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ABSTRACT

We study the reinforcement learning (RL) problem with trajectory feedback. The
trajectory feedback based reinforcement learning problem, where the learner can
only observe the accumulative noised reward along the trajectory, is particularly
suitable for the practical scenarios where the agent suffers extensively from query-
ing the reward in each single step. For a finite-horizon Markov Decision Process
(MDP) with S states, A actions and a horizon length of H, we develop an algo-

rithm that enjoys an optimal regret of o] (\/ SAH3K ) in K episodes for suffi-

ciently large K E] To achieve this, our technical contributions are two-fold: (1)
we incorporate reinforcement learning with linear bandits problem to construct
a tighter confidence region for the reward function; (2) we construct a reference
transition model to better guide the exploration process.

1 INTRODUCTION

In the standard reinforcement learning (RL) formulation, it is assumed that the agent acts in an
unknown environment, and in each step, the agent receives feedback in the form of a state-action
dependent reward signal, and then transits to the next state. Although such an interaction model
might be reasonable when a simulator is available, for real-life applications, such reward feedback
model could be hard to realize. For practical scenarios, querying the reward function could be costly,
or even impossible in certain circumstances.

As a motivating example, in healthcare, a doctor repeatedly interacts with a patient for the purpose
of treatment. In each step, the doctor decides an action (e.g., taking some medicine) and observes
the new state (including information like body temperature or blood pressure). On the other hand,
the state-action dependent reward signal could be costly to observe, since the extent to which the
disease has been cured might be expensive to measure as it requires comprehensive medical tests. In
this case, in order to apply the RL framework, it is more reasonable to assume that in each step, the
agent observes only the current state, and the cumulative reward value is revealed only after a whole
trajectory is finished.

As another example, in autonomous car driving, defining a state-action dependent reward function
could be a challenging task, as it requires associating all possible state-action pairs with a real
number. A possible workaround is to have human experts involved to produce the reward signals.
However, defining reward signals could be a highly subjective matter, and waiting for reward values
from human experts could take unacceptable amount of time from the perspective an a RL algorithm.

To circumvent issues mentioned above, practitioners often rely on heuristics (e.g., reward shap-
ing (Ng et al., [1999) or reward hacking (Amodei et al., 2016)). RL with trajectory feedback has
been recently proposed in [Efroni et al.|(2021) as a more principled framework to the deal with the
aforementioned issues. In this framework, the agent no longer has access to a per state-action re-
ward function. Instead, it receives the cumulative reward on the trajectory as well as all the visited
state-action pairs on the trajectory. Clearly, this new feedback model is weaker than the standard RL
setting and could be more applicable for real-life scenarios. In|Efroni et al.|(2021), new algorithms

"Throughout this paper, we use O() to suppress logarithmic factors.
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based on the principle of optimism and Thompson sampling were proposed. Although all these al-
gorithms achieve /K -type regret bounds, the dependence on the number of state-action pairs is far
from being optimal. Obtaining nearly optimal regret bounds in this setting is the main focus of the
present paper.

Our Contribution. In this paper, we prove a minimax optimal regret with trajectory feedback for
sufficiently large K. Formally, we present the result as follows.

Theorem 1 (Informal version of Theorem[7). Fix 6 > 0. For any episodic MDP with trajectory
feedback, there exists an algorithm (Algorithm[I)) such that with probability 1 — 0, the regret in K

episodes does not exceeds o} (\/ SAH3K) for sufficiently large K. Here S is the number of states,

A is the number of actions, H is the horizon length, and K is the total number of episodes.

It it known that even for episodic MDPs, even if the agent has access to the per state-action reward
function, the regret bound of any RL algorithm is lower bounded by Q(vV SAH3K) (Jin et al.,
2018; Domingues et al., 2021) |t Thus, the leading term of the regret bound in Theorem |1| has
near-optimal dependence on the number of states .S and horizon length H, and therefore, our regret
bound is asymptotically nearly optimal.

Conceptually, Theorem|[I]shows that RL with trajectory feedback, a seemingly harder setting, has the
same asymptotically optimal regret bound as the standard RL setting. Therefore, at least statistically,
RL with trajectory feedback is no harder than the standard setting.

On the other hand, the algorithm for achieving Theorem [I] is not computationally efficient as it
requires maintaining a set of deterministic policies during its execution, and an intriguing open
problem is to design computationally-efficient algorithms RL with trajectory feedback with asymp-
totically nearly optimal bounds, or showing that such an algorithm does not exist.

The remaining part of this paper is organized as follows. Section[2)give an overview of related work.
Section[3]introduces necessary technical backgrounds and notations. Section[d]gives an overview of
the technical challenges for obtaining our new results and their solutions. Section [3]introduces the
formal definition of our algorithms together with an overview of is analysis. Most of the proofs are
deferred to the supplementary material.

2 RELATED WORK

RL with Limited Feedback. As mentioned in the introduction, RL with trajectory feedback was
introduced in [Efroni et al.| (2021)). |Cohen et al.|(2021)) provided an algorithm that works for RL with
trajectory feedback even when the noise is adversarially chosen. |Chatterji et al.| (2021) considered a
more general setting where the reward revealed to the learner is no longer the cumulative reward on
the sampled trajectory, but instead drawn from a logistic model. It is an interesting future direction
to generalize our techniques to their setting and obtain nearly optimal regret bounds.

Very recently, (Cassel et al.| (2024) considered RL with trajectory feedback in linear MDPs (Yang
& Wang| 2019; Jin et al, [2020) and achieved a regret bound of O(v/d® H”K). Translating their
regret bound to the tabular setting considered in the present paper, the regret bound would be
O(V/S?ASHTK) which is far from being asymptotically nearly optimal. It would be interesting
to generalize our techniques to RL with trajectory feedback when function approximation schemes
are used and obtain improved regret bounds.

Preference-based RL (PbRL) is another RL paradigm to deal with the lack of a reward function
in various real-world scenarios. We refer interested readers to [Wirth et al.| (2017) for an overview
of PbRL. Theoretical results for PbDRL have been obtained in the tabular setting (Novoseller et al.,
2020; |Xu et al., [2020b; [Saha et al., |2023)) and various function approximation settings (Chen et al.,
2022; Wu & Sun, 2023; [Wang et al} 2023). Preference-based learning has also been studied in
bandit setting under the notion of “dueling bandits” (Yue et al.,[2012; [Falahatgar et al.,|2017; |Bengs

*In fact, the regret lower bound proved by Jin et al.[(2018) is Q(v/SAH?T) with T = K H, which would
be translated to (v SAH3K) using our notations.
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et al.| |2021; Xu et al., [2020a). Dueling bandits can be thought as a special case of PbRL with a
single state and horizon length H = 1.

