Efficient Model Development through Fine-tuning Transfer

Anonymous ACL submission

Abstract

Modern LLMs struggle with efficient updates,
as each new pretrained model version requires
repeating expensive alignment processes. This
challenge also applies to domain- or language-
specific models, where fine-tuning on special-
ized data must be redone for every new base
model release. In this paper, we explore the
transfer of fine-tuning updates between model
versions. Specifically, we derive the diff vec-
tor (representing the weight changes from fine-
tuning) from one source model version and
apply it to the base model of a different rarget
version. Through empirical evaluations on vari-
ous open-weight model versions, we show that
transferring diff vectors can significantly im-
prove the performance of the target base model.
For example, transferring the fine-tuning up-
dates from Llama 3.0 8B improves Llama 3.1
8B by 46.9% on IFEval and 15.7% on Live-
CodeBench without additional training, even
surpassing Llama 3.1 8B Instruct. Furthermore,
we demonstrate performance gains on multilin-
gual tasks, with 4.7% and 15.5% improvements
on Global MMLU for Malagasy and Turkish,
respectively. We observe that these merged
models provide stronger initializations for fur-
ther fine-tuning. Lastly, our controlled experi-
ments suggest that fine-tuning transfer is most
effective when source and target models lie in
a linearly connected region of parameter space,
and we provide a theoretical analysis of our
method. Taken together, fine-tuning transfer
offers a cost-efficient and practical strategy for
continuous LLM development. Our code will
be available at https://anonymous.4open.
science/r/finetuning-transfer.

1 Introduction

Today’s large language models (LLMs) are devel-
oped in two stages: (1) pretraining on massive
corpora with self-supervised learning, and (2) post-
training with alignment steps (Ouyang et al., 2022;
Bai et al., 2022). While this pipeline creates pow-

)
m, fine-tuning m,
e.g., pretrained instruction-tuned
Llama 3.0 Ag: m’s_ m Llama 3.0
&
,,,,, -t
: | optional
m, i ! fine-tuning
pretrained [T ®------ 7] m + A [i
Llama 3.1

Figure 1: To transfer fine-tuning (e.g., instruction tun-
ing) from a source model version s (e.g., Llama 3.0)
to a rarget version t (Llama 3.1), we first compute the
diff vector A; = m/, — m, from version s, where m/,
is the fine-tuned model (instruction-tuned Llama 3.0)
and my is the base model (pretrained Llama 3.0). Then,
we add A; to the target base model (pretrained Llama
3.1) to approximate the fine-tuned model in version ¢
(instruction-tuned Llama 3.1).

erful LLMs, it presents a major bottleneck for con-
tinuous development: every new version of a pre-
trained model requires repeating expensive post-
training. This challenge is particularly acute in
domain- or language-specific applications, where
the cost of redoing fine-tuning for each base model
update is prohibitive (Qin et al., 2023; Bandarkar
et al., 2024).

In this paper, we explore a method to reduce
post-training costs by transferring fine-tuning up-
dates between different model versions. Specifi-
cally, we propose incorporating the weight updates
from a source model version s to improve a far-
get model version ¢. Our approach (see Figure 1)
first computes the diff vector Ay = m!, — m from
version s, which represents the difference between
the fine-tuned model m/, (e.g., instruction-tuned)
and its base model ms (pretrained). Intuitively,
Ag encodes the task-specific updates to the model
parameters during fine-tuning, and can be used to
transfer knowledge from the source version s to the
target version t. Contrary to prior work (Ilharco
et al., 2023; Huang et al., 2023), which focuses

https://anonymous.4open.science/r/finetuning-transfer
https://anonymous.4open.science/r/finetuning-transfer
https://anonymous.4open.science/r/finetuning-transfer

on improving the capabilities of a single model
on a specific target task, we focus on a general-
purpose method to transfer updates between dif-
ferent model versions for a variety of downstream
tasks. We hypothesize that models fine-tuned us-
ing the same or similar training data and proce-
dures exhibit linear relationships across versions:
m/, — ms ~ m; — my. This suggests that we can
approximate the fine-tuned version m; of the target
base model m; without training: m} ~ m; + As.
The intuition is supported by linear mode connec-
tivity theory (Mirzadeh et al., 2020; Frankle et al.,
2020), which shows that two independently trained
networks can be connected by a low-loss path (see
Appendix A).

We begin by evaluating the feasibility of our ap-
proach through the transfer of diff vectors across
different versions of open-weight models (Sec-
tion 2). Recycling the fine-tuning updates from
Llama 3.0 yields a 46.9% absolute accuracy im-
provement on IFEval over Llama 3.1 8B, while
also surpassing the performance of Llama 3.1 8B
Instruct without additional training.

Motivated by these results, we conduct a case
study on the development of multilingual models
(Section 3). We observe that diff vectors transfer
facilitates a better understanding of the target lan-
guage. Specifically, transferring weights from a
fine-tuned version of Llama 3.0 Instruct to Llama
3.1 Instruct yields absolute accuracy improvements
of 4.7% for Malagasy and 15.5% for Turkish on the
Global MMLU benchmark (Singh et al., 2024a),
without additional training.

To shed light on when fine-tuning transfer is
most effective, we perform controlled experiments
using OLMo 2’s (OLMo et al., 2024) intermediate
pretrained checkpoints as different model versions
(Section 4). Our results suggest that fine-tuning
transfer is most effective when the source and tar-
get models lie within a linearly connected region
of the parameter space, consistent with linear mode
connectivity (Mirzadeh et al., 2020; Ainsworth
etal., 2023; Wortsman et al., 2022a,b; Frankle et al.,
2020).

Furthermore, we investigate whether the merged
model m; + Ag can serve as a computationally ef-
ficient and effective starting point for fine-tuning
(Section 5). Our experiments demonstrate that ini-
tializing fine-tuning with this merged model can
accelerate convergence and improve accuracy com-
pared to training on top of m;. We find that even
when the selected diff vector is suboptimal, fine-

tuning the merged model consistently improves
performance compared to direct fine-tuning, with-
out harming generalization to unseen tasks. This
suggests that fine-tuning transfer can serve as a ro-
bust and effective intermediate step when training
is feasible.

Lastly, we explore a continuous model develop-
ment scenario (in Section 6) in which new model
versions are regularly released. We propose an iter-
ative recycling—then—fine-tuning approach that in-
crementally accumulates fine-tuning updates from
previous versions. In summary, our key contribu-
tions are as follows.

* Introducing an approach for transferring fine-
tuning updates between model versions via
diff vector transfer.

* Demonstrating that this approach can reduce
training costs while maintaining competitive
performance.

* Validating the approach in a multilingual
model development setting, showing im-
proved language-specific performance with-
out retraining.

 Establishing conditions for effective fine-
tuning transfer, particularly when models ex-
hibit linear mode connectivity.

* Proposing a recycling-then-finetuning strategy
to improve both efficiency and performance
in a continuous model development setting.

