
Model-Based Shielding for NPC Behaviour

Exploring Model-Based Shielding for
Non-Player Character Behaviour

William Ahlberg1,2, Konrad Tollmar2, Alessandro Sestini2, Linus Gisslén2,
Iolanda Leite1

{wiahlb,iolanda}@kth.se,
{wahlberg,ktollmar,asestini,lgisslen}@ea.com

1Division of Robotics, Perception and Learning, KTH Royal Institute of Technology, Sweden
2SEED - Electronic Arts (EA)

Abstract

Reinforcement Learning can create agents that are able to play games at a human, or
even super-human, level. Shielding in Reinforcement Learning is a technique used in
robotics to enforce safe decision-making during both learning and execution, and allows
robots to perform tasks safely. We explored how shields can be repurposed to align
an agent to follow a designed style specification for more human-like and believable
Non-Player Character behaviour in video games. Shielding can alleviate the need for
extensive reward shaping when designing qualitative behaviours. However, classical
shielding is often too restrictive in its assumptions to be easily applied to complex 3D
environments with large continuous state spaces, such as video games. We proposed the
use and repurposing of Approximate Model-based Shielding (AMBS) for video game
purposes. We explored how AMBS can be used to introduce a style aspect to a task
policy.

1 Introduction

In modern video games, Non-Player Character (NPC) behaviour is commonly created using either
scripting or classical AI techniques like finite-state machines, behaviour trees, and utility systems
(Yannakakis & Togelius, 2018). Historically these methods have been successful in creating com-
pelling NPCs that enhance the gameplay experience; however, the effectiveness of these methods ex-
perience diminishing returns for video games with increasing complexity and scale, such as in AAA
games. The manual labour for designing NPC behaviours is both expensive and time-consuming
(Ahlberg et al., 2023; Sestini et al., 2023).

Machine Learning (ML) has been shown to scale well with data and computation, and ML-based
agents have demonstrated potential being applied to video games. Reinforcement Learning (RL)
has especially been successful in generating complex policies able to play games at a human, or
even super-human, level. RL agents have shown complex decision making in games like Starcraft 2,
Dota 2 and Minecraft (Vinyals et al., 2019; Berner et al., 2019; Hafner et al., 2025). Even recently,
Wurman et al. (2022) presented Sophy, a super-human driver agent which has been commercially
deployed in the racing simulator game Gran Turismo 7. Still, the utility of RL can be limited due
to the difficulty of accurately defining a reward function for complex and qualitative behaviours,
in particular believability and human likeness (Zhao et al., 2020; Sestini et al., 2021; Roy et al.,
2022). While it is possible to create agents able to play games well, this is not the sole goal for game
developers, as such agents might show unnatural, unintended, and distracting behaviours which
ultimately worsen the gameplay experience. It can require extensive reward engineering by those
with in-depth domain knowledge to generate a satisfying reward function (Aytemiz et al., 2021).



Reinforcement Learning and Video Games Workshop 2025

In robotics, RL is not only used to teach robots to perform tasks, such as manipulation and naviga-
tion, but also how to do so in a safe manner for humans and their surroundings. There is a plethora
of work in the robotics community on how learning-based decision making can be aligned follow
human defined safety rules (Garcıa & Fernández, 2015; Alshiekh et al., 2018; Hewing et al., 2020).
Safe Reinforcement Learning via Shielding, as proposed by Alshiekh et al. (2018), is a commonly
used method to incorporate safety features into a task objective. A shield is a component separate
from the policy that can be added to the RL training loop; the shield oversees the actions of an agent
and intervenes if the shield deems the action to be unsafe. The action is substituted with a "safe"
action by the shield. Shielding can also be beneficial for sample efficiency as it restricts the search
space of the RL agent, preventing it from exploring or exploiting unsafe states and actions.

While safety is not a primary concern for an NPC in a video game, in this work we show how
shielding might be used to steer an agent’s behaviour towards more human-like and believable qual-
ities. We explore how specifically Approximate Model-Based Shielding (AMBS), formulated by
Goodall & Belardinelli (2023), can be used to control NPC behaviour with shields upholding style
specifications.

