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Abstract

Automated characterization of porous materials has the potential to accelerate
materials discovery, but it remains limited by the complexity of simulation setup
and force field selection. We propose a multi-agent framework in which LLM-
based agents can autonomously understand a characterization task, plan appropriate
simulations, assemble relevant force fields, execute them and interpret their re-
sults to guide subsequent steps. As a first step toward this vision, we present a
multi-agent system for literature-informed force field extraction and automated
RASPA simulation setup. Initial evaluations demonstrate high correctness and
reproducibility, highlighting this approach’s potential to enable fully autonomous,
scalable materials characterization.

1 Introduction

Porous materials, such as metal–organic frameworks (MOFs) and zeolites, are central to applications
in energy storage, gas separation, catalysis, and carbon capture [9, 17, 21]. The design of novel
porous materials with improved performance can have significant societal and environmental benefits.
Molecular simulations play an important role in this process, as they provide molecular-level insights
into adsorption and diffusion that are often inaccessible to experiments [10, 13, 30]. By revealing how
structural features influence adsorption and transport, simulations can identify promising candidates
and guide experimental efforts, thereby accelerating the discovery of porous materials [8, 36].

The adoption of molecular simulations for porous materials is limited by several technical challenges.
Outcomes are highly sensitive to the choice of force fields and charge assignment methods, with
studies showing that different protocols can result in markedly different adsorption predictions
and even alter material rankings [7]. Maintaining reproducibility is also difficult, as variations in
workflows, such as charge schemes, cutoff definitions, or structure curation, may hinder cross-study
comparability [25]. Moreover, the diversity of force fields and their associated parameters requires
deep expertise to select and apply them correctly [15]. These challenges create a barrier for wider use
of simulations as a routine characterization tool.

Automated characterization of porous materials presents a multifaceted challenge, primarily due to
the necessity for intelligent planning. Agents must determine the appropriate simulations to conduct,
adapt workflows based on interim results, select or design accurate force fields, and generalize
across diverse topologies, adsorbates, and conditions. Recent advances in large language models
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(LLMs) have demonstrated their capability to address these complexities [3, 23, 26, 29]. LLMs
have been shown to effectively generate structured workflows, interpret complex scientific tasks
and synthesize executable simulation code, thereby facilitating the automation of intricate scientific
processes [11, 37, 39, 41]. Their proficiency in integrating heterogeneous knowledge and performing
flexible reasoning and multi-step planning makes them well-suited for orchestrating the adaptive
workflows required in materials characterization [4, 20]. Furthermore, LLMs have been utilized to
automate research workflows, including experimental protocol planning and scientific code generation,
underscoring their potential in scientific automation [6, 22, 27, 35].
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Figure 1: Vision of an autonomous multi-agent system for molecular simulations. The Experiment
Planning Team coordinates research, setup, and analysis teams through a shared global memory,
enabling iterative workflows in which user queries result in literature-derived force fields, RASPA
simulations, and analysis of results.

Our goal is to develop a system that, given an experimental measurement or user request, can
autonomously plan and execute the necessary steps to identify or design suitable force fields and
then perform characterization simulations (Figure 1). By automating both the selection of physically
accurate force fields and the execution of complex simulation workflows, such a system bridges
experimental observations with predictive, simulation-driven insights. This approach not only
reduces the expertise and time required to perform high-quality simulations but also enables routine,
reproducible characterization of porous materials, accelerating materials discovery and guiding
experiments with a level of efficiency and reliability that would be difficult to achieve manually.

As a step toward this vision, we present two key agent-based components that form the foundation of
the system. First, experiment setup agents that can automatically generate RASPA [12] input files for
increasingly complex characterization tasks, including adsorption isotherms, heats of adsorption, and
multi-adsorbate or multi-structure scenarios. Second, force field retrieval agents that autonomously
extract relevant parameters from the literature and convert them into a format ready for RASPA
simulations. We evaluate the correctness and reliability of these components and discuss how they
provide a scalable framework for fully automated characterization workflows in porous materials.

