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ABSTRACT

We study the reinforcement learning (RL) problem with trajectory feedback. The
trajectory feedback based reinforcement learning problem, where the learner can
only observe the accumulative noised reward along the trajectory, is particularly
suitable for the practical scenarios where the agent suffers extensively from query-
ing the reward in each single step. For a finite-horizon Markov Decision Process
(MDP) with S states, A actions and a horizon length of H , we develop an algo-
rithm that enjoys an optimal regret of Õ

(√
SAH3K

)
in K episodes for suffi-

ciently large K.1 To achieve this, our technical contributions are two-fold: (1)
we incorporate reinforcement learning with linear bandits problem to construct
a tighter confidence region for the reward function; (2) we construct a reference
transition model to better guide the exploration process.

1 INTRODUCTION

In the standard reinforcement learning (RL) formulation, it is assumed that the agent acts in an
unknown environment, and in each step, the agent receives feedback in the form of a state-action
dependent reward signal, and then transits to the next state. Although such an interaction model
might be reasonable when a simulator is available, for real-life applications, such reward feedback
model could be hard to realize. For practical scenarios, querying the reward function could be costly,
or even impossible in certain circumstances.

As a motivating example, in healthcare, a doctor repeatedly interacts with a patient for the purpose
of treatment. In each step, the doctor decides an action (e.g., taking some medicine) and observes
the new state (including information like body temperature or blood pressure). On the other hand,
the state-action dependent reward signal could be costly to observe, since the extent to which the
disease has been cured might be expensive to measure as it requires comprehensive medical tests. In
this case, in order to apply the RL framework, it is more reasonable to assume that in each step, the
agent observes only the current state, and the cumulative reward value is revealed only after a whole
trajectory is finished.

As another example, in autonomous car driving, defining a state-action dependent reward function
could be a challenging task, as it requires associating all possible state-action pairs with a real
number. A possible workaround is to have human experts involved to produce the reward signals.
However, defining reward signals could be a highly subjective matter, and waiting for reward values
from human experts could take unacceptable amount of time from the perspective an a RL algorithm.

To circumvent issues mentioned above, practitioners often rely on heuristics (e.g., reward shap-
ing (Ng et al., 1999) or reward hacking (Amodei et al., 2016)). RL with trajectory feedback has
been recently proposed in Efroni et al. (2021) as a more principled framework to the deal with the
aforementioned issues. In this framework, the agent no longer has access to a per state-action re-
ward function. Instead, it receives the cumulative reward on the trajectory as well as all the visited
state-action pairs on the trajectory. Clearly, this new feedback model is weaker than the standard RL
setting and could be more applicable for real-life scenarios. In Efroni et al. (2021), new algorithms

1Throughout this paper, we use Õ(·) to suppress logarithmic factors.
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based on the principle of optimism and Thompson sampling were proposed. Although all these al-
gorithms achieve

√
K-type regret bounds, the dependence on the number of state-action pairs is far

from being optimal. Obtaining nearly optimal regret bounds in this setting is the main focus of the
present paper.

Our Contribution. In this paper, we prove a minimax optimal regret with trajectory feedback for
sufficiently large K. Formally, we present the result as follows.

Theorem 1 (Informal version of Theorem 7). Fix δ > 0. For any episodic MDP with trajectory
feedback, there exists an algorithm (Algorithm 1) such that with probability 1 − δ, the regret in K

episodes does not exceeds Õ
(√

SAH3K
)

for sufficiently large K. Here S is the number of states,
A is the number of actions, H is the horizon length, and K is the total number of episodes.

It it known that even for episodic MDPs, even if the agent has access to the per state-action reward
function, the regret bound of any RL algorithm is lower bounded by Ω(

√
SAH3K) (Jin et al.,

2018; Domingues et al., 2021) 2. Thus, the leading term of the regret bound in Theorem 1 has
near-optimal dependence on the number of states S and horizon length H , and therefore, our regret
bound is asymptotically nearly optimal.

Conceptually, Theorem 1 shows that RL with trajectory feedback, a seemingly harder setting, has the
same asymptotically optimal regret bound as the standard RL setting. Therefore, at least statistically,
RL with trajectory feedback is no harder than the standard setting.

On the other hand, the algorithm for achieving Theorem 1 is not computationally efficient as it
requires maintaining a set of deterministic policies during its execution, and an intriguing open
problem is to design computationally-efficient algorithms RL with trajectory feedback with asymp-
totically nearly optimal bounds, or showing that such an algorithm does not exist.

The remaining part of this paper is organized as follows. Section 2 give an overview of related work.
Section 3 introduces necessary technical backgrounds and notations. Section 4 gives an overview of
the technical challenges for obtaining our new results and their solutions. Section 5 introduces the
formal definition of our algorithms together with an overview of is analysis. Most of the proofs are
deferred to the supplementary material.

2 RELATED WORK

RL with Limited Feedback. As mentioned in the introduction, RL with trajectory feedback was
introduced in Efroni et al. (2021). Cohen et al. (2021) provided an algorithm that works for RL with
trajectory feedback even when the noise is adversarially chosen. Chatterji et al. (2021) considered a
more general setting where the reward revealed to the learner is no longer the cumulative reward on
the sampled trajectory, but instead drawn from a logistic model. It is an interesting future direction
to generalize our techniques to their setting and obtain nearly optimal regret bounds.

Very recently, Cassel et al. (2024) considered RL with trajectory feedback in linear MDPs (Yang
& Wang, 2019; Jin et al., 2020) and achieved a regret bound of Õ(

√
d5H7K). Translating their

regret bound to the tabular setting considered in the present paper, the regret bound would be
Õ(
√
S5A5H7K) which is far from being asymptotically nearly optimal. It would be interesting

to generalize our techniques to RL with trajectory feedback when function approximation schemes
are used and obtain improved regret bounds.

Preference-based RL (PbRL) is another RL paradigm to deal with the lack of a reward function
in various real-world scenarios. We refer interested readers to Wirth et al. (2017) for an overview
of PbRL. Theoretical results for PbRL have been obtained in the tabular setting (Novoseller et al.,
2020; Xu et al., 2020b; Saha et al., 2023) and various function approximation settings (Chen et al.,
2022; Wu & Sun, 2023; Wang et al., 2023). Preference-based learning has also been studied in
bandit setting under the notion of “dueling bandits” (Yue et al., 2012; Falahatgar et al., 2017; Bengs

2In fact, the regret lower bound proved by Jin et al. (2018) is Ω(
√
SAH2T ) with T = KH , which would

be translated to Ω(
√
SAH3K) using our notations.
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et al., 2021; Xu et al., 2020a). Dueling bandits can be thought as a special case of PbRL with a
single state and horizon length H = 1.

Linear Bandits. Linear bandits is a classical setting for modeling sequential decision-making
problems, and various sample complexity bounds and regret bounds have obtained in this setting
and its generalizations (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Li et al., 2019; Filippi et al.,
2010; Li et al., 2019). We refer readers to Lattimore & Szepesvári (2020) for a comprehensive
survey on this topic. As observed in Efroni et al. (2021), there is a deep connection between RL
with trajectory feedback and linear bandits. More specifically, RL with trajectory feedback can be
understood as an instance of linear bandits over a convex set. Such a connection is also exploited in
the present paper which will be discussed in more details in Section 4.

Regret Bounds for the Standard RL Setting. There is a long line of work studying regret min-
imization in RL (Kakade, 2003; Jaksch et al., 2010; Azar et al., 2017; Jin et al., 2018; Zanette &
Brunskill, 2019; Zhang & Ji, 2019; Zhang et al., 2020; 2022b; 2024). In particular, an asymptoti-
cally nearly optimal regret upper bound of Õ

(√
SAH3K

)
has been known in the literature (Azar

et al., 2017), and more recent work typically focuses on the lower order terms, i.e., by considering
the case where the total number of episodes K is not that large compared to the number of states
S, the number of actions A and the horizon length H . In particular, the most recent work by Zhang
et al. (2024) shows that an upper bound of Õ

(√
SAH3K +KH

)
can be achieved for any K ≥ 1.

Notably, in order to learn the transition model, in this paper we use an algorithmic framework based
on policy elimination similar to that used in Zhang et al. (2022b), although the algorithm in Zhang
et al. (2022b) is designed for the standard RL setting which does not require the tighter confidence
region construction for reward functions which is the main technical contribution of the present
paper.

