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ABSTRACT

Restoring missing information in video frames is a challenging inverse problem,
particularly in applications such as autonomous driving and surveillance. This
paper introduces the Siamese Masked Conditional Variational Autoencoder (SM-
CVAE), a novel model that utilizes a Siamese network architecture with Siamese
Vision Transformer (SiamViT) encoders. By leveraging the inherent similarities
between paired frames, SMCVAE enhances the model’s ability to accurately re-
construct missing content. This approach effectively tackles the problem of miss-
ing patches—often resulting from camera malfunctions—through advanced vari-
ational inference techniques. Experimental results demonstrate SMCVAE’s supe-
rior performance in restoring lost information, highlighting its potential to solve
complex inverse problems in real-world environments.

1 INTRODUCTION

The rapid advancement of imaging technologies has significantly broadened the applications of
cameras, particularly in areas that demand high precision and reliability, such as autonomous driv-
ing systems (Geiger et al., 2012). In these systems, cameras serve as critical sensory components,
providing real-time visual data essential for navigation and environmental perception (Muhammad
et al., 2020; Agostinho et al., 2022). Accurate environmental perception is vital for ensuring both
the safety and operational efficiency of autonomous vehicles. However, missing patches in video
frames—caused by camera malfunctions, occlusions, or transmission errors—pose substantial chal-
lenges. These data gaps can severely undermine the perception systems of autonomous vehicles,
leading to reduced reliability and overall performance, which may result in serious consequences
in real-world scenarios (Mallozzi et al., 2019; Jebamikyous & Kashef, 2022). Despite extensive
research aimed at addressing these issues, accurately restoring missing information in video frames
remains a significant technical hurdle (Rota et al., 2023; Lamba & Mitra, 2022).

At the same time, video inpainting techniques have seen significant progress, offering methods
for seamlessly editing video content. These techniques allow for the removal or modification of
objects within video frames while preserving the temporal continuity of the footage, resulting in
smooth and visually coherent sequences (Chang et al., 2019; Wu et al., 2023). However, video
inpainting typically focuses on achieving aesthetic coherence rather than accurately restoring the
original content. This distinction is crucial because, while inpainting produces visually plausible
results, it often neglects the accurate recovery of missing information. In contrast, restoration tasks
prioritize the authenticity of the content, aiming for precise reconstruction that restores video frames
to their original state (Su et al., 2022).

To address the pressing need for reliable restoration methods, we propose the Siamese Masked
Conditional Variational Autoencoder (SMCVAE), as illustrated in Figure 1. Given that adjacent
video frames often share similar features and structures, the use of a Siamese network—with shared
weights between two encoders—ensures consistent feature extraction from both masked and un-
masked frames. This shared-weight approach allows both inputs to be represented in a common
latent space, facilitating the model’s ability to learn meaningful relationships between them and ef-
fectively reconstruct missing information. Moreover, weight sharing reduces the overall number
of parameters, a critical consideration in deep learning applications where minimizing complexity
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Figure 1: SMCVAE Architecture. SMCVAE takes a reference frame and a masked frame as inputs
to restore the masked frame. By leveraging the inherent similarities between paired frames, this
architecture effectively reconstructs the missing content.

without sacrificing performance is essential. By utilizing the same set of weights for encoding both
masked and unmasked frames, the model maintains strong performance while being computation-
ally more efficient—an important factor in frame restoration, where processing speed and memory
usage are often limiting factors. Additionally, to handle uncertainty in corrupted frames and improve
generalization, we incorporate variational inference, which further enhances the model’s capabili-
ties. In this paper, we evaluate this approach and demonstrate its advantages. The results show that
SMCVAE is both efficient and accurate.

