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ABSTRACT

Automatic machine learning (AutoML) systems have been shown to perform bet-
ter when they learn from past experience. Examples include Auto-sklearn, which
warm-starts the ML pipeline search using existing programs known to perform
well on “similar” tasks, and AlphaD3M, which uses online reinforcement learn-
ing to search the ML pipeline space. These metalearning approaches, as well as
many others, depend on simplifying assumptions about the pipeline search space
and/or the pipeline representation. We show that we can estimate ML pipeline
performance without simplifying the representation of the pipeline structure. We
evaluate this approach on tabular classification tasks and find that it produces the
best estimates of pipeline performance and yields pipeline rankings with the high-
est normalized discounted cumulative gain (nDCG) and the lowest regret.1

1 INTRODUCTION

Automatic machine learning (AutoML) systems can use metalearning to aid in machine learning
(ML) program search. Such metalearning can help users with any level of ML expertise to find a
good program for a dataset of interest by leveraging past results (Brazdil et al., 2008). A modern
ML program usually contains multiple ML algorithms (e.g., missing value imputation, feature pre-
processing, classification, etc.) that are composed into an ML pipeline. In order to represent the
potentially complex computational flow of data through a pipeline (e.g., an ensemble like Figure 1),
the pipeline must be represented as a directed acyclic graph (DAG). The many ways to compose
available ML algorithms into pipelines creates an unscalable number of possible pipelines to con-
sider. Thus, learning to pre-rank candidate pipelines allows AutoML systems to prioritize pipeline
execution and allocate limited computational resources to the pipelines with the most potential.

Metalearning for AutoML can be categorized into offline and online approaches. AutoML systems
that use offline metalearning leverage the results of running pipelines on a collection of previously
seen datasets to inform pipeline search on a new dataset, for example, Auto-sklearn (Feurer et al.,
2015), SmartML (Maher & Sakr, 2019), and DeepLine (Heffetz et al., 2020). Conversely, online
metalearning approaches utilize only the results of running pipelines on a dataset of interest. Ex-
amples include systems like AlphaD3M (Drori et al., 2018), TPOT (Olson & Moore, 2016), and
Layered-TPOT (Gijsbers et al., 2018) or approaches like Bayesian optimization (Bergstra et al.,
2015; Snoek et al., 2012; Hutter et al., 2011). Both of these types of metalearning are orthogonal to
each other and can be implemented simultaneously in a system, as in some of the above examples.
For a broader related work on AutoML and metalearning in general, see Hutter et al. (2019).

In these previous works on metalearning for AutoML, their approaches (whether offline or online)
make simplifying assumptions about the pipeline search space and/or the pipeline representations
to enable metalearning. Auto-sklearn and SmartML treat pipelines as black boxes by using only
pipeline performance and dataset metafeature similarity in their metamodels. AlphaD3M considers
only sequential pipelines, so it can use an LSTM (Hochreiter & Schmidhuber, 1997) to approximate
the value function in its reinforcement learning approach. DeepLine and RankML (Laadan et al.,
2019) also use an LSTM metamodel, but consider a broader pipeline search space (e.g., ensembles
and parallel sub-pipelines) albeit they linearize the pipeline directed acyclic graph (DAG) structure.

1Code and data will be made available after the anonymity period.
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Figure 1: A pipeline can be represented as a directed acyclic graph (DAG). This example pipeline
is a template for the pipelines used in our metadataset. A dataset is input on the left and flows from
left to right, following the arrows. Each node transforms the data with some ML algorithm and the
final predictions are output on the right.

We propose to estimate ML pipeline performance without simplifying the representation of the
pipeline structure. The fine-grained pipeline metadata, including both the ML algorithms used in the
pipeline and the pipeline structure (i.e., how the algorithms are composed), may contain pertinent
information for the metamodel. We validate this hypothesis in the offline metalearning context by
creating a metadataset consisting of about 400,000 instances made up of more than 4,000 pipelines
(e.g., Figure 1) run on almost 200 tabular classification datasets. We evaluate nine metamodels
that utilize varying levels of pipeline metadata granularity to show how the pipeline representation
affects metalearning performances.