3 PRELIMINARIES

Episodic reinforcement learning with trajectory feedback. An MDP is defined as M =
⟨S,A, R, P, µ⟩, where S is the state space, A is the action space, R = {Rh(s, a)}(s,a)∈S×A,h∈[H]

is the unknown reward distribution, P = {Ph,s,a}(s,a)∈S×A,h∈[H] is the unknown transition model
and µ is the initial distribution. We assume that the reward distribution Rh(s, a) is supported by
[0, 1] for any (h, s, a) with mean Rh(s, a). In each episode, the agent starts at s1, which is drawn
according to µ. It then proceeds to take actions, transitioning to the next state step by step, finally
constructing the trajectory {(sh, ah, sh+1)}Hh=1. In the end of the episode, the agent receives a tra-
jectory reward feedback Y =

∑H
h=1 rh(sh, ah), where each rh(sh, a,h ) is independently drawn

according toRh(sh, ah).

A (deterministic) policy π can be viewed as a collection of mappings {πh}Hh=1 where each πh :
S → A is a map from the state space to the action space. Let T denote the set of all trajectories
and Πdet denote the set of all deterministic policies. In our algorithm, we also consider mixtures of
deterministic policies. More specifically, a mixture of deterministic policies π could be regarded as
a distribution over Πdet.

Given a policy π, the (optimal) Q-function and value function are given by3

Qπ
h(s, a) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)
∣∣∣(sh, ah) = (s, a)

]
; Q∗

h(s, a) = sup
π∈Πdet

Qπ
h(s, a);

V π
h (s) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)
∣∣∣sh = s

]
; V ∗

h (s) = max
a

Q∗
h(s, a).

Let π∗ be an optimal policy such that Q∗
h(s, a) = Qπ∗

h (s, a) for all (s, a, h).

3It is well known that optimal Q(value) function could be reached by a deterministic policy.
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Define Wπ(r, p) := Eπ,p,s1∼µ

[∑H
h=1 rh(sh, ah)

]
and W ∗(r, p) = maxπ∈Πdet

Wπ(r, p). Let πk

denote the policy in the k-th episode. Then the regret is given by

Regret(K) :=

K∑
k=1

(
W ∗(R,P )−Wπk

(R,P )
)
. (1)

Notations. In this paper, we use Eπ,p[·] (Prπ,p[·]) to denote the expectation (probability) under the
policy π and transition probability p. In particular, Prπ,P [τ ] = ΠH

h=1(I[πh(sh) = ah]Psh,ah,h,sh+1
)

is the probability of τ = {(sh, ah)}Hh=1 under (π, p). We also define the general occupancy func-
tion dπp (s, a, h) = Eπ,p [I[(sh, ah) = (s, a)]] . We use dπp to denote the SAH-dimensional vec-
tor {dπp (s, a, h)}(s,a,h)∈S×A×[H]. Similarly, we may also regard R as a SAH-dimensional vector
{Rh(s, a)}(s,a,h)∈S×A×[H]. For N ≥ 1, we use [N ] to denote the set [1, 2, . . . , N ]. Given a trajec-
tory τ = {(sh, ah)}Hh=1, we let ϕτ ∈ RSAH to be the vector such that ϕτ (s

′, a′, h) := I[(s′, a′) =
(sh, ah)]. We use I to denote the SAH-dimensional identity matrix. For two vector x, y with the
same dimension, we write x⊤y as xy for simplicity. For p ∈ ∆S and v ∈ RS , we define the variance
function as V(p, v) = pv2 − (pv)2. We use EC to denote the complement of the set E .

4 TECHNICAL OVERVIEW

In this section, we give an overview of the technical challenges associated with obtaining the min-
imax optimal regret bound for RL with trajectory feedback, together with our approaches to tackle
these challenges. To explain the high-level ideas, we first consider the simpler setting that the tran-
sition model P is known to the algorithm, and then switch to the general setting in which case the
transition model is unknown.

Connection with Linear Bandits. As observed in prior work on RL with trajectory feed-
back (Efroni et al., 2021), when the transition model, RL with trajectory feedback can be seen as an
instance of linear bandits. More specifically, in each round, suppose the trajectory sampled by the
agent is τ , the expected trajectory reward feedback would be ϕ⊤

τ R, i.e., a linear function with respect
to ϕτ . Based on this observation, Efroni et al. (2021) showed how to build appropriate confidence
regions for RL with trajectory feedback by adapting analysis for linear bandits algorithms, and ob-
tained a regret bound of Õ

(√
S2A2H4K

)
. Although it is plausible to improve their regret bound

to Õ
(√

S2AH3K
)

by a more refined analysis, it is unclear how to improve the order of S in their
regret bound. Indeed, in the work of (Efroni et al., 2021), RL with trajectory feedback is naı̈vely
treated as an instance of linear bandits with feature dimension d = SAH , and the best known regret
bound for any linear bandits algorithm is Õ(d

√
T ) (Dani et al., 2008), or O(

√
dT logK) for linear

bandits with K arms (Bubeck et al., 2012). Since there are ASH policies for an MDP, and each of
them can be seen as an arm in the linear bandits problem instance, improving the order of S in the
regret bound of prior work requires fundamentally new ideas.

Tighter Confidence Region Based on Trajectories. In order to achieve a minimax optimal regret
bound, our first new idea is to build a tighter confidence region by exploiting structures of the linear
bandits instance associated with RL with trajectory feedback. Before getting into more details, we
first review least squares regression (LSR), an estimator commonly used in linear bandits algorithms
(also in prior work on RL with trajectory feedback (Efroni et al., 2021)) based on the principle of
optimism in the face of uncertainty.

Given a set of data points {πt, τ t, Y t}Tt=1, where for each 1 ≤ t ≤ T , where πt the policy used
in the t-th round, τ t is the trajectory sampled by executing πt and the Y t is the trajectory reward
feedback. Clearly, E[Yt] = ϕ⊤

τtR, which motivates the design of the the LSR estimator

R̂ = argmin
r

T∑
t=1

(
Y t − ϕ⊤

τtr
)
+ λ∥r∥22 = Λ−1

T∑
t=1

ϕτtY t, (2)

where Λ = λI+
∑T

t=1 ϕτtϕ⊤
τt is the information matrix. Optimism-based linear bandits algorithms

typically maintain a set of arms, and eliminate arms outside the confidence region during the exe-
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cution of the algorithm. For RL with trajectory feedback, each arm in the linear bandits instance
corresponds to a deterministic policy in the original MDP.

Our construction of the tighter confidence region is based on the following two key observations:

• Although the total number of deterministic policies could be as large as ASH , the number
of trajectories is |T | = (SA)H ;

• For any deterministic policy π, dπP =
∑

τ∈T Prπ,P [τ ] · ϕτ is a convex combination of
{ϕτ}τ∈T .

Based on these observations, instead of building confidence region for |(dπP )⊤(R̂ − R)| for each
deterministic policy π and applying a union bound over all policies which result in suboptimal
regret bounds, we consider the following event

E :=

{∣∣∣ϕ⊤
τ (R̂−R)

∣∣∣ ≤ C

(
min

{√
ϕ⊤
τ Λ

−1ϕτσ2 log(2|T |/δ), H
})

,∀τ ∈ T
}
, (3)

where C some proper constant, and σ2 ≤ H is a constant such that {Y t − ϕ⊤
τtR}Tt=1 is a group of

independent zero-mean σ2-subgaussian random variables. By standard concentration arguments, E
holds with probability at least 1− δ. We assume E holds in the remaining part of the discussion.

Note that second observation states that dπP =
∑

τ∈T Prπ,P [τ ] · ϕτ , which implies that∣∣∣(dπP )⊤(R̂−R)
∣∣∣ ≤∑

τ∈T
Prπ,P [τ ]

∣∣∣ϕ⊤
τ (R̂−R)

∣∣∣
≤ O

(∑
τ∈T

Prπ,P [τ ] min

{√
ϕ⊤
τ Λ

−1ϕτH log(2|T |/δ), H
})

≤ Õ

H

√∑
τ∈T

Prπ,P [τ ] min {ϕ⊤
τ Λ

−1ϕτ , 1}

 (4)

for any policy π, where the last step holds by Cauchy-Schwarz inequality and the fact that |T | =
(SA)H .