2 RELATED WORK

Inverse problems. Inverse problems, where one seeks to recover underlying causes from observed
data, are central to various fields, including computer vision, medical imaging, and signal processing
(Arridge et al., 2019; Hansen, 2010). These problems are typically formulated as reconstructing the
original input x from an observation y, where y is often corrupted by noise or incomplete data.
Mathematically, the problem can be described as solving for x in the equation:

y = A(x) + n, (1)

where A is a forward operator that maps the true signal x to the observation y, and n represents
noise or corruption. The goal is to invert this process and estimate x given y. However, inverse
problems are often ill-posed, meaning that small changes in y can lead to large variations in the
estimated x, or that a unique solution may not exist (Tarantola, 2005). Traditional approaches to
solving inverse problems rely on regularization techniques, which introduce prior knowledge about
the solution to stabilize the inversion (Bertero et al., 2021). For example, one widely used method
is to minimize a regularized loss function:

x̂ = argmin
x

(
∥A(x)− y∥2 + λR(x)

)
, (2)

where R(x) is a regularization term, and λ controls the regularization strength. We leverage a
similar deep learning-based approach to address the inverse problem of video frame restoration.
Our proposed SMCVAE learns a latent representation of video frames, allowing it to accurately
reconstruct missing or corrupted content. By incorporating variational inference and a Siamese
architecture, SMCVAE provides a robust and efficient solution to this inverse problem (Bora et al.,
2017).

Siamese networks. Siamese networks, characterized by their dual-branch architecture with shared
weights, are highly effective for tasks involving similarity measurement and entity comparison. The
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shared weights allow both branches to extract comparable features from different inputs, making
Siamese networks well-suited for applications such as signature verification (Bromley et al., 1993),
face verification (Chopra et al., 2005), and one-shot learning (Koch et al., 2015). Their versatility
extends to contrastive learning, where they help in learning discriminative features by minimizing
the distance between similar entities while maximizing the distance between dissimilar ones (Chen
et al., 2020; He et al., 2020). This architecture has been instrumental in various computer vision tasks
such as image classification, face recognition, and object tracking (Taigman et al., 2014; Bertinetto
et al., 2016). Traditionally used in discriminative tasks, our research innovatively applies Siamese
networks to generative modeling, opening up new possibilities in content restoration and generation.

Variational inference. Variational inference is a key technique in probabilistic modeling that ap-
proximates complex, often intractable, posterior distributions by optimizing an approximate distri-
bution, q(z), to match the true posterior, p(z|x), using the Kullback-Leibler (KL) divergence as a
measure of information loss (Blei et al., 2017; Jordan et al., 1999). This approach balances com-
putational efficiency with model expressiveness, making it particularly useful in scalable machine
learning applications. By minimizing the KL divergence, variational inference enables efficient pos-
terior estimation in large datasets and complex models such as Bayesian neural networks (Blundell
et al., 2015). Its role is central to the development of models like the Variational Autoencoder (VAE)
(Kingma, 2013; Rezende et al., 2014), which leverages variational inference to learn latent variable
models in a generative framework. The Conditional Variational Autoencoder (CVAE) extends this
framework to handle conditional dependencies, making it well-suited for tasks such as video frame
restoration, where generative models need to account for auxiliary variables (Sohn et al., 2015).
Variational inference not only enhances computational tractability but also allows for more flexible
and expressive modeling, underscoring its importance in both generative modeling and Bayesian
deep learning (Hoffman et al., 2013; Tucker et al., 2017).

3 METHOD

Siamese encoder. The encoding process begins by converting each pair of video frames into a
structured sequence of patches. Specifically, frames A1 and A2 ∈ RH×W×C are transformed into
sequences of 2D flattened patches, denoted as X1 and X2 ∈ RN×(P 2·C). In this notation, H ×W
represents the dimensions of the original frames, C is the number of channels, P × P defines the

resolution of each patch, and N =
HW

P 2
represents the total number of patches extracted from each

frame. To accommodate the paired frame structure, our method utilizes the SiamViT architecture,
which leverages Siamese Vision Transformers (SiamViT) with shared weights for efficient process-
ing (Dosovitskiy et al., 2020). This architecture processes paired frames consisting of one unaltered
frame and one masked frame, enabling the model to handle the unique challenges of video frame
restoration by focusing on the similarities and discrepancies between the two frames.

