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ABSTRACT

The integration of hard constraints on neural network outputs is a very desirable
capability. This allows to instill trust in AI by guaranteeing the sanity of that neu-
ral network predictions with respect to domain knowledge. Recently, this topic
has received a lot of attention. However, all the existing methods usually either
impose the constraints in a “weak” form at training time, with no guarantees at
inference, or fail to provide a general framework that supports different tasks and
constraint types. We tackle this open problem from a neuro-symbolic perspective.
Our pipeline enhances a conventional neural predictor with (1) a symbolic rea-
soning module capable of correcting structured prediction errors and (2) a neural
attention module that learns to direct the reasoning effort to focus on potential pre-
diction errors, while keeping other outputs unchanged. This framework provides
an appealing trade-off between the efficiency of constraint-free neural inference
and the prohibitive cost of exhaustive reasoning at inference time. We show that
our method outperforms the state of the art on visual-Sudoku, and can also benefit
visual scene graph prediction. Furthermore, it can improve the performance of ex-
isting neuro-symbolic systems that lack our explicit reasoning during inference.

1 INTRODUCTION

Despite the rapid advance of machine learning (ML), it is still difficult for deep learning archi-
tectures to solve a certain classes of problems, especially those that require non-trivial symbolic
reasoning (e.g. automated theorem proving or scientific discovery). A very practical example of this
limitation – even in applications that are typical deep learning territory such as image processing
– is the difficulty of imposing hard symbolic constraints on model outputs. This is relevant when
learning systems produce outputs for which domain knowledge constraints apply (e.g., Figure 2).
The common situation today, that ML systems violate such constraints regularly, is both a missed
opportunity to improve performance and more importantly a source of reduced public trust in AI.

This issue has motivated a growing body of work in neuro-symbolic methods that aim to exploit do-
main knowledge constraints and reasoning to improve performance. Most of these methods address
neuro-symbolic learning, where constraints are applied in the loss function (e.g., Xu et al. (2018);
Xie et al. (2019); Li et al. (2019); Wang & Pan (2020)) and predictions that violate those constraints
are penalised. In this way, during learning, the model is “encouraged” to move close to a solution
that satisfies the constraints/rules. However, high-capacity deep networks in any case usually fit their
training sets, and thus violate no constraints on the output labels during supervised learning. The
central issue of whether constraints are also met upon inference during deployment is unaddressed
by these methods and is under-studied more generally Giunchiglia et al. (2022b); Dash et al. (2022);
von Rueden et al. (2021). A minority of studies have worked towards exploiting constraints dur-
ing inference. Since in general reasoning to guarantee that constraints are met is expensive, some
methods try to apply soft relaxations (Daniele & Serafini, 2019; Li & Srikumar, 2019; Wang et al.,
2019), which is unhelpful for trust and guarantees. The few methods that manage to impose exact
constraints are either restricted to very simple or restrictive rules (Yu et al., 2017; Giunchiglia et al.,
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2022b) that are not expressive enough, or involve invoking a full reasoning engine during inference
Manhaeve et al. (2018); Yang et al. (2020), which is prohibitively costly in general.

In this work we explore a new neuro-symbolic integration approach to manage the trade-off be-
tween the cost, expressivity, and exactness of reasoning during inference. Our Neural Attention for
Symbolic Reasoning (NASR) pipeline leverages the best of neural and symbolic worlds. Rather
than performing inexact, inexpressive, or intractable reasoning, we first execute an efficient neural-
solver to solve a task, and then delegate a symbolic solver to correct any mistakes of the neural
solver. By reasoning over only a subset of neural fact predictions we maintain efficiency. So long as
the facts selected have no false positives, we guarantee constraints are met during inference. Thus
we enjoy most of the benefit of symbolic reasoning about the solution with a cost similar to neu-
ral inference. This dual approach is aligned with the ‘two systems’ perspective of Sloman (1996)
and Kahneman (2011) that has recently been applied in AI (e.g. Booch et al. (2021) and LeCun
(2022)). More specifically, our NASR framework is built upon three components: A neural network
(Neuro-Solver) is trained to solve a given task directly; a symbolic engine that reasons over the
output of the Neuro-Solver, and can revise its predictions in accordance with domain knowledge;
and a hard attention neural network (Mask-Predictor), that decides which subset of Neuro-Solver
predictions should be eligible for revision by the reasoning engine using domain knowledge. The
Mask-Predictor essentially learns when and where to reason in order to effectively achieve high pre-
diction accuracy and constraint satisfaction with low computation cost. Since the reasoning engine
is not generally differentiable, we train our framework with reinforcement learning (RL).

The contributions of our work can be summarized as follows: (1) We provide a novel neuro-symbolic
integration pipeline with a novel neural-attention module (Mask-Predictor) that works with any type
of constraints/rules (2) We apply such architecture in the case of the visual-Sudoku task (given an im-
age of a incomplete Sudoku board, the goal is to provide a complete symbolic solution) considerably
improving the state-of-the-art (3) Finally, we show that when wrapping an existing state-of-the-art
(replacing Neuro-Solver), our framework significantly improves its model performance.

The code is available at: https://github.com/corneliocristina/NASR.