2 Related Work

2.1 Model-based Reinforcement Learning

In Model-based Reinforcement Learning (MBRL), the agent is able to plan its actions by accessing
a dynamics model. The model allows the agent to try different trajectories without updating the
environment, making the method possibly more sample-efficient. This is in contrast with Model-
free Reinforcement Learning where agent actions update with the environment, making its actions
irreversible. The Dreamer models (Hafner et al., 2019) are Recurrent State-Space Models (RSSMs)
that learn a low-dimensional latent-space representation of the environment to learn an RL policy.
MBRL with Dreamer has shown state-of-the-art performance in a multitude of different domains,
while also being more sample-efficient, and requires less hyperparameter-tuning compared to model-
free methods (Hafner et al., 2025). DayDreamer (Wu et al., 2023) allowed a quadruped robot to
learn within 10 minutes how to roll of its back and walk, while DreamerV2 (Hafner et al., 2020)
managed to learn an RL policy the Atari games only in the latent-space of the model, and with better
sample-efficiency compared to model-free baselines.

2.2 Shielding for Reinforcement Learning

The seminal work by Alshiekh et al. (2018) proposed shielding for Reinforcement Learning (RL)
as a reactive system that upholds a predefined safety specification for an agent policy during both
training and execution. The shield monitors the actions of the agent and prevents unsafe behaviour
by substituting the agent’s action a with a safe action asafe. It is assumed that an abstraction of the
safety-relevant dynamics of the environment is accessible for a model-checker to verify and label
reachable state-action pairs as either safe or unsafe. In practice, it is not always feasible to require
full knowledge of the environment dynamics, and for large continuous state-spaces it can be com-
putationally hard to compute safety labels. Bounded Prescience Shielding (BPS) omits the need for
full knowledge of the safety-relevant dynamics by instead assuming access to a forward-simulator
of the environment, and only needs to know the dynamics up to a bound H ∈ N (Giacobbe et al.,
2021). Latent shielding and Approximate Model-based Shielding (AMBS) forgo the assumption
of a forward-simulator as it can either be too computationally expensive and slow, or not present
at all, and instead tries to learn the environment dynamics and safety-relevant properties by con-
structing a compact latent representation of the environment with a learned world model (He et al.,
2021; Goodall & Belardinelli, 2023). The agent can use the learned dynamics model to "imagine"
and plan future trajectories in the latent space, using its task policy, and avoid unsafe states. While
shielding has primarily been used for safety, here we propose that it can be repurposed to design
NPC behaviour by defining shields that both monitor and correct agents for unwanted behaviour.



Model-Based Shielding for NPC Behaviour

3 Method

In a game environment, the goal of the algorithm is to produce a shielded policy for the game-playing
agent that both plays the game well while also adhering to a set of predefined style specifications.
The user (e.g. a player or game designer) defines the specifications as shields, which encode sought
after behaviours, and are separate from the environment reward. It instead includes a set of stylistic
states. Shields are specified with boolean statements. The algorithm is thoroughly described in the
following Sections 3.1 to 3.5.

3.1 Problem Statement

The environment is modelled as a Partially Observable Markov Decision Process (POMDP) with
labels, and is defined with the tuple M = (S,A, P,R, γ,Ω, O,AP,L) (Baier & Katoen, 2008;
Bouton et al., 2020). Here S and A are the state and action spaces, respectively; P : S × A× S →
[0, 1] is the transition function, where P (st+1|st, at) denotes the probability of transitioning to the
next state st+1 by taking action at at state st; R : S × A → R is the reward function; γ ∈ (0, 1]
is the discount factor; Ω is the set of observations with O : S × Ω → [0, 1] being the observation
function. In addition to the ordinary definition of a POMDP, states are also annotated with labels
L : S → 2AP where L is the labelling function. States can be labelled with atomic propositions from
the set q ∈ AP . Each atomic proposition is a boolean statement which cannot be broken down into
smaller statements. In a video game setting, statements such as q0 = player-out-of-bounds
or q1 = player-inventory-full are atomic propositions and can be made into more complex
specifications with logical operations like and and or.