Exploration by Optimal Design. During the execution of the algorithm, we maintain a set of
remaining deterministic policies Π. According to equation 4, in order to prove a uniform upper
bound for

∣∣∣(dπP )⊤(R̂−R)
∣∣∣ fro all π ∈ Π, it suffices to bound

max
π∈Π

∑
τ∈T

Prπ,P [τ ] min
{
ϕ⊤
τ Λ

−1ϕτ , 1
}
. (5)

For this purpose, we need to carefully choose a set of policies {πt}Tt=1, so that the quantity in equa-
tion 5 is upper bounded. As another new technical ingredient, we show how to generalize the
Kiefer–Wolfowitz Theorem to our setting. In particular, in Lemma 8 in the supplementary material,
we show that there exists π̄ which is a mixture of deterministic policies, such that

max
π∈Π

∑
τ∈T

Prπ,P [τ ]ϕ
⊤
τ Λ

−1
π̄ ϕτ = SAH, (6)

where Λπ̄ :=
∑

τ∈T Prπ̄,P [τ ]ϕτϕ
⊤
τ . Therefore, by running π̄ for T steps, we could collect an

information matrix Λ ≽ cTΛπ̄ with high probability for some constant c > 0. Combining equation 4
and equation 6, we obtain that

max
π∈Π

∣∣∣(dπP )⊤(R̂−R)
∣∣∣ ≤ Õ

(
H
√
SAH/T

)
. (7)

In summary, with the arguments above, for any policy set Π, we are able to collect a dataset
{πt, τ t, Y t}Tt=1 in T episodes to obtain R̂, such that

max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ = max

π∈Π

∣∣∣(dπP )⊤(R̂−R)
∣∣∣ ≤ Õ

(√
SAH3/T

)
. (8)

5
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Online Batch Learning by Policy Elimination. Finally, we show how to combine the two tech-
nical ingredients mentioned into the framework of online policy elimination. In this framework, the
learning process is divided into consecutive batches. The algorithm maintains a policy set during its
execution. Suppose the policy set maintained is Πℓ at the beginning of the ℓ-th batch. The algorithm
will eliminate a subset of policies from Πℓ to form Πℓ+1 in the ℓ-th batch. Initially, we set Π1 to be
the set of all deterministic policies. Then there will be a total of O(log logK) batches for the whole
algorithm, and there are Kℓ = 2K1− 1

2ℓ episodes in the ℓ-th batch.

As an invariant, during the execution of the algorithm, we always have that the optimal policy
π∗ ∈ Πℓ for all ℓ. By equation 8, for each ℓ, we obtain a set of estimated reward values R̂ℓ such that

max
π∈Πℓ

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ Õ

(√
SAH3/Kℓ

)
. (9)

By setting

Πℓ+1 =

{
π ∈ Πℓ : max

π′∈Πℓ

Wπ′
(R̂, P )−Wπ(R̂, P ) ≤ ϵℓ

}
(10)

where ϵℓ = Õ
(√

SAH3/Kℓ

)
, it holds that π∗ ∈ Πℓ+1 and

W ∗(R,P )−Wπ(R,P ) ≤ Õ
(√

SAH3/Kℓ

)
for any π ∈ Πℓ+1. Therefore, the regret in the (ℓ+ 1)-th batch is bounded by

Õ(Kℓ+1

√
SAH3/Kℓ) = Õ(

√
SAH3K),

which means that the total regret is at most Õ(
√
SAH3K).

Dealing with Unknown Transition Models. In the discussion above, we assume the knowledge
of transition model P . Now we discuss how to remove such an assumption by learning the transition
model in an online fashion. In order to implement the elimination-based online batch learning
process mentioned above, we only need the transition model (i) to design the exploration policy
so that equation 6 is ensured and (ii) to ensure the policy elimination step in equation 10 can be
accurately implemented.

To achieve (i) and (ii), we first obtain a reference transition model P̃ . Following the regret analysis
for online batch learning in Zhang et al. (2022b), the regret stemming from learning P̃ can be
bounded by Õ(

√
SAH3K) (with lower order terms ignored). Moreover, for (i), an exact solution

for equation 6 is not necessary. Instead, an approximate solution with a constant competitive ratio is
sufficient to guide the exploration process, which could be found with the assistance of a reference
model.

Given such an approximate transition kernel, Zhang et al. (2022b) achieves computationally efficient
batch learning on the benefit of reward knowledge. In contrast, even with complete knowledge of
the transition model, we suffer from inefficiency due to lack of reward information. Since we view
the learning problem as a linear bandit problem with exponentially many arms, one crucial point to
reaching an efficient implementation is to understand the inner structure of the arm set. In our algo-
rithm, an important optimization problem is maxπ Eπ

[∑
s,s′,h,h′ I[sh = s, sh′ = s′]r(s, s′, h, h′)

]
with fixed double-state reward function {r(s, s′, h, h′)} (see line 4 in Algorithm 3). However, no ex-
isting algorithms could solve this problem (with approximation) efficiently under known transition.
We leave this problem as an interesting future direction.

5 ALGORITHM

In this section, we present our algorithms. The detailed parameter settings could be found in Ap-
pendix A. The main algorithm (Algorithm 1) comprises two stages.

6
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The first stage (line 3 in Algorithm 1) serves to acquire a coarse approximation p of the transition
model P , guiding the design of exploration policy. Instead of approximating P with respect to L1-
norm error, we expect that the trajectory distribution under P could be covered by that under p up to
a constant ratio. Formally, we have the definition below to measure similarity between two transition
models.
Definition 2. For two transition models p and p′, we say p is an (n, x)-approximation of p′ with
respect to Π iff S ×A× S × [H] could be divided into two sets K and KC such that

exp(− log(n)/H)p′s,a,h,s′ ≤ ps,a,h,s′ ≤ exp(log(n)/H)p′s,a,h,s′ ,∀(s, a, h, s′) ∈ K; (11)

Prπ,p[KC] = 0, ∀π ∈ Πdet; (12)

max
π∈Π

Prπ,p′ [KC] ≤ x, (13)

where Prπ,q[KC] denote the probability of visiting KC under policy π and transition q.

The second stage consists of several consecutive batches. In each batch of the second stage (line 5
in Algorithm 1), we search for an approximate solution π̄ to the design problem equation 15 given
p as a desired approximation of P . Subsequently, we execute π̄ to collect the trajectory feedback,
and construct reward confidence region R with least square regression. With the reward estimator
R̂ in hand, we then calculate the confidence region for each survived policy and proceed with policy
elimination based on these computations.

Algorithm 1
1: Input: total number of episodes K.
2: Initialization: Set K0, L, Kℓ ≥ 1, ϵ0, σ0, κ according to Section A;
3: {P̃ ,Π1} ← Ref-Model(K0,K)
4: for ℓ = 1, 2, . . . , L do
5: Πℓ+1 ← Traj-Learning(P̃ ,Kℓ,Πℓ);
6: end for

5.1 LEARNING THE REFERENCE MODEL

We present the algorithm to learn the reference model in Algorithm 2. The algorithm consists of four
distinct stages. Initially, the objective is to acquire a coarse reference model. In the subsequent stage,
the focus shifts to learning a coarse reward estimator. The third stage involves gathering samples to
execute policy elimination, ensuring that the remaining policies are approximately O(ϵ0)-optimal.
In the final stage, we invoke Raw-Exploration with a larger length to obtain a more refined
reference model.

Raw exploration. In Algorithm 2, we invoke Raw-Exploration (see Algorithm 6 in Ap-
pendix C) to learn a proper reference model. This algorithm is based on Algorithm 2 Zhang et al.
(2022b), with slight modification so that it could be applied to general policy set Π.

Algorithm 2 Ref-Model(K0,K)

1: Input: length K0, total length K;
2: Initialization: K̄1 = K̄2 = K̄3 = 1000

√
SAHK, K̄4 = K0 − 3K̄1 ;

3: P̂1 ← Raw-Exploration(Πdet, K̄1)

4: R̂← Reward-Regression(P1,Πdet, K̄2);
5: Π1 ← Plan(R̂, P̂1, K̄3,Πdet, ϵ0);
6: P̂2 ← Raw-Exploration(Π1, K̄4);
7: return: {P̂2,Π1}.

The following lemma describes the accuracy of the learned model.
Lemma 3. By running Ref-Model(K0,K), with probability 1− δ, it holds that

• P̂2 is an (3, σ0)-approximation of P with respect to Π1;
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• π∗ ∈ Π1;

• Wπ(R,P ) ≥W ∗(R,P )− 2ϵ0 for any π ∈ Π1.

The proof of Lemma 3 is postponed to Appendix D.1

5.2 ONLINE LEARNING WITH REWARD REGRESSION

Algorithm 3 Traj-Learning(p, T,Π)

1: Input: reference model p, length T , policy set Π;
2: R̂← Reward-Regression(p, T,Π);
3: Πnext ← Plan(R̂, p, T,Π, κ);
4: return: Πnext.

