable and gradient version 2: Instead of treating the gradient as a constant,
we can assume the Hessian H is a constant and utilize the Hessian to reveal the gradient dynamics: xt+1

xt

∇F (xt)

 =

 I− ηH ηH −ηI
I 0 0
H −H I

 xt

xt−1

∇F (xt−1)

+

 ηwt

0
0

 ,

yt = xt.

This system is more accurate in evaluating the gradient at the cost of using an extra xt−1 state and
a larger transition matrix. For non-linear problems F (x), where H is not a constant, we can apply
the extended Kalman filter and replace H with Ht that linearizes the problem at each step t.

Gradient and Hessian: In work [6], the dynamics of the gradient and Hessian have been used
to construct the system: [

∇F (xt+1)
ht+1

]
=

[
I ∆Xt

0 I

] [
∇F (xt)

ht

]
,

13

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

gt = ∇F (xt) +wt,

where ht = [H1,1, . . . ,Hi,i+j , . . . ,Hd,d]
⊤, with j ∈ [0, . . . , d−i] represents the entries in the upper

triangular part of the Hessian matrix. ∆Xt is constructed such that ∆Xtht = Ht(xt+1 − xt). The
system treats the Hessian matrix as a constant matrix (i.e., ht+1 = ht), and the transition matrix is
of size (d+ d(d− 1)/2)× d+ d(d− 1)/2.

Although there are different ways to construct the Kamlan filter for gradient noise reduction, the
above systems are not implementable in practical deep-learning applications. Because the transition
matrices of these systems are non-diagonal, the Kalman filters have non-diagonal gain Kt and
Pt. Therefore, the matrix inversion operation is unavoidable when Kalman filters are implemented
based on these systems. The computation complexity for the matrix inversion can be O(d3) to
O(d6), and the memory consumption is O(d2) to O(d4) for storing the matrices of the Kalman
filter.

A.4. Algorithm Simplification

In this section, we explain how the simplification proceeds from Algorithm 5 to Algorithm 2. Recall
that updates of Algorithm 5 is

g̃t|t−1 = g̃t−1 + H̃t(xt − xt−1) (Prediction)

Pt|t−1 = Pt−1 +ΣH +Σv

Kt = Pt|t−1 E[Ct]
⊤
(
Σw + E[Ct]

(
ΣCSt +Pt|t−1

)
E[Ct]

⊤ − ΣH

)−1

g̃t = g̃t|t−1 +Kt(gt − E[Ct]g̃t|t−1) (Correction)

Pt = (I−Kt E[Ct])Pt|t−1

St = E[g̃tg̃⊤
t].

We apply four steps of simplification, including

1. Replacing random Ct with constant Id. The randomness of Ct comes from the sub-sampling
and the clipping operation. To simplify the algorithm, the clipping operation clip (∇f(x; ξ), C)
can be viewed as a change of the problem to be optimized. Specifically, instead of optimizing
the ERM problem (1) F (x), the DPSGD algorithm with clipping optimizes FC(x), where

FC(x) =

∫ 1

0
∇FC(zx)

⊤xdz, ∇FC(x) =
1

N

∑
ξ∈D

clip (∇f(x; ξ), C) . (14)

Further by assuming that the sub-sampled mini-batch gradient only causes additive noise,
i.e., 1

B

∑
ξ∈B clip (∇f(x, ξ), C) = ∇F (x) +wSGD, then C = Id is an identity matrix, and

ΣC = 0.

2. Use finite difference to estimate Htdt−1. Note that we cannot directly obtain Htdt−1, as it
requires computing the Hessian of the problem. In practice, we can use a finite difference to
approximate such value:

Htdt−1 =
∇F (xt + γdt−1)−∇F (xt)

γ
+∆(γ) ≈ 1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
,

14

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

where the approximation error ∆(γ) = O(γ). By using such an estimation, we can efficiently
estimate Htdt−1 with only first-order information in the DP optimization, greatly reducing
memory and computation complexity.

3. Replace ΣH with diagonal matrix σ2
HId, Σv with σ2

vId, and Σw with σ2
wId. The matrix

computation in Algorithm 5 is extremely time-consuming and memory inefficient. In line 8
of Algorithm 5, the matrix inversion requires O(d3) computation and memory complexity,
impractical for optimizing large models with billions of trainable parameters. Therefore, to
simplify the algorithm, we assume ΣH in the Kalman filter is a time-invariant diagonal ma-
trices, ΣH = σ2

HId. By using this simplification, matrices P,K become pId, kId, for some
scalars p, k, and all matrix computations involved in the algorithm become scalar-vector mul-
tiplication and memory consumption is reduced to O(1), which is affordable for DP training.

4. Use fixed filter gain κ. With the above simplification, kt converges to its stable value with a
linear rate, i.e., ∥kt − k∞∥ = O(ctk), for some ck ∈ (0, 1), we can use kt = κ,∀ t to further
simplify the algorithm and avoid iteratively updating pt and recomputing kt for each step.