2 METADATASET

To test our hypothesis, we construct a large metalearning dataset, or metadataset. We scope this
experiment to tabular classification datasets and select 194 datasets collected as part of the Data
Driven Discovery of Models (D3M)2 program that were originally sourced from OpenML (Van-
schoren et al., 2014), UCI Machine Learning Repository (Dheeru & Karra Taniskidou, 2017; Lich-
man, 2013), and Zenodo (Guzey et al., 2014).

Following traditional metalearning research, we extract metafeatures (Vanschoren et al., 2014;
Feurer et al., 2015; Brazdil et al., 2008) from each of these datasets. We compute 72 metafeatures us-
ing a Python port of Reif (2012), with additional metafeatures from Vanschoren et al. (2014). These
include simple, statistical, information-theoretic, landmarking, and model-based metafeatures that
were tractable and relevant to all of our selected datasets. A complete list of metafeatures is found
in Appendix F.

Next, we generate pipelines representative of typical, human-made machine learning pipelines us-
ing the D3M machine learning framework (Milutinovic et al., 2020) and Scikit-learn (Pedregosa
et al., 2011). These pipelines include straight pipelines and ensembles, which require a DAG rep-
resentation. The straight pipelines consist of a missing value imputation step, one of 10 feature
preprocessing algorithms (e.g., PCA (Wold et al., 1987) and no-op), and one of 14 final classifiers
(e.g., Decision Tree (Swain & Hauska, 1977)). A complete list of these ML algorithms can be found
in Appendix C. The ensembles combine three straight pipelines with a majority vote algorithm. To
limit the scope of this work, all ML algorithms used default hyperparameters. Figure 1 shows the
pipeline template.

Altogether this process created 4,592 different pipelines, which we ran on the 194 datasets to get
413,567 distinct instances in our metadataset. Each instance thus consists of the dataset metfeatures,
a DAG representation of the pipeline, and the test F1 score (though any metric could have been used).
Note that not all pipelines ran successfully on all datasets, for example, some preprocessing methods
created an intractable number of features that caused memory errors. We randomly partitioned the
metadataset, grouped by dataset, into meta-train (125 datasets with 225,668 metadata instances),
meta-validation (25 datasets with 90,131 instances), and meta-test (44 datasets with the remaining
97,768 instances) sets. For more experimental details, see Appendix B.

2D3M datasets: https://datasets.datadrivendiscovery.org/d3m/datasets
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3 METAMODELS

We consider a broad range of metamodels, including naive baselines, classic machine learning mod-
els, and modern deep learning models. We categorize each metamodel into different types based
on the pipeline representation they use. The categories include naive baseline, pipeline-agnostic,
structure-agnostic, linear structure-aware, and DAG-structure aware. While many metamodels could
have been chosen, we choose at least one for each of these types based on prevalence in related work.

These metamodels are implemented using Scikit-learn (Pedregosa et al., 2011), PyTorch (Paszke
et al., 2019), and code from Auto-sklearn (Feurer et al., 2015). Each metamodel is trained to estimate
the F1 macro score given the dataset metafeatures and some representation of the pipeline. We use
these estimates of performance to rank pipelines, which is useful when not all candidate pipelines
are known apriori (Appendix B).

Naive Baselines. The Mean metamodel is dataset metafeature and pipeline agnostic. Since the Mean
metamodel is constant, we use the Random metamodel to randomly rank pipelines as a surrogate for
evaluating the Mean metamodel’s ranking performance.

Pipeline-Agnostic. Auto-sklearn uses dataset metafeature similarity to determine the k-nearest
datasets, or k-ND, from their static metadataset to the given input dataset. From each of these nearest
datasets, the best known pipeline is selected to warm-start the system. We use their implementation
of k-ND, but use our metadataset. Note that this metamodel ranks pipelines and recommends k of
them, but does not estimate performance.