1.1 RELATED WORKS

There has been a lot of recent research regarding the imposition of constrains in neural networks.
This can be roughly divided in the following categories: 1) Modification of the Loss function:
Xu et al. (2018) add a component to the loss function quantifying the level of disagreement with
the constraints; A similar idea can be found in the work of Xie et al. (2019) and Li et al. (2019);
Wang & Pan (2020) instead exploit a parallel neuro-reasoning engine to produce the same output as
the neural process and then add the distance between the two outcomes in the loss. 2) Adversarial
training: In the work of Ashok et al. (2021) they integrate a NN with a violation function gener-
ating new data; A similar idea can be found in the work of Minervini & Riedel (2018). 3) Adding
an ad-hoc constraint output layer: One example is adding a layer to the network which manipu-
lates the output enforcing the constraints Giunchiglia & Lukasiewicz (2021); Ahmed et al. (2022)
adds a compiled logic circuit layer to the network enforcing the constraints; Yang et al. (2020) and
Manhaeve et al. (2018) instead create a parallel between the logic predicates with their neural ver-
sion. 4) Logic relaxations: Daniele & Serafini (2019) use a differentiable relaxation of logic to
extend a NN with an output logic layer to increase the probability of compliant outcomes; Li &
Srikumar (2019) have a similar approach but on the internal layers, augmenting the likelihood of a
neuron when a rule is satisfied; Wang et al. (2019) introduce a differentiable MAXSAT solver that
can be integrated into neural networks; Similar ideas using different types of logic relaxations can
be found in the work of Gan et al. (2021); Sachan et al. (2018); Donadello & Serafini (2019) and
Marra et al. (2019). 5) Neuro-symbolic integrations: The alternating of purely symbolic compo-
nents with neural ones can be found in the work of Agarwal et al. (2021) where the authors create
an encoder/decoder with a standard reasoner in the middle. In another approach, Yang et al. (2020)
combine answer set programs with the output of a neural network. Similar methods are the one of
Tsamoura et al. (2021) and of Manhaeve et al. (2018). Other neuro-symbolic integration methods
worth mentioning (that consider the specific show case of the Visual Sudoku task) are: Brouard et al.
(2020) extract preferences from data and push it into Cost Function Networks; Mulamba et al. (2020)
combine a neural perception module with a purely symbolic reasoner; and Yiwei et al. (2021) use
curriculum-learning-with-restarts framework to boost the performance of Deep Reasoning Nets.
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Figure 1: Pipeline for solving visual-Sudoku with our Neural Attention for Symbolic Reasoning.

2 METHOD

In this work we consider the type of tasks where multiple interpretable “facts” are predicted by a
neural model on which the imposition of hard constraints is desirable. More formally, we consider
a set of input data points (x ∈ X ) representing instances to solve (e.g. the picture of a partially
filled Sudoku board), and, a set of multi-dimensional output data points (y ∈ Y) that correspond
to complete interpretable (symbolic) solutions (e.g. the symbolic representation of a completely
filled Sudoku board). The collection of N of these pairs of data points will form the task dataset
D = {xi, yi}Ni=1. Moreover, we require that the task (e.g. completing a partially filled Sudoku
board) can be expressed (fully or partially) by a set of rules R in the form of domain-knowledge
constraints (e.g. the rules of the Sudoku game).

The goal is to learn a function f : X → Y that associates a solution to a given input instance, and
which further satisfies the rules R. To solve this class of problems, we propose a neuro-symbolic
pipeline that integrates 3 components, the Neuro-Solver, the Mask-Predictor and the Symbolic-
Solver and that works as follows: An input instance is first processed by the Neuro-Solver that
outputs an approximate solution. The solution is then analyzed by the Mask-Predictor that has the
role of identifying the components of the Neuro-Solver predictions that do not satisfy the set of
domain-knowledge constraints/rules R. The masking output of the Mask-Predictor is then com-
bined with the probability distribution predicted by the Neuro-Solver. This is done by deleting the
wrong elements of the predictions, leaving the corresponding components “empty” (the component
is filled by an additional class 0, indicating a masked element). This masked probability distribution
is then fed to the Symbolic-Solver that fills the gaps with a feasible solution (satisfying the con-
straints/rules R). In brief, the role of the Symbolic-Solver is to correct the Neuro-Solver prediction
errors identified by the Mask-Predictor.

More formally: 1) The Neuro-Solver is a function ns(·) that that maps an input x ∈ X (where X
is the set of all possible inputs for the task under consideration) to a probability distribution over Y
(where Y is the set of all the possible complete solutions); 2) The Mask-Predictor is a function mp(·)
that takes in input a probability distribution over Y and produce as output a probability distribution
over Z = [0, 1]k (where k is the dimension of y ∈ Y); 3) The Symbolic Solver is a function sb(·)
that maps Y ′ (where Y ′ is Y with an additional class 0, corresponding to a masked solution element)
to a probability distribution over Y .

The final hypothesis function fθ, mapping X to a probability distribution over Y and representing
the neuro-symbolic pipeline approximating the target function f(·), is defined as:

fθ(x) = sb
(

ns(x)⊙ argmax(mp(ns(x))) ) , R
)

(1)

where ⊙ is the Hadamard (element wise) product and θ are the learnable parameters of ns and mp.1

Figure 1 shows the pipeline architecture for the Visual Sudoku task.

Example 1 An example application is the visual Sudoku task (Figure 1). This task consists of pro-
viding a complete Sudoku board y ∈ Y corresponding to the solution of an incomplete input board

1This assumes the solver expects 0 to indicate a symbol to fill. If the solver expects another symbol (or
more generally), we can add an adapter function as fθ(x) = sb

(
adapt( ns(x), argmax(mp(ns(x))) ) , R

)
3
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Figure 2: Motivating example: Predicate classification in scene graphs. The Neuro-Solver predicts
a set of triples between the given objects. The Mask-Predictor identifies the components that poten-
tially violate domain rules (e.g. the predicate in front is not symmetric and the object jacket is not in
the range of the predicate riding). Finally, the Symbolic-Solver corrects the predictions.

in the form of an image x ∈ X . X is defined as [0, 1]252×252 and corresponds to the set of the
images of a Sudoku board (each Sudoku cell has dimension 28 × 28). Y is defined as {1, . . . , 9}81
and corresponds to the set of symbolic solutions where each cell is one of the possible 9 Sudoku
digits. Z is defined as {0, 1}81. Y ′ is defined as {0, . . . , 9}81 and corresponds to the set of symbolic
solutions with the 9 possible Sudoku digits and the digit 0 indicating empty cells. R contains the
Sudoku rules: each cell needs to be filled with numbers in {1, · · · , 9}, without repeating any num-
bers within the row, column or block. These can be formalized in different ways, depending on the
Symbolic-Solver choice.