Reward regression. We compute the optimal design policy according to the reference model p,
and then collect trajectory feedback to learn the reward function. It is worth noting that the least
square regression estimator R̄ (see line 12 in Algorithm 4) might escape [0, 1]SAH , where we con-
struct a reward confidence regionR (see line 13 in Algorithm 4) instead. For Algorithm 4, we have
that

Algorithm 4 Reward-Regression(p, T,Π)

1: Input: reference model p, length T , policy set Π;
2: Initialization: λ← 1

SAH2T , Λ← λI , T1 ← T
54 log(2d/δ)

3: for t = 1, 2, . . . , T1 do
4: πt ← maxπ∈Π

∑
τ∈T Prπ,p[τ ] ·min{ϕ⊤

τ Λ
−1ϕτ , 1};

5: Λ← Λ +
∑

τ∈T Prπt,p[τ ]ϕτϕ
⊤
τ · 1

max{ϕ⊤
τ Λ−1ϕτ ,1} ;

6: end for
7: π̄ be the mixed policy which plays πt with probability 1/T1 for each 1 ≤ t ≤ T1;
8: for t = 1, 2, . . . , T do
9: Run π̄ to get trajectory τ t and reward Y t;

10: end for
11: Λ̂← 18λ log(2d/δ)I+

∑T
t=1 ϕτtϕ⊤

τt ;
12: R̄← Λ̄−1

∑T
t=1 Y

tϕτt

13: R ← {R̃ ∈ [0, 1]SAH : |ϕ⊤
τ R̃− ϕ⊤

τ R̄| ≤ 8

√
H2 log(SAH) log(4/δ)ϕ⊤

τ Λ̂
−1ϕτ ,∀τ};

14: ifR ≠ ∅ then
15: Choose R̂ ∈ R ;
16: else
17: R̂← 0;
18: end if
19: return: R̂

Lemma 4. Assume p in an (3, x)-approximation of P with respect to Π for some x ≥ 0. With
probability 1− δ, it holds that

max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ H

√
log(SAH) log(4/δ) ·

x+ 325

√
SAH log(T ) log( 2SAH

δ )

T

 ,

where R̂ = Reward-Regression(p, T,Π)

Online batch learning. With the reward estimator R̂ in hand, we proceed to construct the con-
fidence region to facilitate policy elimination. As described in Algorithm 5, for every batch, we
employ reward-zero exploration to seek out the policy with nearly optimal coverage. Utilizing this
policy, we can establish a uniform bound for the length of confidence intervals across all surviving
policies. Formally, we have the uniform convergence result for Algorithm 5 as follows.
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Lemma 5. Assume that

• π∗ ∈ Π;

• p is an (3, x)-approximation of P with respect to Π for some x ≥ 0;

• Wπ(u, P ) ≥W ∗(u, P )− y for some y ≥ 0 and any π ∈ Π;

• maxπ∈Π |Wπ(u, P )−Wπ(R,P )| ≤ z;

• ϵ ≥ 2(b+ z), where

b := 30

√
SAH2(H + Sy) log

(
8SAH

δ

)
T

+
360S2AH3 log

(
8SAH

δ

)
T

+ 4SAH2x.

Let Πnext = Plan(u, p, T,Π, ϵ). With probability 1− δ, it holds that:

• the optimal policy π∗ ∈ Πnext;

• Wπ(R,P ) ≥W ∗(R,P )− 2ϵ for any π ∈ Πnext.

Algorithm 5 Plan(u, p, T,Π, ϵ)

1: Input: reward function u, transition model p, length T , policy set Π, threshold ϵ
2: π̄ ← Design(Π, p);
3: c(s, a, h)← Eπ̄,p [I[(sh, ah) = (s, a)]] for all (s, a, h);
4: Execute π̄ in the next T episodes, and collect the samples as D;
5: Nh(s, a)← the count of (s, a, h) in D;
6: for (s, a, h) ∈ S ×A× [H] do
7: p̂h,s,a ← the empirical transition probability of the samples of (s, a, h) in D;
8: end for
9: Πnext ←

{
π ∈ Π : Wπ(u, p̂) ≥ maxπ′∈Π Wπ′

(u, p̂)− ϵ
}

10: return: Πnext.
11: Function: Design(Π, p);

12: λ ∈ ∆Π ← argminλ′∈∆Π maxπ∗∈Π

∑
s,a,h

dπ∗
p (s,a,h)∑

π λ′
πd

π
p (s,a,h)

;
13: return: π̄ be the mixed policy which plays π ∈ Π with probability λπ;

Based on Lemma 4 and Lemma 5, we summarize the performance of Algorithm 3 as below.
Lemma 6. Let Πnext = Traj-Learning(p, T,Π). Fix x̃, ỹ ≥ 0. Assume that

• π∗ ∈ Π;

• p is an (3, x̃)-approximation of P with respect to Π;

• Wπ(R,P ) ≥W ∗(R,P )− ỹ for any π ∈ Π;

• κ ≥ 20

(
72
√

SAH3ι
T + 6

√
S2AH2ỹι

T + 100S2AH3ι
T + SAH2x̃ι

)
.

With probability 1− δ, it holds that π∗ ∈ Π and
Wπ(R,P ) ≥W ∗(R,P )− 2κ

for any π ∈ Πnext.

The full proofs of Lemma 4, Lemma 5 and Lemma 6 are presented in Appendix D.

5.3 THE FINAL REGRET BOUND

Theorem 7. Fix δ > 0. For any episodic MDP with trajectory feedback, with probability 1− δ, the
regret in K episodes of Algorithm 1 does not exceeds

Regret(K) ≤ Õ
(√

SAH3K +
√
S3A2H3K

3
8 +
√
S11A3H17K

1
4 +
√
S17A3H27

)
.

9
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By Lemma 3 and the fact that π∗ ∈ Πdet with probability 1− δ, we have that

• π∗ ∈ Π1;
• P̃ is an (3, σ0)-approximation of P with respect to Π1, hence it is also an (3, σ0)-

approximation of P with respect to Πℓ for any ℓ ≥ 1;
• Wπ(R,P ) ≥W ∗(R,P )− 2ϵ0 for all π ∈ Π1.

By the third property, the regret in the first K0 episodes is bounded by

Õ
(
K0ϵ0 +H

√
SAHK

)
= Õ

(√
SAH3K + S

11
2 A

3
2H

17
2 K

1
4 + S

17
2 A

3
2H

27
2

)
. (14)

Now we fix 1 ≤ ℓ ≤ L and assume π∗ ∈ Πℓ. Set x̃ = σ0, ỹ = 2ϵ0, ι = log2
(
16SAHT

δ

)
and

ϵℓ = 20

72

√
SAH3ι

Kℓ
+ 9

√
S2AH2ϵ0ι

Kℓ
+

100S2AH3ι

Kℓ
+ SAH2σ0ι

 .

We then can verify the conditions in Lemma 6: (1) π∗ ∈ Πℓ; (2) P̃ is an (3, x̃)-approximation
of P with respect to Πℓ; (3) Wπ(R,P ) ≥ W ∗(R,P ) − ỹ for any π ∈ Πℓ; (4) ϵℓ ≥
20
(
72
√

SAH3ι
Kℓ

+ 6
√

S2AH2ỹι
Kℓ

+ 100S2AH3ι
Kℓ

+ SAH2x̃ι
)
.

Using Lemma 6, with probability 1−δ, it holds that: (1) π∗ ∈ Πℓ+1; (2) Wπ(R,P ) ≥W ∗(R,P )−
2ϵℓ for any π ∈ Πℓ+1. By induction on ℓ = 1, 2, . . . , L, with probability 1− Lδ

(L+1) , it holds that

Wπ(R,P ) ≥W ∗(R,P )− 2ϵℓ.

Recalling that Kℓ = 2K1− 1

2l for 1 ≤ ℓ ≤ L− 1 and KL ≤ 2K1− 1

2L , the regret in the ℓ-th batch is
bounded by

O(Kℓϵℓ−1) = Õ
(√

SAH3K +
√
S3A2H3K

3
8 +
√
S6A2H7K

1
4 + S2AH3K

1

2ℓ

)
for 2 ≤ ℓ ≤ L. For ℓ = 1, the regret in the ℓ-th batch is bounded by O(K1H) = O(

√
KH2).

Putting all together, we obtain that the total regret is bounded by

Õ
(√

SAH3K +
√
S3A2H3K

3
8 +
√
S11A3H17K

1
4 +
√
S17A3H27

)
.

The proof is finished by replaced δ with δ
16S2AH(L+1) .

6 CONCLUSION

In this work, we design an algorithm to achieve asymptotic optimal regret bound of Õ(
√
SAH3K)

for reinforcement learning with trajectory feedback. However, the proposed algorithm is based on
elimination, resulting exponential time cost. It poses a challenge to ascertain whether achieving the
optimal regret bound is viable using a more efficient algorithm. Additionally, an interesting direction
involves minimizing the lower-order terms in the regret bound.
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Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, pp. 41–1. JMLR
Workshop and Conference Proceedings, 2012.

Asaf Cassel, Haipeng Luo, Aviv Rosenberg, and Dmitry Sotnikov. Near-optimal regret in linear
mdps with aggregate bandit feedback. arXiv preprint arXiv:2405.07637, 2024.