Structure-Agnostic. These metamodels use the dataset metafeatures and an encoding of which ML
algorithms are used in the pipeline, ignoring all pipeline structure metadata. We consider Linear
Regression and Random Forest. We also bootstrap metamodel selection by passing our metadataset
to Auto-sklearn for 24 hours and label the resultant metamodel Meta Auto-sklearn.

Linear Structure-Aware. Recent metalearning approaches for estimating pipeline perfor-
mance (Heffetz et al., 2020; Laadan et al., 2019; Drori et al., 2018) linearize the pipeline DAG
structure to be able to use the LSTM (Hochreiter & Schmidhuber, 1997), which we also include. This
metamodel thus assumes that data flows though the pipeline sequentially, without parallel branches,
which is not always true. We also include the Transformer (Vaswani et al., 2017) sequence model,
which could learn to attend to the relevant parts of the pipeline to estimate performance.

DAG Structure-Aware. The final two metamodels do not simplify the pipeline metadata represen-
tation, but rather utilize the fine-grained pipeline metadata, including both the ML algorithms used
in the pipeline and the pipeline structure. The DAG LSTM (Song et al., 2018; Zhu et al., 2016) is an
extension of an LSTM for DAGs. We also use a Neural Module Network (Andreas et al., 2016), or
NMN, adapted from the visual question answering task. We simplify the NMN to use only the dy-
namic network component, removing the LSTM component, to evaluate its metalearning potential
in isolation. This metamodel has a neural network module for each ML algorithm being modeled
and dynamically changes its network structure to match the structure of the input pipeline.

We tune each metamodel’s hyper-parameters using random search over 70+ different hyper-
parameter configurations on the validation split of the metadataset. We report final metamodel
scores on the test split of the metadataset using the best hyper-parameter configuration found on
the validation split. We combine the train and validation splits of metadata to train the metamodels
for the final run on the test split. We run each metamodel five times with different random seeds and
report the average and standard deviation over those runs. For more experimental settings about the
training procedure, see Appendix B.

4 RESULTS

Table 1 shows the performance of each metamodel. The RMSE column shows how well each
metamodel can estimate the F1 score of a given ML pipeline on a given dataset. The nDCG and
Regret columns in Table 1 measure the quality of the top 25 ranked pipelines averaged over all
datasets in the meta-test split. Additional results for the nDCG and Regret metrics for other values
of k can be found in Appendix B.
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Metamodel Type Metamodel RMSE ↓ nDCG@25 ↑ Regret@25 ↓
Naive Baseline Mean / Random 0.302 ± 0.000 0.759 ± 0.005 0.014 ± 0.002
Pipeline Agnostic k-ND - 0.805 ± 0.000 0.011 ± 0.000

Structure Agnostic
Linear Regression 0.265 ± 0.000 0.886 ± 0.000 0.024 ± 0.000
Random Forest 0.211 ± 0.001 0.906 ± 0.007 0.026 ± 0.002
Meta Auto-sklearn 0.213 ± 0.001 0.900 ± 0.001 0.029 ± 0.001

Linear Structure LSTM 0.376 ± 0.130 0.834 ± 0.059 0.045 ± 0.040
Aware Transformer 0.193 ± 0.005 0.899 ± 0.007 0.044 ± 0.005

DAG Structure Aware DAG LSTM 0.182 ± 0.006 0.890 ± 0.017 0.042 ± 0.018
NMN 0.198 ± 0.005 0.872 ± 0.013 0.046 ± 0.012

Table 1: Metamodel performance on the test set, including mean and SD over five random seeds.
Arrows indicate the direction of better scores. Scores in bold are not significantly different than the
best score in the column (two-sample t-test, p > 0.05). We use k = 25 to match Feurer et al. (2015).
Note that RMSE is not reported for k-ND because it does not estimate pipeline performance.

In the RMSE column, we observe that the metamodels that utilize more of the pipeline metadata
are associated with better estimates of performance. The DAG LSTM gives the best estimates of
performance with much more reliability than the LSTM (which is used in related work, e.g. Heffetz
et al. (2020); Laadan et al. (2019); Drori et al. (2018)).