Linear Bandits. Linear bandits is a classical setting for modeling sequential decision-making
problems, and various sample complexity bounds and regret bounds have obtained in this setting
and its generalizations (Dani et al., [2008; |/Abbasi-Yadkori et al., 2011} [Li et al.l 2019} |Filippi et al.,
20105 |L1 et al.l 2019). We refer readers to |Lattimore & Szepesvari (2020) for a comprehensive
survey on this topic. As observed in [Efroni et al.| (2021)), there is a deep connection between RL
with trajectory feedback and linear bandits. More specifically, RL with trajectory feedback can be
understood as an instance of linear bandits over a convex set. Such a connection is also exploited in
the present paper which will be discussed in more details in Section 4}

Regret Bounds for the Standard RL Setting. There is a long line of work studying regret min-
imization in RL (Kakade, 2003; |Jaksch et al., 2010; |Azar et al.l [2017; Jin et al.l 2018 [Zanette &
Brunskill, [2019; |[Zhang & Jil [2019; [Zhang et al., 2020} 2022b; 2024). In particular, an asymptoti-

cally nearly optimal regret upper bound of O (\/ SAH3K ) has been known in the literature (Azar

et al., 2017), and more recent work typically focuses on the lower order terms, i.e., by considering
the case where the total number of episodes K is not that large compared to the number of states
S, the number of actions A and the horizon length H. In particular, the most recent work by [Zhang

et al.| (2024) shows that an upper bound of 0 (\/ SAH3K + KH ) can be achieved for any K > 1.

Notably, in order to learn the transition model, in this paper we use an algorithmic framework based
on policy elimination similar to that used in |Zhang et al.| (2022b)), although the algorithm in|Zhang
et al.|(2022b) is designed for the standard RL setting which does not require the tighter confidence
region construction for reward functions which is the main technical contribution of the present

paper.

3 PRELIMINARIES

Episodic reinforcement learning with trajectory feedback. An MDP is defined as M =
(S, A, R, P, i), where S is the state space, A is the action space, R = {Rx(8,a)} (s,0)eS x4, he[H]
is the unknown reward distribution, P = {PhyS’a}(s’a)eSX A,he[H] 18 the unknown transition model
and p is the initial distribution. We assume that the reward distribution R, (s, a) is supported by
[0,1] for any (h, s, a) with mean Ry (s,a). In each episode, the agent starts at s1, which is drawn
according to p. It then proceeds to take actions, transitioning to the next state step by step, finally
constructing the trajectory {(ss, an, sp+1)}/—,. In the end of the episode, the agent receives a tra-

jectory reward feedback YV = Zthl r1(sh, an), where each 71, (sp, a,p ) is independently drawn
according to Rp,(sn, an).

A (deterministic) policy 7 can be viewed as a collection of mappings {m;, }/_, where each y, :
S — Ais a map from the state space to the action space. Let 7 denote the set of all trajectories
and IT4.¢ denote the set of all deterministic policies. In our algorithm, we also consider mixtures of
deterministic policies. More specifically, a mixture of deterministic policies 7 could be regarded as
a distribution over Il ;.

Given a policy 7, the (optimal) ()-function and value function are given byE]

H
Qn(s,a) =B | > 1 (snr,ans)|(sn,an) = (S,G)] ; Q(s,a) = sup Qp (s, a);
h'=h TElldet
H
Vi (s) = Ex Z Th(Shry@ns)|Sh = S] ; Vir(s) = max Qi (s, a).
h'=h

Let 7* be an optimal policy such that Q; (s, a) = QF (s, a) for all (s, a, h).

31t is well known that optimal Q(value) function could be reached by a deterministic policy.
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Define W™ (r,p) := Ex p s,op [Zf:l rh(sh,ah)] and W*(r,p) = maxyer,,, W7 (r,p). Let 7%
denote the policy in the k-th episode. Then the regret is given by

K
Regret(K) == Y (W*(R, P)— W™ (R, P)) . (1)

k=1

Notations. In this paper, we use E. ,,[-] (Pr, ,[-]) to denote the expectation (probability) under the
policy 7 and transition probability p. In particular, Prr p[7] = IIFL | (I[7(sp) = an]Ps, apn.hsnss)
is the probability of 7 = {(ss,an)}fL, under (7, p). We also define the general occupancy func-
tion dj(s,a,h) = Exp[I[(sh,an) = (s,a)]]. We use dj to denote the SAH-dimensional vec-
tor {d7 (s, a,h)}(s,a,n)esx Ax[m)- Similarly, we may also regard R as a SAH-dimensional vector
{Rn(s,a)}(s,a,n)esxAx[H]- For N > 1, we use [N] to denote the set [1,2,..., N]. Given a trajec-
tory 7 = {(sn,an) HL |, we let ¢, € RSAH (o be the vector such that ¢, (s',a’, h) := I[(s',a’) =
(Sn,an)]. We use I to denote the S AH-dimensional identity matrix. For two vector x,y with the
same dimension, we write x | y as zy for simplicity. For p € A% and v € R, we define the variance
function as V(p,v) = pv? — (pv)2. We use £ to denote the complement of the set .

4 TECHNICAL OVERVIEW

In this section, we give an overview of the technical challenges associated with obtaining the min-
imax optimal regret bound for RL with trajectory feedback, together with our approaches to tackle
these challenges. To explain the high-level ideas, we first consider the simpler setting that the tran-
sition model P is known to the algorithm, and then switch to the general setting in which case the
transition model is unknown.

Connection with Linear Bandits. As observed in prior work on RL with trajectory feed-
back (Efroni et al.} 2021)), when the transition model, RL with trajectory feedback can be seen as an
instance of linear bandits. More specifically, in each round, suppose the trajectory sampled by the
agent is 7, the expected trajectory reward feedback would be ¢ R, i.e., a linear function with respect
to ¢,. Based on this observation, |[Efroni et al.| (2021)) showed how to build appropriate confidence
regions for RL with trajectory feedback by adapting analysis for linear bandits algorithms, and ob-

tained a regret bound of O (\/ S2A?HAK ) Although it is plausible to improve their regret bound

to O (\/ S2AH3K ) by a more refined analysis, it is unclear how to improve the order of S in their

regret bound. Indeed, in the work of (Efroni et al.| [2021)), RL with trajectory feedback is naively
treated as an instance of linear bandits with feature dimension d = SAH, and the best known regret
bound for any linear bandits algorithm is O(d+/T’) (Dani et al., 2008), or O(v/dT Tog K ) for linear
bandits with X arms (Bubeck et al.,|2012). Since there are A° H policies for an MDP, and each of
them can be seen as an arm in the linear bandits problem instance, improving the order of S in the
regret bound of prior work requires fundamentally new ideas.

Tighter Confidence Region Based on Trajectories. In order to achieve a minimax optimal regret
bound, our first new idea is to build a tighter confidence region by exploiting structures of the linear
bandits instance associated with RL with trajectory feedback. Before getting into more details, we
first review least squares regression (LSR), an estimator commonly used in linear bandits algorithms
(also in prior work on RL with trajectory feedback (Efroni et al.,2021])) based on the principle of
optimism in the face of uncertainty.

Given a set of data points {7?, 7%, Y*}Z_,, where for each 1 < t < T, where 7 the policy used
in the ¢-th round, 7¢ is the trajectory sampled by executing 7* and the Y is the trajectory reward
feedback. Clearly, E[Y;] = ¢!, R, which motivates the design of the the LSR estimator

T
fargmlnz —¢Lr) + |3 = 712@57th, 2)
t=1

where A = A\I+ Zt 1 Ort gb is the information matrix. Optimism-based linear bandits algorithms
typically maintain a set of arms, and eliminate arms outside the confidence region during the exe-
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cution of the algorithm. For RL with trajectory feedback, each arm in the linear bandits instance
corresponds to a deterministic policy in the original MDP.