Niladri Chatterji, Aldo Pacchiano, Peter Bartlett, and Michael Jordan. On the theory of reinforce-
ment learning with once-per-episode feedback. Advances in Neural Information Processing Sys-
tems, 34:3401–3412, 2021.

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In International Conference on Machine Learning, pp. 3773–3793. PMLR, 2022.

Alon Cohen, Haim Kaplan, Tomer Koren, and Yishay Mansour. Online markov decision processes
with aggregate bandit feedback. In Conference on Learning Theory, pp. 1301–1329. PMLR,
2021.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. In COLT, volume 2, pp. 3, 2008.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning
Theory, pp. 578–598, 2021.

Yonathan Efroni, Nadav Merlis, and Shie Mannor. Reinforcement learning with trajectory feedback.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 7288–7295, 2021.

Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravindrakumar.
Maxing and ranking with few assumptions. Advances in Neural Information Processing Systems,
30, 2017.
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A PARAMETER SETTINGS.

Set K0 = 100000S
9
2A

3
2H

17
2 K

1
2 log

(
SAHK

δ

)
and Kℓ = 2K1− 1

2ℓ for ℓ ≥ 1. Let L :=

minℓ′(K0 +
∑ℓ′

ℓ=1 Kℓ) ≥ K. Set ϵ0 = 90000 log3(SAH
δ )

(
SAH

K
1
4

+ S4AH6

K
1
2

)
, σ0 = 1

S
3
2 A

1
2 H

7
2 K

1
2

,

ι = log2
(
16SAHT

δ

)
and κ = 20

(
72
√

SAH3ι
T + 9

√
S2AH2ϵ0ι

T + 100S2AH3ι
T + SAH2σ0ι

)
.

By this definition, we have L ≤ 2 log2 log(K). With a slightly abuse of notation, we re-define
KL = K − (K0 +

∑L−1
ℓ=1 Lℓ). It then holds that K0 +

∑L
ℓ=1 Kℓ = K.

B TECHNICAL LEMMAS

Lemma 8. For any policy set Π ⊂ Πdet,

min
π̄∈∆Π

max
π∈Π

∑
τ∈T

Prπ,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ = SAH, (15)

where Λ(π) :=
∑

τ∈T Prπ,P [τ ]ϕτϕ
⊤
τ .

Proof of Lemma 8. Let F (π) := log(det(Λ(π))) for π ∈ ∆Π. Because ∆Π is a closed set
and F (π) ≤ d log(d) for any π ∈ ∆Π with d = SAH , there exists some π̄ such that π̄ =
argmaxπ∈∆Π F (π). We assume that det(Λ(π̄)) ̸= 0. Otherwise det(Λ(π)) is always 0, which
implies there is redundant dimension. Let λ(π̄, π) be the probability that π̄ distributes on π for
π ∈ Π. For two different π1, π2 ∈ Π such that λ(π̄, π1) > 0, λ(π̄, π2) > 0 , by the condition that
π̄ = argmaxπ∈∆Π F (π), we have that

∂F (π̄)

∂λ(π̄, π1)
=

∂F (π̄)

∂λ(π̄, π2)
, (16)

which means that∑
τ∈T

Prπ1,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ =
∑
τ∈T

Prπ2,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ .

For π1, π2 such that λ(π̄, π1) > 0 and λ(π̄, π2) = 0, we have that

∂F (π̄)

∂λ(π̄, π1)
≥ ∂F (π̄)

∂λ(π̄, π2)
,

which implies ∑
τ∈T

Prπ1,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ ≥
∑
τ∈T

Prπ2,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ .

Therefore, maxπ∈Π

∑
τ∈T Prπ,P [τ ]ϕ

⊤
τ (Λ(π̄))

−1ϕτ is reached by any π such that λ(π̄, π) > 0.
Assume this value is x. That is,

λ(π̄, π)
∑
τ∈T

Prπ,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ = λ(π̄, π)x

for all π ∈ Π. Taking sum over π ∈ Π, we have that

x = Trace(Λ(π̄)(Λ(π̄))−1) = d = SAH. (17)

The proof is completed.

Lemma 9 (Lemma 1 in Zhang et al. (2022b)). Let d > 0 be an integer. Let X ⊂ (∆d)m. Then there
exists a distribution D over X , such that

max
x={xi}dm

i=1∈X

dm∑
i=1

xi

yi
= md,

where y = {yi}dmi=1 = Ex∼D[x].
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Lemma 10 (Bennet’s inequality). Let Z,Z1, ..., Zn be i.i.d. random variables with values in [0, 1]
and let δ > 0. Define VZ = E

[
(Z − EZ)2

]
. Then we have

P

[∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2VZ ln(2/δ)

n
+

ln(2/δ)

n

]
≤ δ.

Lemma 11 (Theorem 4 in Maurer & Pontil (2009) ). Let Z,Z1, ..., Zn (n ≥ 2) be i.i.d. random
variables with values in [0, 1] and let δ > 0. Define Z̄ = 1

n

∑n
i=1 Zi and V̂n = 1

n

∑n
i=1(Zi − Z̄)2.

Then we have

P

∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n ln(2/δ)

n− 1
+

7 ln(2/δ)

3(n− 1)

 ≤ δ.

Lemma 12 (Lemma 10 in (Zhang et al., 2022a)). Let X1, X2, . . . be a sequence of random variables
taking value in [0, l]. For any k ≥ 1, let Fk be the σ-algebra generated by (X1, X2, . . . , Xk), and
define Yk := E[Xk | Fk−1]. Then for any δ > 0, we have

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log
1

δ

]
≤ δ

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log
1

δ

]
≤ δ.

Lemma 13. Fix d > 0. Let Λ ∈ Rd×d be a PSD matrix and x ∈ Rd be a vector such that
x⊤Λ−1x ≤ 1. Then we have that

log(det(Λ + xx⊤))− log(det(Λ)) ≥ 2x⊤Λ−1x.

Proof. Direct computation gives that

log(det(Λ+xx⊤))− log(det(Λ)) = log(det(I+x⊤Λ−1x⊤)) = log(1+x⊤Λ−1x) ≥ 1

2
x⊤Λ−1x.

Lemma 14 (Lemma 20 in Zhang et al. (2021)). Consider a sequence of independent PSD (positive
semi-definite) matrices X1, X2, . . . , Xn ∈ Rd×d such that Xk ≼ W for a fixed PSD matrix W and
all 1 ≤ k ≤ n. For every δ > 0 and ϵ ∈ (0, 1), it holds that

Pr

[
n∑

k=1

Xk ≼ 3

n∑
k=1

E[Xk] + 3 log(d/δ)W

]
≥ 1− δ; (18)

Pr

[
n∑

k=1

Xk ≽
1

3

n∑
k=1

E[Xk]− 3 log(d/δ)W

]
≥ 1− δ. (19)

Lemma 15. Assume p is an (n, x)-approximation of p′ with respec to Π. It then holds that
1

n
Eπ,p[I[(sh, ah) = (s, a)]] ≤ Eπ,p′ [I[(sh, ah) = (s, a)]] ≤ nEπ,p[I[(sh, ah) = (s, a)]] + x (20)

for any π ∈ Π and (s, a, h).

Proof. By equation 11 and equation 12, for any trajectory τ , we have that 1
nPrp[τ ] ≤ Prp′ [τ ′]. It

then holds that
1

n
Eπ,p[I[(sh, ah) = (s, a)]] ≤ Eπ,p′ [I[(sh, ah) = (s, a)]].

On the other hand,

Eπ,p′ [I[(sh, ah) = (s, a)]]

≤ Eπ,p′ [I[(sh, ah) = (s, a)] ∩ I[(sh′ , ah′ , sh+1, h
′) ∈ K,∀1 ≤ h′ ≤ h]] + max

π∈Πdet

Prπ,p′ [KC]

≤ nEπ,p[I[(sh, ah) = (s, a)]] + x. (21)
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Algorithm 6 Raw-Exploration(Π, T, δ)
1: Input: policy set Π, length T , failure probability δ;
2: Initialize: T1 ← T

SAH , ι← log
(

2S2AH2

δ

)
, D ← ∅;

3: for h = 1, 2, . . . ,H do
4: P ← Confidence-Region(D);
5: for (s, a) ∈ S ×A do
6: {πh,s,a, ph,s,a} argmaxπ∈Π,p∈P Eπ,p [I[(sh, ah) = (s, a)]];
7: end for
8: for (s, a, h) ∈ S ×A× [H] do
9: Execute πh,s,a for T1 episodes, and collect the samples as Dh,s,a;

10: end for
11: D ← D ∪ (∪s,a,hDh,s,a);
12: end for
13: P ← Confidence-Region(D);
14: p← arbitrary element in P
15: return: p;

16: Function: Confidence-Region(D):
17: Nh(s, a, s

′)← count of (s, a, h, s′) in D, for all (s, a, s′);
18: Nh(s, a)← max{

∑
s′ Nh(s, a, s

′), 1} for all (s, a);
19: p̂s,a,h,s′ ← Nh(s,a,s

′)
Nh(s,a)

, ∀(s, a, h, s′);
20: W ← {(s, a, h, s′) : Nh(s, a, s

′) ≥ 200H2ι};
21: P̃s,a,h ←

{
p ∈ ∆S | |ps′ − p̂s,a,h,s′ | ≤

√
4Nh(s,a,s′)ι

N2
h(s,a)

+ 5ι
Nh(s,a)

,∀s′ ∈ S
}

, ∀(h, s, a);
22: Ph,s,a ← {clip(p,W) : p ∈ P̃h,s,a}, ∀(h, s, a);
23: Return: ⊗h,s,aPs,a,h.

