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Abstract001

Modern LLMs struggle with efficient updates,002
as each new pretrained model version requires003
repeating expensive alignment processes. This004
challenge also applies to domain- or language-005
specific models, where fine-tuning on special-006
ized data must be redone for every new base007
model release. In this paper, we explore the008
transfer of fine-tuning updates between model009
versions. Specifically, we derive the diff vec-010
tor (representing the weight changes from fine-011
tuning) from one source model version and012
apply it to the base model of a different target013
version. Through empirical evaluations on vari-014
ous open-weight model versions, we show that015
transferring diff vectors can significantly im-016
prove the performance of the target base model.017
For example, transferring the fine-tuning up-018
dates from Llama 3.0 8B improves Llama 3.1019
8B by 46.9% on IFEval and 15.7% on Live-020
CodeBench without additional training, even021
surpassing Llama 3.1 8B Instruct. Furthermore,022
we demonstrate performance gains on multilin-023
gual tasks, with 4.7% and 15.5% improvements024
on Global MMLU for Malagasy and Turkish,025
respectively. We observe that these merged026
models provide stronger initializations for fur-027
ther fine-tuning. Lastly, our controlled experi-028
ments suggest that fine-tuning transfer is most029
effective when source and target models lie in030
a linearly connected region of parameter space,031
and we provide a theoretical analysis of our032
method. Taken together, fine-tuning transfer033
offers a cost-efficient and practical strategy for034
continuous LLM development. Our code will035
be available at https://anonymous.4open.036
science/r/finetuning-transfer.037

1 Introduction038

Today’s large language models (LLMs) are devel-039

oped in two stages: (1) pretraining on massive040

corpora with self-supervised learning, and (2) post-041

training with alignment steps (Ouyang et al., 2022;042

Bai et al., 2022). While this pipeline creates pow-043
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Figure 1: To transfer fine-tuning (e.g., instruction tun-
ing) from a source model version s (e.g., Llama 3.0)
to a target version t (Llama 3.1), we first compute the
diff vector ∆s = m′

s −ms from version s, where m′
s

is the fine-tuned model (instruction-tuned Llama 3.0)
and ms is the base model (pretrained Llama 3.0). Then,
we add ∆s to the target base model (pretrained Llama
3.1) to approximate the fine-tuned model in version t
(instruction-tuned Llama 3.1).

erful LLMs, it presents a major bottleneck for con- 044

tinuous development: every new version of a pre- 045

trained model requires repeating expensive post- 046

training. This challenge is particularly acute in 047

domain- or language-specific applications, where 048

the cost of redoing fine-tuning for each base model 049

update is prohibitive (Qin et al., 2023; Bandarkar 050

et al., 2024). 051

In this paper, we explore a method to reduce 052

post-training costs by transferring fine-tuning up- 053

dates between different model versions. Specifi- 054

cally, we propose incorporating the weight updates 055

from a source model version s to improve a tar- 056

get model version t. Our approach (see Figure 1) 057

first computes the diff vector ∆s = m′
s −ms from 058

version s, which represents the difference between 059

the fine-tuned model m′
s (e.g., instruction-tuned) 060

and its base model ms (pretrained). Intuitively, 061

∆s encodes the task-specific updates to the model 062

parameters during fine-tuning, and can be used to 063

transfer knowledge from the source version s to the 064

target version t. Contrary to prior work (Ilharco 065

et al., 2023; Huang et al., 2023), which focuses 066
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on improving the capabilities of a single model067