Example 2 Another example application is the the Predicate Classification task (Figure 2). This
task consists of predicting the right predicate between a set of objects (given in input in the form of
labeled and localized bounding boxes) in an image. X corresponds to the input images with the set
of labeled bounding boxes. This can be vectorized in different ways using appropriate embedding
techniques (e.g. see Zellers et al. (2018)). Y is defined as (B × {1, . . . ,m} × B)k and corresponds
to the set of solutions. A solution is a set of k triples with an object pair and a predicate between
them (chosen within the set of m possible predicates). B is the space of all possible labeled bounding
boxes and is defined as R4×{1, . . . , n} where n is the number of possible objects labels. Z is defined
as {0, 1}k2. Y ′ is defined as (B×{0, . . . ,m}×B)k and corresponds to the set of symbolic solutions
Y augmented with the class 0 indicating the “empty” predicate (to be filled by the Symbolic-Solver).
R is an ontology describing the set of object and predicates in the dataset. Some examples are type-
rules constraining the domain and range of the predicates (e.g. the object cat is not in the domain of
the predicate riding) or the symmetry/ reflexivity rules (e.g. the predicate in front is not symmetric).

Pipeline qualities and limitations. This architecture is particularly useful for solving the tasks
in which exhaustive (probabilistic) reasoning is not feasible (in most real-word scenarios standard
reasoning techniques are not scalable) while purely neural architectures are not accurate enough
(making mistakes that violates the domain-knowledge constraints/rules). By performing a quick
approximate solution, and then focusing the attention of the expensive reasoning engine only on the
parts that will benefit from reasoning, we achieve a favourable efficiency-accuracy trade-off.

By adding the symbolic component, we increase the performance at the cost of additional of running
time, which will be higher compared to a purely neural model. We discuss this trade-off in more
details in Section 4.2 Since the attention is done by a neural model (Mask-Predictor), there is no
guarantee that all of the prediction mistakes will be found. However, some techniques can be used
to minimize this risk (see Section 3.2).

Given the modularity of our NASR pipeline, it is possible to substitute each component with al-
ternative ones. We will see an example of this in Section 4 where we integrate the SatNet method
(Wang et al., 2019) in our pipeline and significantly improve its performance. For the same reason,
our pipeline works independently of the input type, that can be imagery, text, symbolic, etc.

2The Hadamard product is intended between the predicate vector p ∈ {1, . . . ,m}k part of a solution
y ∈ (B×{1, . . . ,m}×B)k and the mask vector m ∈ {0, 1}k, since bounding boxes/labels are given in input.
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2.1 LEARNING PARADIGM

Learning is done in two steps: the Neuro-Solver and the Mask-Predictor are first pre-trained individ-
ually in a supervised fashion and then integrated together and refined using reinforcement learning
(RL). We refer to our complete pipeline as NASR, and disambiguate ablations where appropriate.

Supervised Learning. To train the Neuro-Solver we use the task dataset D = {xi, yi}Ni=1 (also
used for the whole pipeline). For training the Mask-Predictor we generate a synthetic dataset Dmp =

{yin,mi}N ′

i=1 where: yn is a symbolic solution instance with the addition of noise that violates the
domain-knowledge constraints; and m is the corresponding masking solution. A masking vector m
has the same dimension of the input yn and has a 1 on the components of yn that do not violate the
rules R and 0 for the components in which noise has been introduced.

The generation of Dmp can be done in different ways depending on the type of data we are consid-
ering: 1) the input data yn can be either generated by perturbing the y in D or 2) it can be generated
synthetically following a uniform distribution over the possible yi in D. In the former option, each
data point yn ∈ Dmp has a corresponding data point y ∈ D of which some components have been
modified. The corresponding masking vector m will have a 1 on the components of yn that has not
been modified and 0 for the components in which noise has been introduced. In general, the latter
option is not always possible: for example, in the case of the visual Sudoku task (see Example 1),
this would require the ability to sample minimal3 symbolic Sudoku boards uniformly at random,
which is still a non-trivial open problem.

Symbolic Solver. The Symbolic-Solver will reason about the subset of outputs identified by the
Mask-Predictor. The choice of the Symbolic Solver is strongly connected to the type of con-
straints/rules: For logic based constraints, classical symbolic reasoners can be used, such as Pro-
log engines (e.g. SWI-Prolog swi), probabilistic logic engines (e.g. ProbLog, Raedt et al.2007),
python libraries that mimic symbolic reasoning engines (e.g. PySwip, Tekol & contributors2020),
theorem provers (e.g. Vampire prover Riazanov & Voronkov2002), etc.; For arithmetic constraints,
constraints-solvers can be used (e.g. ILP or MILP solvers), general mathematical tools (e.g. Mathe-
matica mat) or ad-hoc brute force algorithms that exhaustively explore the symbolic solution search
space. In this work we mostly consider logic rules and ontologies.

Reinforcement Learning. While the Neuro-Solver and Mask-Predictor can be trained indepen-
dently with supervised learning, the use of reinforcement learning is necessary for end-to-end
learning (since the Symbolic-Solver is not differentiable). End-to-end learning is important so
that the neural components can adapt to the expected interventions of the Symbolic-Solver. In
this work we use the REINFORCE algorithm Williams (1992), with its standard policy loss:
L(x; θ) = −r logPθ(m|ns(x)) where r indicates the RL reward obtained when applying the
Symbolic-Solver on the prediction ns(x) masked by m (for the Visual Sudoku case, see eq. 4).
However, it is possible to use an alternative reinforcement learning algorithms without changing the
overall pipeline.

3 EXPERIMENTS SETUP

3.1 VISUAL SUDOKU DATASETS

We considered a total of four Sudoku datasets, summarised in Table1. Three were drawn from an
online repository online4: 1) big kaggle contains 100’000 puzzles. It is a subset of a bigger dataset
containing 1 million boards hosted on Kaggle5 targeting ML models. These puzzles have an average
of 33.82 hints per board (between 29 and 37); 2) minimal 17 is a complete or nearly-complete
dataset6 of minimal Sudoku boards,with only 17-clues (17 is the minimum number of hints in a
Sudoku board leading to a unique solution); and 3) multiple sol containing 10’000 puzzles with two
or more solutions. We converted these symbolic datasets into images using MNIST digits LeCun

3In minimal Sudoku boards, hints cannot be removed without losing uniqueness of the solution.
4https://github.com/t-dillon/tdoku
5https://www.kaggle.com/datasets/bryanpark/sudoku
6https://web.archive.org/web/20131019184812if_/http://school.maths.uwa.

edu.au/˜gordon/sudokumin.php

5
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dataset # hints [min - max] size # of solutions challenge

big kaggle 33.82 [29-37] 100’000 unique scaling
minimal 17 17.00 [17-17] 50’000 unique minimal number of hints
multiple sol 34.75 [34 -35] 10’000 multiple multiple solutions
satnet data 36.22 [31-42] 10’000 unique -

Table 1: Sudoku datasets statistics.