2 Transferring fine-tuning updates across
model versions

In this section, we explore transferring the weight
changes from a source model version s to a target
model version ¢, denoted T,_,;, without additional
training. Specifically, we directly merge (add) the
diff vector Ay = m/, — m; from version s, which
captures the parameter adaptations from the base
model my to its fine-tuned counterpart m’,, onto
the new base model m; in version ¢, without any
gradient-based training. Our results (Table 1) show
that fine-tuning updates can be effectively trans-
ferred across model versions, as m; + /A, often
performs comparably to its fine-tuned counterpart

2.1 Experimental setup

We conduct experiments with various open-weight
models, including Llama (Dubey et al., 2024),

Model GSMS8K MATH ARC: GPQA MMLU IFEval HE+ MBPP+ LCB BCB Avg
Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6 56.7 55.6 14.0 6.8 498
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5 31.1 51.3 0.0 6.1 34.5

+ Az 82.8 44.7 83.0 25.9 70.0 76.6 62.8 553 158 128 53.0
Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5 61.0 54.8 16.0 149 55.2
Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 36.4 29.9 51.9 0.4 54 368

+ Az 79.8 29.9 82.9 32.6 65.1 83.3 55.5 56.6 16.1 10.1 512

Table 1: Fine-tuning transfer significantly improves the performance of the target base model across various
tasks, achieving results comparable to its fine-tuned counterpart in many cases. Here, A3 and A3 ; represent
the diff vectors between Llama Instruct and Llama for versions 3.0 and 3.1, respectively. Notably, adding the diff
vector A from a different model version can effectively transform a non-instruction-tuned model (e.g., Llama
3.0 or Llama 3.1) into one that follows instructions well (Llama 3.0 + A3 ; or Llama 3.1 + A3 o) without further
training. Additional results for OLMo and Tiilu can be found in Appendix B.1, where we additionally find that
advanced LLM capabilities, attained through alignment tuning stages such as Supervised Fine-Tuning (SFT), Direct
Preference Optimization (DPO), or Group Relative Policy Optimization (GRPO), can be successfully transferred

across different model versions.

OLMo (OLMo et al., 2024), and Tiilu (Lambert
et al., 2024). Throughout this work, we ensure that
our source and target models are of the same archi-
tecture. We provide additional cross-architecture
transfer results in Appendix B.2 and leave further
research on cross-architecture recycling as future
work. Our study explores both transfer directions:
from an older model version to a newer one (re-
cycling) and from a newer version to an older one
(backporting).

Recycling can save training time and computa-
tional resources, while incorporating post-training
capabilities into the newer pretrained model. Con-
versely, backporting is beneficial when the older
base model is better optimized for a specific use
case (e.g., a particular language), allowing the user
to take advantage of the new fine-tuning improve-
ments while maintaining optimization and com-
patibility.! We emphasize that our goal is not to
achieve state-of-the-art results, but instead to assess
the feasibility of transferring fine-tuning updates
between model versions.

We evaluate the merged model m; + A on
a diverse set of benchmarks, including general
knowledge with MMLU (Hendrycks et al., 2021a),
math with GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b), reasoning with
ARCc (Clark et al., 2018) and GPQA (Rein et al.,
2024), instruction-following with IFEval (Zhou
et al., 2023), code generation with HumanEval+
(HE+ in Table 1) and MBPP+ (Liu et al., 2023),
LiveCodeBench (Jain et al., 2024), and Big-

'In software development, backporting refers to the pro-
cess of adapting features or updates from a newer version of a
software system or component for use in an older version.

CodeBench (Zhuo et al., 2024) (LCB and BCB
in Table 1 respectively). We compare its perfor-
mance to that of directly fine-tuned m; (i.e., mff).2
See Appendix C for evaluation details.

2.2 Results and discussion

Transferring fine-tuning substantially boosts
the target base model’s performance: Table 1
shows our results when transferring fine-tuning
(i.e., instruction tuning) updates between Llama
3.0 and Llama 3.1. First, we note that Llama 3.0
Instruct consistently performs better than Llama
3.1 (and vice versa). This highlights that most
capabilities of the instruction-tuned model arise
post-training. Here, we attempt to transfer such
capabilities between model versions, and thus by-
pass the alignment stage. Strikingly, adding the diff
vector Ay from a different model version can ef-
fectively transform a non-instruction-tuned model
(e.g., Llama 3.0 or Llama 3.1) into one that follows
instructions well (Llama 3.0 + A3 1 or Llama 3.1 +
As). For example, our approach yields 42.1%
and 46.9% absolute accuracy improvements on
the instruction-following benchmark IFEval over
the base versions of Llama 3.0 and Llama 3.1, re-
spectively. Large gains are also observed across
the board on math, code, and reasoning bench-
marks, with an average improvement of 18.5% for
Llama 3.0 and 14.4% for Llama 3.1. These results
suggest that advanced knowledge and instruction-
following abilities can be efficiently transferred

’For evaluating HumanEval+ and MBPP+ we use
EvalPlus (Liu et al., 2023), and the official evaluation li-
braries for LiveCodeBench and BigCodeBench. All other
tasks are evaluated using the 1m-evaluation-harness li-
brary (Gao et al., 2024).

between model versions without further training.
In general, Llama 3.0 benefits more from the back-
ported diff vector A3 1 from version 3.1 than Llama
3.1 does from recycling version 3.0’s diff vector
Az .

Transferring fine-tuning can achieve perfor-
mance comparable to the fine-tuned model:
Our results demonstrate that the merged model
m¢ + Ag can perform on par with its fine-tuned
counterpart m; across various tasks. This is partic-
ularly true for Llama 3.0 + Aj 1, which matches
or surpasses Llama 3.0 Instruct on eight out of
ten tasks we evaluated. Interestingly, Llama 3.1
+ Aj o outperforms LLama 3.1 Instruct on four
out of the ten benchmarks. This is a testament to
the diff vector’s ability to encode advanced reason-
ing and instruction-following capabilities. Overall,
our results suggest that fine-tuning transfer pro-
vides an effective and extremely low-cost method
to improve model performance when training is
prohibitively expensive.

3 Efficient multilingual model
development

Motivated by our results in Section 2, we now turn
toward applying our fine-tuning transfer approach
in a multilingual model development setting. We
focus exclusively on a recycling scenario, where
our aim is to transfer the language-specific instruc-
tion tuning updates from an older model version to
a newer one.

For language-specific instruction tuning, we
fine-tune an instruction-tuned model rather than
a pretrained one. This approach aligns with the
common practice of using an instruction-tuned
English or multilingual model as the foundation
when developing language-specific models. A
key challenge in this setting is that state-of-the-art
LLMs often include multilingual data in pretrain-
ing and instruction tuning, which makes it unclear
whether language-specific fine-tuning is still neces-
sary. How effective is our recycling approach when
applied to a multilingual instruction-tuned model?
Our results show that recycling fine-tuning remains
effective in this scenario, as long as the target base
model is outperformed by the fine-tuned model of
the source version.

3.1 Experimental setup

We fine-tune Llama 3.0 Instruct (mg) separately on
language-specific instruction tuning data for three

Model Malagasy Sinhala Turkish
Llama 3.0 8B Instruct 23.1 23.3 30.8
+FT 30.8 29.0 43.2
Llama 3.1 8B Instruct 27.6 33.0 27.7
+ A3 323 323 43.2

Table 2: Recycling fine-tuning updates improves multi-
lingual performance on Global MMLU without retrain-
ing, yielding a 4.7% and 15.5% absolute improvement
for Malagasy and Turkish, respectively, compared to
Llama 3.1 8B Instruct. A3 o represents the diff vector
between Llama 3.0 Instruct and its monolingual fine-
tuned (FT) version.

languages: Malagasy, Sinhala, and Turkish. We use
the Aya dataset (Singh et al., 2024b) for Malagasy
(14.6K examples) and Sinhala (14.5K examples),
and the InstrucTurca dataset (Altinok, 2024) for
Turkish (16.7K examples).? Each model is trained
for 30K training steps with a learning rate of 5e-6
and a batch size of 8, using 4 NVIDIA A100-80G
GPUs.*

After training on each language, we compute the
diff vector Ay = m/, — mg and add it to Llama 3.1
Instruct m;. We simulate a low-resource setting
and do not perform any additional training with
language-specific data. The merged model m; +
Ay is evaluated against the base model m; on the
Global MMLU benchmark (Singh et al., 2024a).