2 Methods

Our system is organized into two specialized teams of LLM-based agents, using the ReAct framework
[38], that collaboratively perform autonomous materials characterization. The experiment setup team
(Figure 2) is coordinated by a supervisor agent that processes user or experimental requests and sets
up the corresponding simulations. The supervisor delegates responsibilities to specialized agents:
a structure agent identifies and prepares relevant structure copies, a force field agent combines and
formats appropriate force field files, a simulation input agent generates templated RASPA input files,
and a code generation agent [34] automates file operations and template creation. After each agent
completes its task, an evaluator agent [40] inspects the generated outputs and provides feedback to
ensure correctness and consistency. Agents have access to general tools for file manipulation, while
relevant agents also use functions to extract information from files without opening them directly.
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In addition, they share a global memory, which each agent can update with structured reports of
task execution and outputs. Furthermore, agents have access to example input files from the RASPA
manual, as well as a library containing multiple force fields to base their simulations on.
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Figure 2: Experiment Setup Team overview.

The paper research team (Figure 3) extracts simulation-relevant knowledge from the literature. A
paper search agent retrieves relevant publications, which are passed to an extraction agent that
reads the papers and summarizes key findings related to force field parameters. A force field writer
agent then converts these findings into simulation-ready force field files, and has access to dummy
force field files to base the force fields on. Agents communicate iteratively, requesting additional
information when needed (e.g., if a force field extends results from a different publication), ensuring
accuracy and completeness of the extracted knowledge.
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Figure 3: Research Team overview.

The agentic framework is implemented using LangChain and LangGraph. The paper search agent
uses Semantic Scholar [1] for queries. The code for the experiments can be found in this repository,
while more details on the agentic system can be found in Appendix A.

3 Experiments

To evaluate our simulation setup system, we designed a series of zeolite adsorption tasks with
increasing complexity. These include adsorption isotherms and heats of adsorption (HOA) for single
(CH4) and multiple adsorbates (CH4, CO2, CO), as well as simulations spanning single and multiple
zeolite structures. Each task is deliberately constructed so that agents must integrate input parameters
from multiple sources, combining adsorbate properties and force field parameters from separate files,
requiring correct assembly and templating. The system has access to several commonly used force
fields for molecules in zeolites [5, 18, 24, 28], which agents retrieve or combine as needed. Each
simulation setup is performed five times, and the resulting files are evaluated both manually and by
executing them in RASPA to verify correctness and reproducibility.
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To evaluate the paper research team, we select a set of publications and process each five times
to assess reproducibility. The agents extract force field parameters from the papers, and we verify
whether all relevant parameters are correctly identified and formatted for use in simulations.

Table 1: Experiment Setup Team results. For
each task, the number of zeolite structures
and adsorbates, as well as the success and
execution rates, are shown.

Task Str. Ads. Succ. Exec.

Isotherm 1 1 100% 100%
3 100% 100%

HOA 500 1 80% 100%
3 80% 80%

Isotherm 500 1 100% 100%
3 80% 100%

Table 2: Research Team results. For each force field,
the average number of missed parameters, wrong
parameters, and the Intersection over Union (IoU)
between extracted and correct parameters are shown.

Force fields Missed Wrong IoU
CO2 [18] 0 0 1.00
TraPPE-zeo [2] 0 0.6 0.90
CO2 N2 O2 Ar [33] 0 1.4 0.96
EPM2 (CO2) [19] 0 3 0.67
CO2 [14] 0 1 0.96
CxHx CO2 N2 O2 [16] 0 0 1.00

Overall, the system performed well in the experiment setup task (Table 1), with a high rate of
successful and executable simulations. We define the success rate as the proportion of simulations
correctly configured for their intended task, and the execution rate as the proportion that run without
errors. The few failures we observed came from specific issues: in the isotherm case with three
adsorbates, the setup incorrectly generated a combined mixture simulation instead of three individual
simulations; the Widom insertion method was not configured correctly for single-adsorbate HOA; and
for three adsorbates, the framework file was not copied. We also observed certain decisions, such as
selecting a non-standard cutoff (24 Å instead of the typical 12 Å) or enforcing minimum unit cells in
each direction, that were unusual but still led to correct and runnable simulations. Additional details
on the simulation setups, including deviations and encountered issues, are provided in Appendix B.

Table 2 shows the performance of the Research Team in extracting force field parameters. Across
all tested cases, no parameters were entirely missed, indicating high recall. Most errors arose from
incorrect numerical values being assigned to otherwise correct terms. In the case of TraPPE-zeo, the
model introduced a non-existent interaction term. For EPM2, all numbers were extracted correctly
but assigned to the wrong interactions due to the unconventional table layout, which reduced the
Intersection over Union (IoU) to 0.67. For the other force fields, the IoU remained high (≥ 0.9),
showing that the system is generally reliable when parameter tables follow standard formats.