& Cortes (2010). 4) Finally, we considered the dataset released with SatNet(Wang et al., 2019)
(denoted as satnet data). This dataset contains 10’000 Sudoku boards (both in image and symbolic
form) with an average number of hints equal to 36.22 (minimum 31 and maximum 42).

We generated the Dmp datasets for the Mask-Predictor by introducing noise in the task instances in
D: for each board y in the original dataset D we generated a noisy board yn adding noise both in
the the hint cells (swapping some of the hints digits) as well as in the solution cells (swapping some
of solution cells). We perturbed these two sets separately. For smaller datasets (e.g. satnet data and
multiple sol) we generated multiple masking boards per original board: for each board y in the D
we generated k = 10 noisy board y1n, y

2
n, · · · , ykn.

3.2 IMPLEMENTATION DETAILS AND COMPETITORS

The Neuro-Solver is the first component of the pipeline and has the role of producing a full symbolic
solution from a input image board. It takes in input an image xi ∈ X and output a probability
distribution over the set of possible complete Sudoku solution boards Y = {1, . . . , 9}81. In our
implementation we divided this module in two sub-components: the Perception and the SolverNN.

The Perception model parses an input image of 252 × 252 into its symbolic representation of
9× 9× (9 + 1). In our implementation the Perception is a straightforward extension of the convo-
lutional neural network (CNN) for single MNIST digit prediction LeCun et al. (1998) to multi-digit
prediction by applying the CNN to each patch of 28 × 28. Formally, the Perception has an output
layer of 81 nodes returning a 10-dimensional (the 9 input hints digits and the class 0 for the empty
cells) posterior distribution over the digits 0 − 9 for each input image xi ∈ X = [0, 1]252×252 of
an incomplete Sudoku board. The output is then a probability distribution over Y ′ = {0, . . . , 9}81.
Each MNIST digit of the input image (corresponding to a single cell) is classified by the CNN inde-
pendently7. The Perception model is trained to minimize the negative log likelihood loss (with log
softmax as output layer), and is optimized via the ADADELTA optimizer.

The SolverNN model takes as input a probability distribution over Y ′ = {0, . . . , 9}81 the set
of partially filled Sudoku boards and outputs a probabilistic solution belonging to the space
Y = {1, . . . , 9}81. In our implementation SolverNN is a Transformer model with a linear layer
mapping the input distribution (which is the output of the Perception) to 81 tokens/nodes of length
196, followed by 4 sequential self-attention blocks on top of these tokens; the input is positionally
encoded to preserve the spatial information presented in the 9 × 9 Sudoku board (e.g the concepts
of row, column, and 3× 3 block). The output of the SolverNN is a probability distribution over the
possible complete solutions Y = {1, . . . , 9}81: 81 output nodes returning a 9-dimensional posterior
distribution over the digits 1 − 9. The SolverNN model is trained to minimize the Binary Cross
Entropy with logits loss, and is optimized via Adam optimizer with weight decay.

The Mask-Predictor is a Transformer, with the same architecture and training loss as the SolverNN,
with the only difference on the dimension of the output layer (1-dimensional). The Mask-Predictor
takes in input a probability distribution over the set of complete solutions Y = {1, . . . , 9}81, the
output of the SolverNN model (81 nodes returning a 9-dimensional posterior distribution over the
digits 1 − 9, that can also be the one-hot representation of completely filled Sudoku boards when
trained alone and not in the pipeline) and outputs a probability distribution over Z = {0, 1}81. For
the Mask-Predictor, we add more weight to negative examples in the loss, since it is preferred to
mask more cells, at the cost of masking correct ones, rather than non masking some of the errors in

7Note that the digits are treated independently just for simplicity and that the image can be processed in its
entirety without significantly changes to the overall pipeline.
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the SolverNN predictions. This is because, given that we are considering a non-probabilistic logic
solver, a single error in the Symbolic-Solver input will make it fail.

The Symbolic-Solver takes in input a masked solution vector (the element-wise product of the
output of the Neuro-Solver and the output of the Mask-Predictor) which is a partially filled 81-
dimensional symbolic vector. The Symbolic-Solver will then attempt to solve it using the rules
R providing a full symbolic solution vector as output. We considered two (non-probabilistic8)
Symbolic-Solvers: 1) PySwip, a Python library to interface with SWI-Prolog, a reasoning engine
for the Prolog programming language; 2) a brute force backtrack-based algorithm. Since we use a
non-probabilistic Symbolic-reasoner, our hypothesis function corresponds to eq. 1 with an additional
argmax (since we cannot provide the full probability distribution over the classes, but only the most
probable value for each cell):

fθ(x) = sb
(
argmax(ns(x))⊙ argmax(mp(ns(x))) , R

)
. (2)

In the case in which an unsatisfiable neural prediction is given in input to the Symbolic-Solver, no
solution is generated an thus the whole board is counted as wrong.

Learning Algorithm (and RL). As mentioned in Section 2 we first train the models in a fully
supervised manner (details above) and then use reinforcement learning to refine the pipeline end-
to-end. We define the RL scenario as follows: The input state yt corresponds to a solution board
provided by the Neuro-Solver (Perception+SolverNN). The action space corresponds to the set of
all possible complete masking boards configurations Z = {0, 1}81. Each action m coincides with
the simultaneous execution of 81 independent sub-actions corresponding to the decision of masking
or not a single cell in the solution board yt. For each Sudoku board we sample an action m̃ ∈ Z
following the policy distribution. The final state yt+1 corresponds to the solution board provided as
output by the Symbolic-Solver (with input R and y′t = argmax(yt) ⊙ m̃). The action we perform
corresponds to the application of the masking over the solution board provided by the Neuro-Solver
followed by the deterministic application of the Symbolic-Solver to the masked solution board.