3.2 Results and discussion

Transferring fine-tuning is effective for develop-
ing multilingual models: Our results in Table 2
demonstrate the benefits of reusing fine-tuning up-
dates in multilingual model development. For
Malagasy and Turkish, transferring the diff vector
from Llama version 3.0 to 3.1 results in significant
accuracy improvements (4.7% and 15.5%, respec-
tively) over Llama 3.1 8B Instruct. Our recycling
approach performs better than the fine-tuned Llama
3.0 Instruct model for Malagasy (1.5% accuracy
improvement) and maintains similar performance
for Turkish.

On the other hand, for Sinhala, recycling fine-
tuning offers no advantage, as Llama 3.1 Instruct al-
ready outperforms the previously fine-tuned Llama

3To simulate a low-resource setting, we sampled 6.5% of
the original InstrucTurca dataset, which contains 2.58 million
examples, resulting in approximately 16.7K examples.

*We use the AdamW optimizer with a linear scheduler
and a warmup ratio of 0.03. We disable dropout and exclude
weight decay for embeddings. The sequence length is 2048.
We use open-instruct (Lambert et al., 2024) for training and
Im-evaluation-harness (Gao et al., 2024) for evaluation.

3.0 Instruct. However, even in this case, recycling
does not significantly reduce performance.

4 When is fine-tuning transfer effective?

Having demonstrated the effectiveness of fine-
tuning transfer, we now conduct controlled experi-
ments to better understand when this approach is
most effective. At a high level, we treat different
checkpoints of a pretrained model as distinct model
versions. We then fine-tune these model versions
on the same data and assess the impact of transfer-
ring fine-tuning updates between them. Our results
reveal that fine-tuning transfer is most successful
when the source and target models are close within
a linearly connected region of the parameter space,
consistent with linear mode connectivity. We pro-
vide further theoretical analysis in Appendix A.

4.1 Experimental setup

We conduct experiments with the publicly available
intermediate checkpoints of OLMo 2 7B.> The base
OLMo 2 model was trained in two stages: (1) a gen-
eral web-based pretraining stage (stage 1), and (2) a
mid-training stage (stage 2) using high-quality web
data and domain-specific data to enhance STEM-
related capabilities. We select five checkpoints:
M (early-stage 1, at 300K steps), Mo (mid-stage
1, at 600K steps), M3 (end-stage 1, at 929K steps),
My (mid-stage 2, at 6K steps), and M5 (end-stage
2, at 12K steps). Each M; is treated as a distinct
model version. We investigate both transfer sce-
narios: (1) recycling (TMZ.HMj,i < 7), and (2)
backporting (Tat; ;5 J >).

Due to our limited computational resources, su-
pervised fine-tuning with a large instruction tuning
dataset would be prohibitively expensive. We there-
fore fine-tune all model versions using a subset of
the math reasoning instruction tuning data from
Tiilu 3, which includes Tiilu 3 Persona MATH,
GSM, and Algebra (220K examples total), follow-
ing the training procedure described in Section 3.1.

We evaluate our models on GSM8K and the
MATHS00 subset (Hendrycks et al., 2021b) of the
MATH dataset. These datasets are selected because
fine-tuning on Tiilu 3’s math reasoning data signif-
icantly improves performance on them, allowing
for a clearer analysis of the impact of transferring
fine-tuning updates between model versions.

3 https://huggingface.co/allenai/OLMo-2-1124-7B
®For evaluation, we use the OLMES library (Gu et al., 2024).

My My Mz My Ms

132 194 244 64.5 65.5

+ Ay 26.6 320 27.5 19.6

+ Ay 19.0 398 259 173

+ A3 143 25.0 68.6 70.3

+ Ay 11.8 18.0 22.6 77.1
+ Aj 119 160 240 729

FT(M;) 45.1 507 604 757 755

Table 3: GSMS8K accuracies indicating that more pow-
erful models are better at leveraging transferred fine-
tuning. Effective use of transferred fine-tuning only
emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer
works best when the source and target models are close
within a linearly connected region of the parameter
space. Here, M represents different intermediate pre-
trained checkpoints of OLMo 2 7B (with smaller values
of 7 indicating earlier checkpoints), and A; refers to the
diff vector resulting from the fine-tuning of version <.
FT(M,) denotes applying fine-tuning directly to M.
See Table 13 in Appendix D for MATHS500 results.

4.2 Results and discussion

More powerful models are better at leverag-
ing transferred fine-tuning: Our results in Ta-
ble 3 indicate that stronger models are more ef-
fective at leveraging transferred fine-tuning up-
dates. While transferring fine-tuning can improve
performance for M1, Ms, and Ms, the merged
models M; + A; (A; denotes the diff vector
from model version M, j # 1) still fall signif-
icantly short of their fine-tuned counterparts, de-
noted FT(M;). On GSMB8K, the accuracy gaps
between the best M; + A and FT(M;) are 26.1%,
24.1%, 20.6% for My, Mo, and M3, respectively.
In contrast, for My, this gap narrows to 2.8%.
Notably, recycling fine-tuning from My to M3
(i.e., M5 + Ay) surpasses fine-tuning directly on
M (FT(Ms5)), achieving 1.6% accuracy improve-
ment (77.1% vs. 75.5%). Similar trends are ob-
served on MATHS500. This pattern suggests an
emergent ability—effective use of transferred fine-
tuning only emerges when the target base model
is sufficiently strong. In other words, the benefits
of transferring fine-tuning only become significant
beyond a certain level of capability.

Fine-tuning transfer works best when models
are close in the parameter space: Our results
also suggest that fine-tuning transfer is most effec-
tive when the source and target models are closely

https://huggingface.co/allenai/OLMo-2-1124-7B

connected in the parameter space. On both GSM8K
and MATH500, models M7 and M benefit more
from Aj than from Ay or Aj. Similarly, My and
M gain more from Ag than from A; or As. Over-
all, M1, Ms, and M3 form a mutually beneficial
group, as do My and Mjs. However, transfer-
ring between these two groups can degrade per-
formance. Specifically, M1, M>, and M3 do not
benefit from Ay and Aj, while My and M5 typi-
cally benefit only from As.”

S Fine-tuning transfer as a starting point
for further fine-tuning

So far, we have explored a scenario where fine-
tuning updates are transferred between model ver-
sions without additional fine-tuning. We now
switch gears to investigate whether the merged
model m; + Ay can serve as a stronger and more
computationally efficient starting checkpoint for
further fine-tuning. We conduct controlled experi-
ments comparing two approaches: fine-tuning the
merged model m; + A, versus fine-tuning m; di-
rectly. Our results demonstrate that initializing
fine-tuning with m; + A, often leads to faster con-
vergence and higher performance on both seen and
unseen tasks. This suggests that fine-tuning transfer
can be a useful intermediate step when additional
training is feasible. We refer to this approach as
“transferring-then-finetuning”.

5.1 Experiment setup

We follow the training procedure outlined
in Section 3.1. For evaluation, we use
GSMS8K and MATHS500, along with an additional
dataset to assess how well our transferring-then-
finetuning approach generalizes to the unseen task
GPQAD;amona (Rein et al., 2024).

5.2 Results and discussion

Transferring-then-finetuning can substantially
boost performance: Our results are summarized
in Table 4. Transferring-then-finetuning offers
significant improvements over our vanilla trans-
fer approach (without additional fine-tuning) on
both GSM8K and MATHS500. On GSMB8K, the
largest accuracy improvements are 36.4%, 39.6%,
41.1%, 52.7%, and 61.4% for My, Mo, Mz, My,
and M3, respectively. The benefits are most pro-
nounced for weaker base models (M7, My, and

"The only exception is M benefiting from M; and Mo
on MATHS500.