The normalized discounted cumulative gain at 25 (nDCG@25) measures the aggregate performance
of the top 25 ranked pipelines by accounting for both the true pipeline score and the estimated
pipeline rank. We observe that utilizing some pipeline metadata allows the metamodels to select
25 pipelines that are among the best performing pipelines (compared to those that use no pipeline
metadata, like k-ND (Feurer et al., 2015)). In other words, using dataset metafeature similarity alone
is not an effective method for finding a pool of high ranking pipelines.

The Regret@25 metric is the difference in pipeline F1 score between the best of the model’s top 25
ranked pipelines and the true best pipeline on a given dataset. This is a measure of how much worse
using any of the metamodels is compared to simply running all pipelines and choosing the best one.
Interestingly, we observe that k-ND (Auto-sklearn’s approach) on average finds a pipeline from the
25 nearest datasets within about 1 point of the true best pipeline. This corroborates the intuition that
pipelines behave similarly on similar datsets. Similar to k-ND, Random produces a pipeline that
performs close to the best when 25 are sampled (see Appendix D for a theoretical justification).

Overall Results. In practice, offline metalearning systems for AutoML use a metamodel to rec-
ommend many high-scoring pipelines to warm start their optimization process (Feurer et al., 2015;
Maher & Sakr, 2019). This would translate to a metalearning approach that scores highly in all three
metric categories: returning a highly ranked pool of piplines (nDCG), having pipelines that score
close to the true best pipeline (Regret), and estimating pipeline performance accurately (RMSE).
Examining Table 1 altogether, we find that models that contain more structural information per-
form better across categories: those that are structure or pipeline agnostic perform well in only one
metric, while those that use the linear structure (e.g. LSTM) can perform well in two measures
(nDCG/Regret), and those that use all metadata (e.g. DAG-LSTM) can score well in all three met-
rics. Although this result may not be surprising, we are the first to look at using the full structure in
the metalearning context, and our results suggest it could significantly improve current systems.

5 CONCLUSION

We have shown that metalearning benefits from utilizing all available pipeline metadata, without
simplifying the representation of the pipeline structure. We find that these structure-aware meta-
models have the highest performance across several performance estimation and ranking measures.
By implementing this strategy, AutoML systems could potentially reduce the computation time
needed to find top-performing pipelines, spending the extra saved time exploring other fruitful seg-
ments of the pipeline search space. Future work in this area would include considering the effects of
specific hyperparameter configurations, broadening the scope of the study to include more diverse
task types, or creating new metamodels that take advantage of DAG structures.
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A ADDITIONAL RESULTS AT VARIOUS LEVELS OF K

Our main results in Table 1 use k = 25 for the nDCG and Regret scores because Feurer et al.
(2015) use that value when evaluating their metalearning approach. We evaluated our results using
many values of k, but found that the results are not substantially different for k > 1. Table 2 and
Table 3 show nDCG and Regret, respectively, for k ∈ {1, 25, 100, 4592}. One thing to note is that
for Regret@1, almost any algorithm except Random is effective - however, Random becomes more
effective in Regret as k increases. For a theoretical explanation of why Random is effective at larger
k values, see Appendix D. We further find that the DAG-LSTM continues to provide equal or better
performance than all other models across the different metrics and k values.

Model nDCG@1 nDCG@25 nDCG@100 nDCG @ 4592

Random 0.760 ± 0.008 0.759 ± 0.005 0.775 ± 0.004 0.948 ± 0.001
k-ND 0.848 ± 0.000 0.805 ± 0.000 0.793 ± 0.000 0.949 ± 0.000
Linear Regression 0.880 ± 0.000 0.886 ± 0.000 0.898 ± 0.000 0.981 ± 0.000
Random Forest 0.901 ± 0.011 0.906 ± 0.007 0.916 ± 0.007 0.983 ± 0.003
Meta Auto-sklearn 0.890 ± 0.003 0.900 ± 0.001 0.914 ± 0.000 0.984 ± 0.000
LSTM 0.823 ± 0.064 0.834 ± 0.059 0.843 ± 0.056 0.973 ± 0.014
Attention 0.900 ± 0.011 0.899 ± 0.007 0.912 ± 0.006 0.986 ± 0.003
DAG LSTM 0.888 ± 0.018 0.890 ± 0.017 0.902 ± 0.018 0.981 ± 0.008
NMN 0.856 ± 0.018 0.872 ± 0.013 0.886 ± 0.009 0.972 ± 0.006

Table 2: Mean and std of metamodel results for the nDCG metric at various levels of k over five runs
with different seeds. Scores in bold are not significantly different than the best score in the column
from a two-sample t-test (p > 0.05). Higher is better.