We use REINFORCE (Williams, 1992), with its standard policy loss. For each batch B, we have:

L(B; θ) = −
∑
x∈B

r logPθ(m̃|ns(x)) = −
∑
x∈B

(
r

81∑
i=0

logPθ(m̃i|ns(x))
)

(3)

We use only positive rewards. Given an output board b′ and its ground truth board b, we consider
two types of rewards with two different order of magnitude: the main reward, re ∈ {0, 10}, when
the entire board is correct and a marginal reward rc ∈ [0, 1] for each correct cell i.

r = re + rc = 10 · δb′,b +
1

81

81∑
i=0

δb′i,bi (4)

We normalize the rewards to improve training stability, since each board difficulty can vary.

Baselines. We compare NASR with different baselines. As Symbolic Baseline we considered the
execution of the Symbolic-Solver directly from the output of the Perception module (after applying
the argmax operator). Another possibility would be adapting the prediction-correction part of the
pipeline in the work of Giunchiglia et al. (2022a). Using a probabilistic reasoning engine and using
the whole (or partial, e.g. the top k candidates ) output distribution of the Perception module as
input, is computationally unfeasible. We also compared with two state-of-the-art neuro-symbolic
methods: SatNet Wang et al. (2019), a differentiable MAXSAT solver that can be integrated into
neural networks; and NeurASP Yang et al. (2020), an extension of answer set programs (ASPs) that
consider a neural network output as the probability distribution over atomic facts in ASPs.

4 RESULTS

The main results can be summarized as follows: 1) we outperform the baseline in most of the cases
(and never perform worst); 2) we improve the performance of an existing method, by integrating it
in our pipeline; 3) we are more efficient, compared to the other methods, in terms computational
time vs. performance; and 4) our method is more robust to noise compared to the symbolic baseline.

8A probabilistic Symbolic-Solver is unfeasible in this scenario due to the combinatorial nature of the possi-
ble Sudoku boards.
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big kaggle minimal 17 multiple sol* satnet data

Symbolic Baseline 74.56 87.70 63.50 63.20
SatNet (Wang et al., 2019) 63.44 0.00 0.00 60.10
SatNet (Wang et al., 2019) + NASR 69.05 0.02 24.20 81.40
NeurASP† (Yang et al., 2020) timeout †89.00 timeout timeout
Our NASR 84.24 87.00 73.00 82.20

Table 2: Results for the visual Sudoku task: percentage of completely correct solution boards. The
best results are in bold font. *The pipeline is underperforming on multiple sol dataset likely due to
the fact that each input board admits more than one solution but only one is provided at training.
†tested only on 200 of the 5000 test images due to the long run-time (days).

big kaggle minimal 17 multiple sol satnet data

Perception 99.64 74.56 99.84 87.70 99.48 65.70 99.32 63.20
SolverNN 100-98.33 62.68 100-61.56 0.00 100-93.72 46.70 100-94.84 24.00
Mask-Predictor 99.92-99.71 99.54-35.26 99.02-76.12 99.90-96.06

Neuro-Solver 47.03 0.00 28.80 14.40
NASR w/o RL 80.02 1.59 60.00 76.40
NASR with RL 84.24 87.00 73.00 82.20

NASR-Heur.Mask 73.11 66.99 55.60 42.80

Table 3: Results of our pipeline on the visual Sudoku datasets, divided by the different modules.
The metric used in the right column for each dataset correspond to the percentage of completely
correct predicted boards. In addition to that we report (in the left column of each dataset): for the
Perception the number of correctly predicted cells on average; for the SolverNN preservation of
input cells - correctness of solutions cells; for the Mask-Predictor true negative - true positive (that
corresponds to correct solution cells that are not masked - error solution cells that are masked).

4.1 OVERALL PERFORMANCE

In Table 2 we report the performance of our pipeline (with RL) on the different datasets compared
with the different baselines. We can see that we outperform all the neuro-symbolic methods and in
one instance match the Symbolic Baseline (which we outperform in all the other datasets). Note
that symbolic baseline fails if even one digit is incorrectly recognised, and thus it is not noise robust.
NASR can be integrated with SatNet (Wang et al., 2019) by replacing our Neuro-Solver with SatNet.
The results (SatNet + NASR) show that the soft constraints enforced by SatNet can be improved,
sometimes substantially by injection of hard constraints via NASR.

In Table 3 we report the performance of our pipeline analyzing each module separately. We can see
that for more challenging datasets (e.g. minimal 17 with only 17 hints minimal Sudoku boards and
multiple sol with multiple solutions) the performance of the Neuro-Solver is very low. In particular,
for the minimal 17 dataset this is even more evident, since the SolverNN cannot produce any com-
pletely correct solution board (only 60% of the solution cells is correct on average per board) and
the Mask-Predictor identifies only 30% of the errors. RL is necessary to refine all the parts together.

Comparing Table 2 and Table 3 we observe that, as expected, the performance of the Symbolic
Baseline corresponds to the performance (in terms of percentage of completely correct converted
boards) of the Perception module. This is because, given the use of a non-probabilistic logic solver,
a single perception error will make the Symbolic-Solver fail. The Symbolic baseline is thus not noise
robust and finds datasets with more than the minimal number of hints harder to solve. Section A.2
systematically analyses the greater noise robustness of our framework to the symbolic baseline.

We performed an ablation study to verify the impact of the Mask-Predictor by substituting it with a
simple heuristic. We masked Neuro-Solver outputs on the basis of confidence, with threshold set by
grid search and Bayesian optimization (Akiba et al. (2019)). The results in Table 2 show that while
this can perform well (e.g. in big kaggle) it is significantly worse compared to our pipeline.
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Figure 3: Time efficiency analysis for big kaggle dataset.

(a) SolverNN - Cell (1,1) (b) SolverNN - Cell (5,4) (c) Mask-Pred. - Cell (1,1) (d) Mask-Pred. - Cell (8,8)

Figure 4: Attention maps for the SolverNN on big kaggle and for the Mask-Predictor on minimal 17.