My Mo Ms My Ms

13.2 19.4 24.4 64.5 65.5

+A; = FT 56.9,505 62.8,505 T7.8,505 78.64500
+Ay; = FT 50.1,5, 62.7,59 78.6,5; T78.T,514
+ A3 = FT 485, 57.6.3 T7.6,00 771,65
+ Ay — FT 482,54 56.7,55,; 63.7.4, 77.0,,
+ AS — FT 47~6+}5.7 55'6+3‘).6 63-5+395 74~6+1.7

FT(M;) 45.1 50.7 60.4 75.7 75.5

Table 4: GSMS8K accuracies showing that fine-tun-
ing transfer provides a stronger starting point (i.e.,
M; + Aj) for further fine-tuning (FT). Numbers in sub-
script indicate improvement over the baseline without
fine-tuning. Here, M, represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller val-
ues of 7 indicating earlier checkpoints), and A; refers to
the diff vector resulting from the fine-tuning of version
1. FT(M;) denotes applying fine-tuning directly to M.
See Table 14 in Appendix E for MATHS00 results.

M3) across all diff vectors, as well as for stronger
base models when paired with a weak diff vector
(e.g., M5+ Ay).

Interestingly, fine-tuning also helps bridge the
performance gap between the merged models M; +
Aj (j # 1) for each base model M;. For example,
fine-tuning dramatically improves the performance
of M5 + Ay by 59% and M5 + As by 61.4%, clos-
ing the gap with the fine-tuned versions of M5 +
Ag and M35 + Ay4. This reduces the need to pre-
select the best diff vector when multiple choices are
available. Importantly, transferring-then-finetuning
generally outperforms standard fine-tuning regard-
less of the diff vector used.

Transferring-then-finetuning can offer faster
convergence: Figure 2 shows that using the
merged model M; + A; as the initial checkpoint
improves training efficiency. Specifically, M; +
A not only converges significantly faster than M;
during fine-tuning but also reaches a higher peak
accuracy on GSMS8K. Overall, our results suggest
that transferring-then-finetuning is a cost-effective
approach that reduces the number of fine-tuning
steps, thereby improving training efficiency.

Transferring-then-finetuning does not nega-
tively impact model generalization: As shown
in Table 5, this approach attains strong zero-shot
generalization on the unseen task GPQAp;,mond>
comparable to standard fine-tuning. These results
suggest that transferring-then-finetuning does not
lead to overfitting, demonstrating its broad applica-
bility across diverse tasks.

M3
70

60

50

Accuracy

40

30

20

0 5000 10000

15000

20000 25000 30000

Number of finetuning steps

Ms
80

75

70

Accuracy

65

60

0 5000

10000 15000 20000 25000 30000

Number of finetuning steps

Figure 2: GSMB8K performance showing that fine-tuning transfer provides a more computationally efficient starting
point (i.e., M; + Aj;) for further training. Here, M represents different intermediate pretrained checkpoints of
OLMo 2 7B (with smaller values of ¢ indicating earlier checkpoints), and A refers to the diff vector resulting from
the fine-tuning of version j. Additional results for M, Mas, M, can be found Appendix E.

Ml MQ Mg M4 MS
23.7 24.2 23.2 26.3 25.3
+A; - FT 2530 25.2,, 333, 25845
+Ay 5 FT 27.8,; 253,00 308, 273.,
+ A3 - FT 27.8,; 27.8,; 237,05 27.3,s,
+Ay —»FT 248,, 24.8,; 26.3,,, 24.2,,
+As; - FT 2275, 26.8,, 23.2,, 27.8.
FT(M;) 25.8 26.8 26.8 19.2 26.3

Table 5: GPQAp;mond accuracies showing that fine-
tuning transfer provides a stronger starting point (i.e.,
M; + Aj) for further fine-tuning (FT), and transferring-
then-finetuning does not negatively impact model gen-
eralization to unseen tasks. Numbers in subscript indi-
cate improvement over the baseline without fine-tuning.
Here, M, represents different intermediate pretrained
checkpoints of OLMo 2 7B (with smaller values of ¢
indicating earlier checkpoints), and A; refers to the
diff vector resulting from the fine-tuning of version j.
FT(M;) denotes applying fine-tuning directly to M.

6 Iterative recycling-then-finetuning for
improved performance and efficiency

Building on the insights from our previous ex-
periments, we now explore a continuous model
development setting in which new versions of a
pretrained model are regularly released. At the
core of our approach is an iferative recycling-then-
finetuning strategy that incrementally incorporates
fine-tuning updates, i.e., diff vectors, from past
model versions. Instead of applying only the lat-
est diff vector to the new base model, we recy-
cle previous diff vectors iteratively. Specifically,
the diff vector at the current model version is car-
ried forward to the next for subsequent fine-tuning.

Our experiments show that this iterative recycling
approach consistently improves both training effi-
ciency and model performance.

6.1 Iterative recycling-then-finetuning

We treat the five intermediate checkpoints of OLMo
2 71B—My, Mo, M3, My, M5 (described in Sec-
tion 4.1) as different model versions of the pre-
trained OLMo 2 model. Our iterative recycling-
then-finetuning algorithm, outlined in Algorithm 1,
works as follows: At each iteration 7, we first apply
the most recent diff vector, A", to the new base
model M;, and then further fine-tune the result-
ing model. Next, we compute a new diff vector
between the fine-tuned model and the current base
model M;. This new diff vector is then carried
forward to the next model version for fine-tuning
in the subsequent iteration.

We refer to our iterative recycling-then-
finetuning approach as A“*" and compare it to
A%" the direct recycling-then-finetuning approach
as described in 5. We follow the training procedure
outlined in Section 3.1.

6.2 Results and discussion

Iterative recycling-then-finetuning significantly
improves performance: Table 6 compares the
performance of two recycling approaches: it-
erative recycling-then-finetuning (A%¢") and di-
rect recycling-then-finetuning (A%"). Both ap-
proaches lead to significant performance improve-
ments across model versions on GSMS8K, with
larger gains observed in earlier versions. Both ap-
proaches outperform the standard fine-tuning base-
line (without recycling) by a substantial margin.

M3 M4 MS
24.4 64.5 65.5
+ AdiT — FT 62-7+38.3 77.6+13_1 77-0+]1.5
+ A" S FT 634,50, 774, 78.6,5,
FT(M,) 004 757 756

Table 6: Both iterative (A®€") and direct (A%") re-
cycling-then-finetuning approaches significantly boost
GSMBS8K performance, surpassing standard fine-tuning
without recycling (FT(M)). Numbers in subscripts in-
dicate improvement over OLMo 2 7B checkpoints. At
a high level, A¥®" gradually incorporates fine-tuning
updates, i.e., diff vectors, from previous model versions,
while A%" directly applies the diff vector from the lat-
est model version to the current model. Results for M,
and M are omitted as these models remain identical
across the two approaches. See Appendix F for addi-
tional results.

In general, A”" performs similarly to or better
than A%" across all model versions. These results
suggest that in scenarios where the base model is
continuously updated, adopting an iterative recy-
cling strategy is beneficial and does not result in
error propagation.

7 Related work

Fine-tuning transfer: Prior work has studied
how to reuse fine-tuning updates on a fixed base
model to improve generalization across tasks, do-
mains, and languages. This includes full-model
adaptation (Phang et al., 2018; Pruksachatkun
etal.,2020; Vuetal., 2020, 2021; Aghajanyan et al.,
2021) as well as parameter-efficient modules such
as adapters (Pfeiffer et al., 2021; Poth et al., 2021),
soft prompts (Vu et al., 2022b,a; Su et al., 2022;
Asai et al., 2022), and LoRA matrices (Huang et al.,
2024; Zadouri et al., 2024; Ostapenko et al., 2024);
see Yadav et al. (2024a) for a comprehensive sur-
vey. These methods typically assume a shared base
model and focus on transferring capabilities across
tasks or domains. Similarly, model merging com-
bines multiple task-specific models based on the
same model to create a more powerful model (II-
harco et al., 2023; Yadav et al., 2023; Wang et al.,
2024a; Ramé et al., 2024; Yu et al., 2024; Yadav
et al., 2024b; Ahmadian et al., 2024; Bandarkar
et al., 2025). Recent work also extrapolates RLHF
updates back to the base model (Zheng et al., 2024;
Lin et al., 2025). In contrast, our work focuses
on transferring fine-tuning updates across differ-

ent model versions, addressing the challenge of
frequent model upgrades in LLM development.