The SiamViT architecture employs a series of alternating Multiheaded Self-Attention (MSA) and
Multilayer Perceptron (MLP), a design inspired by the ViT model (Vaswani et al., 2017; Dosovit-
skiy et al., 2020). Each block is preceded by Layer Normalization (LN) to stabilize training, while
residual connections are incorporated after each block to facilitate gradient flow during backpropa-
gation, which is crucial for efficient learning in deep networks (He et al., 2016). These components
work together to maintain a stable and efficient flow of information through the network, enhancing
the model’s ability to learn robust feature representations from the video data.

The SiamViT operates according to the following mathematical formulation:
Yi,0 = (WeX

T
i +Be)

T +Pe, (3)

Y′
i,l = MSAl(LN(Yi,l−1)) +Yi,l−1, (4)

Yi,l = MLPl(LN(Y′
i,l−1)) +Y′

i,l−1, (5)

Ui = (WuLN(Yi,L)
T +Bu)

T, (6)
where We and Be are the weights and biases used for embedding the patches, Pe represents the
positional embeddings, and Wu and Bu are the final projection weights and biases.

Following this encoding step, the trainable mask token tT is replicated according to the cardinality
of the set P , which denotes the indices of the masked patches. This replication results in a matrix
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ready for integration with U2, the encoded representation of the masked frame. The merging of U1

(from the unaltered frame) and U2, along with the masked tokens, is performed as follows:

T = Repeat(tT, |P|), (7)
U = [U1,Convert(U2,P, N + 1) + Convert(T,Pc, N + 1)], (8)

where P signifies the indices of the masked patches, Pc represents the complement of P , [ · , · ]
denotes the concatenation operation, and | · | represents the cardinality of the set. This approach
ensures that the model can focus on recovering the missing content by leveraging both the unaltered
frame and the masked frame, thus improving its restoration capabilities (Bao et al., 2021; He et al.,
2022).

Reparameterization. After the siamese encoder processes the input, the extracted features pass
through the reparameterization layer, where they are mapped into a Gaussian-distributed latent
space. This step is crucial for enhancing the model’s ability to generate diverse and nuanced rep-
resentations by enabling stochasticity in the latent variables (Kingma, 2013; Rezende et al., 2014).
The reparameterization trick allows for efficient backpropagation through stochastic layers, a key
innovation in variational autoencoders (VAEs) that facilitates end-to-end training. Mathematically,
the operation is defined as follows:

M = (WmU
T +Bm)

T, (9)

S = (WsU
T +Bs)

T, (10)
Z = M+ S⊙E, (11)

where Wm and Ws are weight matrices, and Bm and Bs are bias vectors, corresponding to the
mean (M) and standard deviation (S) of the latent space, respectively. The matrix E is sampled
from a multivariate normal distribution MN (N+1)×D′(0, I, I), introducing a stochastic element
through the Hadamard product ⊙. This process allows the model to efficiently sample from the
latent space while maintaining differentiability, a critical aspect of variational inference in deep
generative models (Kingma et al., 2019). The reparameterization trick thus plays an essential role in
generating continuous and diverse latent representations, key for the model’s generative capabilities.

Decoder. The decoder is designed as a specialized Vision Transformer (ViT) (Dosovitskiy et al.,
2020), which plays a crucial role in reconstructing the original visual content by predicting the
appearance of individual patches in pixel space. This transformation takes the latent representations
and converts them back into the visual domain, with the objective of filling in missing content with
high fidelity and accuracy (Esser et al., 2021; Parmar et al., 2018). The decoder’s architecture allows
for precise reconstruction by leveraging self-attention mechanisms to capture the global context
of the image (Vaswani et al., 2017). The mathematical operations that govern this reconstruction
process are as follows:

V0 = (Wd[Z,U1]
T +Bd)

T +Pd, (12)

V′
l = MSA′

l(LN(Vl−1)) +Vl−1, (13)

Vl = MLP′
l(LN(V′

l−1)) +V′
l−1, (14)

O = (WoLN(VL′)T +Bo)
T, (15)

where Wd and Bd represent the weights and biases of the decoder’s embedding layer, Pd specifies
the positional embeddings within the decoder, and Wo and Bo denote the weights and biases of the
output layer, respectively. These operations leverage the ViT’s MSA and MLP modules to iteratively
refine the latent representations and generate a coherent output in pixel space. The decoder’s ability
to accurately reconstruct missing patches is crucial for high-quality video frame restoration (Chen
et al., 2021), ensuring that the synthesized content closely matches the original.

To integrate the predicted content with the original unmasked patches, the following operation is
employed:

R = Convert([0T;X2],P, N) + Convert(O,Pc, N), (16)
where [ · ; · ] signifies vertical concatenation. This operation allows for the predicted patches to be
merged with the original content, ensuring that the final reconstruction, R, retains both the predicted
and original information in their correct spatial positions.
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Loss function. Inspired by the β-VAE framework (Higgins et al., 2017), we adopt an isotropic
unit Gaussian MN (0, I, I) as the prior distribution. This choice leads to a constrained optimiza-
tion problem that maximizes the expected log-likelihood of the ground truth G given the latent
representations Z, while constraining the Kullback-Leibler (KL) divergence to ensure a controlled
information bottleneck. The optimization problem is formally expressed as:

min
ϕ,θ

− EX1,X2∼D
[
Eqϕ(Z|X1,X2) log pθ(G | Z)

]
,

s.t. DKL (qϕ(Z | X1,X2)∥p(Z)) ≤ ϵ,
(17)

where ϕ and θ represent the parameters of the encoder and decoder, respectively. The input pairs X1

and X2 come from the dataset D, with qϕ denoting the variational posterior and pθ the likelihood
of the reconstruction given the latent space. The KL divergence term DKL ensures regularization by
constraining the learned latent distribution to the prior p(Z), with ϵ controlling the strength of the
regularization. This formulation balances reconstruction fidelity and latent space regularization, a
key feature of variational autoencoders (Kingma, 2013; Rezende et al., 2014).

To further refine the model, we reconceptualize the loss function within a Lagrangian framework:

F(θ, ϕ, β) = −Eqϕ(Z|X1,X2) [log pθ(G | Z)] + β (DKL (qϕ(Z | X1,X2)∥p(Z))− ϵ) , (18)

where F denotes the Lagrangian, incorporating the expected log-likelihood of the ground truth and
the KL divergence, which is scaled by β to control the trade-off between reconstruction quality and
adherence to the prior distribution (Burgess et al., 2018).

Since ϵ is fixed and does not influence the optimization directly, it can be omitted from operational
calculations. The overall loss function integrates both the reconstruction loss (Lr) and the KL diver-
gence loss (LKL), as follows:

L = Lr + β · LKL, (19)

where β regulates the balance between these two components.

The reconstruction loss, Lr, measures the difference between the original data and the reconstructed
data, which is crucial for evaluating restoration accuracy. It is defined as:

Lr =
1

P 2C|P|
∥R−G∥2F, (20)

where ∥ · ∥F is the Frobenius norm, capturing the squared sum of pixel-wise differences across all
channels.

The KL divergence loss LKL, which quantifies the dissimilarity between the learned latent distribu-
tion and the prior, is given by:

LKL =
∥M∥2F + ∥S∥2F −

∑N+1
i=1

∑D′

j=1 logSij

2(N + 1)D′ − 1

2
. (21)

To optimize the model, we aim to minimize the overall loss:

ϕ∗, θ∗ =argmin
ϕ,θ

F(θ, ϕ, β)

= argmin
ϕ,θ

(−Eqϕ(Z|X1,X2) log pθ(G | Z) + β ·DKL(qϕ(Z | X1,X2)∥p(Z)))

= argmin
ϕ,θ

(Lr + β · LKL)

= argmin
ϕ,θ

L.