Our construction of the tighter confidence region is based on the following two key observations:

ASH

* Although the total number of deterministic policies could be as large as , the number

of trajectories is |T| = (SA)H;
* For any deterministic policy 7, dp = ) . Pry p[T] - ¢, is a convex combination of

{¢T}T€T‘

Based on these observations, instead of building confidence region for |(d7)T (R — R)| for each
deterministic policy 7 and applying a union bound over all policies which result in suboptimal
regret bounds, we consider the following event

&= { o1 (R — R)‘ <C (min {\/¢IA—1¢702 10g(2|T/5),H}) VT € T} ; 3)

where C some proper constant, and o> < H is a constant such that {Y* — ItR}thl is a group of
independent zero-mean o2-subgaussian random variables. By standard concentration arguments, £
holds with probability at least 1 — . We assume £ holds in the remaining part of the discussion.

Note that second observation states that df, = >~ . Prr p[7] - ¢, which implies that

(@p)" (R = R)| < 3 Proplr] o] (R - R)
TET
<0 (Z Prz p[r] min {\/¢IA—1¢THlog(2IT/5), H})
TET
<0 H\/Z Pr, p[r]min {¢] A—1¢,,1} (4)
TET

for any policy 7, where the last step holds by Cauchy-Schwarz inequality and the fact that |7| =
(SA)H.

Exploration by Optimal Design. During the execution of the algorithm, we maintain a set of
remaining deterministic policies II. According to equation [4] in order to prove a uniform upper

bound for ‘(d}S)T(R - R)‘ fro all 7 € II, it suffices to bound

I;lear)f;f’rmp[r] min {d)IA*lng, 1} . (5)

For this purpose, we need to carefully choose a set of policies {m*}7_,, so that the quantity in equa-
tion [3 is upper bounded. As another new technical ingredient, we show how to generalize the
Kiefer—Wolfowitz Theorem to our setting. In particular, in Lemma §]in the supplementary material,
we show that there exists 7 which is a mixture of deterministic policies, such that

max » _ Proplrlo; Az'e, = SAH, (©6)
TeT
where Az = > _-Prz p[r]¢-¢,. Therefore, by running 7 for T steps, we could collect an

information matrix A = ¢I'Az with high probability for some constant ¢ > 0. Combining equationf]
and equation [6] we obtain that

max ‘(d}l)T(R - R)‘ <0 (H SAH/T) . %)

In summary, with the arguments above, for any policy set II, we are able to collect a dataset
{mt, 78, Y*}L | in T episodes to obtain R, such that

max |[W™ (R, P) — W™(R, P)’ = max ‘(d};)T(R - R)‘ <0 (\/m) . )

mwell well
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Online Batch Learning by Policy Elimination. Finally, we show how to combine the two tech-
nical ingredients mentioned into the framework of online policy elimination. In this framework, the
learning process is divided into consecutive batches. The algorithm maintains a policy set during its
execution. Suppose the policy set maintained is I, at the beginning of the ¢-th batch. The algorithm
will eliminate a subset of policies from II, to form I, in the ¢-th batch. Initially, we set IT; to be
the set of all deterministic policies. Then there will be a total of O(log log K') batches for the whole

algorithm, and there are K, = 2K 1= episodes in the ¢-th batch.

As an invariant, during the execution of the algorithm, we always have that the optimal policy
7* € II, for all £. By equation [8} for each ¢, we obtain a set of estimated reward values R¢ such that

max | W(R, P) - W (R, P)‘ <0 (\/SAH3 /Kg) . 9)
melly
By setting
My = {n €Il : max W™ (R,P)— W™ (R, P) < Q} (10)
' ell,

where ¢, = O (\/SAHZ‘/K;), it holds that 7* € 1I,,; and

W*(R, P) = W™(R,P) < O (VSAI?/K,)
for any 7 € IIp44. Therefore, the regret in the (¢ + 1)-th batch is bounded by
O(Ke1v/SAH?[K)) = O(VSAH’K),
which means that the total regret is at most O(\/m ).

Dealing with Unknown Transition Models. In the discussion above, we assume the knowledge
of transition model P. Now we discuss how to remove such an assumption by learning the transition
model in an online fashion. In order to implement the elimination-based online batch learning
process mentioned above, we only need the transition model (i) to design the exploration policy
so that equation [6] is ensured and (ii) to ensure the policy elimination step in equation [I0] can be
accurately implemented.

To achieve (i) and (ii), we first obtain a reference transition model P. Following the regret analysis
for online batch learning in Zhang et al.| (2022b)), the regret stemming from learning P can be
bounded by O(vV'SAH3K) (with lower order terms ignored). Moreover, for (i), an exact solution
for equation[6]is not necessary. Instead, an approximate solution with a constant competitive ratio is
sufficient to guide the exploration process, which could be found with the assistance of a reference
model.

Given such an approximate transition kernel,|Zhang et al.|(2022b) achieves computationally efficient
batch learning on the benefit of reward knowledge. In contrast, even with complete knowledge of
the transition model, we suffer from inefficiency due to lack of reward information. Since we view
the learning problem as a linear bandit problem with exponentially many arms, one crucial point to
reaching an efficient implementation is to understand the inner structure of the arm set. In our algo-

rithm, an important optimization problem is max, E, [Zwuh’h, I[sp = s, 81 = §'|r(s, s, h, h/)}

with fixed double-state reward function {r(s, s', h, h')} (see line ] in Algorithm[3). However, no ex-
isting algorithms could solve this problem (with approximation) efficiently under known transition.
We leave this problem as an interesting future direction.

5 ALGORITHM

In this section, we present our algorithms. The detailed parameter settings could be found in Ap-
pendix [A] The main algorithm (Algorithm [I)) comprises two stages.
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The first stage (line [3]in Algorithm [I)) serves to acquire a coarse approximation p of the transition
model P, guiding the design of exploration policy. Instead of approximating P with respect to L-
norm error, we expect that the trajectory distribution under P could be covered by that under p up to
a constant ratio. Formally, we have the definition below to measure similarity between two transition
models.

Definition 2. For two transition models p and p', we say p is an (n, x)-approximation of p’ with
respect to TLiff S x A x S x [H] could be divided into two sets KC and K such that

exp(— log(n)/H)p;,a,h,s’ < Ps,a,h,s’ < exp(log(n)/H)p;,a,h,sUv(sﬂ a, h7 8/) € ’C; (l 1)

Pr,,[K°] =0, Vr€ g (12)
max Prr K€ <z, (13)

where Prﬁ,q[lCC] denote the probability of visiting KC© under policy 7 and transition q.

The second stage consists of several consecutive batches. In each batch of the second stage (line 3]
in Algorithm[I)), we search for an approximate solution 7 to the design problem equation [I5] given
p as a desired approximation of P. Subsequently, we execute 7 to collect the trajectory feedback,
and construct reward confidence region R with least square regression. With the reward estimator
R in hand, we then calculate the confidence region for each survived policy and proceed with policy
elimination based on these computations.