4.2 FURTHER ANALYSIS AND CONCLUSIONS

Time efficiency. Our system is faster than the symbolic baseline (Perception+Symbolic Solver).
This is because our Symbolic Solver needs to fill less empty cells and thus its search space is reduced.
In Figure 3 we analyse the efficiency in terms of trade-off between the performance (percentage
of completely predicted Sudoku boards), and computational time for the big kaggle dataset (see
Supplementary Material for other datasets). Figure 3a shows the Pareto front considering the two
optimization objectives of minimal computational time and maximal performance. Our method, is
always on the Pareto front and usually is the closest to the optimization objective (top left corner of
the plot). Figure 3b compares the performance of each system when limiting the computation time
by different timeout values. We can see that with small timeout limits the neural models behave
better compared to the Symbolic-Baseline which requires more time.

Attention Maps. To better understand the Neuro-Solver and Mask-Predictor networks, we analyse
their attention maps for evidence of learning the rules of Sudoku. Figure 4 shows the average of all
the attention layers for the SolverNN and for the Mask-Predictor on the big kaggle and minimal 17
dataset respectively. We can see that for each cell, both the SolverNN and the Mask-Predictor
consider the information in the row, the column and the 3 × 3 block, which corresponds to the 3
Sudoku rules. The results are clearer for SolverNN on big kaggle dataset compared to the Mask-
Predictor on minimal 17 dataset due to the dataset size.

Preliminary Results on Scene Graph. We performed a preliminary study for Predicate Classifi-
cation (see Example 2) for the GQA dataset (Hudson & Manning (2019)) using a simple ontology
containing only domain/range information for the predicates. The results are consistent with the
Sudoku scenario (more information can be found in the Appendix A.8).

Conclusions. We presented a neuro-symbolic method that aims to efficiently satisfy domain-
knowledge constraints at inference. This enables a favourable trade-off between accurate predic-
tions, noise robustness, and computation cost. Our framework is generic and can be applied to
different types of input (image, text, symbols, etc.) and types of constraints (logic, arithmetic, etc.).
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, volume 86, pp. 2278–2324, 1998.

Tao Li and Vivek Srikumar. Augmenting neural networks with first-order logic. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, 2019.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for consistency
of neural models. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2019.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In Advances in Neural Information Pro-
cessing Systems, 2018.

Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and Marco Gori. Constraint-based
visual generation. In ICANN, 2019.

Pasquale Minervini and Sebastian Riedel. Adversarially regularising neural nli models to integrate
logical background knowledge. In Proceedings of the 22nd Conference on Computational Natural
Language Learning (CoNLL 2018), 2018.

Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, and Tias Guns. Hybrid classification and
reasoning for image-based constraint solving. In International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR-20), 2020.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI, 2007.

Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE. AI
communications, 15(2, 3):91–110, 2002.

Mrinmaya Sachan, Kumar Avinava Dubey, Tom M Mitchell, Dan Roth, and Eric P Xing. Learning
pipelines with limited data and domain knowledge: A study in parsing physics problems. In
Advances in Neural Information Processing Systems, 2018.

Steven A. Sloman. The empirical case for two systems of reasoning. In Psychological Bulletin,
volume 119(1), pp. 3–22, 1996.
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A APPENDIX

A.1 TRAINING CONVERGENCE

In Figure 5 we provide the lerning curves for the reinforcement learning training on minimal 17
dataset. In particular we can see in Figure 5b how the average reward on the training set improves
in only few (∼ 30) iterations.

(a) Loss. (b) Reward.

Figure 5: Reinforcement learning curves for refining with Rl our pipeline on the minimal 17 dataset.

Using bigger models can further improve the overall performance. For example, using a transformer
with 12 attention modules (instead of 4) on the big kaggle substantially improves the Neuro-Solver,
achieving a boost of ∼ 30% completely correct boards. This improvement is less evident considering
the whole pipeline, gaining only a ∼ 5% improvement compared to smaller models.

A.2 ADDITIONAL ANALYSIS: NOISE ROBUSTNESS

Our pipeline is more robust to noise: in Figure 6 we can see the drop in performance of the baseline
and our method adding two different type of noise in the input images at inference time. Figure 6b
shows the results when adding Gaussian blur to the images, while Figure 6a when rotating the digits
with a random angle in [−45, 45]. We can see that our pipeline has a smaller and slower drop
in performance compared to the symbolic baseline9. These results are less evident in the refined
pipeline using RL. We can see that with a high amount of noise the performance gap with the
Symbolic-Solver is smaller (e.g. with a rotation between [−40, 40] degrees, our pipeline refined
with RL solves 20.3% more boards compared to the Symbolic-Solver), while for a medium amount
of noise the gap with the Symbolic-Solver is higher (e.g. with a rotation between [−25, 25] degrees
our pipeline refined with RL solves 32.2% more boards compared to the Symbolic-Solver). The
difference between the pipeline with or without RL is probably due to the fact that, in the latter, the
Mask-Predictor is trained on simulated noise while in the former the Mask-Predictor is refined on
the actual noise produced by the Neuro-Solver. Thus, when adding a new and unseen type of noise
the latter is expected to behave better.

A.3 ADDITIONAL RESULTS: EFFICIENCY.

As mentioned in Section 4.2, we can see that we obtain similar efficiency results for the remaining
datasets: minimal 17 (Figure 7); multiple sol (Figure 8); and satnet data (Figure 9).

9Note that these experiments are done training the Mask-Predictor with an expected amount of noise be-
tween 0% and 10%. The Mask-Predictor can be retrained and optimized for the specific amount of noise
expected in input, leading to even better performance.
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(b) Noise at test time: Gaussian blur.

Figure 6: Performance of the Symbolic Baseline compared to our two pipelines (with or without
RL) when adding noise on the dataset multiple sol at test time. Similar results hold for the other
datasets.
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(a) Pareto front (purple line) for the minimal 17 dataset
maximizing the performance (percentage of com-
pletely correct boards) and minimizing the computa-
tional time. The optimization objective is located on
the top left corner of the plot.
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boards, while increasing the timeout limit.

Figure 7: Time efficiency plots minimal 17 dataset.
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(a) Pareto front (purple line) for the multiple sol
dataset maximizing the performance (percentage of
completely correct boards) and minimizing the com-
putational time. The optimization objective is located
on the top left corner of the plot.
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(b) Performance analysis for the multiple sol dataset
when limiting the computational time of the pipeline.
The metric is the percentage of completely correct
boards, while increasing the timeout limit.