on a specific target task, we focus on a general-068

purpose method to transfer updates between dif-069

ferent model versions for a variety of downstream070

tasks. We hypothesize that models fine-tuned us-071

ing the same or similar training data and proce-072

dures exhibit linear relationships across versions:073

m′
s −ms ≈ m′

t −mt. This suggests that we can074

approximate the fine-tuned version m′
t of the target075

base model mt without training: m′
t ≈ mt +∆s.076

The intuition is supported by linear mode connec-077

tivity theory (Mirzadeh et al., 2020; Frankle et al.,078

2020), which shows that two independently trained079

networks can be connected by a low-loss path (see080

Appendix A).081

We begin by evaluating the feasibility of our ap-082

proach through the transfer of diff vectors across083

different versions of open-weight models (Sec-084

tion 2). Recycling the fine-tuning updates from085

Llama 3.0 yields a 46.9% absolute accuracy im-086

provement on IFEval over Llama 3.1 8B, while087

also surpassing the performance of Llama 3.1 8B088

Instruct without additional training.089

Motivated by these results, we conduct a case090

study on the development of multilingual models091

(Section 3). We observe that diff vectors transfer092

facilitates a better understanding of the target lan-093

guage. Specifically, transferring weights from a094

fine-tuned version of Llama 3.0 Instruct to Llama095

3.1 Instruct yields absolute accuracy improvements096

of 4.7% for Malagasy and 15.5% for Turkish on the097

Global MMLU benchmark (Singh et al., 2024a),098

without additional training.099

To shed light on when fine-tuning transfer is100

most effective, we perform controlled experiments101

using OLMo 2’s (OLMo et al., 2024) intermediate102

pretrained checkpoints as different model versions103

(Section 4). Our results suggest that fine-tuning104

transfer is most effective when the source and tar-105

get models lie within a linearly connected region106

of the parameter space, consistent with linear mode107

connectivity (Mirzadeh et al., 2020; Ainsworth108

et al., 2023; Wortsman et al., 2022a,b; Frankle et al.,109

2020).110

Furthermore, we investigate whether the merged111

model mt +∆s can serve as a computationally ef-112

ficient and effective starting point for fine-tuning113

(Section 5). Our experiments demonstrate that ini-114

tializing fine-tuning with this merged model can115

accelerate convergence and improve accuracy com-116

pared to training on top of mt. We find that even117

when the selected diff vector is suboptimal, fine-118

tuning the merged model consistently improves 119

performance compared to direct fine-tuning, with- 120

out harming generalization to unseen tasks. This 121

suggests that fine-tuning transfer can serve as a ro- 122

bust and effective intermediate step when training 123

is feasible. 124

Lastly, we explore a continuous model develop- 125

ment scenario (in Section 6) in which new model 126

versions are regularly released. We propose an iter- 127

ative recycling–then–fine-tuning approach that in- 128

crementally accumulates fine-tuning updates from 129

previous versions. In summary, our key contribu- 130

tions are as follows. 131

• Introducing an approach for transferring fine- 132

tuning updates between model versions via 133

diff vector transfer. 134

• Demonstrating that this approach can reduce 135

training costs while maintaining competitive 136

performance. 137

• Validating the approach in a multilingual 138

model development setting, showing im- 139

proved language-specific performance with- 140

out retraining. 141

• Establishing conditions for effective fine- 142

tuning transfer, particularly when models ex- 143

hibit linear mode connectivity. 144

• Proposing a recycling-then-finetuning strategy 145

to improve both efficiency and performance 146

in a continuous model development setting. 147

2 Transferring fine-tuning updates across 148

model versions 149

In this section, we explore transferring the weight 150

changes from a source model version s to a target 151

model version t, denoted Ts→t, without additional 152

training. Specifically, we directly merge (add) the 153

diff vector ∆s = m′
s −ms from version s, which 154

captures the parameter adaptations from the base 155

model ms to its fine-tuned counterpart m′
s, onto 156

the new base model mt in version t, without any 157

gradient-based training. Our results (Table 1) show 158

that fine-tuning updates can be effectively trans- 159

ferred across model versions, as mt + ∆s often 160

performs comparably to its fine-tuned counterpart 161

m′
t. 162

2.1 Experimental setup 163

We conduct experiments with various open-weight 164

models, including Llama (Dubey et al., 2024), 165
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Model GSM8K MATH ARCC GPQA MMLU IFEval HE+ MBPP+ LCB BCB Avg.

Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6 56.7 55.6 14.0 6.8 49.8
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5 31.1 51.3 0.0 6.1 34.5

+ ∆3.1 82.8 44.7 83.0 25.9 70.0 76.6 62.8 55.3 15.8 12.8 53.0

Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5 61.0 54.8 16.0 14.9 55.2
Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 36.4 29.9 51.9 0.4 5.4 36.8

+ ∆3.0 79.8 29.9 82.9 32.6 65.1 83.3 55.5 56.6 16.1 10.1 51.2

Table 1: Fine-tuning transfer significantly improves the performance of the target base model across various
tasks, achieving results comparable to its fine-tuned counterpart in many cases. Here, ∆3.0 and ∆3.1 represent
the diff vectors between Llama Instruct and Llama for versions 3.0 and 3.1, respectively. Notably, adding the diff
vector ∆s from a different model version can effectively transform a non-instruction-tuned model (e.g., Llama
3.0 or Llama 3.1) into one that follows instructions well (Llama 3.0 + ∆3.1 or Llama 3.1 + ∆3.0) without further
training. Additional results for OLMo and Tülu can be found in Appendix B.1, where we additionally find that
advanced LLM capabilities, attained through alignment tuning stages such as Supervised Fine-Tuning (SFT), Direct
Preference Optimization (DPO), or Group Relative Policy Optimization (GRPO), can be successfully transferred
across different model versions.

OLMo (OLMo et al., 2024), and Tülu (Lambert166

et al., 2024). Throughout this work, we ensure that167

our source and target models are of the same archi-168

tecture. We provide additional cross-architecture169

transfer results in Appendix B.2 and leave further170

research on cross-architecture recycling as future171

work. Our study explores both transfer directions:172

from an older model version to a newer one (re-173

cycling) and from a newer version to an older one174

(backporting).175

Recycling can save training time and computa-176

tional resources, while incorporating post-training177

capabilities into the newer pretrained model. Con-178

versely, backporting is beneficial when the older179

base model is better optimized for a specific use180

case (e.g., a particular language), allowing the user181

to take advantage of the new fine-tuning improve-182

ments while maintaining optimization and com-183

patibility.1 We emphasize that our goal is not to184

achieve state-of-the-art results, but instead to assess185

the feasibility of transferring fine-tuning updates186

between model versions.187

We evaluate the merged model mt + ∆s on188

a diverse set of benchmarks, including general189

knowledge with MMLU (Hendrycks et al., 2021a),190

math with GSM8K (Cobbe et al., 2021) and191

MATH (Hendrycks et al., 2021b), reasoning with192

ARCC (Clark et al., 2018) and GPQA (Rein et al.,193

2024), instruction-following with IFEval (Zhou194

et al., 2023), code generation with HumanEval+195

(HE+ in Table 1) and MBPP+ (Liu et al., 2023),196

LiveCodeBench (Jain et al., 2024), and Big-197

1In software development, backporting refers to the pro-
cess of adapting features or updates from a newer version of a
software system or component for use in an older version.

CodeBench (Zhuo et al., 2024) (LCB and BCB 198

in Table 1 respectively). We compare its perfor- 199

mance to that of directly fine-tuned mt (i.e., m′
t).
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See Appendix C for evaluation details. 201

2.2 Results and discussion 202

Transferring fine-tuning substantially boosts 203

the target base model’s performance: Table 1 204

shows our results when transferring fine-tuning 205

(i.e., instruction tuning) updates between Llama 206

3.0 and Llama 3.1. First, we note that Llama 3.0 207

Instruct consistently performs better than Llama 208

3.1 (and vice versa). This highlights that most 209

capabilities of the instruction-tuned model arise 210

post-training. Here, we attempt to transfer such 211

capabilities between model versions, and thus by- 212

pass the alignment stage. Strikingly, adding the diff 213

vector ∆s from a different model version can ef- 214

fectively transform a non-instruction-tuned model 215

(e.g., Llama 3.0 or Llama 3.1) into one that follows 216

instructions well (Llama 3.0 + ∆3.1 or Llama 3.1 + 217

∆3.0). For example, our approach yields 42.1% 218

and 46.9% absolute accuracy improvements on 219

the instruction-following benchmark IFEval over 220

the base versions of Llama 3.0 and Llama 3.1, re- 221

spectively. Large gains are also observed across 222

the board on math, code, and reasoning bench- 223

marks, with an average improvement of 18.5% for 224

Llama 3.0 and 14.4% for Llama 3.1. These results 225

suggest that advanced knowledge and instruction- 226

following abilities can be efficiently transferred 227

2For evaluating HumanEval+ and MBPP+ we use
EvalPlus (Liu et al., 2023), and the official evaluation li-
braries for LiveCodeBench and BigCodeBench. All other
tasks are evaluated using the lm-evaluation-harness li-
brary (Gao et al., 2024).
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between model versions without further training.228