Algorithm 1
1: Input: total number of episodes K.
Inmitialization: Set K, L, K; > 1, ¢g, 09, x according to Section
{P,11,} + Ref-Model(Ky, K)
for{=1,2,...,Ldo
MMy + Traj—Learning(P,Kg,Hz);
end for

AR AN

5.1 LEARNING THE REFERENCE MODEL

We present the algorithm to learn the reference model in Algorithm[2] The algorithm consists of four
distinct stages. Initially, the objective is to acquire a coarse reference model. In the subsequent stage,
the focus shifts to learning a coarse reward estimator. The third stage involves gathering samples to
execute policy elimination, ensuring that the remaining policies are approximately O(eg)-optimal.
In the final stage, we invoke Raw—Exploration with a larger length to obtain a more refined
reference model.

Raw exploration. In Algorithm [2] we invoke Raw-Exploration (see Algorithm [6 in Ap-
pendix |[C) to learn a proper reference model. This algorithm is based on Algorithm 2 Zhang et al.
(2022b)), with slight modification so that it could be applied to general policy set I1.

Algorithm 2 Ref-Model (K, K)
1: Input: length K, total length K;
Initialization: K, = K, = K3 = 1000VSAHK, K, = Ko — 3K ;
P, + Raw-Exploration(Ilge, K1)
R« Reward-Regression (P, e, K2);
11, « Plan(R, pl, Kg, I get, 60);
Py Raw-Exploration(Ily, Ky);
return: {P,, 11 }.

NN AR

The following lemma describes the accuracy of the learned model.
Lemma 3. By running Ref—Model(Ky, K), with probability 1 — 6, it holds that

« Py is an (3, 00)-approximation of P with respect to 1 ;
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o € Ily;
s W™(R,P) > W*(R, P) — 2¢q for any w € 1.

The proof of Lemma [3]is postponed to Appendix [D.]

5.2 ONLINE LEARNING WITH REWARD REGRESSION

Algorithm 3 Traj-Learning(p, T,1I)

1: Input: reference model p, length 7', policy set II;
2 R+ Reward-Regression(p, T, 1I);

3: Ipext < Plan(f%,p, 7,11, k);

4: return: 11, ..

Reward regression. We compute the optimal design policy according to the reference model p,
and then collect trajectory feedback to learn the reward function. It is worth noting that the least
square regression estimator R (see line [12]in Algorithm [4) might escape [0, 1]547, where we con-
struct a reward confidence region R (see line[I3]in Algorithm ) instead. For Algorithm 4] we have
that

Algorithm 4 Reward-Regression(p, T,1I)

1: Input: reference model p, length T', policy set II;
. Initialization: 1 T
2: Initialization: \ < SAHZT® A+ N Tl < W
3: fort=1,2,...,71 do
4 7w maxren o7 Preplr] - min{¢] A" o, 1}

S5 A A+Y 7P y[r]o-0] - —max{d,:,l\fld,ﬁl};
6: end for

7: 7 be the mixed policy which plays 7* with probability 1/7} foreach 1 <t < Ti;

8: fort=1,2,...,Tdo

9:  Run 7 to get trajectory 7° and reward Y'?;
10: end for
11: A 18\ log(2d/6) L + 3, dre ]
122 R A 'S0 Yig,
13: R+ {Re[0,1]54 :|¢]R - ¢ R| < 8\/H2 log(SAH)log(4/0)pT A=1¢,,Y7};
14: if R # () then
15:  Choose Re R ;
16: else
172 R <« 0;
18: endif
19: return: R

Lemma 4. Assume p in an (3, x)-approximation of P with respect to 11 for some x > 0. With
probability 1 — 6, it holds that

SAH log(T) log(234H)

max |W™ (R, P) — W™ (R, P)’ < H\/log(SAH)log(4/6) - | = + 325\/

mell T

where R = Reward-Regressi on(p, T, 1)

Online batch learning. With the reward estimator Rin hand, we proceed to construct the con-
fidence region to facilitate policy elimination. As described in Algorithm [5] for every batch, we
employ reward-zero exploration to seek out the policy with nearly optimal coverage. Utilizing this
policy, we can establish a uniform bound for the length of confidence intervals across all surviving
policies. Formally, we have the uniform convergence result for Algorithm 5]as follows.
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Lemma 5. Assume that
e 1 €1l

* pis an (3, x)-approximation of P with respect to 11 for some x > 0;

W™ (u, P) > W*(u, P) — y for some y > 0 and any = € 1I;
e maxyen |W™(u, P) — W™(R, P)| < z

* € > 2(b+ z), where

b:= 30\/SAH2(H + Sy)log (%) n 360S2AH? log (853‘”{

) 4SAH?z.
T h + 45 T

Let I\ oxt = Plan(u, p, T, 11, €). With probability 1 — §, it holds that:
* the optimal policy m* € lext,
* W™(R,P) > W*(R, P) — 2¢ for any @ € I jext.

Algorithm 5 Plan(u,p, 7,11, ¢)
Input: reward function u, transition model p, length T, policy set II, threshold e

—

2: 7 <+ Design(Il, p);

3: ¢(s,a,h) < Ezp [I[(sh,an) = (s,a)]] forall (s, a, h);

4: Execute 7 in the next T episodes, and collect the samples as D;

5: Np(s,a) < the count of (s, a, h) in D;

6: for (s,a,h) € S x Ax [H]do

7: Ph,s,e < the empirical transition probability of the samples of (s, a, k) in D;
8: end for

9: Tt = {7 € I1: W7 (u, ) > maxeen W™ (u, ) — ¢}

10: return: I, o..

11: Function: Design(IL, p);

12: A € A « argminy can max -y > sah %,

13: return: 7 be the mixed policy which plays 7 € II with probability A.;

Based on Lemma[d]and Lemma 5] we summarize the performance of Algorithm [3]as below.
Lemma 6. Let 11,0yt = Traj-Learning(p,T,11). Fix &,y > 0. Assume that

o 1 eIl
* pisan (3, %)-approximation of P with respect to 11;

W™(R,P) > W*(R, P) — ¢ forany = € 11;

K> 20 <72\/SA,TH3L I 6\/S2ATH237L I 10052TAH3L I SAHQ:%L)

With probability 1 — 6, it holds that w* € 11 and
WT™(R,P)>W*(R,P) — 2k
for any € Il ext.