Step 1. By replacing Ct with Id, and ΣC = 0, the update becomes

g̃t|t−1 = g̃t−1 + H̃t(xt − xt−1) (Prediction)

Pt|t−1 = Pt−1 +ΣH +Σv

Kt = Pt|t−1

(
Σw +Pt|t−1 − ΣH

)−1

g̃t = g̃t|t−1 +Kt(gt − g̃t|t−1) (Correction)

Pt = (I−Kt)Pt|t−1.

Step 2. By using the finite difference to estimate Htdt−1, the prediction step becomes:

g̃t|t−1 = g̃t−1 +
1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
(Prediction).

Step 3. By replacing Σ’s with diagonal matrix σ2Id’s, the update becomes:

g̃t|t−1 = g̃t−1 +
1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
(Prediction)

pt|t−1 = pt−1 + σ2
H + σ2

v,Pt|t−1 = pt|t−1Id

kt =
pt|t−1

pt|t−1 + σ2
w − σ2

H

=
pt−1 + σ2

H + σ2
v

pt−1 + σ2
w + σ2

v

,Kt = ktId

g̃t = g̃t|t−1 + kt(gt − g̃t|t−1) (Correction)

pt = (1− kt)pt|t−1 =
(σ2

w − σ2
H)(pt−1 + σ2

H + σ2
v)

pt−1 + σ2
w + σ2

v

.

Step 4. As discussed in the main paper, the update of kt, pt becomes:

kt =
pt−1 + σ2

H + σ2
v

pt−1 + σ2
w + σ2

v

,

15

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

pt =
(σ2

w − σ2
H)(pt−1 + σ2

H + σ2
v)

pt−1 + σ2
w + σ2

v

.

Therefore, pt converges to p∞ =

√
σ2
H+σ2

v

√
4σ2

w−3σ2
H+σ2

v−(σ2
H+σ2

v)

2 , kt converges to k∞ =
p∞+σ2

H+σ2
v

p∞+σ2
w+σ2

v
,

with rate ck =
2σ2

w+3σ2
H+σ2

v−
√

(σ2
v+σ2

H)(4σ2
w+σ2

v−3σ2
H)

2σ2
w+3σ2

H+σ2
v+

√
(σ2

v+σ2
H)(4σ2

w+σ2
v−3σ2

H)
. Therefore, we define κ = k∞ and replace kt

with κ, and the update becomes:

g̃t|t−1 = g̃t−1 +
1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
(Prediction)

g̃t = g̃t|t−1 + κ(gt − g̃t|t−1) (Correction)

Rearrange the terms, we have:

g̃t = (1− κ)g̃t + κgt + (1− κ)
1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ

= (1− κ)g̃t + κĝt, with

ĝt = gt +
1− κ

κ

1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ

=
1

B

∑
ξ∈B

(
1− κ

κγ
∇f(xt + γdt−1; ξ) +

(
1− 1− κ

κγ

)
∇f(xt; ξ)

)
.

Then, by privatizing ĝt and rename it as gt, we have:

gt =
1

B

∑
ξ∈B

clip

(
1− κ

κγ
∇f(xt + γdt−1; ξ) +

(
1− 1− κ

κγ

)
∇f(xt; ξ), C

)
+wt

g̃t = (1− κ)g̃t + κgt,

which is the update of Algorithm 2 (Lines 5 and 6).
Remark 1. When the clipping is inactive, the update of Algorithm 2 is:

gt =
1

B

∑
ξ∈Bt

∇f(xt; ξ) +wt (Observation)

g̃t|t−1 = g̃t−1 +
1

γB

∑
ξ∈B

(∇f(xt + γdt; ξ)−∇f(xt; ξ)) (Prediction)

g̃t = (1− κ)g̃t|t−1 + κgt (Correction)

xt+1 = xt − ηg̃t, dt = xt+1 − xt,

(15)

where Kt = κId, ∀t, and the above update matches the ones in the Kalman filter.

A.5. Algorithm Connection

Connection to NAG: The algorithm in Algorithm 2 has an inner connection to the (unified) Nes-
terov accelerated gradient (NAG) method [35, 36]. The update of NAG writes

mt = µmt−1 − η∇F (xt + µmt−1)

xt+1 = xt +mt.
(16)

16

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

In comparison, in Algorithm 2, by letting γ = 1−κ
κ , η = −κ, and letting the update be OptimizerUp-

date be SGD, then the algorithm becomes

g̃t = (1− κ)g̃t−1 − η

 1

B

∑
ξ∈Bt

∇f (xt + (1− κ)g̃t−1; ξ) +wt


xt+1 = xt + κg̃t.

(17)

Notice that (16) and (17) are different by an extra learning rate κ in (17) in the update of xt+1.
Therefore, NAG is a special case of Algorithm 2 with specific choices of η, γ.