Cross-model fine-tuning transfer: Several stud-
ies investigate transferring fine-tuning across dif-
ferent model architectures, primarily focusing on
lightweight modules in non-instruction-tuned set-
tings (Lester et al., 2022; Su et al., 2022; Wang
et al., 2024b; Fleshman and Van Durme, 2024;
Echterhoff et al., 2024).

Closely related to our work, Qin et al. (2023)
study recyclable fine-tuning in a continual domain
adaptation setting from the BERT (Devlin et al.,
2019) era, where fine-tuning updates from domain-
adapted checkpoints are reused to adapt to new
domains. Other efforts aim to reuse weights across
divergent model architectures through duplica-
tion (Chen et al., 2022), progressive stacking (Gong
et al., 2019), or parameter merging (Wang et al.,
2023). While these works reuse fine-tuning up-
dates across domains, skills, or architectures, our
work focuses on transferring full fine-tuning up-
dates across different versions of both pretrained
and instruction-tuned LLMs. This enables efficient
model development even when the underlying mod-
els differ in pretraining scale or alignment steps.
We evaluate both recycling and backporting scenar-
ios. Our approach complements prior work, and
combining these directions presents a promising
avenue for future research.

8 Conclusion

Our study demonstrates that fine-tuning transfer
offers a practical approach to mitigate the ineffi-
ciencies of frequent model updates. By applying
diff vectors from a fine-tuned source model ver-
sion to a different target model version, we achieve
substantial performance improvements without the
need for full fine-tuning. In a multilingual context,
this approach can significantly boost performance
on target-language tasks, offering an efficient so-
lution for language-specific fine-tuning. Through
controlled experiments, we show that fine-tuning
transfer is most effective when the source and tar-
get models are linearly connected in the parameter
space. Furthermore, this approach can offer a more
robust and computationally efficient starting check-
point for further fine-tuning. Taken together, we
hope that our work will spur more fundamental
research into the efficient development of modern
LLM:s.

Limitations

Our experiments focus on evaluating supervised
fine-tuning as a post-training method, using math
reasoning instruction data. However, supervised
fine-tuning is only one part of the broader post-
training process. Modern LLMs often undergo mul-
tiple post-training stages, including reinforcement
learning with human feedback (RLHF), preference
optimization, or training-then-merging techniques.
It is also important to evaluate a broader range of
downstream tasks to better assess generalization
across different LLM capabilities. In addition, the
impact of model shift, such as weight movement,
changes in the loss landscape, or representational
drift, on the transferability of diff vectors remains
underexplored. Expanding our approach to cover
these aspects of model development is a promising
direction for future work.

Ethical considerations and risks

Our approach aims to improve the efficiency of
LLM development by reducing the need for ex-
tensive alignment process. However, this method
carries certain risks. One concern is that reusing
fine-tuning updates may inadvertently transfer bi-
ases or undesirable behaviors from one model to
another, especially if the source model contains
such issues.

Although this approach lowers computational
costs, it does not negate the need for careful model
design to ensure ethical behavior. Thus, respon-
sible implementation of this technique is crucial.
Future research should explore its ethical impli-
cations across different model architectures and
training approaches.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799-5811.

Arash Ahmadian, Seraphina Goldfarb-Tarrant, Beyza
Ermis, Marzieh Fadaee, Sara Hooker, and 1 oth-
ers. 2024. Mix data or merge models? optimiz-
ing for diverse multi-task learning. arXiv preprint
arXiv:2410.10801.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2023. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh Inter-
national Conference on Learning Representations.

Duygu Altinok. 2024. Instructurca: A diverse instruc-
tional content dataset for turkish.

Akari Asai, Mohammadreza Salehi, Matthew Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
Parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6655-6672.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui
Hou, Nayan Singhal, Hongjiang Lv, and Bing Liu.
2024. Layer swapping for zero-shot cross-lingual
transfer in large language models. arXiv preprint
arXiv:2410.01335.

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui
Hou, Nayan Singhal, Hongjiang Lv, and Bing Liu.
2025. Layer swapping for zero-shot cross-lingual
transfer in large language models. In The Thirteenth
International Conference on Learning Representa-
tions.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. 2022. bert2BERT: To-
wards reusable pretrained language models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long

Papers), pages 2134-2148.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

https://aclanthology.org/2021.emnlp-main.468/
https://aclanthology.org/2021.emnlp-main.468/
https://aclanthology.org/2021.emnlp-main.468/
https://arxiv.org/abs/2410.10801
https://arxiv.org/abs/2410.10801
https://arxiv.org/abs/2410.10801
https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=CQsmMYmlP5T
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://aclanthology.org/2022.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.446/
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2410.01335
https://arxiv.org/abs/2410.01335
https://arxiv.org/abs/2410.01335
https://openreview.net/forum?id=vQhn4wrQ6j
https://openreview.net/forum?id=vQhn4wrQ6j
https://openreview.net/forum?id=vQhn4wrQ6j
https://aclanthology.org/2022.acl-long.151/
https://aclanthology.org/2022.acl-long.151/
https://aclanthology.org/2022.acl-long.151/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Jessica Echterhoff, Fartash Faghri, Raviteja Vemula-
palli, Ting-Yao Hu, Chun-Liang Li, Oncel Tuzel, and
Hadi Pouransari. 2024. Muscle: A model update
strategy for compatible Ilm evolution. arXiv preprint
arXiv:2407.09435.

William Fleshman and Benjamin Van Durme. 2024. Re-
adapt: Reverse engineered adaptation of large lan-
guage models. arXiv preprint arXiv:2405.15007.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode connec-
tivity and the lottery ticket hypothesis. In Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 3259-3269. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tieyan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 2337-2346. PMLR.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Had-
dad, Jesse Dodge, and Hannaneh Hajishirzi. 2024.
Olmes: A standard for language model evaluations.
arXiv preprint arXiv:2406.08446.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and

10

Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2024. Lorahub: Ef-
ficient cross-task generalization via dynamic lo0RA
composition. In First Conference on Language Mod-
eling.

Shih-Cheng Huang, Pin-Zu Li, Yu-Chi Hsu, Kuang-
Ming Chen, Yu Tung Lin, Shih-Kai Hsiao, Richard
Tzong-Han Tsai, and Hung-yi Lee. 2023. Chat vec-
tor: A simple approach to equip llms with instruction
following and model alignment in new languages.
arXiv preprint arXiv:2310.04799.

Gabriel IlTharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, and 1 others. 2024. Tiilu 3: Pushing fron-
tiers in open language model post-training. arXiv
preprint arXiv:2411.15124.

Brian Lester, Joshua Yurtsever, Siamak Shakeri, and
Noah Constant. 2022. Reducing retraining by re-
cycling parameter-efficient prompts. arXiv preprint
arXiv:2208.05577.