The full proofs of Lemma] Lemma [5|and Lemma [6|are presented in Appendix

5.3 THE FINAL REGRET BOUND

Theorem 7. Fix 6 > 0. For any episodic MDP with trajectory feedback, with probability 1 — 0, the
regret in K episodes of Algorithm|l|does not exceeds

Regret(K) < O (\/SAH3K +VSBAZHBKE 4 VSUBHITKY + \/517A3H27> .
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By Lemma [3|and the fact that 7* € II4; with probability 1 — §, we have that

o EHl;

« P is an (3, 00)-approximation of P with respect to II;, hence it is also an (3, 00)-
approximation of P with respect to I, for any £ > 1;

s W™(R,P) > W*(R,P) — 2¢ for all w € TI;.
By the third property, the regret in the first K episodes is bounded by
O (Koeo + HVSAHK) = O (VSAIPK + 8% atm¥ k1 s¥atn¥). a4

( 1GS?HT)

Now we fix 1 < ¢ < L and assume 7% € IIy. Set T = 0¢, ¥ = 2€g, t = log2 and

SAH3 S2AH? 10052 AH3
€ =20 72\/ 7 ‘ + 9\/ cot + ‘ + SAH?0q1

¢ K, K,

We then can verify the conditions in Lemma @ (1) 7 € Iy; (2) P is an (3, )-approximation
of P with respect to II;; (3) W™(R,P) > W*(R,P) — g for any 7 € Ily; (4) ¢ >

20 (72/SA 16, [SAIC 4 JOSAY 4 gAR2G)

Using Lemmal6] with probability 1 —4, it holds that: (1) 7* € II,11; (2) W™ (R, P) > W*(R, P) —

2¢y for any m € Ily41. By inductionon £ = 1,2, ..., L, with probability 1 — %, it holds that

W™ (R, P) > W*(R, P) — 2¢,.

Recalling that K, = 2K172il forl1 </{<L-—1and K, < 2K172%, the regret in the ¢-th batch is
bounded by

O(Kper_y) = O (\/SAH3K +VSSATHKY £ VSO AZHTKT + S2AH3Ki)

for 2 < ¢ < L. For ¢ = 1, the regret in the ¢-th batch is bounded by O(K1H) = O(VKH?).
Putting all together, we obtain that the total regret is bounded by

o) (\/SAH3K FVSBAZHBKE + VSTASHITKY 4 \/517A3H27) .

The proof is finished by replaced § with 165+H(L+1)'

6 CONCLUSION

In this work, we design an algorithm to achieve asymptotic optimal regret bound of O(v SAH3K)
for reinforcement learning with trajectory feedback. However, the proposed algorithm is based on
elimination, resulting exponential time cost. It poses a challenge to ascertain whether achieving the
optimal regret bound is viable using a more efficient algorithm. Additionally, an interesting direction
involves minimizing the lower-order terms in the regret bound.
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A PARAMETER SETTINGS.

Set Ky = 10000087 A2 HZ Kz log (SAILK) and K, = 9K for ¢ > 1. Let [ :=

: 3/SAH SAH S4AH5
ming (Ko +Z£:1 Ky) = K. Set eg = 90000 log™(257) ( K1 + K3 )’ o0 = m’

L:10g2 (M) and k = 20 <72\/SATHSL+9\/S2A¥260L+ 1OOSTAH3‘ +SAH2O'()L>.

By this definition, we have L < 2log, log(K). With a slightly abuse of notation, we re-define
Kp =K — (Ko + Y7~ Ly). Tt then holds that Ko + >y, Ky = K.

B TECHNICAL LEMMAS

Lemma 8. For any policy set I1 C Tlget,

. Tonr=\v—1, _
Jnin max ;Prw,P[T]aST (A(7) "¢, = SAH, (15)

where () := Y. Pry p[r]d, 0]

Proof of Lemmal8] Let F(r) := log(det( (7)) for 7 € A!. Because A is a closed set
and F(r) < dlog(d) for any 7 € A! with d = SAH, there exists some 7 such that 7 =
argmax,ecan F(m). We assume that det(A(7)) # 0. Otherwise det(A(m)) is always 0, which
implies there is redundant dimension. Let A(7,7) be the probability that 7 distributes on 7 for
7 € II. For two different 71, w5 € II such that A(7,m1) > 0, A\(T,m2) > 0, by the condition that
7 = argmax,can F(m), we have that

oF(m)  OF(w)
ONT,m1) O, )’

(16)

which means that

> Pro, plr]e] (A(R) '6r = Y Pra, plrld] (A(F) " ¢r-
TeT TeT
For 71, 7o such that A(7, 1) > 0 and A\(7, m3) = 0, we have that
OF (T) S OF (T)
ON(T, 1) — OA(T,T2)’

which implies

> P, plrléf (A®)7'6r 2 Y Prey plr]é] (A7) ' ¢r-

Te€T TET
Therefore, maxren Y., Prr p[T]¢] (A(7)) !¢, is reached by any m such that \(7,7) > 0.
Assume this value is x. That is,

(@) Y Prr plr]o] (A(T) " ér = A, ™)
TET
for all w € II. Taking sum over 7 € II, we have that
x = Trace(A(7)(A(7)) ) =d = SAH. (17)

The proof is completed. O

Lemma 9 (Lemma 1 in|[Zhang et al.| (2022b)). Let d > 0 be an integer. Let X C (A%)™. Then there
exists a distribution D over X, such that

dm
L4
max E — =md,

r={z; ?;WIEX i=1 Yi

where iy = {yZ M = Eyop|z].

13
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Lemma 10 (Bennet’s inequality). Let Z, Z1, ..., Z,, be i.i.d. random variables with values in [0,1]
and let § > 0. DefineVZ =E [(Z — EZ)Q]. Then we have

E[Z] - 1 > Zi| >

i=1
Lemma 11 (Theorem 4 in Maurer & Pontil (2009) ). Let Z, Z1, ..., Z, (n > 2) be i.i.d. random
variables with values in [0,1] and let § > 0. Define Z = L 3" | Z; and V, = Lyt (Zi = Z)2
Then we have

2VZ1n(2/5) | In(2/9)

P <.

2V, In(2/6)  7In(2/6)
|~ n—1 +3(n—1) =

Lemma 12 (Lemma 10 in (Zhang et al.,[2022a))). Let X1, Xo, ... be a sequence of random variables
taking value in [0,1]. For any k > 1, let Fy, be the o-algebra generated by (X1, X, ..., Xy), and
define Yy, .= E[Xy, | Fi_1]. Then for any § > 0, we have

n n 1
P [ﬂn,ZXk 232Yk+llog6] <6

k=1 k=1
n n 1
P |3dn, Y. >3 X +llog—=| <6.

Lemma 13. Fix d > 0. Let A € R%™% pe q PSD matrix and © € R be a vector such that
2T A=Yz < 1. Then we have that

log(det(A + zz 7)) — log(det(A)) > 22T A~ z,
Proof. Direct computation gives that
1
log(det(A 4 zz ")) —log(det(A)) = log(det(I+z A" 2T)) =log(1+z A~ z) > §xTA_1x.

O

Lemma 14 (Lemma 20 in Zhang et al.[|(2021)). Consider a sequence of independent PSD (positive
semi-definite) matrices X1, Xa,..., X, € R4 sych that X, < W for a fixed PSD matrix W and
all1 <k < n. Foreveryd > 0and e € (0,1), it holds that

Pr|> Xy <3) E[X4] + 3log(d/s) ] >1-; (18)
k=1 k=1

Pr [Zxk ZE Xy] — 3log(d/é) 1 >1—04. (19)
k=1

Lemma 15. Assume p is an (n, x)-approxtmatlon of p’ with respec to I1. It then holds that

%Ew,p[ﬂ[(é‘h, ap) = (8,a)]] < Erp [I{(s1, an) = (5, a)]] < B p[l[(sn, an) = (s,a)]] + 2 (20)

forany 7 € Il and (s, a, h).