In general, Llama 3.0 benefits more from the back-229

ported diff vector ∆3.1 from version 3.1 than Llama230

3.1 does from recycling version 3.0’s diff vector231

∆3.0.232

Transferring fine-tuning can achieve perfor-233

mance comparable to the fine-tuned model:234

Our results demonstrate that the merged model235

mt + ∆s can perform on par with its fine-tuned236

counterpart m′
t across various tasks. This is partic-237

ularly true for Llama 3.0 + ∆3.1, which matches238

or surpasses Llama 3.0 Instruct on eight out of239

ten tasks we evaluated. Interestingly, Llama 3.1240

+ ∆3.0 outperforms LLama 3.1 Instruct on four241

out of the ten benchmarks. This is a testament to242

the diff vector’s ability to encode advanced reason-243

ing and instruction-following capabilities. Overall,244

our results suggest that fine-tuning transfer pro-245

vides an effective and extremely low-cost method246

to improve model performance when training is247

prohibitively expensive.248

3 Efficient multilingual model249

development250

Motivated by our results in Section 2, we now turn251

toward applying our fine-tuning transfer approach252

in a multilingual model development setting. We253

focus exclusively on a recycling scenario, where254

our aim is to transfer the language-specific instruc-255

tion tuning updates from an older model version to256

a newer one.257

For language-specific instruction tuning, we258

fine-tune an instruction-tuned model rather than259

a pretrained one. This approach aligns with the260

common practice of using an instruction-tuned261

English or multilingual model as the foundation262

when developing language-specific models. A263

key challenge in this setting is that state-of-the-art264

LLMs often include multilingual data in pretrain-265

ing and instruction tuning, which makes it unclear266

whether language-specific fine-tuning is still neces-267

sary. How effective is our recycling approach when268

applied to a multilingual instruction-tuned model?269

Our results show that recycling fine-tuning remains270

effective in this scenario, as long as the target base271

model is outperformed by the fine-tuned model of272

the source version.273

3.1 Experimental setup274

We fine-tune Llama 3.0 Instruct (ms) separately on275

language-specific instruction tuning data for three276

Model Malagasy Sinhala Turkish

Llama 3.0 8B Instruct 23.1 23.3 30.8
+ FT 30.8 29.0 43.2

Llama 3.1 8B Instruct 27.6 33.0 27.7
+ ∆3.0 32.3 32.3 43.2

Table 2: Recycling fine-tuning updates improves multi-
lingual performance on Global MMLU without retrain-
ing, yielding a 4.7% and 15.5% absolute improvement
for Malagasy and Turkish, respectively, compared to
Llama 3.1 8B Instruct. ∆3.0 represents the diff vector
between Llama 3.0 Instruct and its monolingual fine-
tuned (FT) version.

languages: Malagasy, Sinhala, and Turkish. We use 277

the Aya dataset (Singh et al., 2024b) for Malagasy 278

(14.6K examples) and Sinhala (14.5K examples), 279

and the InstrucTurca dataset (Altinok, 2024) for 280

Turkish (16.7K examples).3 Each model is trained 281

for 30K training steps with a learning rate of 5e-6 282

and a batch size of 8, using 4 NVIDIA A100-80G 283

GPUs.4 284

After training on each language, we compute the 285

diff vector ∆s = m′
s −ms and add it to Llama 3.1 286

Instruct mt. We simulate a low-resource setting 287

and do not perform any additional training with 288

language-specific data. The merged model mt + 289

∆s is evaluated against the base model mt on the 290

Global MMLU benchmark (Singh et al., 2024a). 291

3.2 Results and discussion 292

Transferring fine-tuning is effective for develop- 293

ing multilingual models: Our results in Table 2 294

demonstrate the benefits of reusing fine-tuning up- 295

dates in multilingual model development. For 296

Malagasy and Turkish, transferring the diff vector 297

from Llama version 3.0 to 3.1 results in significant 298

accuracy improvements (4.7% and 15.5%, respec- 299

tively) over Llama 3.1 8B Instruct. Our recycling 300

approach performs better than the fine-tuned Llama 301

3.0 Instruct model for Malagasy (1.5% accuracy 302

improvement) and maintains similar performance 303

for Turkish. 304

On the other hand, for Sinhala, recycling fine- 305

tuning offers no advantage, as Llama 3.1 Instruct al- 306

ready outperforms the previously fine-tuned Llama 307

3To simulate a low-resource setting, we sampled 6.5% of
the original InstrucTurca dataset, which contains 2.58 million
examples, resulting in approximately 16.7K examples.

4We use the AdamW optimizer with a linear scheduler
and a warmup ratio of 0.03. We disable dropout and exclude
weight decay for embeddings. The sequence length is 2048.
We use open-instruct (Lambert et al., 2024) for training and
lm-evaluation-harness (Gao et al., 2024) for evaluation.

4



3.0 Instruct. However, even in this case, recycling308

does not significantly reduce performance.309

4 When is fine-tuning transfer effective?310

Having demonstrated the effectiveness of fine-311

tuning transfer, we now conduct controlled experi-312

ments to better understand when this approach is313

most effective. At a high level, we treat different314

checkpoints of a pretrained model as distinct model315

versions. We then fine-tune these model versions316

on the same data and assess the impact of transfer-317

ring fine-tuning updates between them. Our results318

reveal that fine-tuning transfer is most successful319

when the source and target models are close within320

a linearly connected region of the parameter space,321

consistent with linear mode connectivity. We pro-322

vide further theoretical analysis in Appendix A.323

4.1 Experimental setup324

We conduct experiments with the publicly available325

intermediate checkpoints of OLMo 2 7B.5 The base326

OLMo 2 model was trained in two stages: (1) a gen-327

eral web-based pretraining stage (stage 1), and (2) a328

mid-training stage (stage 2) using high-quality web329

data and domain-specific data to enhance STEM-330

related capabilities. We select five checkpoints:331

M1 (early-stage 1, at 300K steps),M2 (mid-stage332

1, at 600K steps),M3 (end-stage 1, at 929K steps),333

M4 (mid-stage 2, at 6K steps), andM5 (end-stage334

2, at 12K steps). EachMi is treated as a distinct335

model version. We investigate both transfer sce-336

narios: (1) recycling (TMi→Mj , i < j), and (2)337

backporting (TMj→Mi , j > i).338

Due to our limited computational resources, su-339

pervised fine-tuning with a large instruction tuning340

dataset would be prohibitively expensive. We there-341

fore fine-tune all model versions using a subset of342

the math reasoning instruction tuning data from343

Tülu 3, which includes Tülu 3 Persona MATH,344

GSM, and Algebra (220K examples total), follow-345

ing the training procedure described in Section 3.1.346

We evaluate our models on GSM8K and the347

MATH500 subset (Hendrycks et al., 2021b) of the348

MATH dataset. These datasets are selected because349

fine-tuning on Tülu 3’s math reasoning data signif-350

icantly improves performance on them, allowing351

for a clearer analysis of the impact of transferring352

fine-tuning updates between model versions.6353

5
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6For evaluation, we use the OLMES library (Gu et al., 2024).