Model Regret@1 Regret@25 Regret@100

Random 0.095 ± 0.012 0.014 ± 0.002 0.005 ± 0.001
k-ND 0.049 ± 0.000 0.011 ± 0.000 0.002 ± 0.000
Linear Regression 0.050 ± 0.000 0.024 ± 0.000 0.018 ± 0.000
Random Forest 0.047 ± 0.007 0.026 ± 0.002 0.018 ± 0.002
Meta Auto-sklearn 0.053 ± 0.002 0.029 ± 0.001 0.020 ± 0.001
LSTM 0.091 ± 0.055 0.045 ± 0.040 0.021 ± 0.017
Attention 0.056 ± 0.005 0.044 ± 0.005 0.028 ± 0.004
DAG LSTM 0.055 ± 0.016 0.042 ± 0.018 0.027 ± 0.013
NMN 0.075 ± 0.018 0.046 ± 0.012 0.022 ± 0.005

Table 3: Mean and std of metamodel results for the Regret metric at various levels of k over five runs
with different seeds. Note that Regret@4592 is 0 by definition. Scores in bold are not significantly
different than the best score in the column from a two-sample t-test (p > 0.05). Lower is better.
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B EXPERIMENTAL SETTINGS

We use Scikit-learn (Pedregosa et al., 2011) implementations for feature preprocessing and classi-
fication algorithms and execute them in the ML framework developed as part of the Data-Driven
Discovery of Models (D3M) program (Milutinovic, 2019; Milutinovic et al., 2020) that handles
train/test splits and pipeline execution.

Experiments to gather the metadataset ran for two weeks on 20 computers with 4 Intel Core i7-
4770K CPUs and 32 GB DIMM1 RAM. We kept pipeline results that successfully ran, indicating
that the algorithm worked on the data (e.g. an algorithm that could not process non-numeric text
would fail on a dataset that included it) and did not cause an out of memory error. Although this
reduced our overall number of pipeline runs, we were still able to gather the cross product of all
executable combinations of pipelines on the 194 datasets.

We trained the neural metamodels using mean squared error loss. Ranking the pipelines was done by
using the predicted pipeline performance to estimate rank. Ranking pipelines by estimating perfor-
mance has several advantage over directly learning to rank a set of pipelines. Ranking pipelines di-
rectly requires the metamodel to operate simultaneously on all candidate pipelines. Adding a single
pipeline to that ranking requires re-ranking all pipelines. With an estimate of performance, adding a
new pipeline to the ranking requires that the metamodel process only the new pipeline instead of all
previously considered pipelines. This advantage applies to AutoML systems like Auto-sklearn [18],
TPOT [35], and AlphaD3M [15, 16], where pipelines are generated dynamically at runtime.

We choose to use a meta-holdout set instead of using meta-cross-validation due to computational
tractability in tuning the metamodels’ hyper-parameters on the meta-validation set.

C ML ALGORITHMS

Missing value imputation The imputation ML algorithm sampled values from each column inde-
pendently and uniformly over all instances with known values.

Feature Preprocessing FastICA (Hyvarinen, 1999), GenericUnivariateSelect, Ker-
nelPCA (Schölkopf et al., 1997), MinMaxScaler, Nystroem (Drineas & Mahoney, 2005),
PCA (Wold et al., 1987), SelectFwe, SelectPercentile, StandardScaler, and the No-Op.