(22)

This ensures that the model achieves high-quality reconstructions while maintaining a regularized
and meaningful latent space, balancing the trade-off between reconstruction and latent space regu-
larization (Alemi et al., 2018).
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Figure 2: Mask ratio. Our SMCVAE
exhibits remarkable resilience, maintaining
high restoration quality over a spectrum of
mask ratios.
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Figure 3: Frame gap. Our SMCVAE main-
tains impressive stability in handling varying
frame gaps with minimal performance im-
pact.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. For our experiments, we utilize the BDD100K dataset, a comprehensive collection of im-
ages and videos captured across various driving conditions and environmental scenarios (Yu et al.,
2020). To streamline the training process and reduce computational overhead, we select a represen-
tative subset of the dataset.

Masking strategy. To replicate real-world scenarios of data loss or image corruption, we imple-
ment a strategic masking procedure. In each image pair, one frame is selectively occluded to simulate
partial data loss or corruption, as commonly observed in dynamic video feeds due to transmission
errors, occlusions, or sensor malfunctions (Pathak et al., 2016; Zhao et al., 2016). The unmasked
frame serves as a reference for restoration, enabling our model to learn how to effectively reconstruct
missing or corrupted content.

Baseline. Our baseline model consists of two independent ViT encoders, each tasked with sepa-
rately processing the masked and unmasked input frames, followed by a ViT decoder that recon-
structs the corrupted frames. This setup provides a strong foundation for comparison, allowing us to
measure the improvements brought by our proposed model.

4.2 MODEL ROBUSTNESS

To assess the resilience and adaptability of the SMCVAE model, we conducted simulations that
reflect challenges commonly encountered in real-world scenarios. These tests are designed to eval-
uate the model’s robustness in handling data loss and temporal discontinuities, both of which are
prevalent in practical applications.

Mask ratio. To evaluate the model’s robustness under varying levels of data loss, we tested its per-
formance across a range of mask ratios. This analysis provided valuable insights into the model’s
ability to handle different degrees of data degradation. The results, illustrated in Figure 3, demon-
strate SMCVAE’s strong ability to reconstruct video frames even under severe masking conditions.
This highlights the model’s reliability and effectiveness across a wide range of data corruption sever-
ities.

Frame gap. We also explored the model’s performance under varying frame gaps, which simu-
late temporal discontinuities. As shown in Figure 3, SMCVAE consistently maintains stable per-
formance across different frame gaps, underscoring its adaptability. This consistent performance
demonstrates the model’s robustness in restoring accurate content, regardless of the temporal dis-
tance between frames.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Comparative visualization. Our SMCVAE model’s performance in reconstructing oc-
cluded regions is visually compared with other methods, showcasing its superior ability to restore
image fidelity even in heavily masked scenarios.

4.3 QUALITATIVE ANALYSIS

To further assess the SMCVAE model’s capabilities, we conducted a qualitative analysis focusing
on the visual quality of the restoration outputs. The visual results, as illustrated in Figure 4, offer a
direct comparative view of SMCVAE’s performance against other leading models in the field. The
visual results not only underscore SMCVAE’s superior restoration capabilities but also highlight its
effectiveness in producing visually coherent and detailed images, further affirming its excellence in
the domain of video frame restoration.

4.4 ABLATION STUDIES

To evaluate the impact of key design choices in SMCVAE, we performed a series of ablation studies.

Reparameterization. We examined the role of reparameterization within the SMCVAE architec-
ture by comparing model performance with and without this feature. As shown in Table 1a, We
compare the result about no reparameterization, variational inference and conditional variational
inference. This result highlights the essential role of reparameterization in enhancing the model’s
overall effectiveness, establishing it as a vital component for superior video frame restoration.