M1 M2 M3 M4 M5

13.2 19.4 24.4 64.5 65.5
+ ∆1 26.6 32.0 27.5 19.6
+ ∆2 19.0 39.8 25.9 17.3
+ ∆3 14.3 25.0 68.6 70.3
+ ∆4 11.8 18.0 22.6 77.1
+ ∆5 11.9 16.0 24.0 72.9

FT(Mi) 45.1 50.7 60.4 75.7 75.5

Table 3: GSM8K accuracies indicating that more pow-
erful models are better at leveraging transferred fine-
tuning. Effective use of transferred fine-tuning only
emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer
works best when the source and target models are close
within a linearly connected region of the parameter
space. Here,Mi represents different intermediate pre-
trained checkpoints of OLMo 2 7B (with smaller values
of i indicating earlier checkpoints), and ∆i refers to the
diff vector resulting from the fine-tuning of version i.
FT(Mi) denotes applying fine-tuning directly toMi.
See Table 13 in Appendix D for MATH500 results.

4.2 Results and discussion 354

More powerful models are better at leverag- 355

ing transferred fine-tuning: Our results in Ta- 356

ble 3 indicate that stronger models are more ef- 357

fective at leveraging transferred fine-tuning up- 358

dates. While transferring fine-tuning can improve 359

performance forM1, M2, andM3, the merged 360

models Mi + ∆j (∆j denotes the diff vector 361

from model version Mj , j ̸= i) still fall signif- 362

icantly short of their fine-tuned counterparts, de- 363

noted FT(Mi). On GSM8K, the accuracy gaps 364

between the bestMi+∆j and FT(Mi) are 26.1%, 365

24.1%, 20.6% forM1,M2, andM3, respectively. 366

In contrast, for M4, this gap narrows to 2.8%. 367

Notably, recycling fine-tuning from M4 to M5 368

(i.e.,M5 +∆4) surpasses fine-tuning directly on 369

M5 (FT(M5)), achieving 1.6% accuracy improve- 370

ment (77.1% vs. 75.5%). Similar trends are ob- 371

served on MATH500. This pattern suggests an 372

emergent ability—effective use of transferred fine- 373

tuning only emerges when the target base model 374

is sufficiently strong. In other words, the benefits 375

of transferring fine-tuning only become significant 376

beyond a certain level of capability. 377

Fine-tuning transfer works best when models 378

are close in the parameter space: Our results 379

also suggest that fine-tuning transfer is most effec- 380

tive when the source and target models are closely 381

5
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connected in the parameter space. On both GSM8K382

and MATH500, modelsM1 andM2 benefit more383

from ∆3 than from ∆4 or ∆5. Similarly,M4 and384

M5 gain more from ∆3 than from ∆1 or ∆2. Over-385

all,M1,M2, andM3 form a mutually beneficial386

group, as do M4 and M5. However, transfer-387

ring between these two groups can degrade per-388

formance. Specifically,M1,M2, andM3 do not389

benefit from ∆4 and ∆5, whileM4 andM5 typi-390

cally benefit only from ∆3.7391

5 Fine-tuning transfer as a starting point392

for further fine-tuning393

So far, we have explored a scenario where fine-394

tuning updates are transferred between model ver-395

sions without additional fine-tuning. We now396

switch gears to investigate whether the merged397

model mt +∆s can serve as a stronger and more398

computationally efficient starting checkpoint for399

further fine-tuning. We conduct controlled experi-400

ments comparing two approaches: fine-tuning the401

merged model mt +∆s versus fine-tuning mt di-402

rectly. Our results demonstrate that initializing403

fine-tuning with mt +∆s often leads to faster con-404

vergence and higher performance on both seen and405

unseen tasks. This suggests that fine-tuning transfer406

can be a useful intermediate step when additional407

training is feasible. We refer to this approach as408

“transferring-then-finetuning”.409

5.1 Experiment setup410

We follow the training procedure outlined411

in Section 3.1. For evaluation, we use412

GSM8K and MATH500, along with an additional413

dataset to assess how well our transferring-then-414

finetuning approach generalizes to the unseen task415

GPQADiamond (Rein et al., 2024).416

5.2 Results and discussion417

Transferring-then-finetuning can substantially418

boost performance: Our results are summarized419

in Table 4. Transferring-then-finetuning offers420

significant improvements over our vanilla trans-421

fer approach (without additional fine-tuning) on422

both GSM8K and MATH500. On GSM8K, the423

largest accuracy improvements are 36.4%, 39.6%,424

41.1%, 52.7%, and 61.4% forM1,M2,M3,M4,425

andM5, respectively. The benefits are most pro-426

nounced for weaker base models (M1,M2, and427

7The only exception is M4 benefiting from M1 and M2

on MATH500.

M1 M2 M3 M4 M5

13.2 19.4 24.4 64.5 65.5
+ ∆1 → FT 56.9+30.3 62.8+30.8 77.8+50.3 78.6+59.0

+ ∆2 → FT 50.1+31.1 62.7+22.9 78.6+52.7 78.7+61.4

+ ∆3 → FT 48.5+34.2 57.6+32.6 77.6+9.0 77.1+6.8

+ ∆4 → FT 48.2+36.4 56.7+38.7 63.7+41.1 77.0-0.1

+ ∆5 → FT 47.6+35.7 55.6+39.6 63.5+39.5 74.6+1.7

FT(Mi) 45.1 50.7 60.4 75.7 75.5

Table 4: GSM8K accuracies showing that fine-tun-
ing transfer provides a stronger starting point (i.e.,
Mi +∆j) for further fine-tuning (FT). Numbers in sub-
script indicate improvement over the baseline without
fine-tuning. Here,Mi represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller val-
ues of i indicating earlier checkpoints), and ∆i refers to
the diff vector resulting from the fine-tuning of version
i. FT(Mi) denotes applying fine-tuning directly toMi.
See Table 14 in Appendix E for MATH500 results.