24: Function: clip(p,W)
25: p′s,a,h,s′ ← ps,a,h,s′ ,∀(h, s, a, s) ∈ W;
26: p′s,a,h,s′ ← 0,∀(s, a, h, s′) /∈ W;
27: p′s,a,h,z ←

∑
s′:(s,a,h,s′)/∈W ps,a,h,s′ ,∀(h, s, a) ∈ [H]× S ×A;

28: p′z,a,h ← 1z,∀(h, a) ∈ [H]×A;
29: Return: p.

Lemma 16. Assume p is an (n, x)-approximation of p′. It then holds that

max
π∈Πdet

Prπ,p′ [Tbad] ≤ x,

where Tbad := {τ : Prp′ [τ ] ≥ nPrp[τ ]}.

Proof. Let τ = {sh, ah}Hh=1 be an element in Tbad. By definition, there exists h such that
(sh, ah, h, sh+1) ∈ KC. As a result, maxπ∈Πdet

Prπ,p′ [Tbad] ≤ maxπ∈Πdet
prπ,p′ [KC] ≤ x.

C THE RAW-EXPLORATION ALGORITHM AND ANALYSIS

Lemma 17. By running Raw-Exploration with input (Π, T, δ), with probability 1 − δ, the

output p is an
(
3, 11000S3AH4 log(SAH/δ)

T

)
-approximation of P with respect to Π.

Proof. Let Dh be the value of D after the h-th iteration. Let Ph = Confidence-Region(Dh)
and P̄ be the final value of P . Let Nh

h′(s, a, s′) be the count of (s, a, h′, s′) in Dh and Nh
h′(s, a) :=

min{
∑

s′ N
h
h′(s, a, s′), 1}. Let p̂hs,a,h′ =

Nh
h′ (s,a,s

′)

Nh
h′ (s,a)

be the empirical transition probability com-
puted by Dh.
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By Lemma 10, with probability 1− δ/2,

∣∣p̂hs,a,h′,s′ − Ps,a,h,s′
∣∣ ≤√4Nh

h′(s, a, s′)ι

(Nh
h′(s, a))2

+
5ι

Nh′
h (s, a)

(22)

holds for all (s, a, h′, s′) and h ∈ [H]. We proceeds the analysis conditioned on equation 22. Let
Nh(s, a, s

′) denote the count of (s, a, h, s′) in Dh,s,a and Nh(s, a) = max{
∑

s′ Nh(s, a, s
′), 1}.

Define
Kh := {(s, a, s′) : Nh(s, a, s

′) ≥ 200H2ι}

where ι = log
(

2S2AH2

δ

)
.

By equation 22, for any (s, a, s′) ∈ Kh and any h′ ≥ h, we have that∣∣∣p̂h′

s,a,h,s′ − Ps,a,h,s′

∣∣∣ ≤ p̂h
′

s,a,h,s′ ·

(√
1

50H2
+

1

40H2

)
,

which implies that ∣∣∣p̂h′

s,a,h,s′ − Ps,a,h,s′

∣∣∣ ≤ 1

6H
Ps,a,h,s′ . (23)

Moreover, by definition of Ph, using similar arguments, we have

|ps,a,h,s′ − Ps,a,h,s′ | ≤
1

3H
Ps,a,h,s′ (24)

for any (s, a, h, s′) ∈ Kh and p ∈ Ph.

We set K = ∪hKh and verify the three conditions in Definition 2. The first condition equation 11
holds by equation 24, and the second condition equation 12 holds because ps,a,h,s′ = 0 for any
p ∈ P and (s, a, s′) ∈ KC

h . As for the third condition equation 13, we analyze as below.

Fix h ∈ [H]. By equation 23 and definition of {πh+1,s,a, ph+1,s,a}, we have that

Eπh+1,s,a,P [I[(sh+1, ah+1) = (s, a)]]

≥
(
1− 1

3H

)H

Eπh+1,s,a,ph+1,s,a [I[(sh+1, ah+1) = (s, a)]]]

≥ 1

3
Eπh+1,s,a,ph+1,s,a [I[(sh+1, ah+1) = (s, a)]]]

≥ 1

3
max
π∈Π

Eπ,ph+1,s,a [I[(sh+1, ah+1) = (s, a)]]]

≥ 1

9
max
π∈Π

Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1) = (s, a)]] . (25)

Here equation 25 holds because for any trajectory τ = {sh′ , ah′}hh′=1 such that (sh′ , ah′ , sh′+1) ∈
Kh′ , Prπ,p[τ ] ≥ 1

3Prπ,P [τ ] for any p ∈ Ph and any π ∈ Π. Consequently,

Eπh+1,s,a,P [I[(sh+1, ah+1, sh+2) = (s, a, s′)]]

≥ 1

9
max
π,P

max
π∈Π

Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1, sh+2) = (s, a, s′)]] .

(26)

On the other side, by Lemma 12, with probability 1− δ
2S2AH2 , it holds that

Nh+1(s, a, s
′)

≥ 1

3
T1Eπh+1,s,a,P [I[(sh+1, ah+1, sh+2) = (s, a, s′)]]− log

(
2S2AH2

δ

)
≥ 1

27
T1 max

π∈Π
Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1) = (s, a)]]− log

(
2S2AH2

δ

)
,
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which implies that

max
π∈Π

Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1) = (s, a)]] ≤ 5427H2ι

T1
(27)

for (s, a, s′) ∈ KC
h+1

Taking sum over all (s, a, s′) ∈ KC
h+1, we learn that

max
π∈Π

Eπ,P

[
I[(s, a, s′) ∈ KC

h+1] · I [sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h]
]
≤ 5427S2AH2ι

T1
. (28)

Taking sum over h ∈ [H], we learn that

max
π

Prπ,P [∪hKC
h ]

≤
H∑

h=1

max
π∈Π

Eπ,P

[
I[(s, a, s′) ∈ KC

h+1] · I [sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h]
]

≤ 5427S2AH3ι

T1
.

Therefore equation 13 holds with x = 5427S2AH3ι
T1

. The proof is completed by noting T1 = T
SAH .

D MISSING ALGORITHMS AND PROOFS

D.1 PROOF OF LEMMA 3

Proof. By Lemma 17, with probability 1 − δ
4(L+1) , P̃ is an (3, 11000S3AH3 log(4SAH(L+1)/δ)

K̄4
)-

approximation of P with respect to Π1. By noting that

K̄4 ≥ 96000S
9
2A

3
2H

15
2 K

1
2 log

(
SAHK

δ

)
and

σ0 ≥
11000S3AH3 log(4SAH(L+ 1)/δ)

K̄4
,

we conclude that P̃ is an (3, σ0)-approximation of P with respect to Π1, and thus is an (3, σ0)-
approximation of P with respect to Πℓ for any ℓ ≥ 1.

Let b1 :=
11000S3AH4 log( 4SAH

δ )
K̄1

. By Lemma 17, with probability 1 − δ
4 P̂1 is an (3, b1)-

approximation of P with respect to Πdet. By Lemma 4, with probability 1− δ
4 , we learn that

max
π∈Πdet

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣

≤ H
√
log(SAH) log(16/δ)

b1 + 325

√
SAH log(T ) log(8SAH/δ)

K̄2


≤ 1000 log2(

SAH

δ
) ·
(
SAH

K
1
4

+ 4SAH2b1

)
. (29)
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By Lemma 5 with parameters as:
Π = Πdet;

x = b1 =
11000S3AH4 log

(
4SAH

δ

)
K̄1

;

y = H;

z := 1000 log2(
SAH

δ
) ·
(
SAH

K
1
4

+
S4AH6

K
1
2

)

b = 30

√
2S2AH2 log

(
32SAH

δ

)
K̄3

+
360S2AH3 log

(
32SAH

δ

)
K̄3

+
44000S3AH4 log

(
32S2AH2

δ

)
K̄1

;

ϵ = ϵ0 = 90000 log3(
SAH

δ
)

(
SAH

K
1
4

+
S4AH6

K
1
2

)
≥ 2(b+ z) (30)

we have that: with probability 1 − δ
4 , it holds that (1) π∗ ∈ Π1; (2) Wπ(R,P ) ≥ W ∗(R,P ) − 2ϵ

for any π ∈ Π1.