Connection to DOPPLER: DOPPLER and DiSK both use a filter to separate the gradient
signal from the DP noise. If gt only evaluates the gradient at one point instead of using the linear
combination of gradients at two points in Algorithm 2, DiSK becomes DOPPLER with a first-
order filter. The key difference is that DOPPLER assumes an underlying low-frequency dynamic
of the gradient and applies a time-invariant low-pass filter. While in DiSK, we do not assume the
frequency property of the gradient signal. Instead, we incorporate the gradient dynamics into the
filtering procedure and use the Kalman filter, a predictive filtering approach, to reduce the impact of
DP noise.

Appendix B. Proof for Section 2.3

In this section, we provide the detailed proof for the results in Section 2.3 and Theorem 6 for the
case γ ̸= −1.

Theorem 6 Assume A1-A2 holds. For any fixed σ2
DP, C, γ ̸= 0, by choosing η < 1

2L(1+8βL) ,
κ > 8η2L2, and run Algorithm 2 for T iterations, we have

1

T

T∑
t=0

E ∥∇FC(xt)∥2

≤
2(FC(x0) + β ∥∇FC(x0)∥2 − F ⋆

C)

C2ηT
+

2(β + η2L)κ2

C2η

(
2σ2

SGD

B
+ dσ2

DP

)
,

where β ≥ η(1−κ)/2+η2L(1−κ)2(1+8(1+1/κ)η2L2)
1−(1−κ)2(1+κ+8(1+1/κ)η2L2)

≥ 0 and C2 = 1 + κ− 2ηL(1 + κ+ 8L(β + (1 +

1/κ)η2L)(1− κ)2) > 0 are non-negative constants.

To facilitate our analysis, we make the following assumptions to (1):

A 1 (Smoothness) f(·, ξ) is L-smooth for any ξ, i.e.,

∥∇f(x; ξ)−∇f(y; ξ)∥ ≤ L ∥x− y∥ , ∀ξ ∈ D, ∀x,y ∈ Rd.

A 2 (Bounded Variance) The per-sample gradient has bounded variance with

Eξ∈D ∥∇f(x; ξ)−∇F (x)∥2 ≤ σ2
SGD, ∀x ∈ Rd,

where Eξ∈D denotes the expectation taken on the randomness over ξ that is uniformly sampled from
dataset D.

17

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

A 3 (Bounded Gradient) Each per-sample gradient has a bounded norm, i.e.,

∥∇f(x; ξ)∥ ≤ G, ∀x ∈ Rd,∀ξ ∈ D.

Let us briefly comment on these assumptions: A1 and A2 are standard in non-convex optimiza-
tion [1, 2, 47]; and A3 is commonly used in analyzing the convergence of DP algorithms [1, 3, 40]
to avoid introducing the clipping bias. Since the impact of clipping is not the major focus of this
paper, we follow the existing analyses and use A3 to simplify our theoretical analysis.

We will use the following inequalities in our proofs:

⟨a,b⟩ ≤ 1

2α
∥a∥2 + α

2
∥b∥2 , (18)

∥a+ b∥2 ≤ (1 + α) ∥a∥2 + (1 + 1/α) ∥b∥2 . (19)

In the following sections, we use Et to denote the expectation conditioned on all the information
before iteration t. To prove Theorem 3, we first provide the following lemma to bound the difference
between g̃t defined in Line 6 of Algorithm 2, and ∇F (xt). Let us define ∆t = ∇F (xt) − g̃t. We
have:

Lemma 7 Assume A1, A2, and A3 holds and choose C ≥
(
1 + 2(1−κ)

κ

)
G, we have:

Et ∥∆t∥2 ≤ (1− κ)2
(
1 + 4η2L2 + |1 + γ|

(
κ+ 2η2L2Cγ

))
∥∆t−1∥2

+ 2η2L2(1− κ)2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

+ κ2
(
(2 + |1 + γ|)

σ2
SGD
B

+ dσ2
DP

)
, (20)

where we define Cγ =
(
1 + 4(2+1/κ+|1+γ|)

γ2

)
.

B.1. Proof of Lemma 7

First notice that when choosing C ≥
(
1 + 2(1−κ)

κ

)
G, the clipping operation is inactive. By the

update of g̃t in Line 6 of Algorithm 2, we have:

Et ∥∆t∥2

= Et

∥∥∥∥∥∥∇F (xt)− (1− κ)g̃t−1 −
κ

B

∑
ξ∈Bt

∇f(xt, ξ)− κwt

−1− κ

γB

∑
ξ∈Bt

(∇f(xt + γdt−1; ξ)−∇f(xt; ξ))

∥∥∥∥∥∥
2

(a)
= Et ∥(1− κ)(∇F (xt)−∇F (xt−1)) + (1− κ)(∇F (xt−1)− g̃t−1)

+ κ

∇F (xt)−
1

B

∑
ξ∈Bt

∇f(xt, ξ)−wt



18

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

− 1− κ

γB

∑
ξ∈Bt

(∇f(xt + γdt−1; ξ)−∇f(xt; ξ))
∥∥2

(b)
= Et

∥∥∥∥∥(1− κ)