The agent has two separate policies: the task policy πtask, and the style policy πstyle. The goal
of the πtask policy is to maximise cumulative reward with the optimal task policy being π∗

task =
argmaxπ E

[∑∞
t=1 γ

t−1 · rt
]
. In a game environment, we define the task policy to be concerned

with what the agent should do to beat the game. For example, win, obtain high-scores, or complete
levels as fast as possible. The equivalent task reward function can often be clearly defined: maximise
win-rate or high-score, and minimise game time. In contrast, the style of an agent is related to how
a task is performed. Different styles can equate to differences in preference for certain strategies,
items, and movement paths. For example, if the behaviour of a driver agent is reckless, preferring
high acceleration, tight turns and aggressive overtaking; or careful, smooth inputs and less accel-
eration. With conventional RL, we cannot guarantee the style of the optimal policy, only that it is
reward maximising.

With shielding, the proposed style of an agent is encoded with a style specification Ψ. As an ex-
ample, consider the propositions: q0 = player-health > 50% and q1 = enemy-nearby.
A risk-adverse agent would always try to keep q0 true as a safety precaution, therefore an apt style
specification would be:

Ψrisk-averse = player-health > 50%, (1)

which reads: never allow the player’s health to go below 50%. A risk-willing agent might instead
not have the same worry, and conserve resources, and only heal if necessary. The style specification
for the risk-willing agent could instead be:

Ψrisk-willing = player-health > 50% ∧ enemy-nearby. (2)

It should only take actions to restore health if an enemy is nearby. We consider a style-following
policy to minimise the total number of specification violations, where each violation incur a cost.
Hence, the optimal style policy is π∗

style = argminπstyle E
[∑∞

t=1 γ
t−1 · ct

]
. However, if maximising

the reward and minimising the violation cost are conflicting goals, the policy would not converge.
The optimal policy from a Constrained Markov Decision Problem (CMDP) perspective is defined
as π∗ = argmaxπ∈Πc E

[∑∞
t=1 γ

t−1 · rt
]

which is the optimal policy from the feasibility set Πc.
How to balance the goals between the task and style policies is further explained in Section 3.4.



Reinforcement Learning and Video Games Workshop 2025

3.2 Probabilistic Computation Tree Logic

To label states, style specifications are written using Probabilistic Computation Tree Logic (PCTL)
defined by Hansson & Jonsson (1994). PCTL is a specification language for expressing real-time
stochastic systems. Its syntax is defined as follows:

1. Each atomic proposition q is a PCTL formula,

2. if ϕ1 and ϕ2 are PCTL formulas, then so are ¬ϕ1 and ϕ1 ∧ ϕ2,

3. if ϕ1 and ϕ2 are PCTL formulas, t is a non-negative integer or ∞, and p is a real number with
0 < p < 1, then ϕ1U

≤t
≥pϕ2 and ϕ1U

≤t
>pϕ2 are PCTL formulas.

The operators ¬ and ∧ are the logical not and and operators, respectively. U is a temporal operator
called the until operator, where the formula ϕ1U

≤t
≥pϕ2 expresses that with at least the probability

p, ϕ1 will be true for t timesteps until ϕ2 becomes true after. To reason and express regarding
sequences of states, a structure is defined with the quadruple tuple S, s0, P, L where:

1. S is a set of ordered states s0, s1, s2, . . .,

2. s0 is the initial state,

3. P : S × S → [0, 1] is the transition probability function,

4. L : S → 2AP is a labelling function assigning atomic propositions from the set q ∈ AP to states.

The POMDP with labels facilitates the use of PCTL to express style specifications which are ex-
plained in Section 3.1. Violating this style specification will incur the agent a cost. It is up to the
style policy πstyle to learn how to uphold the style specification for the agent.