Yiguan Lin, Bin Xu, Yinghao Li, and Yang Gao.
2025. Extrapolation merging: Keep improving
with extrapolation and merging. arXiv preprint
arXiv:2503.04834.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36:21558-21572.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur,
Razvan Pascanu, and Hassan Ghasemzadeh. 2020.
Linear mode connectivity in multitask and continual
learning. arXiv preprint arXiv:2010.04495.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.09435
https://arxiv.org/abs/2407.09435
https://arxiv.org/abs/2407.09435
https://arxiv.org/abs/2406.14764
https://arxiv.org/abs/2406.14764
https://arxiv.org/abs/2406.14764
https://arxiv.org/abs/2406.14764
https://arxiv.org/abs/2406.14764
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://arxiv.org/abs/2406.08446
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://arxiv.org/abs/2310.04799
https://arxiv.org/abs/2310.04799
https://arxiv.org/abs/2310.04799
https://arxiv.org/abs/2310.04799
https://arxiv.org/abs/2310.04799
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2503.04834
https://arxiv.org/abs/2503.04834
https://arxiv.org/abs/2503.04834
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://arxiv.org/abs/2010.04495
https://arxiv.org/abs/2010.04495
https://arxiv.org/abs/2010.04495
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?

Advances in neural information processing systems,
33:512-523.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, and 1 others. 2024.
2 olmo 2 furious. arXiv preprint arXiv:2501.00656.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Lau-
rent Charlin, Nicolas Le Roux, Matheus Pereira, Lu-
cas Caccia, and Alessandro Sordoni. 2024. Towards
modular llms by building and reusing a library of
loras. arXiv preprint arXiv:2405.11157.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Clifton Poth, Jonas Pfeiffer, Andreas Riicklé, and Iryna
Gurevych. 2021. What to pre-train on? Efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10585-10605.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231-5247.

Yujia Qin, Cheng Qian, Xu Han, Yankai Lin, Huadong
Wang, Ruobing Xie, Zhiyuan Liu, Maosong Sun,
and Jie Zhou. 2023. Recyclable tuning for contin-
ual pre-training. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 11403—
11426.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in

Neural Information Processing Systems, volume 36,
pages 53728-53741.

11

Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert
Dadashi, Léonard Hussenot, Pierre-Louis Cedoz,
Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard,
and Olivier Bachem. 2024. Warp: On the benefits of
weight averaged rewarded policies. arXiv preprint
arXiv:2406.16768.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Shivalika Singh, Angelika Romanou, Clémentine Four-
rier, David I Adelani, Jian Gang Ngui, Daniel Vila-
Suero, Peerat Limkonchotiwat, Kelly Marchisio,
Wei Qi Leong, Yosephine Susanto, and 1 others.
2024a. Global mmlu: Understanding and addressing
cultural and linguistic biases in multilingual evalua-
tion. arXiv preprint arXiv:2412.03304.

Shivalika Singh, Freddie Vargus, Daniel D’souza,
Borje Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciu-
nas, Laura O’Mahony, Mike Zhang, Ramith Het-
tiarachchi, Joseph Wilson, Marina Machado, Luisa
Moura, Dominik Krzeminski, Hakimeh Fadaei, Irem
Ergun, Ifeoma Okoh, and 14 others. 2024b. Aya
dataset: An open-access collection for multilingual
instruction tuning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11521—
11567.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2022. On transferability of prompt tuning
for natural language processing. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3949-3969.

Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mo-
hit Iyyer, and Noah Constant. 2022a. Overcoming
catastrophic forgetting in zero-shot cross-lingual gen-
eration. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9279-9300.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022b. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5039-5059.

Tu Vu, Minh-Thang Luong, Quoc Le, Grady Simon, and
Mohit Iyyer. 2021. STraTA: Self-training with task

https://proceedings.neurips.cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2405.11157
https://arxiv.org/abs/2405.11157
https://arxiv.org/abs/2405.11157
https://arxiv.org/abs/2405.11157
https://arxiv.org/abs/2405.11157
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://arxiv.org/abs/1811.01088
https://arxiv.org/abs/1811.01088
https://arxiv.org/abs/1811.01088
https://aclanthology.org/2021.emnlp-main.827/
https://aclanthology.org/2021.emnlp-main.827/
https://aclanthology.org/2021.emnlp-main.827/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2023.findings-acl.723/
https://aclanthology.org/2023.findings-acl.723/
https://aclanthology.org/2023.findings-acl.723/
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2406.16768
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2021.emnlp-main.462/
https://aclanthology.org/2021.emnlp-main.462/

augmentation for better few-shot learning. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5715—
5731.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7882-7926.

Ke Wang, Nikolaos Dimitriadis, Alessandro Favero,
Guillermo Ortiz-Jimenez, Francois Fleuret, and Pas-
cal Frossard. 2024a. Lines: Post-training layer scal-
ing prevents forgetting and enhances model merging.
arXiv preprint arXiv:2410.17146.

Peihao Wang, Rameswar Panda, Lucas Torroba Hen-
nigen, Philip Greengard, Leonid Karlinsky, Roge-
rio Feris, David Daniel Cox, Zhangyang Wang, and
Yoon Kim. 2023. Learning to grow pretrained mod-
els for efficient transformer training. In The Eleventh
International Conference on Learning Representa-
tions.

Rungian Wang, Soumya Ghosh, David Cox, Diego An-
tognini, Aude Oliva, Rogerio Feris, and Leonid Kar-
linsky. 2024b. Trans-lor: towards data-free transfer-
able parameter efficient finetuning. arXiv preprint
arXiv:2405.17258.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and Ludwig Schmidt. 2022a.
Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
23965-23998. PMLR.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
2022b. Robust fine-tuning of zero-shot models. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7959-7971.

Prateek Yadav, Colin Raffel, Mohammed Mugeeth,
Lucas Caccia, Haokun Liu, Tianlong Chen, Mohit
Bansal, Leshem Choshen, and Alessandro Sordoni.
2024a. A survey on model moerging: Recycling and
routing among specialized experts for collaborative
learning. arXiv preprint arXiv:2408.07057.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 7093-7115.

12

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra
Chronopoulou, Manaal Faruqui, Mohit Bansal, and
Tsendsuren Munkhdalai. 2024b. What matters
for model merging at scale? arXiv preprint
arXiv:2410.03617.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pages 57755-57775.
PMLR.

Ted Zadouri, Ahmet Ustiin, Arash Ahmadian, Beyza Er-
mis, Acyr Locatelli, and Sara Hooker. 2024. Pushing
mixture of experts to the limit: Extremely parameter
efficient moe for instruction tuning. In The Tivelfth
International Conference on Learning Representa-
tions.

Chujie Zheng, Ziqi Wang, Heng Ji, Minlie Huang, and
Nanyun Peng. 2024. Model extrapolation expedites
alignment. arXiv preprint arXiv:2404.16792.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and
1 others. 2024. Bigcodebench: Benchmarking code
generation with diverse function calls and complex
instructions. arXiv preprint arXiv:2406.15877.

https://aclanthology.org/2021.emnlp-main.462/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://arxiv.org/abs/2410.17146
https://arxiv.org/abs/2410.17146
https://arxiv.org/abs/2410.17146
https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=cDYRS5iZ16f
https://arxiv.org/abs/2405.17258
https://arxiv.org/abs/2405.17258
https://arxiv.org/abs/2405.17258
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openaccess.thecvf.com/content/CVPR2022/html/Wortsman_Robust_Fine-Tuning_of_Zero-Shot_Models_CVPR_2022_paper.html
https://arxiv.org/abs/2408.07057
https://arxiv.org/abs/2408.07057
https://arxiv.org/abs/2408.07057
https://arxiv.org/abs/2408.07057
https://arxiv.org/abs/2408.07057
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://arxiv.org/abs/2410.03617
https://arxiv.org/abs/2410.03617
https://arxiv.org/abs/2410.03617
https://proceedings.mlr.press/v235/yu24p.html
https://proceedings.mlr.press/v235/yu24p.html
https://proceedings.mlr.press/v235/yu24p.html
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://arxiv.org/abs/2404.16792
https://arxiv.org/abs/2404.16792
https://arxiv.org/abs/2404.16792
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877

Appendix

A Theoretical justification for Section 2:
Transferring fine-tuning updates across
model versions

We provide the theoretical motivation for fine-
tuning transfer. Let ms and m; denote the source
and target base models, respectively. Here we as-
sume that m and m; share the same architecture.
Let m/, and m; be the fine-tuned versions of m
and m; on dataset D. We define Ay = m/, — my
as the fine-tuning updates, and hypothesize that A
represents task-specific knowledge that is transfer-
able across model versions.