∇F (xt)−∇F (xt−1)−
1

B

∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))


︸ ︷︷ ︸

:=D1

+ (1− κ)∆t−1 + κ

∇F (xt)−
1

B

∑
ξ∈Bt

∇f(xt, ξ)


︸ ︷︷ ︸

:=D2

−κwt

− (1− κ)
1

B

∑
ξ∈Bt

(
1

γ
∇f(xt + γdt−1; ξ) +∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

)
︸ ︷︷ ︸

:=D3

∥∥∥∥∥
2

(c)
= (1− κ)2 Et ∥D1∥2 + (1− κ)2 ∥∆t−1∥2 + κ2 Et[∥D2∥2] + (1− κ)2 Et ∥D3∥2 + κ2 E[∥wt∥2]
+ 2(1− κ)2 ⟨Et[D1],∆t−1⟩+ 2(1− κ)κ ⟨Et[D2],∆t−1⟩ − 2(1− κ)2 ⟨Et[D3],∆t−1⟩
+ 2Et[⟨(1− κ)D1, κD2⟩]− 2(1− κ)2 Et[⟨D1, D3⟩]− 2Et[⟨κD2, (1− κ)D3⟩],

(d)

≤ (1− κ)2(2 + |1 + γ|)Et ∥D1∥2 + (1− κ)2(1 + κ |1 + γ|) ∥∆t−1∥2 + κ2(2 + |1 + γ|)Et[∥D2∥2]

+ (1− κ)2
(
1 +

2

|1 + γ|
+

1

κ |1 + γ|

)
Et ∥D3∥2 + κ2dσ2

DP, (21)

where (a) we add and subtract (1 − κ)∇F (xt−1) and rearrange the terms; (b) adds and sub-
tracts 1−κ

B

∑
ξ∈Bt (∇f(xt; ξ)−∇f(xt−1; ξ)); (c) directly expands the square and use the fact that

Et[wt] = 0 and wt is independent of other terms; and in (d), we notice that Et[D1] = 0,Et[D2] =
0, so the first two inner products are zero, and we apply (18) to the other four inner products, with
α = κ |1 + γ| , 1, |1 + γ|, respectively. Next, we bound each term separately. For Et[∥D1∥2], we
have:

Et[∥D1∥2] = Et

∥∥∥∥∥∥∇F (xt)−∇F (xt−1)−
1

B

∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))

∥∥∥∥∥∥
2

(a)

≤ Et

∥∥∥∥∥∥ 1B
∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))

∥∥∥∥∥∥
2

(b)

≤ L2η2 ∥g̃t−1∥2

(c)

≤ 2L2η2(∥∆t−1∥2 + ∥∇F (xt−1)∥2),

(22)

where (a) uses the fact that E ∥X − E[X]∥2 ≤ E ∥X∥2, with

∇F (xt)−∇F (xt−1) = Et[
1

B

∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))]

19

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

; (b) applies A1 and (c) adds and subtracts ∇F (xt−1), and applies (19). For Et[∥D2∥2], we have:

Et[∥D2∥2] = Et

∥∥∥∥∥∥∇F (xt)−
1

B

∑
ξ∈Bt

∇f(xt, ξ)

∥∥∥∥∥∥
2

A2
≤

σ2
SGD
B

. (23)

For Et[∥D3∥2], we have:

Et[∥D3∥2] = Et

∥∥∥∥∥∥ 1B
∑
ξ∈Bt

(
1

γ
∇f(xt + γdt−1; ξ) +∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

)∥∥∥∥∥∥
2

(a)

≤ 1

B

∑
ξ∈Bt

∥∥∥∥∥1γ∇f(xt + γdt−1; ξ)−
1

γ
∇f(xt−1; ξ)

+
1 + γ

γ
∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

∥∥∥∥∥
2

(19)
≤ 2

B

∑
ξ∈Bt

∥∥∥∥1γ∇f(xt + γdt−1; ξ)−
1

γ
∇f(xt−1; ξ)

∥∥∥∥2
+

2

B

∑
ξ∈Bt

∥∥∥∥1 + γ

γ
∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

∥∥∥∥2
A1
≤ 2L2

γ2
∥xt + γdt−1 − xt−1∥2 +

2L2(1 + γ)2

γ2
∥xt−1 − xt∥2

(b)
=

4L2(1 + γ)2η2

γ2
∥g̃t−1∥2

(c)

≤ 8L2(1 + γ)2η2

γ2
(∥∆t−1∥2 + ∥∇F (xt−1)∥2), (24)

where (a) applies Jensens’ inequality to ∥·∥2, and we add and subtract 1
γ∇f(xt−1; ξ); (b) apples

(19); (b) uses the fact that dt−1 = xt−xt−1 = −ηg̃t−1; and (c) adds and subtracts ∇F (xt−1), and
applies (19). Plug in (22) – (24) to (21), we have:

Et ∥∆t∥2 ≤ (1− κ)2(2 + |1 + γ|)Et ∥D1∥2 + (1− κ)2(1 + κ |1 + γ|) ∥∆t−1∥2 + κ2dσ2
DP

+ κ2(2 + |1 + γ|)Et[∥D2∥2] + (1− κ)2
(
1 +

2

|1 + γ|
+

1

κ |1 + γ|

)
Et ∥D3∥2

≤ (1− κ)2
(
1 + 4η2L2 + |1 + γ|

(
κ+ 2η2L2Cγ

))
∥∆t−1∥2

+ 2η2L2(1− κ)2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

+ κ2
(
(2 + |1 + γ|)

σ2
SGD
B

+ dσ2
DP

)
, (25)

where we define Cγ :=
(
1 + 4(2+1/κ+|1+γ|)

γ2

)
. This completes the proof of Lemma 7.

20

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

B.2. Proof of Theorem 3

Now, we are ready to prove Theorem 3. By choosing C ≥ G(1 + 2(1−κ)
κγ), the clipping is inactive.

Recall that from the update rule, we have

Et[g̃t] = (1− κ)g̃t−1 + κ∇F (xt) + (1− κ)(∇F (xt)−∇F (xt−1))

= ∇F (xt)− (1− κ)∆t−1.
(26)

Then, by A1 we have F (·) is also L-smooth, so it satisfies

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩ , L
2
∥y − x∥2 .

Substitute y = xt+1,x = xt to the above relation and take expectation over the randomness in
iteration t, we have:

Et[F (xt+1)]−F (xt) ≤ −η ⟨∇F (xt),Et[g̃t]⟩+
η2L

2
Et ∥g̃t∥2

(a)
= −η ∥∇F (xt)∥2 + η(1− κ) ⟨∇F (xt),∆t−1⟩+

η2L

2
Et ∥g̃t∥2

(18)
≤ −η ∥∇F (xt)∥2 +

η(1− κ)

2
∥∇F (xt)∥2 +

η(1− κ)

2
∥∆t−1∥2 +

η2L

2
Et ∥g̃t∥2

(b)
= −η ∥∇F (xt)∥2 +

η(1− κ)

2
∥∇F (xt)∥2 +

η(1− κ)

2
∥∆t−1∥2

+
η2L

2
Et ∥g̃t −∇F (xt) +∇F (xt)∥2

(c)

≤ −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 +

η(1− κ)

2
∥∆t−1∥2 + η2LEt ∥∆t∥2 , (27)

where (a) substitute (26); (b) we add and subtract ∇F (xt) to the last term and (c) applies (19) to
the last term.

Define Lt := F (xt) + β ∥∆t−1∥2, we have:

Et[Lt+1]− Lt

≤ −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 − (β − η(1− κ)

2
) ∥∆t−1∥2 + (β + η2L)Et ∥∆t∥2

(a)

≤ −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 − (β − η(1− κ)

2
) ∥∆t−1∥2

+ (β + η2L)(1− κ)2(1 + 4L2η2 + |1 + γ|
(
κ+ 2η2L2Cγ

)
) ∥∆t−1∥2

+ (β + η2L)κ2
(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
+ 2(β + η2L)(1− κ)2L2η2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

= −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 + 2(β + η2L)(1− κ)2L2η2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

−
(
β − η(1− κ)

2
− (β + η2L)(1− κ)2(1 + 4L2η2 + |1 + γ|

(
κ+ 2η2L2Cγ

)
)

)
∥∆t−1∥2

21

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

+ (β + η2L)κ2
(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
, (28)

where (a) applies Lemma 7 and (b) rearrange the terms. By choosing

η <
1

2L(1 + 2(1− κ)2βL(2 + |1 + γ|Cγ))
, κ > 1− 1√

1 + 4η2L2 + |1 + γ| (κ+ 2η2L2Cγ)
,

β ≥
η(1− κ)/2 + η2L(1− κ)2(1 + 4η2L2 + |1 + γ|

(
κ+ 2η2L2Cγ

)
)

1− (1− κ)2(1 + 4η2L2 + |1 + γ| (κ+ 2η2L2Cγ))
,

we have:

η(1 + κ− 2ηL)

2
− 2(β + η2L)(1− κ)2L2η2 (2 + |1 + γ|Cγ) > 0,

1− (1− κ)2(1 + 4η2L2 + |1 + γ|
(
κ+ 2η2L2Cγ

)
) > 0,

β − η(1− κ)

2
− (β + η2L)(1− κ)2(1 + 4L2η2 + |1 + γ|

(
κ+ 2η2L2Cγ

)
) ≥ 0.