Classification BaggingClassifier (Breiman, 1996), BernoulliNB (Duda et al., 2012), Deci-
sionTreeClassifier (Swain & Hauska, 1977), ExtraTreesClassifier (Geurts et al., 2006), Gaus-
sianNB (Duda et al., 2012), GradientBoostingClassifier (Friedman, 2001), KNeighborsClassi-
fier (Cover & Hart, 1967), LinearDiscriminantAnalysis (Riffenburgh, 1957), LinearSVC (Platt,
1999), LogisticRegression (Kleinbaum et al., 2002), PassiveAggresiveClassifier (Crammer et al.,
2006), RandomForestClassifier (Breiman, 2001), SGDClassifier (Platt, 1999), SVC (Platt, 1999)

D WHY IS RANDOM SO GOOD?

As shown in Table 1, the Random metamodel offers a competitive baseline in terms of choosing
at least one really good pipeline with its low Regret@25 score. It seems counter-intuitive that the
most naive model outperforms the models that get to look at the training data. Suppose for some
dataset that the pipeline F1 macro scores were distributed uniformly across that interval [0, 1] Then,
choosing k pipelines at random, or in other words ranking the pipelines randomly and choosing the
top k from that ranking, would likely yield k pipelines that were more or less uniformly distributed
on [0, 1]. The best of the k would, of course, be close to 1.

More formally, the score of the best pipeline under these assumptions is more generally known
as the largest order statistic, whose expected value when sampling from a uniform distribution is
k

k+1 . When k is 25, we would thus expect the Random metamodel to pick a pipeline with a score
of 25/26 ≈ 0.962. The Regret@k, assuming that a pipeline with a perfect score exists, would be
0.038. We observe in Table 1 that the Random metamodel has slightly lower, but still comparable
result to this approximation. Although an approximation, this analysis suggests one possible reason
why sampling pipelines at random will generate at least one that is close to the best possible pipeline
for a given dataset.
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E DATASETS

We used the following datasets to build our metadataset, grouped by their sources:

Dataset from Zenodo (Guzey et al., 2014):

• Word Level Classification Dataset

Dataset from UCI (Dheeru & Karra Taniskidou, 2017):

• Hepatitis Dataset

Datasets from UCI (Lichman, 2013):

• Breast Cancer Wisconsin Diagnostic Dataset
• DrivFace Dataset
• Breast Cancer Wisconsin Original Dataset
• SPECT Heart Dataset

Datasets from OpenML (Vanschoren et al., 2014):

• Abalone Dataset (3 classes)
• ADA Agnostic Dataset
• Prior Dataset
• Adult Dataset
• Allrep Dataset
• Analcatdata Authorship Dataset
• Analcatdata Birthday Dataset
• Analcatdata BroadwayMult Dataset
• Analcatdata DMFT Dataset
• Analcatdata GermanGSS Dataset
• Analcatdata GSSSexSurvey Dataset
• Analcatdata HallOfFame Dataset
• Analcatdata Lawsuit Dataset
• Analcatdata Reviewer Dataset
• Anneal Dataset
• Arsenic Female Bladder Dataset
• Arsenic Male Bladder Dataset
• Artificial Characters Dataset
• Audiology Dataset
• Australian Dataset
• AutoHorse Dataset
• AutoUniv-Au1-1000 Dataset
• AutoUniv-Au4-2500 Dataset
• AutoUniv-Au6-1000 Dataset
• AutoUniv-Au6-400 Dataset
• AutoUniv-Au6-750 Dataset
• AutoUniv-Au7-1100 Dataset
• AutoUniv-Au7-500 Dataset

• AutoUniv-Au7-700 Dataset
• Backache Dataset
• Badges2 Dataset
• Balance Scale Dataset
• Banana Dataset
• Bank Marketing Dataset
• Banknote Authentication Dataset
• Baseball Dataset
• Biomed Dataset
• Blood Transfusion Service Center

Dataset
• Breast Cancer Dataset
• BreastTumor Dataset
• Breast W Dataset
• CalendarDOW Dataset
• Car Dataset
• Cardiotocography Dataset
• Cardiotocography Dataset (3 classes)
• Cars Dataset
• CastMetal1 Dataset
• Chscase Funds Dataset
• Chscase Vine2 Dataset
• Chscase Whale Dataset
• Click Prediction Small Dataset
• Climate Model Simulation Crashes