Proof. By equation |11|and equation 12| for any trajectory 7, we have that - Pr,[r] < Pr,[r]. It
then holds that

%Ew,p[ﬂ[(smah) = (s,a)]] < Exp[l[(sn,an) = (s,a)]].
On the other hand,
Erp [I[(sn, an) = (s,a)]]
< B, p[1[(sh,an) = (5,0)] N 1[(spr, ans, snia, h') € K, V1 < B/ < h]] + max Pry [K°]

TElget
< nEr p[I[(sh,arn) = (s,a)]] + . 21
O

14
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Algorithm 6 Raw-Exploration(Il, T, )
1: Input: policy set 11, length 7', failure probability &;
2: Initialize: T} « #, t < log (%), D« 0;
3: forh=1,2,...,H do
4: P <+ Confidence-Region(D);

5. for (s,a) € S x Ado

6:  {m"0 pheo} argmaxeer pep Enp (150, an) = (5,a)]]:

7:  end for

8: for (s,a,h) € S x Ax[H]do

9: Execute 7"%@ for T episodes, and collect the samples as Dy, 4}
10:  end for

11: D+ DU (Us,a,hDh,s,a);

12: end for

13: P < Confidence-Region(D);
14: p < arbitrary element in P
15: return: p;

16: Function: Confidence-Region(D):
17:  Np(s,a,s’) < countof (s,a,h,s’)inD, forall (s,a,s);
18:  Np(s,a) + max{>__, Ny(s,a,s"),1} forall (s,a);

N Np(s,a,s’ .
19: Ps,a,h,s’ — %’ V(&a,h,s’),

20: W <« {(s,a,h,s"): Np(s,a,s") >200H?.};

~ ~ 4N (s,a,s’ .
21 Poan < {p € AS|Ipy — Buans| < \[EREEETE 4 2 W8 € S W(h, 5, a);

22: Phsa < {c1ip(p, W) : p € Phsa}, V(h, s, );

23:  Return: ®p,4,4Ps,a,h-

24: Function: c1ip(p, W)

25: p’s’a’h’s, — Ds.ahs s V(h,s,a,s) €W,

260 Plane < 0,Y(s,a,h,8") ¢ W

27: p;,a,h,z — Zs’:(s,a,h,s’)QW ps’a’h’5/7V(h, S,a) S [H] x S % A,
280 plap 1 V(ha) € [H] x A;

29:  Return: p.

Lemma 16. Assume p is an (n, x)-approximation of p'. It then holds that

max Pry ,[Thaa] < 2,
TEllget

where Toaq := {7 : Prpy[1] > nPrp[7]}

Proof. Let 7 = {sp,an}, be an element in Tpaq. By definition, there exists A such that
(Shyans hyspe1) € KO As aresult, maxqer,,, Prap [Toad] < maxrer,,, Py [K°] < . 0O

C THERAW-EXPLORATION ALGORITHM AND ANALYSIS

Lemma 17. By running Raw-Exploration with input (11, T, ), with probability 1 — 6, the
<3 110005° AH* log(SAH/6))
J T

output p is an -approximation of P with respect to I1.

Proof. Let D" be the value of D after the h-th iteration. Let P" = Confidence-Region(D")

and P be the final value of P. Let N} (s, a, s') be the count of (s, a, h’,s") in Dy, and N} (s,a) :=
h ’
min{>",, N\ (s,a,s'),1}. Letp" ,, = % be the empirical transition probability com-
@, wr (s,
puted by Dy,.
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By Lemma(I0] with probability 1 — 6,2,

AN} (s,a,8) N 5¢
(N (s,a))? NNM(s,a)

ﬁg,mh’,s/ - R@,a,h,s" < (22)

holds for all (s,a,h’,s’") and h € [H]. We proceeds the analysis conditioned on equation Let
Ni(s,a,s’) denote the count of (s,a,h,s’) in Dy s, and Ny(s,a) = max{)_, Np(s,a,s’),1}.
Define

Kn:={(s,a,s") : Ny(s,a,s") > 200H?.}

_ 25%AH?
where ¢ = log <f)
By equation 22} for any (s, a, s’) € Kj, and any h’ > h, we have that

Ny < h 1 " 1
= Psans’ 50H2 ' 40HZ2 )’

ps,a,h,s’ - Ps,a,h,s’

which implies that

~h' _p ,
ps7a,h7s’ s,a,h,s

1
< Py 23
< g Fean. (23)

Moreover, by definition of Ph, using similar arguments, we have

1
|ps,a,h,s’ - Ps,a,h7s" < 37HPs,a,h,s’ (24)

for any (s, a, h,s') € Ky, and p € P".

We set K = U, K, and verify the three conditions in Definition [2] The first condition equation
holds by equation @ and the second condition equation @ holds because p; 4, s+ = 0 for any
p € Pand (s,a,s") € LS. As for the third condition equation we analyze as below.

Fix h € [H]. By equation[23]and definition of {r/+1:5¢ p+1:54} we have that

]Eﬂ.h+1,s,a$p [H[(Sthlz CLthl) = (57 a)]]

H
1

> (1 - SH) Entsroec oo (341, ans1) = (5, 0)]

1
> g]E'rr“*l’sva,ph*lvs’“ [I[(sh+1, ant1) = (s,a)]]]

1
2 gmax By [Il(sn41, ans1) = (s, a)ll]

1
2 g maxEqp [M[(snrs anss spr41) € Kny V1< B < B -1[(sp41, ant1) = (s,a)]]. (25)

Here equationholds because for any trajectory 7 = {sp/, ah/}ﬁ,zl such that (sp/, aps, Sprt1) €
Knr, Prrp[7] > $Pr plr] for any p € P" and any 7 € II. Consequently,

Erntrsa p [[[(Sh41, ang1, snt2) = (s, @, s')]]

1
> gmaxmaxErp [[[(sw,an, sp1) € K, VIS B < h]-T((snens ansns snre) = (5,0, 8)]]-
(26)

On the other side, by Lemma with probability 1 — ngﬁ, it holds that

Npi1(s,a,s")

Y

252AH2>

1
“TEni1c0 p [[[(Shi1; Ghi1, Shy2) = (s,a,8")]] — log ( 5

3

Y

1
77 11 maxEr p M(shrs anr, Shis1) € Kn, V1 < B < h]-T[(Sp41, angr1) = (s,a)]] — log (

16

252 AH?

0

).
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which implies that

5427H?,

meaﬁi]EmP I[(sn, anrs Shr41) € Kp,y V1 < B < ] -I[(Sh41,an+1) = (s, a)]] < —7 27)
™ 1

for (s,a,s') € K,

Taking sum over all (s, a, s') € KJ, |, we learn that

542752 AH?

maxEy p [I[(s,a,5') € K§ya] - lsn,an, sns1) € Kn, V1< < bl < #L (28)
™ 1

Taking sum over h € [H], we learn that

max Prﬂ,p[Uh/Cg]

H
< ! C T she, an s s <h <
< };Iilgﬁ(Eﬂ,p [I[(s,a,s") € Ki 1] - Llsn,an, spr41) € K, V1 < B < h]

< 5427S2AH3.
— T1 .