M3) across all diff vectors, as well as for stronger 428

base models when paired with a weak diff vector 429

(e.g.,M5 + ∆1). 430

Interestingly, fine-tuning also helps bridge the 431

performance gap between the merged modelsMi + 432

∆j (j ̸= i) for each base modelMi. For example, 433

fine-tuning dramatically improves the performance 434

ofM5 + ∆1 by 59% andM5 + ∆2 by 61.4%, clos- 435

ing the gap with the fine-tuned versions ofM5 + 436

∆3 andM5 + ∆4. This reduces the need to pre- 437

select the best diff vector when multiple choices are 438

available. Importantly, transferring-then-finetuning 439

generally outperforms standard fine-tuning regard- 440

less of the diff vector used. 441

Transferring-then-finetuning can offer faster 442

convergence: Figure 2 shows that using the 443

merged modelMi + ∆j as the initial checkpoint 444

improves training efficiency. Specifically, Mi + 445

∆j not only converges significantly faster thanMi 446

during fine-tuning but also reaches a higher peak 447

accuracy on GSM8K. Overall, our results suggest 448

that transferring-then-finetuning is a cost-effective 449

approach that reduces the number of fine-tuning 450

steps, thereby improving training efficiency. 451

Transferring-then-finetuning does not nega- 452

tively impact model generalization: As shown 453

in Table 5, this approach attains strong zero-shot 454

generalization on the unseen task GPQADiamond, 455

comparable to standard fine-tuning. These results 456

suggest that transferring-then-finetuning does not 457

lead to overfitting, demonstrating its broad applica- 458

bility across diverse tasks. 459
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Figure 2: GSM8K performance showing that fine-tuning transfer provides a more computationally efficient starting
point (i.e.,Mi +∆j) for further training. Here,Mi represents different intermediate pretrained checkpoints of
OLMo 2 7B (with smaller values of i indicating earlier checkpoints), and ∆j refers to the diff vector resulting from
the fine-tuning of version j. Additional results forM1,M2,M4 can be found Appendix E.

M1 M2 M3 M4 M5

23.7 24.2 23.2 26.3 25.3
+ ∆1 → FT 25.3-1.0 25.2-2.1 33.3+9.6 25.8-0.5

+ ∆2 → FT 27.8-1.5 25.3+0.0 30.8+6.6 27.3+3.1

+ ∆3 → FT 27.8-0.5 27.8+0.5 23.7+0.5 27.3+5.1

+ ∆4 → FT 24.8-2.0 24.8-4.5 26.3+2.1 24.2-1.1

+ ∆5 → FT 22.7-5.1 26.8+0.0 23.2-1.0 27.8+4.6

FT(Mi) 25.8 26.8 26.8 19.2 26.3

Table 5: GPQADiamond accuracies showing that fine-
tuning transfer provides a stronger starting point (i.e.,
Mi+∆j) for further fine-tuning (FT), and transferring-
then-finetuning does not negatively impact model gen-
eralization to unseen tasks. Numbers in subscript indi-
cate improvement over the baseline without fine-tuning.
Here,Mi represents different intermediate pretrained
checkpoints of OLMo 2 7B (with smaller values of i
indicating earlier checkpoints), and ∆j refers to the
diff vector resulting from the fine-tuning of version j.
FT(Mi) denotes applying fine-tuning directly toMi.

6 Iterative recycling-then-finetuning for460

improved performance and efficiency461

Building on the insights from our previous ex-462

periments, we now explore a continuous model463

development setting in which new versions of a464

pretrained model are regularly released. At the465

core of our approach is an iterative recycling-then-466

finetuning strategy that incrementally incorporates467

fine-tuning updates, i.e., diff vectors, from past468

model versions. Instead of applying only the lat-469

est diff vector to the new base model, we recy-470

cle previous diff vectors iteratively. Specifically,471

the diff vector at the current model version is car-472

ried forward to the next for subsequent fine-tuning.473

Our experiments show that this iterative recycling 474

approach consistently improves both training effi- 475

ciency and model performance. 476

6.1 Iterative recycling-then-finetuning 477

We treat the five intermediate checkpoints of OLMo 478

2 7B—M1,M2,M3,M4,M5 (described in Sec- 479

tion 4.1) as different model versions of the pre- 480

trained OLMo 2 model. Our iterative recycling- 481

then-finetuning algorithm, outlined in Algorithm 1, 482

works as follows: At each iteration i, we first apply 483

the most recent diff vector, ∆iter
i−1, to the new base 484

model Mi, and then further fine-tune the result- 485

ing model. Next, we compute a new diff vector 486

between the fine-tuned model and the current base 487

model Mi. This new diff vector is then carried 488

forward to the next model version for fine-tuning 489

in the subsequent iteration. 490

We refer to our iterative recycling-then- 491

finetuning approach as ∆iter and compare it to 492

∆dir, the direct recycling-then-finetuning approach 493

as described in 5. We follow the training procedure 494

outlined in Section 3.1. 495

6.2 Results and discussion 496

Iterative recycling-then-finetuning significantly 497

improves performance: Table 6 compares the 498

performance of two recycling approaches: it- 499

erative recycling-then-finetuning (∆iter) and di- 500

rect recycling-then-finetuning (∆dir). Both ap- 501

proaches lead to significant performance improve- 502

ments across model versions on GSM8K, with 503

larger gains observed in earlier versions. Both ap- 504

proaches outperform the standard fine-tuning base- 505

line (without recycling) by a substantial margin. 506
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M3 M4 M5

24.4 64.5 65.5
+ ∆dir → FT 62.7+38.3 77.6+13.1 77.0+11.5

+ ∆iter → FT 63.4+39.0 77.4+12.9 78.6+13.1

FT(Mi) 60.4 75.7 75.6

Table 6: Both iterative (∆iter) and direct (∆dir) re-
cycling-then-finetuning approaches significantly boost
GSM8K performance, surpassing standard fine-tuning
without recycling (FT(Mi)). Numbers in subscripts in-
dicate improvement over OLMo 2 7B checkpoints. At
a high level, ∆iter gradually incorporates fine-tuning
updates, i.e., diff vectors, from previous model versions,
while ∆dir directly applies the diff vector from the lat-
est model version to the current model. Results forM1

andM2 are omitted as these models remain identical
across the two approaches. See Appendix F for addi-
tional results.