Dataset
• CMC Dataset
• Colic Dataset
• Collins Dataset
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• Corral Dataset
• CostaMadre1 Dataset
• Credit Approval Dataset
• Credit G Dataset
• CRX Dataset
• Cylinder Bands Dataset
• Dermatology Dataset
• Diabetes Dataset
• Diggle Table A2 Dataset
• Dresses Sales Dataset
• E. Coli Dataset
• Eucalyptus Dataset
• Eye Movements Dataset
• First Order Theorem Proving Dataset
• FishCatch Dataset
• Flags Dataset
• Flare Dataset
• GAMETES Epistasis 2 Way 20atts

0.1H EDM 1 1 Dataset
• GAMETES Epistasis 2 Way 20atts

0.4H EDM 1 1 Dataset
• GAMETES Epistasis 3 Way 20atts

0.2H EDM 1 1 Dataset
• GAMETES Heterogeneity 20atts 1600

Het 0.4 0.2 50 EDM 2 001 Dataset
• GAMETES Heterogeneity 20atts 1600

Het 0.4 0.2 75 EDM 2 001 Dataset
• Glass Dataset
• Grub Damage Dataset
• Haberman Dataset
• Hayes Roth Dataset
• Heart C Dataset
• Hepatitis Dataset
• Hill Valley Dataset
• Housing Dataset
• Indian Liver Patient Dataset
• Ionosphere Dataset
• Irish Dataset
• Japanese Vowels Dataset
• JM1 Dataset
• KC1 Dataset
• KC2 Dataset
• KC3 Dataset
• King+Rook versus King+Pawn Dataset
• Led24 Dataset

• LED Display Dataset
• Lowbwt Dataset
• Machine CPU Dataset
• MC2 Dataset
• MeanWhile1 Dataset
• MegaWatt1 Dataset
• MFeat Fourier Dataset
• MFeat Karhunen Dataset
• MFeat Morphological Dataset
• MFeat Zernike Dataset
• MiceProtein Dataset
• M of N 3 7 10 Dataset
• Monks Problems 1 Dataset
• Monks Problems 3 Dataset
• MW1 Dataset
• Nursery Dataset
• One Hundred Plants Margin Dataset
• One Hundred Plants Texture Dataset
• OptDigits Dataset
• Ozone Level 8hr Dataset
• Page Blocks Dataset
• Parity 5 Plus 5 Dataset
• Parkinsons Dataset
• PC1 Dataset
• PC3 Dataset
• PC4 Dataset
• PenDigits Dataset
• Phoneme Dataset
• PieChart1 Dataset
• Pima Dataset
• PizzaCutter1 Dataset
• Planning Relax Dataset
• PopularKids Dataset
• PRNN Crabs Dataset
• PRNN Synth Dataset
• pwlinear Dataset
• QSAR Biodegradation Dataset
• Ringnorm Dataset
• RMfTSA Cyprus Tourist Arrivals

Dataset
• RMfTSA Sleep Dataset
• Robot Failures LP5 Dataset
• South Africa Heart Disease Dataset
• Seeds Dataset
• Segment Dataset
• Seismic Bumps Dataset
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• Servo Dataset
• Smartphone Based Recognition Of Hu-

man Activities Dataset
• Solar Flare 1 Dataset
• Solar Flare 2 Dataset
• Sonar Dataset
• Soybean Dataset
• Spambase Dataset
• SPECTF Heart Dataset
• Splice Dataset
• Steel Plates Fault Dataset
• Synthetic Control Dataset
• Tamil Nadu Electricity Dataset
• Teaching Assistant Dataset
• Tecator Dataset
• Texture Dataset
• Thoracic Surgery Dataset
• Thyroid Allbp Dataset
• Thyroid Allhyper Dataset
• Thyroid Ann Dataset
• Thyroid Dis Dataset
• Thyroid New Dataset
• Tic Tac Toe Dataset
• Titanic Dataset
• Tokyo1 Dataset
• Triazines Dataset