In addition to the independent experiments, we conducted a coordinated experiment in which the
two teams were overseen by a supervisor. They were tasked with extracting the force field from [18]
and setting up an adsorption isotherm simulation for a structure using the extracted force field. The
system successfully completed this workflow. An overview of the execution is in Appendix C.

4 Discussion

Our results demonstrate that autonomous agents can reliably set up molecular simulations and
extract force field parameters from the literature, with only a small number of task-specific errors.
These outcomes suggest that multi-agent systems provide a promising foundation for automated
characterization of porous materials.

Looking forward, the most significant opportunity lies in equipping agent-based systems with
structured, persistent memory representations. At present, knowledge is encoded procedurally in
prompts and tools, limiting the ability of agents to adapt across tasks or to refine strategies based on
past experience. Incorporating semantic memory (e.g., domain-specific heuristics that experts apply
when setting up simulations) and episodic memory could enable more consistent and generalizable
behavior [20, 31, 40]. This would allow agents to construct increasingly sophisticated workflows
for materials characterization, bridging experimental observations with predictive modeling in a
continuous loop. Ultimately, such systems could serve as the foundation for self-driving laboratories
[32], where simulation and experimentation workflows are autonomously integrated in real time to
accelerate the discovery of high-performance porous materials.
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A System Overview

In Table S1, a description of each agent, along with the LLM they are based on, can be found.
Empirically, we found that most models performed significantly better when using gpt-5, compared
to older models (gpt-4o, gpt-4.1).

Table S1: Overview of agents used in this work and models
Agent Name Description LLM Model

Supervisor Responsible for understanding the user request, and
developing a plan of actions needed to be performed
to set up a simulation. Delegates to the various agents
according to its plan.

gpt-5

Structure Expert Finds the appropriate (placeholder) structure, and
places a copy in the simulation folder.

gpt-5-mini

Force Field Expert Given a request, decides what the appropriate force
fields are. If necessary, it combines them, and
writes new force field files (e.g., force_field.def,
pseudo_atoms.def)

gpt-5

Simulation Input Expert Creates a simulation.input file, depending on the
requirements of the simulation. Needs to decide which
keywords are appropriate, and where to fill in numbers
and to template.

gpt-5

Coding Expert Writes code to replicate the template folder for each
necessary run. Needs to understand how the simulation
template is set up, and which fields need to be filled in
and how.

gpt-5

Evaluator Evaluates the task performance of each agent by in-
specting files created during their execution and flags
any potential mistakes it finds.

gpt-5

Paper Search Agent Uses Semantic Scholar search to find appropriate re-
search papers, and downloads them.

gpt-5-mini

Paper Extraction Agent Reads downloaded papers and extracts any relevant
information from them (e.g., molecule definitions, in-
teraction parameters).

gpt-5-mini

Force Field Writer Reads the findings produced by the paper extraction
agent and transforms them into RASPA force field files.

gpt-5

An overview of the tools can be found in Table S2. In addition to the tools enumerated here, agents
have access to various tools for reading, writing, and copying files.
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Table S2: Overview of tools available to various agents.
Tool Name Description Paramaters

list_example_simulation_inputs Gives the names and description of ex-
ample input files from the RASPA man-
ual

-

read_atoms_in_file Returns the set of atoms present in
a framework.cif or molecule.def
file.

file path

count_atom_type_in_cif Counts how often a given atom type
occurs in a CIF file.

file path, atom type

get_unit_cell_size Returns the lattice parameters of the
unit cell defined in a CIF file.

file path

get_all_force_field_descriptions Lists the available force fields and their
metadata.

-

get_atoms_in_ff_file Lists the set of atoms for which
parameters are defined in a force
field file (force_field.def,
force_field_mixing_rules.def,
pseudo_atoms.def).

file path

semantic_scholar_search Performs a search query using the Se-
mantic Scholar.

query, limit, fields

download_paper Downloads a paper given a DOI in the
specified folder.

DOI, paper name

read_paper_headers Lists the section headers of a paper af-
ter it has been parsed.

paper name

read_paper_section Returns the content of the specified sec-
tion (e.g., introduction) of a paper.

paper name, section

B Run Details

In Table S3, a more detailed explanation can be found on issues and mistakes during the simulation
setup process. Overall, most mistakes are minor and could be fixed in a more robust, future version
of the system.

9



Table S3: Notes on simulation setups with mistakes/intricacies
Task Strucutre Adsorbate Notes

Isotherm 1 3 In multiple runs, all adsorbate files were copied into each
simulation folder. Only the correct adsorbate was used in
simulation.input, resulting in correct simulations.