Therefore equation |13[holds with z = %ﬁ"‘m. The proof is completed by noting 77 = SALH.

O

D MISSING ALGORITHMS AND PROOFS

D.1 PROOF OF LEMMA[3]

Proof. By Lemma , with probability 1 — ﬁ, P is an (3, 110005° AH? lo}gg(fSAH(LH)/é))-

approximation of P with respect to II;. By noting that

K, > 9600052 A2 H% K2 log (SAHK)

0

and
1100053 AH? log(4SAH(L +1)/90)

0o = = )
K,

we conclude that P is an (3, 0¢)-approximation of P with respect to II;, and thus is an (3, o0)-
approximation of P with respect to I, for any ¢ > 1.

3 4 4SAH ~
Let by := 110005 Ah;—(llog( ) By Lemma , with probability 1 — g Py is an (3,b1)-

approximation of P with respect to II4.¢. By Lemma , with probability 1 — %, we learn that

Jnax [W7(R, P) = WT(R, P)‘
AH log(T) log(SSAH
< H\/log(SAH)log(16/6) | by + 325\/5 og( )Kog(SS /6)
2
AH AH
< 100010g* (25 (SK - 4SAH251) | (29)

17
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By Lemma 5| with parameters as:

IT = Mget;
~ 11000S°AH*log (#542)
r =0 = }T{l ’
y=H;
SAH SAH  S*AHS
=1 log? .
z OOOOg(é)(Ki+ K§>
252 AH? log (M) 360S2AH3 log (32SAH) 4400082 AH* log (M)
b=30 —~ 0 7 4 - L2+ — ;
K3 K3 Kl
AH AH tAHS
6:60:9000010g3(s )<S +S T ) >2(b+ 2) (30)
1) Ki Kz

we have that: with probability 1 — %, it holds that (1) 7* € II; 2) W™ (R, P) > W*(R, P) — 2¢
for any 7 € II;.

The proof is finished.

O
D.2 PROOF OF LEMMA]
Proof. Letd = SAH. Fix m € II. By definition, we have that
‘W”RP) W”RP’ S Proplr] - 6] (R - R)|.
TET
By Lemma. 119 with probability 1 — 6/2, it holds that R € R, which implies that
‘W”RP) W”RP‘ S Proplr] - |61 (R - R)|
TET
<Y Proplr]- min{S\/H2 log(SAH)log(4/8)¢T A1, H}
TET
< H+/log(SAH)log(4/6) Y  Prx p[r] min {8\/@[\—1@, 1}
TET
€1y
By Lemma. with probability 1 — §/2, A = 3A. Consequently, we have that
W™ (R, P) = W™ (R, P)| < H\/log(SAH) log(4/6) > Prs.plr] min {5\ [6TA10,, 1}
TET
< H+/log(SAH)log(4/9) - (az + 3P1, 7] min {5\ [¢TA 1., 1})
(32)

< H+/log(SAH)log(4/s) - (m + 15\/Pr,r_,p[7] min {¢I1~X*1¢T, 1})

(33)
< H+/log(SAH)log(4/s) - (x + 325\/SAH10g(7;) log(2d/6)> .
(34)

Here equation [32] holds by Lemma|[I6] equation [33]is by Cauchy’s inequality, and equation [34]is by
Lemmal[I8
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The proof is finished.
O
Lemma 18. Let A be the final value of A in Algorithm It then holds that
. < 4325 AH log(T) log(2d/6)
max Z Pr, ,[r] min{¢] A" p,, 1} < T (35)

TET

Proof. Let T} = m. Let At be the value of A before the t-th iteration. For any policy
7 € II, we have that

> Pryp[r] - min{g] A~ ¢T,1}<—ZZPrm -min{¢] (A)'¢r, 1}

TeT t=17eT

< — Z Z Pr,ep[7] - min{¢)] (A") "¢, 1}

t=11eT

1 det(A)

7 4o ( i AH) (36)
< 4325 AH log(T) log(2d/§)

— T .

IN

Here equation is derived as following. Let z, = ¢, - 7 {¢T(1At)71¢ 5 Then

we have that A™"1 = A + 3 Prop[r]z -z . Because z .z . < A, it holds that
> rer Proep[rlzerz., < A'. Let < be an order over all possible trajectories and A(7) =
At + ZT’—<T Prﬂ't ;P[ ]Zt T'Zt T/ ) 2At

As a result, we have that

= Z (log(det(A(T) + Prye p[7]20,72, ) — log(det(A(7)))

TeT
> % Z Proe [Tz (A7) 2, (37)
T€T
1
> Z Proe o]z (A 2y . (38)
T€T

Here equation [37]is by Lemma

Lemma 19. With probability 1 —§/2, R € R.

Proof. Let \' = 18\ log(2d/d). It is easy to see R € [0,1]94H . It suffices to verify that

(6T R — 6T R| < 8/ H? log(SAH) log(2/8)6T A6, V.

Let 78 = {(si,al)} . Let ¢! = Y, — Zle Ry(st,al). Noting that Y' =
S ra(st, al) where each 7y, (s!,, af,) are drawn according to Ry, (s!,, a!,) independently, we have

19
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that E[exp(2¢?)] < exp(H2?/2) for any z > 0. For fixed 7, we note that

T
0] R— ¢ Rl = oA"Y o’ —No[AT'R

t=1

T
<|IATEY et A NH| oA
t=1
T
< |STATY G+ HyYNGT A1, (39)
t=1
T
<2(p] AT gt (40)
t=1

Here equation holds by the fact that A — N1 is PSD and equation is by the fact that
18\ log(2d/8)H= < 1.

Note that {¢*}]_; does not change the distribution of {¢,« }7_,. Therefore, it holds that

T 2
STATN gt = \JoT AT, | < 2exp (:”> (41)
t=1

2H
With a union bound of all possible choices of 7, we learn that, with probability 1 — 6, for any 7, it
holds that

Pr

|67 R — 67 R| < 8/ H? log(SAH) log(4/9)6T A-16.
The proof is completed. O
Lemma 20. With probability 1 — §/2, it holds that
A = 3A.

Proof. Let At < A be the value of A before the t-th round in line Let z; =

1 . . e
Ot /m It is then easy to verify that A = z2. By Lemma we have

Prp[r] < 3Pr,/[7] for any 7. By noting that

& 1
—_ T .
Ao B [Z Pt (oA o, 1}]

TET

T
1
<§1Eﬁt EP,H O _
t=1 ,pl O Inax{¢IA1¢T,1}]

T€T
1
=T,E~. Pry 0,01 - _ ,
’ l; ’ max{p] A~1¢,, 1}

we have

181og(2d/0) NI+ E .« p

T
E ZtZ;r

t=1

1
= 1810g(2d/5)AL + SEr

T
> ordl !
p T max{q&ItA*quTt,l}

= 181log(2d/d)A. (42)

By Lemma[14] with probability 1 — §/2,

T 1
Z ztth = gE
t=1

T
Zztz:] — 3log(2d/8)A = 3log(2d/6)A — 18X\ log(2d/5)1,

t=1

20
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which means that

T
A= 18X1og(2d/0)T 2z = 3A.
t=1
The proof is completed. O

D.3 PROOF OF LEMMA [@

Let R be the reward function in line Algorithm By Lemma@ with probability 1 — §/2,