Figure 8: Time efficiency plots multiple sol dataset.
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(a) Pareto front (purple line) for the satnet data dataset
maximizing the performance (percentage of com-
pletely correct boards) and minimizing the computa-
tional time. The optimization objective is located on
the top left corner of the plot.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Timeout values

Pe
rf

or
m

an
ce

symb. baseline
satnet
NASR with RL
NASR w/o RL
satnet+NASR
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when limiting the computational time of the pipeline.
The metric is the percentage of completely correct
boards, while increasing the timeout limit.

Figure 9: Time efficiency plots satnet data dataset.
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A.4 ADDITIONAL RESULTS: ATTENTION MAPS.

Additional plots for the attention maps considering more cells are shown in Figure 10.

We remark that the attention maps depend on the dataset. In particular, if a dataset contains some
bias (e.g. multiple sol) from how it has been generated, the networks will try to exploit the biases
(e.g. learning a relaxed version of the rules R or some simpler heuristic) instead of learning the
proper Sudoku rules.

(a) SolverNN - Cell (1,1) (b) SolverNN - Cell (5,4) (c) SolverNN - Cell (8,8)

(d) Mask-Predictor - Cell (1,1) (e) Mask-Predictor - Cell (5,4) (f) Mask-Predictor - Cell (8,8)

Figure 10: Attention maps for the SolverNN on big kaggle and for the Mask-Predictor on mini-
mal 17.
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Figure 11: Pipeline example for the visual Sudoku task. The Neuro-Solver outputs a complete board.
The Mask-Predictor identifies the cells that violate the Sudoku rules (in the first block there are two
cells with value 7). Finally, the Symbolic-Solver corrects the predictions.

A.5 SUDOKU RULES FORMULATION FOR PYSWIP

In what follows we provide the rules used in pyswip (Tekol & contributors, 2020) for finding a
symbolic solution for a partially filled Sudoku board10. The masked cells are provided as a “ ”
symbol. The query corresponds to the example shown in Figure 1 and Figure 11

% Sudoku rules

:- use_module(library(clpfd)).

sudoku(Rows) :-
length(Rows, 9), maplist(same_length(Rows), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],
blocks(As, Bs, Cs),
blocks(Ds, Es, Fs),
blocks(Gs, Hs, Is),
label(Vs). % default strategy min (follows order in Vs = 1..9)

blocks([], [], []).
blocks([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :-

all_distinct([N1,N2,N3,N4,N5,N6,N7,N8,N9]),
blocks(Ns1, Ns2, Ns3).

% query
Rows = [[7,8,_,4,3,9,1,2,6],

[6,1,2,8,7,5,3,4,9],
[4,9,3,6,2,1,5,_,8],
[8,5,7,9,4,3,2,6,1],
[2,_,1,7,5,8,9,3,4],
[9,3,4,1,6,2,7,8,5],
[5,7,8,3,_,4,6,1,2],
[1,2,6,5,8,7,4,9,3],
[3,4,9,2,1,6,_,5,7]],

sudoku(Rows).

10This is a standard implementation of Sudoku rules, and it is a modified version of the one at https:
//swish.swi-prolog.org/pldoc/man?section=clpfd-sudoku
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A.6 TRAINING TIMES

In Table 4 we report the training times for the different methods. The training time of the Symbolic
Baseline corresponds to the training time of the Perception, since it needs the Perception output as
input of the Symbolic-Solver. The training time for NASR is the sum of perception, SolverNN,
Mask-Predictor, and optionally RL. The first three of these can trivially be parallelised. We trained
the transformer models for 200 epochs, while the Perception models for 100 epochs. RL refinement
is trained for 20 epochs. For SatNet and NeurASP we used the default configuration (100 epochs
for both models). NeurASP-Infer uses our pretrained Perception to convert the image to symbolic
form, while NeurASP uses their own CNN.

big kaggle minimal 17 multiple sol satnet data

Perception 108.84 57.71 11.68 14.14
SolverNN 85.58 41.97 9.01 26.51
Mask-Predictor 81.43 40.15 8.87 128.98
RL 121.07 241.31 24.86 16.44

NASR w/o RL 275.85 (108.84) 139.83 ( 57.71) 29.56 (11.68) 169.63 (128.98)
NASR with RL 396.92 (229.91) 381.14 (299.02) 54.42 (36.54) 186.07 (145.42)

Symb. Baseline 108.84 57.71 11.68 14.14
SatNet 1151.25 582.13 41.66 108.51
NaurASP-Infer 108.84 57.71 11.68 14.14
NeurASP 94.34 91.53 99.96 ∼ 90

Table 4: Training times (minutes) of the different systems for the visual Sudoku task. For NASR we
report the training time when training the different models sequentially and in brackets the training
time when training the Perception, SolverNN and Mask-Predictor modules in parallel.

A.7 ANALYSIS ON THE DIFFERENT ROLES OF NASR MODULES IN ERROR CORRECTION

In Table 5 we report the results of two experiments that help to understand how the different com-
ponents of NASR interact with each other for the Visual Sudoku task.

In the first experiment we look at the input (hints) cells that have been incorrectly predicted by the
Perception but have been corrected by NASR (2nd and 3rd column). The goal of this experiment
is to see the proportion, of this type of errors, that are corrected directly by the SolverNN or thanks
to the Mask-Predictor. We can observe that the Perception errors are almost all corrected by the
SolverNN, while only a small portion are remain to be identified by the Mask-Predictor.

The second experiment (4th and 5th column) aims to understand if the Mask-Predictor distinguishes
between the errors in the input cells (the original hints) and the errors in the solutions cells. We can
see that the percentage of errors identified in the hint cells (4th column) and in the solution cells (5th
column) has no distinctive pattern. We can conclude that the Mask-Predictor does not systematically
prefer either of the two. It corrects both types of errors.