In general, ∆iter performs similarly to or better507

than ∆dir across all model versions. These results508

suggest that in scenarios where the base model is509

continuously updated, adopting an iterative recy-510

cling strategy is beneficial and does not result in511

error propagation.512

7 Related work513

Fine-tuning transfer: Prior work has studied514

how to reuse fine-tuning updates on a fixed base515

model to improve generalization across tasks, do-516

mains, and languages. This includes full-model517

adaptation (Phang et al., 2018; Pruksachatkun518

et al., 2020; Vu et al., 2020, 2021; Aghajanyan et al.,519

2021) as well as parameter-efficient modules such520

as adapters (Pfeiffer et al., 2021; Poth et al., 2021),521

soft prompts (Vu et al., 2022b,a; Su et al., 2022;522

Asai et al., 2022), and LoRA matrices (Huang et al.,523

2024; Zadouri et al., 2024; Ostapenko et al., 2024);524

see Yadav et al. (2024a) for a comprehensive sur-525

vey. These methods typically assume a shared base526

model and focus on transferring capabilities across527

tasks or domains. Similarly, model merging com-528

bines multiple task-specific models based on the529

same model to create a more powerful model (Il-530

harco et al., 2023; Yadav et al., 2023; Wang et al.,531

2024a; Ramé et al., 2024; Yu et al., 2024; Yadav532

et al., 2024b; Ahmadian et al., 2024; Bandarkar533

et al., 2025). Recent work also extrapolates RLHF534

updates back to the base model (Zheng et al., 2024;535

Lin et al., 2025). In contrast, our work focuses536

on transferring fine-tuning updates across differ-537

ent model versions, addressing the challenge of 538

frequent model upgrades in LLM development. 539

Cross-model fine-tuning transfer: Several stud- 540

ies investigate transferring fine-tuning across dif- 541

ferent model architectures, primarily focusing on 542

lightweight modules in non-instruction-tuned set- 543

tings (Lester et al., 2022; Su et al., 2022; Wang 544

et al., 2024b; Fleshman and Van Durme, 2024; 545

Echterhoff et al., 2024). 546

Closely related to our work, Qin et al. (2023) 547

study recyclable fine-tuning in a continual domain 548

adaptation setting from the BERT (Devlin et al., 549

2019) era, where fine-tuning updates from domain- 550

adapted checkpoints are reused to adapt to new 551

domains. Other efforts aim to reuse weights across 552

divergent model architectures through duplica- 553

tion (Chen et al., 2022), progressive stacking (Gong 554

et al., 2019), or parameter merging (Wang et al., 555

2023). While these works reuse fine-tuning up- 556

dates across domains, skills, or architectures, our 557

work focuses on transferring full fine-tuning up- 558

dates across different versions of both pretrained 559

and instruction-tuned LLMs. This enables efficient 560

model development even when the underlying mod- 561

els differ in pretraining scale or alignment steps. 562

We evaluate both recycling and backporting scenar- 563

ios. Our approach complements prior work, and 564

combining these directions presents a promising 565

avenue for future research. 566

8 Conclusion 567

Our study demonstrates that fine-tuning transfer 568

offers a practical approach to mitigate the ineffi- 569

ciencies of frequent model updates. By applying 570

diff vectors from a fine-tuned source model ver- 571

sion to a different target model version, we achieve 572

substantial performance improvements without the 573

need for full fine-tuning. In a multilingual context, 574

this approach can significantly boost performance 575

on target-language tasks, offering an efficient so- 576

lution for language-specific fine-tuning. Through 577

controlled experiments, we show that fine-tuning 578

transfer is most effective when the source and tar- 579

get models are linearly connected in the parameter 580

space. Furthermore, this approach can offer a more 581

robust and computationally efficient starting check- 582

point for further fine-tuning. Taken together, we 583

hope that our work will spur more fundamental 584

research into the efficient development of modern 585

LLMs. 586
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Limitations587

Our experiments focus on evaluating supervised588

fine-tuning as a post-training method, using math589

reasoning instruction data. However, supervised590

fine-tuning is only one part of the broader post-591

training process. Modern LLMs often undergo mul-592

tiple post-training stages, including reinforcement593

learning with human feedback (RLHF), preference594

optimization, or training-then-merging techniques.595

It is also important to evaluate a broader range of596

downstream tasks to better assess generalization597

across different LLM capabilities. In addition, the598

impact of model shift, such as weight movement,599

changes in the loss landscape, or representational600

drift, on the transferability of diff vectors remains601

underexplored. Expanding our approach to cover602

these aspects of model development is a promising603

direction for future work.604

Ethical considerations and risks605

Our approach aims to improve the efficiency of606

LLM development by reducing the need for ex-607

tensive alignment process. However, this method608

carries certain risks. One concern is that reusing609

fine-tuning updates may inadvertently transfer bi-610

ases or undesirable behaviors from one model to611

another, especially if the source model contains612

such issues.613

Although this approach lowers computational614

costs, it does not negate the need for careful model615

design to ensure ethical behavior. Thus, respon-616

sible implementation of this technique is crucial.617

Future research should explore its ethical impli-618

cations across different model architectures and619

training approaches.620
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Appendix988