The proof is finished.

D.2 PROOF OF LEMMA 4

Proof. Let d = SAH . Fix π ∈ Π. By definition, we have that∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤∑

τ∈T
Prπ,P [τ ] · |ϕ⊤

τ (R̂−R)|.

By Lemma 19, with probability 1− δ/2, it holds that R ∈ R, which implies that∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤∑

τ∈T
Prπ,P [τ ] · |ϕ⊤

τ (R̂−R)|

≤
∑
τ∈T

Prπ,P [τ ] ·min{8
√
H2 log(SAH) log(4/δ)ϕ⊤

τ Λ̂
−1ϕτ , H}

≤ H
√
log(SAH) log(4/δ)

∑
τ∈T

Prπ,P [τ ] min

{
8

√
ϕ⊤
τ Λ̂

−1ϕτ , 1

}
(31)

By Lemma 20, with probability 1− δ/2, Λ̂ ≽ 3Λ̃. Consequently, we have that∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ H

√
log(SAH) log(4/δ)

∑
τ∈T

Prπ,P [τ ] min

{
5

√
ϕ⊤
τ Λ̃

−1ϕτ , 1

}
≤ H

√
log(SAH) log(4/δ) ·

(
x+ 3Prπ,p[τ ] min

{
5

√
ϕ⊤
τ Λ̃

−1ϕτ , 1

})
(32)

≤ H
√
log(SAH) log(4/δ) ·

(
x+ 15

√
Prπ,p[τ ] min

{
ϕ⊤
τ Λ̃

−1ϕτ , 1
})

(33)

≤ H
√

log(SAH) log(4/δ) ·

(
x+ 325

√
SAH log(T ) log(2d/δ)

T

)
.

(34)

Here equation 32 holds by Lemma 16, equation 33 is by Cauchy’s inequality, and equation 34 is by
Lemma 18.
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The proof is finished.

Lemma 18. Let Λ̃ be the final value of Λ in Algorithm 4. It then holds that

max
π∈Π

∑
τ∈T

Prπ,p[τ ] min{ϕ⊤
τ Λ̃

−1ϕτ , 1} ≤
432SAH log(T ) log(2d/δ)

T
(35)

Proof. Let T1 = T
54 log(2d/δ) . Let Λt be the value of Λ before the t-th iteration. For any policy

π ∈ Π, we have that

∑
τ∈T

Prπ,p[τ ] ·min{ϕ⊤
τ Λ̃

−1ϕτ , 1} ≤
1

T1

T1∑
t=1

∑
τ∈T

Prπ,p[τ ] ·min{ϕ⊤
τ (Λ

t)−1ϕτ , 1}

≤ 1

T1

T1∑
t=1

∑
τ∈T

Prπt,p[τ ] ·min{ϕ⊤
τ (Λ

t)−1ϕτ , 1}

≤ 1

T1
· 4 log

(
det(Λ̃)

λSAH

)
(36)

≤ 432SAH log(T ) log(2d/δ)

T
.

Here equation 36 is derived as following. Let zt,τ = ϕτ · 1√
max{ϕ⊤

τ (Λt)−1ϕτ ,1}
. Then

we have that Λt+1 = Λt +
∑

τ∈T Prπt,p[τ ]zt,τz
⊤
t,τ . Because zt,τz

⊤
t,τ ≼ Λt, it holds that∑

τ∈T Prπt,p[τ ]zt,τz
⊤
t,τ ≼ Λt. Let ≺ be an order over all possible trajectories and Λ(τ) =

Λt +
∑

τ ′≺τ Prπt,p[τ
′]zt,τ ′z⊤t,τ ′) ≼ 2Λt.

As a result, we have that

log

(
det(Λt+1)

det(Λt)

)
=
∑
τ∈T

(
log(det(Λ(τ) + Prπt,p[τ ]zt,τz

⊤
t,τ )− log(det(Λ(τ))

)
≥ 1

2

∑
τ∈T

Prπt,p[τ ]z
⊤
t,τ (Λ(τ))

−1zt,τ (37)

≥ 1

4

∑
τ∈T

Prπt,p[τ ]z
⊤
t,τ (Λ

t)−1zt,τ . (38)

Here equation 37 is by Lemma 13.

Lemma 19. With probability 1− δ/2, R ∈ R.

Proof. Let λ′ = 18λ log(2d/δ). It is easy to see R ∈ [0, 1]SAH . It suffices to verify that

|ϕ⊤
τ R− ϕ⊤

τ R̄| ≤ 8

√
H2 log(SAH) log(2/δ)ϕ⊤

τ Λ̂
−1ϕτ , ∀τ.

Let τ t = {(sth, ath)}Hh=1. Let ζt := Yt −
∑T

h=1 Rh(s
t
h, a

t
h). Noting that Y t =∑H

h=1 rh(s
t
h, a

t
h) where each rh(s

t
h, a

t
h) are drawn according to Rh(s

t
h, a

t
h) independently, we have
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that E[exp(zζt)] ≤ exp(Hz2/2) for any z ≥ 0. For fixed τ , we note that∣∣ϕ⊤
τ R̄− ϕ⊤

τ R
∣∣ = ∣∣∣∣∣ϕ⊤

τ Λ̂
−1

T∑
t=1

ϕτtζt − λ′ϕ⊤
τ Λ̂

−1R

∣∣∣∣∣
≤

∣∣∣∣∣ϕ⊤
τ Λ

−1
T∑

t=1

ϕτtζt

∣∣∣∣∣+ λ′H∥ϕτ Λ̂
−1∥2

≤

∣∣∣∣∣ϕ⊤
τ Λ

−1
T∑

t=1

ϕτtζt

∣∣∣∣∣+H

√
λ′ϕ⊤

τ Λ̂
−1ϕτ (39)

≤ 2

∣∣∣∣∣ϕ⊤
τ Λ

−1
T∑

t=1

ϕτtζt

∣∣∣∣∣ . (40)

Here equation 39 holds by the fact that Λ̂ − λ′I is PSD and equation 40 is by the fact that
18λ log(2d/δ)H2 ≤ 1.

Note that {ζt}Tt=1 does not change the distribution of {ϕτt}Tt=1. Therefore, it holds that

Pr

[∣∣∣∣∣ϕ⊤
τ Λ

−1
T∑

t=1

ϕτtζt

∣∣∣∣∣ ≥ x ·
√
ϕ⊤
τ Λ̂

−1ϕτ

]
≤ 2 exp

(
− x2

2H

)
. (41)

With a union bound of all possible choices of τ , we learn that, with probability 1 − δ, for any τ , it
holds that ∣∣ϕ⊤

τ R̄− ϕ⊤
τ R
∣∣ ≤ 8

√
H2 log(SAH) log(4/δ)ϕ⊤

τ Λ̂
−1ϕτ .

The proof is completed.

Lemma 20. With probability 1− δ/2, it holds that

Λ̂ ≽ 3Λ̃.

Proof. Let Λt ≼ Λ̃ be the value of Λ before the t-th round in line 5. Let zt =

ϕτt

√
1

max{ϕ⊤
τt Λ̃

−1ϕτt ,1}
. It is then easy to verify that Λ̃ ≽ ztz

⊤
t . By Lemma 16, we have

Prp[τ ] ≤ 3Prp′ [τ ] for any τ . By noting that

Λ̃ =

T1∑
t=1

Eπt,p

[∑
τ∈T

Prπt,pϕτϕ
⊤
τ ·

1

max{ϕ⊤
τ (Λ

t)−1ϕτ , 1}

]

≼
T1∑
t=1

Eπt,p

[∑
τ∈T

Prπt,pϕτϕ
⊤
τ ·

1

max{ϕ⊤
τ Λ̃

−1ϕτ , 1}

]

= T1Eπ̄,p

[∑
τ∈T

Prπ̄,pϕτϕ
⊤
τ ·

1

max{ϕ⊤
τ Λ̃

−1ϕτ , 1}

]
,

we have

18 log(2d/δ)λI+ Eπt,P

[
T∑

t=1

ztz
⊤
t

]

≽ 18 log(2d/δ)λI+
1

3
Eπ̄,p

[
T∑

t=1

ϕτtϕ⊤
τt ·

1

max{ϕ⊤
τtΛ̃−1ϕτt , 1}

]
≽ 18 log(2d/δ)Λ̃. (42)

By Lemma 14, with probability 1− δ/2,
T∑

t=1

ztz
⊤
t ≽

1

3
E

[
T∑

t=1

ztz
⊤
t

]
− 3 log(2d/δ)Λ̃ ≽ 3 log(2d/δ)Λ̃− 18λ log(2d/δ)I,
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which means that

Λ̂ ≽ 18λ log(2d/δ)I

T∑
t=1

ztz
⊤
t ≽ 3Λ̃.