Perception errors SolverNN errors
corrected by NASR w/o RL identified by

identified by identified by Mask-Predictor

SolverNN Mask-Predictor hint cells solutions cells

big kaggle 85.90 14.10 53.17 77.42
minimal 17 95.90 4.10 8.21 32.24
multiple sol 87.21 12.79 42.09 24.73
satnet data 85.43 14.57 44.76 71.16

Table 5: Statistics on the interplay of the different component of the NASR pipeline in the case of
Visual Sudoku task in regard to error correction. All the results corresponds to percentages. The
reported results refer to NASR without RL. Similar results hold for NASR with RL.
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A.8 PRELIMINARY RESULTS ON SCENEGRAPH

We evaluate NASR w/o RL on the task of predicate classification (PredCls). Recall that the task
consists in providing the right predicate label given the ground truth object labels and bounding
boxes.

A.8.1 DATASET AND BASELINE

We consider the GQA dataset introduced by Hudson & Manning (2019). GQA is a more balanced
split of Visual Genome (VG) dataset (Krishna et al., 2016) with cleaner, larger, and more dense
scene graphs and with a larger and more balanced variety of objects and predicates (for more details
see Hudson & Manning (2019)). It contains 22M pairs of question/answer for real-world visual
reasoning and the corresponding scene graphs. We are interested in the latter.

In the GQA dataset there are 311 predicates and 1705 classes for the subject/object element of a
triple. Statistics of the train/val/test split that we used are provided in table 6. The ZeroShot versions
of the validation and test set contains only triples that has not been observed during training.

# images # triples # unique triples

train 66078 3455468 470129

val (all - shots) 4903 306494 89411
test (all - shots) 10055 530326 147534

val (zero - shots) 3025 23371 18638
test (zero - shots) 6418 45135 37116

Table 6: GQA dataset statistics.

As baseline, we consider the model developed by Knyazev et al. (2020) which is a modified version
(that exploits a density-normalized edge loss) of the Message Passing (MP) architecture introduced
by Xu et al. (2017). We adopted the data split and evaluation metrics used in their work. For
our experiments, we trained their models on the GQA dataset (the code is available at https:
//github.com/bknyaz/sgg).

A.8.2 IMPLEMENTATION DETAILS

The input and output spaces of the pipeline modules follow what was introduced in Example 2.

As Neuro-Solver we chose the architecture introduced by Knyazev et al. (2020) mentioned above. It
takes in input an image with the corresponding labels and bounding boxes of the objects and outputs
a probability distribution over the predicates for each identified triples. For more details about this
architecture see the work of Knyazev et al. (2020).

The Mask-Predictor is a (4-layer) MLP model that embeds predicate classes and object/subject
classes differently. It takes in input a probability distribution over the set of predicates (311-
dimensional) and the one-hot encoding (1705-dimensional) of subject and object for each triple.
The output of the Mask-Predictor is a probability distribution over Z = {0, 1}k. The number of
triples k can vary for every image (they are considered as independent from each other since we are
considering a simple domain-range ontology).

The Mask predictor is trained on a synthetic dataset generated from the domain-range ontology (an
ontology containing all the possible domain and range classes for each predicate). We sampled an
equal number of triples for each of the following 4 scenarios: triples that do not violate the ontology,
triples with both unfeasible domain and unfeasible range, triples with only unfeasible domain and
triples with only unfeasible range.

The Symbolic-Solver is a simple solver, implemented in python, that takes in input a masked so-
lution and finds the next most probable predicate, after excluding the not feasible ones, for a given
object/subject pair.

19

https://github.com/bknyaz/sgg
https://github.com/bknyaz/sgg


Published as a conference paper at ICLR 2023

A.8.3 RESULTS

The results considering a simple domain-range ontology are provided in Table 7, using the standard
image-level Recall metric and Table 8, using the image-level mRecall metric, introduced by Knyazev
et al. (2020). Recall consider only the top-1 prediction (predicate) between each pairs of objects,
while mRecall allows to rank multiple predictions (predicates) between each pairs of objects.

We report the results for the Baseline (the work of Knyazev et al. (2020)) and the improvement
over the Baseline of by the Probabilistic Symbolic Baseline (PSB). PSB consists of running the
probabilistic symbolic solver directly on the output of the Baseline model. This is computationally
very expensive, especially if we consider a sightly more dense ontology. With a more complex
ontology this would became computationally intractable. The improvement given by the PSB in the
case of PredCl is an upper-bound (Max-improvement) for the performance of NASR. The results of
NASR w/o RL are reported as percentage of error correction achieved when compared to the PSB
upper bound.

The results show that NASR achieves good performance, and is able to recover the majority of
the recoverable errors given the simple domain-range ontology used. This leads, for example, to a
improvement between 1% and 2% for the zero-shots predictions. Since we are considering a very
simple ontology, the improvement is not as noticeable as in the Visual Sudoku case. However when
using a more complex ontology, we expect this difference to become more pronounced.

R@20 R@50 R@100 R@200 R@300

All - shots
Baseline Knyazev et al. (2020) 29.22 42.35 48.48 50.75 51.11
Max-improvement (PSB) 0.12 0.23 0.32 0.35 0.36
% improvement of NASR w/o RL 99.71 99.58 99.69 99.64 99.64

Zero - shots
Baseline Knyazev et al. (2020) 16.62 27.65 34.10 37.41 38.11
Max-improvement (PSB) 0.91 1.43 1.93 2.18 2.33
% improvement of NASR w/o RL 100.00 100.00 100.00 100.00 100.00

Table 7: Results on the PredCl task for the GQA dataset. We consider the Recall metric used both
for VG and the GQA datasets (see Hudson & Manning (2019) for more details). NASR results are
given as percentage of the max achievable improvement under the given ontology, defined by PSB.

mR@20 mR@50 mR@100 mR@200 mR@300

All - shots
Baseline Knyazev et al. (2020) 36.24 60.84 79.08 91.12 94.76
Max-improvement (PSB) 0.18 0.33 0.50 0.51 0.56
% improvement of NASR w/o RL 98.09 91.20 91.16 90.25 87.90

Zero - shots
Baseline Knyazev et al. (2020) 19.16 37.46 54.64 69.72 76.12
Max-improvement (PSB) 0.08 0.46 0.89 1.37 1.93
% improvement of NASR w/o RL 100.00 86.77 93.05 88.99 86.00

Table 8: Results on the PredCl task for the GQA dataset. We consider the new mRecall metric
introduced for the GQA dataset by Knyazev et al. (2020). NASR results are given as percentage of
the max achievable improvement under the given ontology, defined by PSB.
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