Linear Mode Connectivity Interpretation. Fol-
lowing linear mode connectivity (Frankle et al.,
2020; Mirzadeh et al., 2020; Neyshabur et al.,
2020), we assume that m/, and mj} (which share
the same architecture) arrive at local minima that
are connected by a linear path of non-increasing er-
ror. Consider some model on this path m(\) given
by

m(A) = (1 — \)m/, + Amj. (1)

Substituting m/, by A 4+ mg and mj} by Ay + my:
m(A) = (1= A)(ms + Ag) + A(me + Ay). (2)
Rewriting this expression:
m(A) = (1=X)ms+Ami+(1=X)As+ XA (3)

Assuming A =~ Ay, the update term simplifies to
approximately A;, yielding:

m(A) = (1 = XN)ms + Amy + As. 4
or equivalently:
m()\) %mtJr(l*)\)(ms —mt) +A5 (5)

In particular, when A = 1, m(\) = m) ~ m; +
Ag, which shows that reusing Ag corresponds to
extrapolating from m; towards the task solution
learned by mg.

Connection to Task Vector Interpolation. This
interpretation aligns with prior work on task vector
arithmetic (Ilharco et al., 2023), where multiple
fine-tuned models are merged by adding their up-
date vectors to a shared base. For example, the
merged weights 6,,, produced by adding the task

13

vectors of model A and B (with weights 6, and 6;)
yield:

O = 0p + A((0a — 0,) + (0 — 6,))
= (1—2\)0, + Ma + A6,

where 6, are the weights of the base pretrained
model. This is a linear interpolation among 0,
0,, and 6, and assumes the models lie within a
connected low-loss region. Our definition of Ag
corresponds to a special case of this framework: we
apply a single update vector from m to a different
base model m;. Under the same connectivity as-
sumption, this transfer remains valid and preserves
task performance.

B Additional results for Section 2:
Transferring fine-tuning updates across
model versions

B.1 Evaluation results for Tiillu and OLMo
models

We also conduct experiments with Tiilu (Lambert
et al., 2024) and OLMo (OLMo et al., 2024), both
of which were developed from Llama 3.1 through
multiple alignment stages, including Supervised
Fine-Tuning (SFT), Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), and a final rein-
forcement learning stage—Reinforcement Learn-
ing with Verifiable Rewards (RLVR) (Lambert
et al., 2024) for OLMo 2 and Tiilu 3, or Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) for Tiilu 3.1. At a high level, we subtract the
weights of Llama 3.1 from these alignment-tuned
checkpoints and then backport (add) the resulting
diff vectors to Llama 3.0. Recycling is not appli-
cable here, as we do not have the alignment-tuned
checkpoints for Llama 3.0.

Our results are summarized in Table 7 and Ta-
ble 8. In general, we find that advanced LLM capa-
bilities, attained through alignment tuning stages
such as SFT, DPO, RLVR, and GRPO (encoded
in Aspr, Appo, ArLv R, and Agrpo, respec-
tively), can be successfully transferred across dif-
ferent model versions. For example, backporting
Acgrpo from Tiilu 3.1 8B to Llama 3.0 8B signif-
icantly improves accuracy, boosting GSM8K per-
formance from 55.6% to 85.8% (30.2% improve-
ment) and IFEval from 34.5% to 82.6% (48.1%
improvement). This surpasses Llama 3.0 8B In-
struct (81.1% on GSMS8K, 76.6% on IFEval) and
performs competitively with Llama 3.1 8B Instruct

Model GSMS8K MATH ARC¢: GPQA MMLU IFEval
Llama 3.1 8B 56.6 19.3 79.2 219 66.8 36.4
Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5
Tiilu 3 8B SFT 76.2 31.6 79.1 31.0 65.1 72.0
Tiilu 3 8B DPO 84.1 42.4 79.6 333 68.4 81.7
Tiilu 3 8B 87.9 43.4 79.4 34.4 67.9 81.5
Llama 3.0 8B 55.6 17.3 79.7 223 66.7 34.5
+ Agpr 71.8 26.3 77.9 32.1 63.5 69.1
+ Appo 81.1 38.1 78.6 319 67.5 82.9
+ ARLVR 85.1 37.6 79.1 324 66.2 824
Tiilu 3.1 8B 89.9 43.3 79.0 31.4 67.6 84.1
Llama 3.0 8B Instruct 81.1 28.8 824 31.5 64.9 76.6
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5
+ AGRrPO 85.8 39.5 78.2 294 65.0 82.6

Table 7: We find that advanced LLM capabilities, attained through alignment tuning stages such as SFT, DPO,
RLVR, and GRPO (encoded in Agrr, Appo, ArrLvr, and Agrpo, respectively), can be successfully transferred

across different model versions.

(86.5% and 80.5%) and Tiilu 3.1 8B (89.9% and
84.1%).

B.2 Additional results for Section 2:
Transferring fine-tuning updates across
model architectures

Table 9 and Table 10 summarize fine-tuning trans-
fer results across model versions with architec-
tural differences. We compute the diff vector as
described in Section 2, applying fine-tuning up-
dates only to layers in the target model that match
the source in shape. We observe that reusing fine-
tuning updates across large version gaps remains
challenging, and we leave this direction to future
work.

C Additional evaluation details

We use the same evaluation setup and prompts as
those in Llama 3 (Dubey et al., 2024) for Llama
models and those in Tiilu 3 (Lambert et al., 2024)
for OLMo and Tiilu models, whenever available.
See Table 11 and Table 12 for more details. For
evaluation, we use the 1Im-evaluation-harness
library (Gao et al., 2024) for Llama models, and
the OLMES library (Gu et al., 2024) for OLMo and
Tiilu models.

8See https://github.com/meta-1lama/llama-model
s/blob/main/models/1lama3_1/eval_details.md

14

D Additional results for Section 4: When
is fine-tuning transfer effective?

See Table 13.

E Additional results for Section 5:
Fine-tuning transfer as a starting point
for further fine-tuning

See Table 14, Figure 3.

F Additional results for Section 6:
Iterative recycling-then-finetuning for
improved performance and efficiency

Algorithm 1 Iterative recycling-then-finetuning

Notation: FT denotes fine-tuning
Input: Base models M1, Msy,..., M,
Output: Fine-tuned models M7}, M3, ...
M« FT(M,)
for:=2tondo
AT = My — Mi
M FT(M; + Alfer)
end for
return M7,

*
, M,

D AR A > s

* *
s M

Algorithm 1 provides the formal description of
the iterative recycling-then-finetuning procedure.