A Theoretical justification for Section 2:989

Transferring fine-tuning updates across990

model versions991

We provide the theoretical motivation for fine-992

tuning transfer. Let ms and mt denote the source993

and target base models, respectively. Here we as-994

sume that ms and mt share the same architecture.995

Let m′
s and m′

t be the fine-tuned versions of ms996

and mt on dataset D. We define ∆s = m′
s −ms997

as the fine-tuning updates, and hypothesize that ∆s998

represents task-specific knowledge that is transfer-999

able across model versions.1000

Linear Mode Connectivity Interpretation. Fol-1001

lowing linear mode connectivity (Frankle et al.,1002

2020; Mirzadeh et al., 2020; Neyshabur et al.,1003

2020), we assume that m′
s and m′

t (which share1004

the same architecture) arrive at local minima that1005

are connected by a linear path of non-increasing er-1006

ror. Consider some model on this path m(λ) given1007

by1008

m(λ) = (1− λ)m′
s + λm′

t. (1)1009

Substituting m′
s by ∆s +ms and m′

t by ∆t +mt:1010

m(λ) = (1− λ)(ms +∆s) + λ(mt +∆t). (2)1011

Rewriting this expression:1012

m(λ) = (1−λ)ms+λmt+(1−λ)∆s+λ∆t. (3)1013

Assuming ∆s ≈ ∆t, the update term simplifies to1014

approximately ∆s, yielding:1015

m(λ) ≈ (1− λ)ms + λmt +∆s. (4)1016

or equivalently:1017

m(λ) ≈ mt + (1− λ)(ms −mt) + ∆s. (5)1018

In particular, when λ = 1, m(λ) = m′
t ≈ mt +1019

∆s, which shows that reusing ∆s corresponds to1020

extrapolating from mt towards the task solution1021

learned by ms.1022

Connection to Task Vector Interpolation. This1023

interpretation aligns with prior work on task vector1024

arithmetic (Ilharco et al., 2023), where multiple1025

fine-tuned models are merged by adding their up-1026

date vectors to a shared base. For example, the1027

merged weights θm produced by adding the task1028

vectors of model A and B (with weights θa and θb) 1029

yield: 1030

θm = θp + λ((θa − θp) + (θb − θp)) 1031

= (1− 2λ)θp + λθa + λθb 1032

where θp are the weights of the base pretrained 1033

model. This is a linear interpolation among θp, 1034

θa, and θb, and assumes the models lie within a 1035

connected low-loss region. Our definition of ∆s 1036

corresponds to a special case of this framework: we 1037

apply a single update vector from ms to a different 1038

base model mt. Under the same connectivity as- 1039

sumption, this transfer remains valid and preserves 1040

task performance. 1041

B Additional results for Section 2: 1042

Transferring fine-tuning updates across 1043

model versions 1044

B.1 Evaluation results for Tülu and OLMo 1045

models 1046

We also conduct experiments with Tülu (Lambert 1047

et al., 2024) and OLMo (OLMo et al., 2024), both 1048

of which were developed from Llama 3.1 through 1049

multiple alignment stages, including Supervised 1050

Fine-Tuning (SFT), Direct Preference Optimiza- 1051

tion (DPO) (Rafailov et al., 2023), and a final rein- 1052

forcement learning stage—Reinforcement Learn- 1053

ing with Verifiable Rewards (RLVR) (Lambert 1054

et al., 2024) for OLMo 2 and Tülu 3, or Group 1055

Relative Policy Optimization (GRPO) (Shao et al., 1056

2024) for Tülu 3.1. At a high level, we subtract the 1057

weights of Llama 3.1 from these alignment-tuned 1058

checkpoints and then backport (add) the resulting 1059

diff vectors to Llama 3.0. Recycling is not appli- 1060

cable here, as we do not have the alignment-tuned 1061

checkpoints for Llama 3.0. 1062

Our results are summarized in Table 7 and Ta- 1063

ble 8. In general, we find that advanced LLM capa- 1064

bilities, attained through alignment tuning stages 1065

such as SFT, DPO, RLVR, and GRPO (encoded 1066

in ∆SFT , ∆DPO, ∆RLV R, and ∆GRPO, respec- 1067

tively), can be successfully transferred across dif- 1068

ferent model versions. For example, backporting 1069

∆GRPO from Tülu 3.1 8B to Llama 3.0 8B signif- 1070

icantly improves accuracy, boosting GSM8K per- 1071

formance from 55.6% to 85.8% (30.2% improve- 1072

ment) and IFEval from 34.5% to 82.6% (48.1% 1073

improvement). This surpasses Llama 3.0 8B In- 1074

struct (81.1% on GSM8K, 76.6% on IFEval) and 1075

performs competitively with Llama 3.1 8B Instruct 1076

13



Model GSM8K MATH ARCC GPQA MMLU IFEval

Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 36.4
Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5
Tülu 3 8B SFT 76.2 31.6 79.1 31.0 65.1 72.0
Tülu 3 8B DPO 84.1 42.4 79.6 33.3 68.4 81.7
Tülu 3 8B 87.9 43.4 79.4 34.4 67.9 81.5
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5

+ ∆SFT 71.8 26.3 77.9 32.1 63.5 69.1
+ ∆DPO 81.1 38.1 78.6 31.9 67.5 82.9
+ ∆RLV R 85.1 37.6 79.1 32.4 66.2 82.4

Tülu 3.1 8B 89.9 43.3 79.0 31.4 67.6 84.1
Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5

+ ∆GRPO 85.8 39.5 78.2 29.4 65.0 82.6

Table 7: We find that advanced LLM capabilities, attained through alignment tuning stages such as SFT, DPO,
RLVR, and GRPO (encoded in ∆SFT , ∆DPO, ∆RLV R, and ∆GRPO, respectively), can be successfully transferred
across different model versions.

(86.5% and 80.5%) and Tülu 3.1 8B (89.9% and1077

84.1%).1078

B.2 Additional results for Section 2:1079

Transferring fine-tuning updates across1080

model architectures1081

Table 9 and Table 10 summarize fine-tuning trans-1082

fer results across model versions with architec-1083

tural differences. We compute the diff vector as1084

described in Section 2, applying fine-tuning up-1085

dates only to layers in the target model that match1086

the source in shape. We observe that reusing fine-1087

tuning updates across large version gaps remains1088

challenging, and we leave this direction to future1089

work.1090

C Additional evaluation details1091

We use the same evaluation setup and prompts as1092

those in Llama 3 (Dubey et al., 2024) for Llama1093

models and those in Tülu 3 (Lambert et al., 2024)1094

for OLMo and Tülu models, whenever available.1095

See Table 11 and Table 12 for more details. For1096

evaluation, we use the lm-evaluation-harness1097

library (Gao et al., 2024) for Llama models, and1098

the OLMES library (Gu et al., 2024) for OLMo and1099

Tülu models.1100

8See https://github.com/meta-llama/llama-model
s/blob/main/models/llama3_1/eval_details.md

D Additional results for Section 4: When 1101

is fine-tuning transfer effective? 1102

See Table 13. 1103

E Additional results for Section 5: 1104

Fine-tuning transfer as a starting point 1105

for further fine-tuning 1106

See Table 14, Figure 3. 1107

F Additional results for Section 6: 1108

Iterative recycling-then-finetuning for 1109

improved performance and efficiency 1110

Algorithm 1 Iterative recycling-then-finetuning

1: Notation: FT denotes fine-tuning
2: Input: Base modelsM1,M2, . . . ,Mn

3: Output: Fine-tuned modelsM∗
1,M∗

2, . . . ,M∗
n

4: M∗
1 ← FT(M1)

5: for i = 2 to n do
6: ∆iter

i−1 =M∗
i−1 −Mi−1

7: M∗
i ← FT(Mi +∆iter

i−1)
8: end for
9: returnM∗

1,M∗
2, . . . ,M∗

n

Algorithm 1 provides the formal description of 1111

the iterative recycling-then-finetuning procedure. 1112

Iterative recycling-then-finetuning leads to 1113

faster convergence: Figure 4 shows that both 1114

recycling approaches—iterative (∆iter) and direct 1115
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Model GSM8K MATH ARCC GPQA MMLU IFEval

OLMo 2 7B 67.2 19.2 79.9 20.5 63.6 23.0
OLMo 2 7B SFT 71.7 25.2 79.7 27.9 61.2 67.7
OLMo 2 7B DPO 82.5 31.3 80.5 30.6 62.1 73.2
OLMo 2 7B Instruct 85.3 29.7 80.6 29.7 63.3 75.6

M0 2.5 1.6 25.7 18.1 25.0 12.2
+ ∆SFT 2.2 0.8 23.8 1.3 1.4 13.7
+ ∆DPO 2.1 0.8 24.1 1.1 1.3 13.7
+ ∆RLV R 2.0 0.8 24.1 0.6 1.4 13.3