SAH log(T) log(44H)
T

max \W™ (R, P) — W(R, P)’ < by := H\/log(SAH)log(8/3) - | & + 325\/

As aresult, for any 7 € 11,

W(R,P) — W*(R,P) = W™ (R, P) = W*(R, P) - 2max|W" (R, P) - W" (R, P)‘ >+ 2b;.
43)

2 ” 16SAH 2 3 (16SAH
Lam:wby=§+mmz:byLab:3mﬁMH“ﬂsﬁm(5 )+KWSAH;A ) 4

4SAH?%.
By Lemma and the assumption that £ > 2(b + z) = 2(b + by), it then holds that 7* € II,,¢xt and
W™(R,P) > W*(R,P) — 2k

for any 7 € Il ext

D.4 PROOF OF LEMMA [3]

Proof of Lemma5] In this proof, we use {v](s)} ({vy;(s)}) to denote the (optimal) value func-
tion under the policy 7, transition P and reward u. With a slight abuse of notation, we define
dp(s,a,h) = Bz p [[[(sn, an) = (s, a)]]-

Because p is an (3, z)—approximation of P with respect to II, by Lemmawe have that

1 _
gc(s, a,h) <dp(s,a,h) <3c(s,a,h)+x. (44)

Let £ := {(s,a,h) : ¢(s,a,h) > max{x, W}}. By equation d%(s,a,h) < 4z for
s, a, . By noting that ps, 4, » is independent of v}, |, using Bernstein’s inequality, wit

h L. B ing that pg, 4, 4 is ind d f vy |, using B in’s i li ith
probability 1 — §/8,

V(Ps.a.n,vj41) 10g(8SAH/S5)  Hlog(8SAh/S)
- _ P * < 2 thatl .
(ps,a,h s7a,h)vh+1’ = \/ Nh(S,(Z) + Nh(s,a) 5 V(&a; h)7

(45)

. Py op.s 10g(8SAH/S)  Hlog(8SAH/)) ,
s,a s’*Psa s’ §2 —— ) ) ah7 . 46
|Ds,a,h, ahs| \/ No (5. ) + Nu(s.a) Y(s,a,h,s').  (46)

We continue the analysis conditioned on equation 3] and equation 6] Fix m € II. Using policy
difference lemma, and noting that d7%.(s, a, h) < 4z for (s, a, h) ¢ L, we have that

H

-~ T
E (psmamh - Psh,ah7h)vh+1
h=1

W™ (R.p) = W"(R.P)| = [Er,p

IN

Z d?’(s’ a, h) (ﬁs,a,h - Ps,a,h)vg+1 + 4SAH2
(s,a,h)eL

T
(47)
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Let F = 4SAH? (:c + W). By definition of £, we further have that,

W (R, )~ W (R, P)| (48)
S Z d‘I];(Sa a, h)(ﬁ&a}h - Ps,mh)v;;.t,-l + Z dT};(57 a, h)(ﬁs,mh - Ps,a,h)(v}7{+1 - UZ+1) + F
(s,a,h)eL (s,a,h)eL
\Y Péa , 1 8SAH H1 8SAH
< Z dp(s,a,h 2\/ ( h;]\/}fﬂ) Og( )—i- ;g< i)
(s,a,h)eEL h(87 (1) h(& (1)
SV s 1 8SAH SHI 8SAH
+ Z dﬂsah 2\/ ( hvhJ}if Uh+1)0g( )+ ]\(;g( S ) L F
(s,a,h)EL h(s’a) h(s’a)
8SAH dx (s, a, h) d . . _
<2 |log 5 Z m R Z (V(Psh,ah,h,vhﬂ) + SW(PS,“Q,“h,vh+1 — Uh+1))
(s,a,h)eL N h=1
8SAH d%(s,a,h)
2SHlog (| —— Lo+ R
" o8 ( 0 ) Z Nh(87 a) -
(s,a,h)eL
(49)
We then bound the terms in equation [49] separately.
The doubling count term. By definition of £, we have that
d’},(s,a,h) d;)r<57a’7 h)
CAGLELON A e ANkl (50)
(s %Ec Ni(s,a) Sza:h Ni(s,a)
By Lemma we further have that, with probability 1 — g, it holds that
1
Ny (s,a) > §Tc(s, a,h) —log(8SAH/J). (51)
for any (s, a, h). Conditioned on this event, we have that
s as h
3 M < % p(s,mh) . 108§1AH. )
(s,a,h)eL h(s’a) s,a,h C(S’a’ )
In the last inequality, we use the fact that
g s,a,h)
7rrnzenr<1 Z c(s,a,h) = SAH, (53)

which is a direct result following Lemma [9]
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The variance terms. Direct computation gives that

H H
Er p ZV(P5h7ah7h7U;+l)‘| =Ep lz ((U}*L+1(3h+1)>2 - (PSh,ah,h”;+1)2)1

h=1 h=1
H
< ]EW,P lz Uh Sh - Pshyah7h/1’};;+1)2)‘|
h=1
H
<2HE.p | Y (vi(sn) — Psh,ah,hv;;ﬂ)]
h=1
H
=2HE,p | > (vi(sn) — v2+1(8h+1))]
h=1
< 2H? (54)

and
H

T
E Sh ap, h7vh+1) + SV( Sh,Qh, hvvh+1 vh+1)]

h=1

H
=Exp lz Vh41(Sht1) — Uh+1(5h+l)) — (Psp,an,n(Vhy1 — Ug+1))2)]

h=1
H
<Erp lz vi(sn) = vf ()% = (Psyann (V41 — UZ{H))Q)]
h=1
H
< HEr p Z | vy (sn) Sh,ah,hvthl) (’U}T;(sh) - PShaah,hvg+l)|]
h=
H
=2HE, P Z‘ Uh Sh sh,ah,hvh.kl) Rh(sluah) ]
h=1
H
_ 2H]E P Z Uh sh — Up, sh,ah) Psh,ah,hv,tﬂ)] (55)
h=1
QH (W (u, P) — W™ (u, P))
< 2Hy. (56)

Here equationholds by the fact that v} (sn) > up(sn, an) + Ps, ap n V541

Putting together. By equation[d9] equation[52]equation [54]and equation[56] we have that

SAH?(H + Sy) log (%) N 36052 AH?log (8S§H

) 2 _
= = +4SAH? s = b,

(57)

W™ (u,p) — W7 (u, P)| < 30\/

Now we verify that 7* € I} ex¢-

It suffices to show that

W™ (u,p) > max W™ (u,p) —e. (58)

By the assumptions and equation[57] we have that
W™ (u,p) > W™ (u,P)—b>W" (R,P)—b— 2
W™, p) < W™ (u, P) +b< W™ (R,P)+b+2< W™ (R,P)+b+z.
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Noting that € > 2(b + z), we conclude that 7* € II,,cx. On the other hand, for any 7 € Il ext, We
have that

W™(R,P) > W™ (u,p) — (b+2) > W™ (u,p) —2(b+2) > W™ (R,P) =3(b+2) > W™ (R, P) — 2.
The proof is finished. O
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