(29)

Average from t = 0 to T − 1 and rearrange the terms, we have:

1

T

T∑
t=0

E ∥∇F (xt)∥2 ≤
2(L0 − E[LT+1])

C1ηT
+

2(β + η2L)κ2

C1η

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)

≤ 2(F (x0) + β ∥∇F (x0)∥2 − F ⋆)

C1ηT
+

2(β + η2L)κ2

C1η

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
, (30)

where we define C1 := (1 + κ− 2ηL)− 4(β + η2L)(1− κ)2L2η (2 + |1 + γ|Cγ) , and in the last
inequality we notice that LT+1 = F (xT+1) + β ∥∆T ∥2 ≥ F ⋆, and L0 = F (x0) + β ∥∇F (x0)∥2 ,
as we initialize g̃0 = 0. This completes the proof of Theorem 3.

On the choice of γ = −1. From the above proof, we see that in Appendix B.1, (21) (c), we
directly apply (18) to upper bound the cross-product terms by positive terms for the worst case,
which results in the optimal choice of γ = −1. However, the inner products may be smaller than
zero in some cases, making γ = −1 sub-optimal in practice.

Appendix C. Additional numerical results

C.1. Experiment details

Dataset: We train the models on one synthetic dataset, four CV datasets, including MNIST [14],
CIFAR-10/CIFAR-100 [22], and Imagenet-1k [13], and three NLP dataset, including GLUE [39],
E2E [31], and DART [30].

Model: For the CV tasks, we use three different models, including a 5-layer CNN, WideResNet
(WRN) [12], and ViT [15], representing three typical CV model structures. For the NLP task, we
use the RoBERTa model [25]. For pre-training, the models are initialized with random weights, and
for fine-tuning with ViT and RoBERTa, we directly use the checkpoints on HuggingFace [44].

Algorithm: We use the differentially private version of SGD, Adam for CV tasks, and AdamW
for NLP tasks as base algorithm and apply DiSK to compare their performance. Additional results
on LoRA [24] are given in Appendix C.4. In the results, we use KF- to denote the DP algorithm
with DiSK.

22

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Coding: The code for the experiments will be provided online. We use PyTorch as the code
base and the FastDP package [7] to privatize the optimizers. We use the Renyi differential privacy
(RDP) accountant in the Opacus and FastDP packages to numerically calculate the required injected
DP noise to the gradient for fixed (ϵ, δ)-DP budget. A detailed derivation of the RDP accountant
can be found in Wang et al. [42]. The Algorithm 2 is implemented as a PyTorch optimizer, which
can be easily combined with any training scripts based on PyTorch. The modification is minimum:

1 from KFOptimizer import KFOptimizer
2 # define base optimizer
3 optimizer = KFOptimizer(model.parameters(), base_optimizer, kappa, gamma

)
4 # ...
5 # in training loop:
6 def closure(): # warp up the loss and backward computation
7 loss = model(input)
8 loss.backward()
9 return loss

10 loss = optimizer.prestep(closure)
11 # ...

Hardware: All the experiments except the Imagenet-1k dataset are running with one Nvidia
A40 (48GB memory) or one Nvidia V100 (32GB memory). The experiment on the Imagenet-1k
dataset is running on one Nvidia H100 (80GB memory) GPU. The training time varies for different
tasks depending on the data size and model size.

Training method: We use gradient accumulation to deal with the large batch size and use learn-
ing rate warm-up for 1/20 of the training steps when training from randomly initialized weights. We
also use the Cosine Annealing learning rate scheduler [26], which gradually decreases the learning
rate.

C.2. Choice of hyper-parameters

The main hyper-parameters in the algorithms are: epoch E, batch size B, step size η, clipping
threshold C, Kalman filter parameters κ, and γ. In all experiments, we fix the clipping method
as automatic clipping used in Bu et al. [8], i.e., clip (∇f(x; ξ), C) = ∇f(x; ξ) C

∥∇f(x;ξ)∥ , and set
C = 1 for all experiments. We fix δ = 1/N1.1 for reasonable privacy notions. This choice matches
or is tighter than the SOTA results using δ = 1/2N or 1/N1.1 [8, 24, 46]. We list the δ’s used in the
experiments in Tab. 6.

For each set of experiments, we conduct a grid search on the hyper-parameters E,B, η and
choose the optimal ones for the DP optimizer without DiSK. The search grids of each hyper-
parameter are listed in Table 2;

Then, we fix E,B.η and conduct the ablation study on κ, γ as shown in Figure 6.

C.3. Additional experiments on CV tasks

Training different models from scratch: The test accuracy curves during the training for 5-layer
CNN on the MNIST dataset, WRN-16-4 on the CIFAR-100 dataset, and ViT-small on the Imagenet-
1k dataset are given in Figure 2. The optimizer with DiSK convergence faster than the base algo-
rithm on all tasks and reaches a higher final accuracy at a given privacy budget. The test accuracy

23

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Search gird
MNIST CIFAR Imagenet

E {1,2, 3} × 20 {1,2, 3, 4} × 40 {3,4} × 40
B {2,5} × 103 {0.5, 1, 2,5} × 103 {5, 10} × 103

η {3,2.5, 1, 0.3, 0.1} × 10−1 {1, 3,5, 7, 10} × 10−3 {10, 3, 1,0.3, 0.1} × 10−3

κ {0.7} {9.9, 9, 8,7, 6, 5} × 10−1 {0.7}
γ {0.5} {0.2, 0.3,0.5, 1, 2, 3, 1−κ

κ } {0.5}

Table 2: Search grid of the CV pre-training experiments, the optimal hyper-parameters are in bold.