3.3 Approximate Model-based Shielding

Approximate Model-based Shielding (AMBS) is a shielding framework proposed by Goodall &
Belardinelli (2023) for safe RL. It uses a World Model to learn safety-relevant dynamics of the
environment and an optimal RL policy network. Look-ahead shielding is performed within its latent-
space, and does not require a known model of the environment which is unlike many other shielding
methods Odriozola-Olalde et al. (2023). AMBS, and we, use DreamerV3 as its stand-in World
Model. DreamerV3 is a Recurrent State Space Model (RSSM) (Hafner et al., 2019) which is a type
of sequential Variational Autoencoder (VAE). Since DreamerV3 efficiently uses a compact latent-
space for both model and policy learning, it is proven to be well suited to work in continuous and
high-dimensional state spaces. Like the original implementation of AMBS, we also use DreamerV3
(Hafner et al., 2025) as our World Model. The model components are defined as:

Sequential model: ht = fθ(ht−1, zt−1, at−1),

Observation encoder: zt ∼ qθ(zt|ot, ht),

Transition predictor: ẑt ∼ pθ(ẑt|ht),

Observation decoder: ôt ∼ pθ(ôt|htzt),

Reward predictor: r̂t ∼ pθ(r̂t|ht, zt),

Continuation predictor: γ̂t ∼ pθ(γ̂|ht, zt),

Cost predictor: ĉt ∼ pθ(ĉt|ht, zt),

where ht is the recurrent state conditioned on the previous recurrent state ht−1, the stochastic latent
zt−1, and previous action at−1. The transition predictor predicts the prior ẑt of zt. The latent
representation of the environment state is learnt by minimising the reconstruction loss between the
observation ot and reconstructed observation ôt. The model-heads for sampling r̂t, γ̂t, ĉt, γ̂

c
t are

conditioned on the recurrent and latent state, and are used for policy learning of the task policy πtask
and style policy πstyle.



Model-Based Shielding for NPC Behaviour

3.4 Policy Learning

Both πtask, πstyle are trained using Actor-Critic learning as described by Hafner et al. (2025). The
actor and critic neural networks are concurrently trained from a replay experience buffer, while
the agent also performs environment interactions. Gradients are updated using the REINFORCE
estimator (Williams, 1992) with a Penalty Critic (PENL) as proposed by Goodall & Belardinelli
(2024). TD3 (Fujimoto et al., 2018) is used to combat overestimation, and two critic vC1 , v

C
2 are

learned where the minimum of the two is used. The PENL techniques balances task and style
policy objectives as discussed in Section 3.1. From a given state, PENL estimates the expected sum
of discounted cost under the task policy: vC = Eπtask

[∑∞
t=1 γ

t−1 · ct|s0 = s
]
. The critic is then

incorporated into the task policy gradient as follows:

∇J = Eπtask

[
H∑
t

(Gt − αGC
t ) · ∇ log πtask(at|st)

]
, (3)

where Gt and GC
t are the reward and cost returns respectively. The hyperparameter α weights the

impact GC
t has on Gt.

3.5 Style Shielding

The shielding procedure requires hyperparameters ∆, called the safety level by Goodall & Belar-
dinelli (2023), the approximation error ϵ, the imagination horizon H , the incurred cost of a violation
C and a style specification Ψ. When the agent interacts with the environment, AMBS tries to pre-
vent the task policy πtask from violating the style specification Ψ. The shielding procedure works by
generating m trajectories (ŝ1:H , ĉ1:H , γ̂1:H) obtained by sampling the World Model pθ with actions
from πtask, where the estimated state is ŝ = (z, h). We estimate the total cost of each trajectory as:

cost(τ) =
H∑
t=1

(γ̂t)
t−1 · ĉt, (4)

and verify whether it satisfies the inequality:

cost(τ) < γT−1 · C. (5)

Equation 5 signifies if a trajectory violates the style specification. Calculating the proportion of m
trajectories that satisfy the inequality gives a statistical estimate µ̂st|=Ψ that can be interpreted as the
confidence that πtask will not violate the specification. The estimate is calculated as a mean:

µ̂st|=Ψ =
1

m

m∑
i=1

1
[
cost(τi) < γT−1 · C

]
, (6)

where 1(·) is the indicator function. If µ̂st|=Ψ is within the interval [1−∆+ϵ, 1], the action from the
task policy is deemed to follow the style specification and sampled from πtask, otherwise the action
is sampled from the style policy πstyle. To improve the predictive ability of the shielding procedure
beyond the imagination horizon H , Goodall & Belardinelli (2023) propose to incorporate the critics
from PENL into the trajectory cost as:

cost(τ) =
H∑
t=1

(γ̂t)
t−1 · ĉt +min(vC1 (hH , ẑH), vC2 (hH , ẑH)), (7)

since a learned critic is able to evaluate the associated cost of a policy from a given state. AMBS
allows shielding to be done even without complete knowledge of the environment dynamics. By
learning a model and using it to predict how costs will accumulate with a given policy, it is possible
to say how well the policy adheres to the style specification.



Reinforcement Learning and Video Games Workshop 2025

4 Experimental Setup

4.1 Safety Gym

Safety Gym is an environment introduced by Ray et al. (2019) to research constrained and safe
deep reinforcement learning, and allows for several configurations of goals, environment objects,
and agents. Figure 1 shows screenshots of the environment and agent. We configure Safety Gym to
have the environment objective of reaching the goal area, seen as a green cylinder, while avoiding
hazardous zones, marked as blue circles which is a typical objective in many games. In each episode,
the position of game objects and the agent are randomly placed. The position of the goal area moves
if the agent manages to reach it. The reward function of the environment is:

R =

{
dt − dt−1, st ̸= goal-area
RGoal, st = goal-area

(8)

where dt is the distance to the goal, and RGoal is a scalar constant reward for reaching the goal. The
associated cost with being in a hazardous area is:

ct = 1 [player-in-hazard] . (9)

The Point agent, seen in Figure 1, is a configurable agent of Safety Gym, and has access to two
concurrent actions A = (a1, a2), where a1 controls forward and backward acceleration, and a2

controls clockwise and counter-clockwise rotation. Both actions are continuous and in a1, a2 ∈
[−1, 1]. Movement is constrained to the 2D plane. Agent observations are made out of an aggregate
of vector observations: agent position (R3) agent acceleration (R3), agent velocity (R3), agent
angular velocity (R3), agent orientation relative to a true north direction (R3), and a pseudo-lidar.
The pseudo-lidar works by iterating through all objects of interest (goal, hazardous areas) in the
scene and if they are within range, the observation value is calculated as Olidar

i = Di/Dmax, where
Olidar

i is the ith lidar observation, and Di is the distance between an object of interest and the ith lidar,
while Dmax is the maximum detection distance. There are 16 "rays" for the goal, and 16 "rays" for
the hazardous areas (R32). The total observation space of the agent is a vector of size 47.

(a) Agent (b) Goal (c) Hazards

Figure 1: Images overlooking the Safety Gym environment. The point agent in red, goal area in
green and hazardous zones in blue. Above the point agent an visualisation of the pseudo-lidar is
present.

4.2 Style Specifications

In our evaluation, we define and utilise two style specifications Ψ1 and Ψ2 to explore how
shielding can be used to control a RL-based NPC. Both specifications incorporate q =
player-in-hazard for the agent to learn to avoiding hazards, which can be inherently detri-
mental to episodic reward return. The first specification, called the boundary specification, applies



Model-Based Shielding for NPC Behaviour

a shield that prevents the agent from being within a circle of radius 0.5 in the middle of the envi-
ronment, even though the goal area can appear within the boundary. The specification is written
as:

Ψ1 = outside-boundary ∧ ¬player-in-hazard, (10)

and shows how shields can be used to change states visited by an NPC. The second specification,
called the goal-heading specification, applies a shield which prohibits the agent from moving to-
wards the goal backwards. The specification is implemented by labelling states where the agent
deviates by more than 5◦ from the vector pointing towards the goal as a violation. The goal-heading
specification is written as:

Ψ2 = goal-headed ∧ ¬player-in-hazard. (11)

The goal-heading specification influences the agent to act more "natural" by preferring to move
forwards rather than backwards. This mitigates a type of issue that can commonly occur with RL
due to an agent reward hacking, since the agent does not care about acting naturally as long as reward
is collected.