Lagrange multiplier. A crucial aspect of configuring the SMCVAE model is tuning the Lagrange
multiplier (β), which balances the model’s regularization strength and restoration performance. As
illustrated in Table 1b, we explored the model’s sensitivity to different β values. The analysis demon-
strates how varying levels of regularization affect the model’s capacity to accurately reconstruct

7
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Table 1: Ablation studies. We conducted a series of ablation experiments to evaluate the impact of
key components in SMCVAE. Default settings are highlighted in gray .

(a) Reparameterization. Incor-
porating reparameterization im-
proves performance.

Reparam PSNR

None 20.55
Var 23.27

Cond 23.40

(b) Lagrange multiplier. The re-
sults show the model’s sensitivity
to different β values.

β PSNR

100 21.97
10−1 22.36
10−2 23.40
10−3 23.21

(c) Encoder design. The
Siamese encoder performs simi-
larly to the dual encoder.

Type PSNR

Dual 23.42
Siamese 23.40

video frames. The findings underscore the importance of fine-tuning β, with β = 10−2 identified as
the optimal value for maximizing performance across key evaluation metrics.

Encoder design. Implementing a Siamese encoder architecture, which utilizes weight sharing be-
tween the two encoders, offers the significant advantage of reducing the model’s total parameter
count by approximately 43%. As demonstrated in Table 1c, the Siamese architecture achieves per-
formance comparable to that of a dual-encoder configuration without weight sharing. This result
demonstrates that weight sharing effectively preserves the model’s restoration capabilities while
substantially decreasing computational complexity and memory usage.

5 DISCUSSION

The results of our experiments demonstrate the effectiveness of our SMCVAE in handling com-
plex video frame restoration tasks. By incorporating a Siamese architecture with shared weights,
the model not only reduces the number of parameters but also maintains high reconstruction qual-
ity, even under severe data loss conditions. This aligns with previous findings on the benefits of
weight-sharing in Siamese networks for reducing model complexity while preserving performance
(Koch et al., 2015; Bromley et al., 1993). Our ablation studies further highlight the importance of
key architectural choices, such as the use of reparameterization and the fine-tuning of the Lagrange
multiplier, both of which significantly enhance the model’s performance. These findings are consis-
tent with existing literature on β-VAE, where tuning β improves the balance between reconstruction
fidelity and latent space regularization (Higgins et al., 2017).

In comparison with the baseline model, which utilizes dual independent ViT encoders, SMCVAE
consistently outperforms in terms of reconstruction accuracy and robustness to varying degrees of
corruption. The model’s ability to preserve essential content while filling in missing details with
high fidelity demonstrates its potential for real-world applications, particularly in domains like au-
tonomous driving, where data integrity is critical (Yu et al., 2020; Geiger et al., 2012). This per-
formance, especially in scenarios involving severe masking or large frame gaps, underscores the
robustness of the SMCVAE architecture, which is capable of handling complex temporal dependen-
cies in video data.

Despite the promising results, there remain challenges, such as further optimizing the model’s ef-
ficiency for real-time applications and exploring its performance in more diverse and extreme con-
ditions. Future work could focus on extending the model’s capabilities to multi-modal datasets or
integrating it with state-of-the-art video restoration techniques to further enhance its generalizability
and performance.

6 CONCLUSION

In this paper, we introduced the Siamese Masked Conditional Variational Autoencoder (SMCVAE),
a novel architecture tailored for video frame restoration in the presence of partial data loss or cor-
ruption. Leveraging a Siamese encoder with weight sharing, SMCVAE strikes an effective balance
between model complexity and performance. The integration of a conditional variational frame-
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work further enhances the model’s ability to manage high levels of uncertainty in corrupted frames.
Our experimental results show that SMCVAE consistently outperforms baseline models, particu-
larly in challenging scenarios involving severe masking or temporal discontinuities, demonstrating
its robustness and superior reconstruction quality.
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