(a) MNIST, ϵ = 0.5 (b) CIFAR-100, ϵ = 8 (c) Imagenet-1k, ϵ = 8

Figure 2: Test accuracy of pre-training on MNIST, CIFAR-100, and Imagenet-1k datasets with and
without DiSK for fixed privacy budgets.

of CIFAR-100 achieves 41.8%, and Imagenet-1k achieves 36.4%, which outperforms the SOTA
results that apples data augmentation under the same privacy budget (40.6% for CIFAR-100 [5] and
32.4% for Imagenet-1k [12]).

We additionally train the WRN-16-4 and the ViT-small models on the CIFAR-10 with ran-
domly initialized weights for different privacy budgets, and the test accuracies during the training
are shown in Figure 3 for ϵ = 4. From the results, we can see that DiSK consistantly outperforms
the base optimizer. Fine-tuning on CIFAR-100: Besides training from scratch, we also compare

(a) 5-layer CNN (b) WRN-16 (c) ViT-small

Figure 3: Test accuracy of pre-training 5-layer CNN, WRN-16, and ViT-small on CIFAR-10 dataset
with and without DiSK for fixed privacy budget ϵ = 4.
the performance of fine-tuning a pre-trained ViT-small model on the CIFAR-100 dataset. The results
for different ϵ are shown in Figure 4. For fine-tuning on the complex CIFAR-100 dataset, DiSK still
improves he performance compared with DPAdam, and has less performance drop under large DP
noise.

Comparison with existing methods: We conduct comparisons with existing approaches for
improving DP training performance. In Figure 5(a)subfigure, we train a linear regression model

24

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Figure 4: Fine-tuning ViT-small on CIFAR-100 with different ϵ.

0

0.03

0.06

0.09

0.12

0 0.01 0.02 0.03

L
o
ss

NoisyGD

NoisyLP

NoisyKF

(a) Synthetic data (b) CIFAR-10

Figure 5: Comparison with existing approaches. a) Kalman filter and low-pass filter; b) Kalman
filter, DP-FTRL, and low-pass filter.

with synthetic data and compared the performance of Noisy GD, Noisy GD with DOPPLER (Noi-
syLP), and with DiSK (NoisyKF). We inject Gaussian noise with different variances into the gradi-
ent and compare the final performance. We observe that DiSK has the lowest regression loss under
all noise levels, indicating that the Kalman filter performs better in noise reduction than the Low-
pass filter. In Figure 5(b)subfigure, we compare the test accuracy of different methods, including
DOPPLER [49] and DP-FTRL [10, 19] on the CIFAR-10 dataset training the WRN from scratch.
We observe that DiSK significantly outperforms the SOTA algorithms on all privacy budgets.

Ablation study: We conduct ablation studies on the choice of the hyper-parameters of DiSK,
specifically, how κ, γ impact the algorithm performance. In Figure 6, we plot the accuracy on
different combinations of (κ, γ), and (κ, ϵ). We observe a clear trend of performance change for
different combinations of the parameters, and there is an optimal choice of κ, γ for different ϵ’s.

C.4. Additional experiments on NLP tasks

In this section, we provide additional results for NLP tasks.

25

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

0.2 0.3 0.5 1 2 3 *

0.5

0.6

0.7

0.8

0.9

0.99

1

38.6

42.9

50.6

40.5

51

51.3

69.2

69.4

65.2

63

65.1

74

68.1

65.6

63

67.1

74.9

69.5

67

65.5

63

65.5

71

68.9

67.7

66.5

65.5

63

67.5

67

66.8

66.6

66.6

64.8

63

66.3

65.5

65.5

66.2

66.1

63.9

63

65.5

65.9

65.7

65.7

66

65.8

63 40

45

50

55

60

65

70

(a) (κ, γ), ϵ = 8

0.5 1 2 4 8

0.6

0.7

0.8

0.9

1

53.9

50.8

48.3

46.6

42.8

59.5

56.2

54.1

52.7

48.8

60.2

59.6

57.7

53.8 59.6

64.2 67.9

65.2

63.7

62.5

71

68.9

67.7

66.5

63 45

50

55

60

65

70

(b) (κ, ϵ), γ = 1

Figure 6: Test accuracy for different combinations of the hyper-parameters when training CNN on
the CIFAR-10 dataset.

Parameter-efficient gine-tuning on GLUE. We fine-tune a RoBERTa-base and a RoBERTa-
large model from the Huggingface checkpoints1 on the GLUE dataset. We follow the same training
scripts in Bu et al. [8] on the hyper-parameter choices of η,B,E on the tasks and use rank r = 16 for
LoRA. We choose κ = 0.7, γ = 0.5 for DiSK. The results are listed in Table 3. With privacy budget
ϵ = 1, 6.7, DPLoRA with DiSK significantly outperforms SOTA results with vanilla DPLoRA on
all tasks.