4.3 Training Setup

AMBS was implemented with Jax. For each shield scenario, the agents were trained for a 1000000
steps with 1000 steps per episode. For training, 10 parallel environments were used on an NVIDIA
RTX 4090 with 24GB VRAM, an Intel 13th Gen Core i9-13900K, and 64GB of RAM.

5 Results

Our main goal is to explore how shielding, specifically AMBS, can be used in a game development
setting to control a task-oriented RL policy. The agent should follow the predefined style specifica-
tion, but also try to maximise environment reward, and balance task and style objectives. Evaluation
was done in the Safety Gym environment with two different style specifications, which are detailed
in Section 4.

5.1 Boundary Specification

(a) Reward. (b) Violation count.

Figure 2: Episodic reward and violation count for the boundary agent during 1000000 steps of
training.

The episodic reward and violation count for the boundary agent can be seen in Figure 2. The agent is
managing to increase the episodic reward of the environment while also minimising the total number
of style violations of moving within the boundary and hazardous zones. We also observed that the
agent could fail to reach the goal by becoming stuck trying to traverse the boundary area to get to
the goal, but was stopped by the shield and stayed in place.



Reinforcement Learning and Video Games Workshop 2025

5.2 Goal-Heading Specification

(a) Reward. (b) Violation count.

Figure 3: Episodic return and violation count for the goal-heading agent during 1000000 steps of
training.

The episodic reward and violation count for the goal-heading agent can be seen in Figure 3. The
episodic reward return increases with training, while also minimising the associated cost. Also, by
observing the policy in the environment, we could observe that the agent learned the behaviour of
rotating its body towards the goal and then start moving towards it.

6 Conclusion and Discussion

We explore how Approximate Model-based Shielding can be used to design NPC behaviour. Pre-
liminary results suggest that AMBS can use predefined style specifications to monitor and augment
an RL agent’s actions. We evaluated how an agent is able to both follow the environment objective
of reaching a goal area and avoiding hazardous zones while also following the style specifications:
boundary, goal-heading, enforced with shielding. The results indicate that shielding could be used
to align RL policies with sought after gameplay behaviour specified by game developers. Thereby
allowing them to combine their domain expertise while also benefiting from the complex behaviours
RL can learn, something not possible with classical techniques.

As an exploration of shields for NPC behaviour design, there are limitations to the scope of this
work. Firstly, shielding for NPC behaviour was evaluated within Safety Gym, and while the state
and action spaces are continuous and environment mechanics are akin to gameplay, it is does not
capture all aspects of modern video games. Also, the style specifications defined for the point
agent are simple. NPCs can be expected to show complex and nuanced behaviours, and players are
perceptive and have preferences regarding how an NPC acts. Shields are created in a quite different
manner from conventional NPC behaviour designing techniques. Having to express and combine
atomic propositions, such as never be out-of-bounds ϕ : ¬out-of-bounds and train an RL policy
around it, might not be easy to incorporate into for game developer workflows. For future work, we
will address the limitations of this paper. Firstly, to test shielding in a modern video game setting
with complex game mechanics, higher-dimensional state and action spaces, and multiple agent, as
has been done with other RL techniques (Vinyals et al., 2019; Berner et al., 2019; Vasco et al., 2024;
Hafner et al., 2025; Wurman et al., 2022). Secondly, we would like to define style specifications
and shields to express complex, believable and human-like NPC behaviour, and also evaluate how
human players perceive them. Lastly, it would be interesting to explore if style specifications could
be generated with modalities, such as natural language, since it has been done for specification
languages in other domains (Wang et al., 2021; Liu et al., 2022; Chen et al., 2023), and also study
how it can impact the workflow of game developers.



Model-Based Shielding for NPC Behaviour

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foundation.