Iterative recycling-then-finetuning leads to
faster convergence: Figure 4 shows that both
recycling approaches—iterative (A" and direct

https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/eval_details.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/eval_details.md

Model GSMSK MATH ARCc GPQA MMLU IFEval
OLMo 2 7B 67.2 19.2 79.9 20.5 63.6 23.0
OLMo 2 7B SFT 71.7 25.2 79.7 27.9 61.2 67.7
OLMo 2 7B DPO 82.5 31.3 80.5 30.6 62.1 732
OLMo 2 7B Instruct ~ 85.3 29.7 80.6 29.7 63.3 75.6
Mo 2.5 1.6 25.7 18.1 25.0 12.2
+ Aspr 2.2 0.8 23.8 1.3 1.4 13.7
+Appo 2.1 0.8 24.1 1.1 1.3 13.7
+ ARLVR 2.0 0.8 24.1 0.6 1.4 133
M; 24.4 5.7 72.7 15.4 59.8 15.7
+ Agpr 31.7 8.4 74.3 24.8 55.4 51.4
+Appo 40.4 9.3 75.0 29.9 56.6 68.0
+ ARLVR 40.2 10.3 75.1 29.9 56.7 68.3
My 63.7 17.5 78.6 22.5 62.6 16.1
+ Aspr 71.1 23.7 79.0 28.3 59.7 64.3
+Appo 79.9 27.8 79.3 29.0 63.1 72.6
+ ARLVR 82.8 27.7 79.3 27.2 62.2 72.1

Table 8: We find that advanced LLM capabilities, attained through alignment tuning stages such as SFT, DPO,
and RLVR (encoded in Agpr, Appo, and Agpy g, respectively), can be successfully transferred across different
model versions. Here, My is an intermediate pretrained checkpoint of OLMo 2 7B (mid-stage 2, at 7K steps),
which we selected before conducting our controlled experiments in Section 4.1.

GSMS8K MATH
Llama 2.0 7B 14.1 3.6
+ FT 56.9 3.1
+ Ag.o 15.0 3.8
+ Ag.l 14.6 3.8
Llama 3.0 8B 54.9 17.3
+ FT 70.7 32.0
+Agp 55.3 17.5
Llama 3.1 8B 56.6 19.3
+ FT 71.2 33.7
+ AQ'O 57.1 20.3

Table 9: Transfer results in both recycling and back-
porting scenarios on GSM8K and MATH show limited
improvement, possibly due to layer shape mismatches.

(A% recycling-then-finetuning—offer a more
computationally efficient starting point for further
fine-tuning. In general, A¥¢" consistently out-
performs A%" in terms of training efficiency and
significantly improves standard fine-tuning with-
out recycling. These results indicate that iterative
recycling not only improves model performance
but also enhances training efficiency by effectively
leveraging the knowledge stored in the diff vectors

15

GSMS8K MATH
OLMo 1 7B 28.8 5.8
+FT 54.2 17.2
+ Asg 25.1 5.5
OLMo 2 8B 66.9 19.2
+FT 76.4 211
+ A 69.7 20.1

Table 10: Fine-tuning transfer remains effective when
applying A; to OLMo 2 8B on GSMS8K. In other cases,
improvements are limited and sometimes lead to small
drops.

across different model versions.

Task # Shots CoT Metric Reference eval. setup
GSMSK 8 v exact match acc.
MATH 4 v exact match acc.
ARCc 0 X acc. . 8
GPOA 0 % exact match ace. Llama 3 Evaluation Details
MMLU 0 v exact match acc.
IFEval 0 X avg. acc. (strict & loose)
Global MMLU 0 X acc. Singh et al. (2024a)
HumanEval+ 0 X pass@1 .
MBPP4+ 0 X pass@1 Liu et al. (2023)
LiveCodeBench 0 X pass@1 Jain et al. (2024)
BigCodeBench 0 X pass@1 Zhuo et al. (2024)
Table 11: Evaluation details for Llama 3.
Task # Shots CoT Metric Reference eval. setup
GSM8K 8 v exact match acc.
MATH 4 v flex exact match acc.
ARCc 5 X acc.
GPQA 0 v exact match acc. Lambert et al. (2024)
MMLU 0 v exact match acc.
IFEval 0 X prompt-level loose acc.
MATHS500 0 e exact match acc. .
GPOADImond 0 v exact match ace. Muennighoff et al. (2025)
Table 12: Evaluation details for OLMo 2 and Tiilu 3.
My My Mz My Ms
146 116 114 11.6 16.6
+ Ay 88 17.8 192 156 M Mo Ms My Ms
+ Ay 7.6 12.6 146 144 14.6 11.6 114 11.6 16.6
+A; > FT 21.0,,, 230,55 32.0,,5 34.2,
+ A3 80 94 234 278 + AQ — FT 16~2+x.5 26'2+I3.6 31-6+17.() 31'0“6.6
+ Ay 78 80 9.8 34.2 +A3 5 FT 184,,, 212, 3104 320,
+ A5 8.0 7.4 11.2 30.6 + A4 = FT 174,05 19.0,0 23.8,140 32.2,,
+As5 > FT 17.0,5 214, 25.0,55 31.2,
FT(M;) 134 17.6 21.6 314 33.0 FTOM)) 134 176 216 314 33.0

Table 13: MATHS00 accuracies indicating that more
powerful models are better at leveraging transferred
fine-tuning. Effective use of transferred fine-tuning only
emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer
works best when the source and target models are close
within a linearly connected region of the parameter
space. Here, M, represents different intermediate pre-
trained checkpoints of OLMo 2 7B (with smaller values
of 4 indicating earlier checkpoints), and A; refers to the
diff vector resulting from the fine-tuning of version ¢.
FT(M,) denotes applying fine-tuning directly to M.

16

Table 14: MATHS00 accuracies showing that fine-
tuning transfer provides a stronger starting point (i.e.,
M, + Aj) for further fine-tuning (FT). Numbers in sub-
script indicate improvement over the baseline without
fine-tuning. Here, M, represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller val-
ues of 7 indicating earlier checkpoints), and A; refers to
the diff vector resulting from the fine-tuning of version
1. FT(M;) denotes applying fine-tuning directly to M.

My Ma My

50

> > >
FRY FRY H
1 1 -
3 3 3 70
v v v
v 30 U 30 v
< < <
65
20 20
10 10 60
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Number of finetuning steps Number of finetuning steps Number of finetuning steps

Figure 3: GSMS8K performance showing that fine-tuning transfer provides a more computationally efficient starting
point (i.e., M; + A;) for further training. Here, M represents different intermediate pretrained checkpoints of
OLMo 2 7B (with smaller values of ¢ indicating earlier checkpoints), and A; refers to the diff vector resulting from
the fine-tuning of version .

M M
70 3 80 5

60
75

oy oy
g g
3 = 70
1> 5]
O 40 ")
< - M3 < - Ms
. —0— Ms + AT 65 —0— Ms + A9T
—— M3+ At —= Ms + AT
20 60
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Number of finetuning steps Number of finetuning steps

Figure 4: GSM8K performance showing that both iterative (A*°") and direct (A%") recycling-then-finetuning
approaches offer faster convergence. At a high level, A#®" gradually incorporates fine-tuning updates, i.e., diff
vectors, from previous model versions, while A%" directly applies the diff vector from the latest model version to
the current model.

17

	Introduction
	Transferring fine-tuning updates across model versions
	Experimental setup
	Results and discussion

	Efficient multilingual model development
	Experimental setup
	Results and discussion

	When is fine-tuning transfer effective?
	Experimental setup
	Results and discussion

	Fine-tuning transfer as a starting point for further fine-tuning
	Experiment setup
	Results and discussion

	Iterative recycling-then-finetuning for improved performance and efficiency
	Iterative recycling-then-finetuning
	Results and discussion

	Related work
	Conclusion
	Theoretical justification for Section 2: Transferring fine-tuning updates across model versions
	Additional results for Section 2: Transferring fine-tuning updates across model versions
	Evaluation results for Tülu and OLMo models
	Additional results for Section 2: Transferring fine-tuning updates across model architectures

	Additional evaluation details
	Additional results for Section 4: When is fine-tuning transfer effective?
	Additional results for Section 5: Fine-tuning transfer as a starting point for further fine-tuning
	Additional results for Section 6: Iterative recycling-then-finetuning for improved performance and efficiency