HOA 500 1 In one of the runs, all possible moves were defined (with
0 probability, except widom insertions) for the adsorbate.
In another run, no moves were specified for the adsorbate,
resulting in an incorrect simulation where the adsorbate
doesn’t move.

HOA 500 3 In one of the runs, the structure CIF files were not copied,
resulting in failed simulations. In multiple runs, redun-
dant/unused files were left as part of the force field.

Isotherm 500 1 In one of the runs, a minimum amount of unit cells was
enforced, resulting in many structures with more unit cells
than necessary, resulting in slower simulations.

Isotherm 500 3 Rather than generating separate simulations for all three
adsorbates, a mixture isotherm was calculated in one of the
simulations. While this is a valid simulation, this was not
requested in the task. In another run, a cutoff of 24 Å was
selected, resulting in twice as many unit cells.

C Combined System Run

In Figures S1 and S2, a full trace is provided, to illustrate the systems behavior. For clarity, some
messages have been summarized or omitted, highlighting the key interactions and decision points
while omitting routine or repetitive exchanges.

10



Research Team

    User
Set up and adsorption isotherm simulation for MOR_33, evaluated at 10,
30, 100, 300, 1000, 3000 and 10,000 Pa. The force field should be taken
from 'Transferable force field for carbon dioxide adsorption in zeolites' 
(2009), by Garcia-Sanchez et al.

    Supervisor
Find force field parameters for Transferable force field for carbon dioxide
adsorption in zeolites (2009) by Garcia-Sanchez. Only download and
extract the parameters of the one requested paper.

Transfer to: Research Team

      Paper
Search Agent Found and downloaded the Transferable force field for carbon dioxide

adsorption in zeolites paper. Extract the force field parameters.

Transfer to: Paper Extraction Agent

      Paper
   Extr. Agent Force field findings written to '.../findings.txt' — contains LJ params,

charges, CO2 model, cutoff=12 Å (shifted), Ewald, mobile Na+. 

Transfer to: Force Field Writer

      Paper
   Extr. Agent I prepared RASPA force field files for CO2 adsorption in MOR_33 using the

Garcia‑Sanchez (2009) transferable force field, including explicit Na+
cations.
Summary: ...

Transfer to: Supervisor

    Supervisor
Set up an adsorption isotherm simulation at 10, 30, 100, 300, 1000, 3000
and 10,000 Pa for MOR_33, using the force field in the
GariaSanchez_2009_CO2_zeolites folder. 

Transfer to: Experiment Setup Team

Figure S1: First part of the trace of the full system run.
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Experiment Setup Team

   Experiment
    Supervisor Place MOR_33 into the template folder.

Template folder: 'runs/MOR_33_CO2_GS2009_template'
Structure source: ' cifs/MOR_33.cif'

Transfer to: Structure Expert

    Structure
       Expert Action completed.

Files placed:
- runs/MOR_33_CO2_GS2009_template/MOR_33.cif (copied from
cifs/MOR_33.cif)

Transfer to: Evaluator

    Force Field
       Expert Placed Garcia-Sanchez 2009 CO2–zeolite FF into

runs/MOR_33_CO2_GS2009_template:
- Created: force_field.def, force_field_mixing_rules.def, pseudo_atoms.def
- Copied/renamed: adsorbate_CO2.def (rigid CO2), cation_Na.def

Transfer to: Evaluator

Steps omitted: Evaluator, Supervisor

Steps omitted: Evaluator, Supervisor

   Sim. input
     Expert Wrote simulation.input for runs/MOR_33_CO2_GS2009_template.

Summary:
Based on MC_muVT_CO2_NaLTA and MC_muVT_CO2_CuBTC
examples. Minimal GCMC with Ewald, 12 Å ...

Transfer to: Evaluator

Steps omitted: Evaluator, Supervisor

      Code
     Expert - Inspected the template at runs/MOR_33_CO2_GS2009_template and

verified placeholders in simulation.input.
- Replicated the template into runs/MOR_33_CO2_GS2009 for pressures:
10, 30, 100, 300, 1000, 3000, 10000 Pa.  ...

Transfer to: Evaluator

Steps omitted: Evaluator

   Experiment
    Supervisor Simulation setup summary: ...

How to run
- Change into a run folder (e.g., runs/MOR_33_CO2_GS2009/P_1000Pa)
and run your simulation executable using the provided simulation.input.

Transfer to: User

Figure S2: Second part of the trace of the full system run.
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