References
William Ahlberg, Alessandro Sestini, Konrad Tollmar, and Linus Gisslén. Generating personas

for games with multimodal adversarial imitation learning. In 2023 IEEE Conference on Games
(CoG), pp. 1–8. IEEE, 2023.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Batu Aytemiz, Mikhail Jacob, and Sam Devlin. Acting with style: Towards designer centred rein-
forcement learning for the videogames industry. In CHI Workshop on Reinforcement Learning
for Humans, Computer, and Interaction (RL4HCI), pp. 16, 2021.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Maxime Bouton, Jana Tumova, and Mykel J Kochenderfer. Point-based methods for model checking
in partially observable markov decision processes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 10061–10068, 2020.

Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. Nl2tl: Transforming natural lan-
guages to temporal logics using large language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 15880–15903, 2023.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Mirco Giacobbe, Mohammadhosein Hasanbeig, Daniel Kroening, and Hjalmar Wijk. Shielding
atari games with bounded prescience. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1507–1509, 2021.

Alexander W Goodall and Francesco Belardinelli. Approximate model-based shielding for safe
reinforcement learning. In ECAI 2023, pp. 883–890. IOS Press, 2023.

Alexander W Goodall and Francesco Belardinelli. Leveraging approximate model-based shield-
ing for probabilistic safety guarantees in continuous environments. In Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent Systems, pp. 2291–2293, 2024.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1–7, 2025.



Reinforcement Learning and Video Games Workshop 2025

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal aspects
of computing, 6:512–535, 1994.

Chloe He, Borja G León, and Francesco Belardinelli. Do androids dream of electric fences? safety-
aware reinforcement learning with latent shielding. arXiv preprint arXiv:2112.11490, 2021.

Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger. Learning-based model
predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and
Autonomous Systems, 3(1):269–296, 2020.

Jason Xinyu Liu, Ziyi Yang, Benjamin Schornstein, Sam Liang, Ifrah Idrees, Stefanie Tellex, and
Ankit Shah. Lang2ltl: Translating natural language commands to temporal specification with
large language models. In Workshop on Language and Robotics at CoRL 2022, 2022.

Haritz Odriozola-Olalde, Maider Zamalloa, and Nestor Arana-Arexolaleiba. Shielded reinforce-
ment learning: A review of reactive methods for safe learning. In 2023 IEEE/SICE International
Symposium on System Integration (SII), pp. 1–8. IEEE, 2023.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Chris J Pal. Direct behavior
specification via constrained reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 18828–18843. PMLR, 17–23 Jul 2022.

Alessandro Sestini, Alexander Kuhnle, and Andrew D. Bagdanov. Policy fusion for adaptive and
customizable reinforcement learning agents. In 2021 IEEE Conference on Games (CoG), pp.
01–08, 2021. DOI: 10.1109/CoG52621.2021.9618983.

Alessandro Sestini, Joakim Bergdahl, Konrad Tollmar, Andrew D Bagdanov, and Linus Gisslén.
Towards informed design and validation assistance in computer games using imitation learning.
In 2023 IEEE Conference on Games (CoG), pp. 1–8. IEEE, 2023.

Miguel Vasco, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Peter R Wurman, and Peter
Stone. A super-human vision-based reinforcement learning agent for autonomous racing in gran
turismo. arXiv preprint arXiv:2406.12563, 2024.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Learning a natural-
language to ltl executable semantic parser for grounded robotics. In Jens Kober, Fabio Ramos,
and Claire Tomlin (eds.), Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pp. 1706–1718. PMLR, 16–18 Nov 2021.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on robot learning, pp. 2226–2240.
PMLR, 2023.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.



Model-Based Shielding for NPC Behaviour

Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Springer, 2018.
URL https://gameaibook.org.

Yunqi Zhao, Igor Borovikov, Fernando de Mesentier Silva, Ahmad Beirami, Jason Rupert, Caedmon
Somers, Jesse Harder, John Kolen, Jervis Pinto, Reza Pourabolghasem, James Pestrak, Harold
Chaput, Mohsen Sardari, Long Lin, Sundeep Narravula, Navid Aghdaie, and Kazi Zaman. Win-
ning is not everything: Enhancing game development with intelligent agents. IEEE Transactions
on Games, 12(2):199–212, 2020. DOI: 10.1109/TG.2020.2990865.

https://gameaibook.org