The proof is completed.

D.3 PROOF OF LEMMA 6

Let R̂ be the reward function in line 2 Algorithm 3. By Lemma 4, with probability 1− δ/2,

max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ b1 := H

√
log(SAH) log(8/δ) ·

x̃+ 325

√
SAH log(T ) log(4SAH

δ )

T

 .

As a result, for any π ∈ Π,

Wπ(R̂, P )−W ∗(R̂, P ) ≥Wπ(R,P )−W ∗(R,P )− 2max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≥ ỹ + 2b1.

(43)

Let x = x1, y = ỹ + 2b1, z = b1. Let b = 30

√
SAH2(H+Sy) log( 16SAH

δ )
T +

360S2AH3 log( 16SAH
δ )

T +

4SAH2x̃.

By Lemma 5 and the assumption that κ ≥ 2(b+ z) = 2(b+ b1), it then holds that π∗ ∈ Πnext and
Wπ(R,P ) ≥W ∗(R,P )− 2κ

for any π ∈ Πnext

D.4 PROOF OF LEMMA 5

Proof of Lemma 5. In this proof, we use {vπh(s)} ({v∗h(s)}) to denote the (optimal) value func-
tion under the policy π, transition P and reward u. With a slight abuse of notation, we define
dπ̄P (s, a, h) = Eπ̄,P [I[(sh, ah) = (s, a)]].

Because p is an (3, x)−approximation of P with respect to Π, by Lemma 15 we have that
1

3
c(s, a, h) ≤ dπ̄P (s, a, h) ≤ 3c(s, a, h) + x. (44)

Let L := {(s, a, h) : c(s, a, h) ≥ max{x, 36 log(8SAH/δ)
T }}. By equation 44, dπ̄P (s, a, h) ≤ 4x for

(s, a, h) /∈ L. By noting that p̂sh,ah,h is independent of v∗h+1, using Bernstein’s inequality, with
probability 1− δ/8,∣∣(p̂s,a,h − Ps,a,h)v

∗
h+1

∣∣ ≤ 2

√
V(Ps,a,h, v∗h+1) log(8SAH/δ)

Nh(s, a)
+

H log(8SAh/δ)

Nh(s, a)
, ∀(s, a, h);

(45)

|p̂s,a,h,s′ − Ps,a,h,s′ | ≤ 2

√
Ps,a,h,s′ log(8SAH/δ)

Nh(s, a)
+

H log(8SAH/δ)

Nh(s, a)
, ∀(s, a, h, s′). (46)

We continue the analysis conditioned on equation 45 and equation 46. Fix π ∈ Π. Using policy
difference lemma, and noting that dπP (s, a, h) ≤ 4x for (s, a, h) /∈ L, we have that∣∣∣Wπ(R̂, p̂)−Wπ(R̂, P )

∣∣∣ = ∣∣∣∣∣Eπ,P

[
H∑

h=1

(p̂sh,ah,h − Psh,ah,h)v
π
h+1

]∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπ̄P (s, a, h)(p̂s,a,h − Ps,a,h)v
π
h+1

∣∣∣∣∣∣+ 4SAH2

(
x+

36 log(8SAH/δ)

T

)
.

(47)
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Let F = 4SAH2
(
x+ 36 log(8SAH/δ)

T

)
. By definition of E1, we further have that,

∣∣∣Wπ(R̂, p̂)−Wπ(R̂, P )
∣∣∣ (48)

≤

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)(p̂s,a,h − Ps,a,h)v
∗
h+1

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)(p̂s,a,h − Ps,a,h)(v
π
h+1 − v∗h+1)

∣∣∣∣∣∣+ F

≤

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)

2

√
V(Ps,a,h, v∗h+1) log

(
8SAH

δ

)
Nh(s, a)

+
H log

(
8SAH

δ

)
Nh(s, a)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)

2

√
SV(Ps,a,h, v∗h+1 − vπh+1) log

(
8SAH

δ

)
Nh(s, a)

+
SH log

(
8SAH

δ

)
Nh(s, a)

∣∣∣∣∣∣+ F

≤ 2

√√√√√log

(
8SAH

δ

) ∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)

 ·
√√√√E

[
H∑

h=1

(
V(Psh,ah,h, v

∗
h+1) + SV(Psh,ah,h, v

∗
h+1 − vπh+1)

)]

+ 2SH log

(
8SAH

δ

) ∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)

+ F.

(49)

We then bound the terms in equation 49 separately.

The doubling count term. By definition of L, we have that

∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)
≤ 4

∑
s,a,h

dπp (s, a, h)

Nh(s, a)
. (50)

By Lemma 12, we further have that, with probability 1− δ
8 , it holds that

Nh(s, a) ≥
1

9
Tc(s, a, h)− log(8SAH/δ). (51)

for any (s, a, h). Conditioned on this event, we have that

∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)
≤ 108

T

∑
s,a,h

dπp (s, a, h)

c(s, a, h)
≤ 108SAH

T
. (52)

In the last inequality, we use the fact that

max
π∗∈Π

∑
s,a,h

dπ
∗

p (s, a, h)

c(s, a, h)
= SAH, (53)

which is a direct result following Lemma 9.
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The variance terms. Direct computation gives that

Eπ,P

[
H∑

h=1

V(Psh,ah,h, v
∗
h+1)

]
= Eπ,P

[
H∑

h=1

(
(v∗h+1(sh+1))

2 − (Psh,ah,hv
∗
h+1)

2
)]

≤ Eπ,P

[
H∑

h=1

(
(v∗h(sh))

2 − (Psh,ah,hv
∗
h+1)

2
)]

≤ 2HEπ,P

[
H∑

h=1

(
v∗h(sh)− Psh,ah,hv

∗
h+1

)]

= 2HEπ,P

[
H∑

h=1

(
v∗h(sh)− v∗h+1(sh+1)

)]
≤ 2H2 (54)

and

Eπ,P

[
H∑

h=1

V(Psh,ah,h, v
∗
h+1) + SV(Psh,ah,h, v

∗
h+1 − vπh+1)

]

= Eπ,P

[
H∑

h=1

(
(v∗h+1(sh+1)− vπh+1(sh+1))

2 − (Psh,ah,h(v
∗
h+1 − vπh+1))

2
)]

≤ Eπ,P

[
H∑

h=1

(
(v∗h(sh)− vπh(sh))

2 − (Psh,ah,h(v
∗
h+1 − vπh+1))

2
)]

≤ HEπ,P

[
H∑

h=1

∣∣(v∗h(sh)− Psh,ah,hv
∗
h+1)− (vπh(sh)− Psh,ah,hv

π
h+1)

∣∣]

= 2HEπ,P

[
H∑

h=1

∣∣∣(v∗h(sh)− Psh,ah,hv
∗
h+1)− R̂h(sh, ah)

∣∣∣]

= 2HEπ,P

[
H∑

h=1

(
v∗h(sh)− uh(sh, ah)− Psh,ah,hv

∗
h+1

)]
(55)

2H(W ∗(u, P )−Wπ(u, P ))

≤ 2Hy. (56)

Here equation 55 holds by the fact that v∗h(sh) ≥ uh(sh, ah) + Psh,ah,hv
∗
h+1.

Putting together. By equation 49, equation 52 equation 54 and equation 56, we have that

|Wπ(u, p̂)−Wπ(u, P )| ≤ 30

√
SAH2(H + Sy) log

(
8SAH

δ

)
T

+
360S2AH3 log

(
8SAH

δ

)
T

+ 4SAH2x = b.

(57)

Now we verify that π∗ ∈ Πnext.

It suffices to show that

Wπ∗
(u, p̂) ≥ max

π′∈Π
Wπ′

(u, p̂)− ϵ. (58)

By the assumptions and equation 57, we have that

Wπ∗
(u, p̂) ≥Wπ∗

(u, P )− b ≥Wπ∗
(R,P )− b− z

Wπ(µ, p̂) ≤Wπ(u, P ) + b ≤Wπ(R,P ) + b+ z ≤Wπ∗
(R,P ) + b+ z.
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Noting that ϵ ≥ 2(b + z), we conclude that π∗ ∈ Πnext. On the other hand, for any π ∈ Πnext, we
have that

Wπ(R,P ) ≥Wπ(u, p̂)− (b+ z) ≥Wπ∗
(u, p̂)− 2(b+ z) ≥Wπ∗

(R,P )− 3(b+ z) ≥Wπ∗
(R,P )− 2ϵ.

The proof is finished.
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