Table 3: Test accuracy of fine-tuning result on the GLUE dataset.

ϵ = 1 ϵ = 6.7

Algorithm MNLI QNLI SST2 QQP MNLI QNLI SST2 QQP
RoBERTa-base

AdamW (ϵ = ∞) 87.6 92.8 94.8 91.9 87.6 92.8 94.8 91.9
Lora (ϵ = ∞) 87.5 93.3 95.1 90.8 87.5 93.3 95.1 90.8

DPLora 81.1 85.5 90.9 83.9 83.5 87.4 91.5 85.7
KF-DPLora 84.7 90.3 92.9 87.8 85.9 90.5 93.1 89.0

RoBERTa-large

AdamW (ϵ = ∞) 90.3 94.7 96.4 92.2 90.3 94.7 96.4 92.2
Lora (ϵ = ∞) 90.6 94.9 96.2 91.6 90.6 94.9 96.2 91.6

DPLora 85.6 89.5 90.9 85.1 87.8 90.8 94.3 87.4
KF-DPLora 87.9 92.5 95.2 88.2 89.4 92.6 95.4 89.6

Fine-tuning GPT-2 on text generation tasks. We fine-tune a GPT-2-small model with 137M
parameters from the Huggingface checkpoints2 on two text generation datasets, E2E and DART. We
follow the same training scripts in Li et al. [24] on the hyper-parameter choices of η,B,E on the
tasks and choose κ = 0.7, γ = 0.5 for DiSK. The results on different metrics for the E2E dataset
are given in Table 4, and the results for the DART dataset are in Table 5. With privacy budget
ϵ = 3, 8, DPAdamW with DiSK significantly outperforms SOTA results with vanilla DPAdamW on
all metrics.

1. https://huggingface.co/FacebookAI/roberta-base,https://huggingface.co/
FacebookAI/roberta-large

2. https://huggingface.co/openai-community/gpt2

26

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/openai-community/gpt2

DISK: DP OPTIMIZER WITH SIMPLIFIED KALMAN FILTER

Table 4: Performance of fine-tuning gpt-2 on the E2E dataset. (All metrics are higher the better)

Algorithm BLEU (%) ROUGE-L (%) METEOR NIST CIDEr

AdamW (ϵ = ∞) 69.46 71.36 0.461 8.780 2.422
DPAdamW (ϵ = 3) 61.52 65.87 0.417 7.071 2.167

KF-DPAdamW (ϵ = 3) 68.35 70.23 0.456 8.636 2.399
DPAdamW (ϵ = 8) 64.99 67.34 0.425 8.387 2.192

KF-DPAdamW (ϵ = 8) 68.73 70.58 0.460 8.697 2.463

Table 5: Performance of fine-tuning gpt-2 on the DART dataset. Val. Perp. stands for validation
perplexity. (All metrics except Val. Perp. are higher the better)

Algorithm Val. Perp. ↓ BLEU (%) ROUGE-L (%) METEOR NIST CIDEr

AdamW (ϵ = ∞) 0.921 44.56 58.66 0.379 8.733 2.773
DPAdamW (ϵ = 3) 1.427 33.96 52.38 0.310 6.090 1.864

KF-DPAdamW (ϵ = 3) 1.149 41.01 57.53 0.359 7.949 2.553
DPAdamW (ϵ = 8) 1.362 35.30 54.58 0.320 6.365 1.995

KF-DPAdamW (ϵ = 8) 1.102 42.12 58.11 0.364 8.111 2.628

Table 6: The privacy parameter δ’s used in our experiments and in SOTA results.

Dataset Our δ SOTA δ

MNIST 5.5× 10−6 10−5

CIFAR-10/100 6.8× 10−6 10−5

Imagenet-1k 1.9× 10−7 8× 10−7

MNLI 6.3× 10−7 1.1× 10−6

QNLI 4.8× 10−7 9× 10−7

SST-2 4.9× 10−6 7.4× 10−6

QQP 7.6× 10−7 1.4× 10−6

E2E 1.2× 10−5 1.2× 10−5

DART 6.1× 10−6 6.1× 10−6

27

	Introduction
	Contributions

	Algorithm design
	Gradient dynamic and Kalman filter
	Algorithm simplification
	Theoretical analysis
	Convergence analysis
	Privacy-utility trade-off

	Numerical experiments
	Conclusion
	Additional discussion
	Related Works
	Background on Kalman Filter
	Other system dynamics for DPSGD
	Algorithm Simplification
	Algorithm Connection

	Proof for Section 2.3
	Proof of Lemma 7
	Proof of Theorem 3

	Additional numerical results
	Experiment details
	Choice of hyper-parameters
	Additional experiments on CV tasks
	Additional experiments on NLP tasks