• Twonorm Dataset

• User Knowledge Dataset

• Vehicle Dataset

• Vertebra Column Dataset

• Vertebra Column Dataset (2 classes)

• Volcanoes A1 Dataset

• Volcanoes A2 Dataset

• Volcanoes A3 Dataset

• Volcanoes A4 Dataset

• Volcanoes B1 Dataset

• Volcanoes B4 Dataset

• Volcanoes D1 Dataset

• Vote Dataset

• Vowel Dataset

• Wall Robot Navigation Dataset

• Wall Robot Navigation Dataset (3 at-
tributes)

• Wall Robot Navigation Dataset (5 at-
tributes)

• Waveform 5000 Dataset

• Breast Cancer Wisconsin Diagnostic
Dataset

• Wholesale Customers Dataset

• Wilt Dataset

• Wine Quality White Dataset

• XD6 Dataset

F METAFEATURES

We compute 72 metafeatures using a Python port of Reif (2012), with additional metafeatures from
Vanschoren et al. (2014). This follows previous work, e.g. Auto-sklearn uses only 30 metafeatures.

1. Number Of Instances

2. Number Of Features

3. Number Of Numeric Features

4. Number Of Categorical Features

5. Ratio Of Numeric Features

6. Ratio Of Categorical Features

7. Number Of Classes

8. Mean Class Probability

9. Skew Class Probability

10. Kurtosis Class Probability

11. Min Class Probability

12. Quartile 1 Class Probability

13. Quartile 2 Class Probability

14. Quartile 3 Class Probability

15. Max Class Probability

16. Minority Class Size

17. Majority Class Size

18. Dimensionality

19. Number Of Missing Values

20. Ratio Of Missing Values

21. Class Entropy

22. Naive Bayes Err Rate

23. Naive Bayes Kappa

24. kNN 1N Err Rate

25. kNN 1N Kappa

26. Decision Stump Err Rate
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27. Decision Stump Kappa
28. Random Tree Depth 1 Err Rate
29. Random Tree Depth 1 Kappa
30. Random Tree Depth 2 Err Rate
31. Random Tree Depth 2 Kappa
32. Random Tree Depth 3 Err Rate
33. Random Tree Depth 3 Kappa
34. Mean Decision Tree Level Size
35. Total Metafeature Compute Time
36. Skew Decision Tree Level Size
37. Kurtosis Decision Tree Level Size
38. Min Decision Tree Level Size
39. Decision Tree Node Count
40. Max Decision Tree Attribute
41. Max Decision Tree Level Size
42. Linear Discriminant Analysis Kappa
43. Quartile 1 Decision Tree Level Size
44. Quartile 2 Decision Tree Level Size
45. Quartile 3 Decision Tree Level Size
46. Mean Decision Tree Branch Length
47. Skew Decision Tree Branch Length
48. Decision Tree Leaf Count
49. Decision Tree Height
50. Min Decision Tree Branch Length
51. Max Decision Tree Branch Length
52. Decision Tree Width

53. Mean Decision Tree Attribute
54. Kurtosis Decision Tree Branch Length
55. Number Of Features With Missing Val-

ues
56. Ratio Of Features With Missing Values
57. Number Of Instances With Missing

Values
58. Ratio Of Instances With Missing Values
59. Standard Deviation Decision Tree At-

tribute
60. Skew Decision Tree Attribute
61. Kurtosis Decision Tree Attribute
62. Min Decision Tree Attribute
63. Quartile 1 Decision Tree Attribute
64. Quartile 2 Decision Tree Attribute
65. Quartile 3 Decision Tree Attribute
66. Standard Deviation Class Probability
67. Linear Discriminant Analysis Err Rate
68. Quartile 1 Decision Tree Branch

Length
69. Quartile 2 Decision Tree Branch

Length
70. Quartile 3 Decision Tree Branch

Length
71. Standard Deviation Decision Tree

Level Size
72. Standard Deviation Decision Tree

Branch Length
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