M3 24.4 5.7 72.7 15.4 59.8 15.7
+ ∆SFT 31.7 8.4 74.3 24.8 55.4 51.4
+ ∆DPO 40.4 9.3 75.0 29.9 56.6 68.0
+ ∆RLV R 40.2 10.3 75.1 29.9 56.7 68.3

M4′ 63.7 17.5 78.6 22.5 62.6 16.1
+ ∆SFT 71.1 23.7 79.0 28.3 59.7 64.3
+ ∆DPO 79.9 27.8 79.3 29.0 63.1 72.6
+ ∆RLV R 82.8 27.7 79.3 27.2 62.2 72.1

Table 8: We find that advanced LLM capabilities, attained through alignment tuning stages such as SFT, DPO,
and RLVR (encoded in ∆SFT , ∆DPO, and ∆RLV R, respectively), can be successfully transferred across different
model versions. Here,M4′ is an intermediate pretrained checkpoint of OLMo 2 7B (mid-stage 2, at 7K steps),
which we selected before conducting our controlled experiments in Section 4.1.

GSM8K MATH

Llama 2.0 7B 14.1 3.6
+ FT 56.9 3.1
+ ∆3.0 15.0 3.8
+ ∆3.1 14.6 3.8

Llama 3.0 8B 54.9 17.3
+ FT 70.7 32.0
+ ∆2.0 55.3 17.5

Llama 3.1 8B 56.6 19.3
+ FT 71.2 33.7
+ ∆2.0 57.1 20.3

Table 9: Transfer results in both recycling and back-
porting scenarios on GSM8K and MATH show limited
improvement, possibly due to layer shape mismatches.

(∆dir) recycling-then-finetuning—offer a more1116

computationally efficient starting point for further1117

fine-tuning. In general, ∆iter consistently out-1118

performs ∆dir in terms of training efficiency and1119

significantly improves standard fine-tuning with-1120

out recycling. These results indicate that iterative1121

recycling not only improves model performance1122

but also enhances training efficiency by effectively1123

leveraging the knowledge stored in the diff vectors1124

GSM8K MATH

OLMo 1 7B 28.8 5.8
+ FT 54.2 17.2
+ ∆2 25.1 5.5

OLMo 2 8B 66.9 19.2
+ FT 76.4 21.1
+ ∆1 69.7 20.1

Table 10: Fine-tuning transfer remains effective when
applying ∆1 to OLMo 2 8B on GSM8K. In other cases,
improvements are limited and sometimes lead to small
drops.

across different model versions. 1125
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Task # Shots CoT Metric Reference eval. setup

GSM8K 8 ✓ exact match acc.

Llama 3 Evaluation Details8

MATH 4 ✓ exact match acc.
ARCC 0 ✗ acc.
GPQA 0 ✓ exact match acc.
MMLU 0 ✓ exact match acc.
IFEval 0 ✗ avg. acc. (strict & loose)
Global MMLU 0 ✗ acc. Singh et al. (2024a)
HumanEval+ 0 ✗ pass@1

Liu et al. (2023)
MBPP+ 0 ✗ pass@1
LiveCodeBench 0 ✗ pass@1 Jain et al. (2024)
BigCodeBench 0 ✗ pass@1 Zhuo et al. (2024)

Table 11: Evaluation details for Llama 3.

Task # Shots CoT Metric Reference eval. setup

GSM8K 8 ✓ exact match acc.

Lambert et al. (2024)

MATH 4 ✓ flex exact match acc.
ARCC 5 ✗ acc.
GPQA 0 ✓ exact match acc.
MMLU 0 ✓ exact match acc.
IFEval 0 ✗ prompt-level loose acc.
MATH500 0 ✓ exact match acc.

Muennighoff et al. (2025)
GPQADiamond 0 ✓ exact match acc.

Table 12: Evaluation details for OLMo 2 and Tülu 3.

M1 M2 M3 M4 M5

14.6 11.6 11.4 11.6 16.6
+ ∆1 8.8 17.8 19.2 15.6
+ ∆2 7.6 12.6 14.6 14.4
+ ∆3 8.0 9.4 23.4 27.8
+ ∆4 7.8 8.0 9.8 34.2
+ ∆5 8.0 7.4 11.2 30.6

FT(Mi) 13.4 17.6 21.6 31.4 33.0

Table 13: MATH500 accuracies indicating that more
powerful models are better at leveraging transferred
fine-tuning. Effective use of transferred fine-tuning only
emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer
works best when the source and target models are close
within a linearly connected region of the parameter
space. Here,Mi represents different intermediate pre-
trained checkpoints of OLMo 2 7B (with smaller values
of i indicating earlier checkpoints), and ∆i refers to the
diff vector resulting from the fine-tuning of version i.
FT(Mi) denotes applying fine-tuning directly toMi.

M1 M2 M3 M4 M5

14.6 11.6 11.4 11.6 16.6
+ ∆1 → FT 21.0+12.2 23.0+5.2 32.0+12.8 34.2+18.6

+ ∆2 → FT 16.2+8.6 26.2+13.6 31.6+17.0 31.0+16.6

+ ∆3 → FT 18.4+10.4 21.2+11.8 31.0+7.6 32.0+4.2

+ ∆4 → FT 17.4+9.6 19.0+11.0 23.8+14.0 32.2-2.0

+ ∆5 → FT 17.0+9.0 21.4+14.0 25.0+13.8 31.2+0.6

FT(Mi) 13.4 17.6 21.6 31.4 33.0

Table 14: MATH500 accuracies showing that fine-
tuning transfer provides a stronger starting point (i.e.,
Mi +∆j) for further fine-tuning (FT). Numbers in sub-
script indicate improvement over the baseline without
fine-tuning. Here,Mi represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller val-
ues of i indicating earlier checkpoints), and ∆i refers to
the diff vector resulting from the fine-tuning of version
i. FT(Mi) denotes applying fine-tuning directly toMi.
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Figure 3: GSM8K performance showing that fine-tuning transfer provides a more computationally efficient starting
point (i.e.,Mi +∆j) for further training. Here,Mi represents different intermediate pretrained checkpoints of
OLMo 2 7B (with smaller values of i indicating earlier checkpoints), and ∆i refers to the diff vector resulting from
the fine-tuning of version i.

Figure 4: GSM8K performance showing that both iterative (∆iter) and direct (∆dir) recycling-then-finetuning
approaches offer faster convergence. At a high level, ∆iter gradually incorporates fine-tuning updates, i.e., diff
vectors, from previous model versions, while ∆dir directly applies the diff vector from the latest model version to
the current model.
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