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Abstract

Vision-language pretrained models have seen remarkable success, but their application to
high-impact safety-critical settings is limited by their lack of interpretability. To improve the
interpretability of vision-language models, we propose a multi-modal information bottleneck
(M2IB) objective that compresses irrelevant and noisy information while preserving relevant
visual and textual features. We demonstrate how M2IB can be applied to attribution analysis
of vision-language pretrained models, increasing attribution accuracy and improving the
interpretability of such models when applied to safety-critical domains such as medical
diagnosis. Unlike commonly used unimodal attribution methods, M2IB does not require
ground truth labels, making it possible to audit representations of vision-language pretrained
models when multiple modalities but no ground truth data is available. Using CLIP as an
example, we demonstrate the effectiveness of M2IB attribution and show that it outperforms
CAM-based attribution methods both qualitatively and quantitatively.

1. Introduction

Vision-Language Pretrained Models (VL-PMs), such as the CLIP (Radford et al., 2021),
have shown impressive performance on various downstream tasks by leveraging their complex
structures and numerous parameters (Shen et al., 2022). However, the complexity of these
models reduces interpretability and obscures their decision-making process, which hinders
its application in safety-critical applications like medical diagnosis. To enhance transparency
and detect potential biases, attribution methods for post hoc interpretability have been
proposed, assigning contribution scores to each input feature.

We introduce an attribution method for identifying critical features and improving our
understanding of image-text representations in VL-PMs using the information bottleneck
principle (Tishby and Zaslavsky, 2015). Unlike standard unimodal methods, the proposed
multi-modal information bottleneck formulation (M2IB) does not require access to ground-
truth data. Instead, we insert an information bottleneck into the trained neural network and
aim to minimize the retained information in the target layer while preserving the relevance
between image and text features. We perform a qualitative and quantitative empirical
evaluation and find that M2IB is able to successfully identify key features relevant to both
image and text inputs (Figure 1). Our contributions are as follows:

• We adopt information bottleneck attribution to multi-modal settings and propose an
attribution method to interpret the image-text representation obtained from VL-PMs.

• To obtain a tractable objective function, we consider a Gaussian moment-matching
procedure with empirical covariance matrices computed from the encoder representations.

• We demonstrate on several datasets, including safety-critical medical data, that the
proposed method outperforms existing CAM-based attribution methods—GradCAM,
GradCAM++, HiResCAM, EigenCAM—quantitatively and qualitatively.
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Figure 1: Example attribution maps on image and text. The red boxes on the second row are
the ground-truth bounding boxes from MS-CXR (Boecking et al., 2022). Our method
successfully identifies relevant objects in the given image and text.

2. Related Work

CAM-Based Attribution. Class Activation Mapping (CAM) (Zhou et al., 2015) is
originally proposed for CNN on images, which generates a saliency map by weighting the
activation maps of the last convolutional layer before the global pooling layer. Grad-CAM
(Gradient-weighted Class Activation Mapping; Selvaraju et al. (2016)) extends CAM to a
wider range of models by removing the constraint of a global pooling layer and using average
pixel-wise gradients to weight the activation instead. However, GradCAM sometimes fails
to capture multiple occurrences of the target and is not able to locate the entire object. To
address the weakness of GradCAM, similar CAM methods are then proposed to increase
the precision of the saliency maps. For example, Grad-CAM++ (Chattopadhay et al.,
2018)) adopts pixel-wise weighting of the gradients, HiRes-CAM (High-Resolution Class
Activation Mapping; Draelos and Carin (2021)) uses pixel-wise multiplication for gradients
and activations, and EigenCAM (Eigen Class Activation Mapping; Muhammad and Yeasin
(2020)) uses the principle components instead of gradients because gradients are usually
noisy. This family of CAM methods can also be adapted to transformer-based models like
ViT (Dosovitskiy et al., 2021) and Swin Transformers (Liu et al., 2021).1

Information-Theoretic Attribution. Schulz et al. (2020b) use information bottleneck
attribution (IBA), where an information bottleneck is inserted into a layer of a trained neural
network to distill the essential features for prediction. IBA is a model-agnostic method
and shows impressive results on vision models including VGG-16 (Liu and Deng, 2015) and
ResNet-50 He et al. (2016)). Subsequently, IBA is applied to language transformers and
also outperforms other methods on this task (Jiang et al., 2020). However, IBA has thus
far been focused on only one modality and has only been adopted in supervised learning.
To the best of our knowledge, there is no previous research on applying the information
bottleneck principle to aid our understanding of the inner mechanisms of VL-PMs.

1. https://github.com/jacobgil/pytorch-grad-cam

2

https://github.com/jacobgil/pytorch-grad-cam


Multi-Modal Information Bottleneck Attribution

3. Attribution via a Multi-Modal Information Bottleneck Principle

In this section, we introduce a simple, multi-modal extension of the information bottleneck
principle and explain how to adapt it to be used for feature attribution.

3.1. A Multi-Modal Information Bottleneck Principle

To make latent representation extract relevant information from input, the information
bottleneck principle (Tishby and Zaslavsky, 2015) suggests two competing objectives during
compression (minimize the mutual information between latent representation Z =̇ f ℓ(X) at
a given neural network layer ℓ and input X) and fitting (maximize the mutual information
between latent representation Z and output Y ). Here, we consider inserting an information
bottleneck into layer m of a trained neural network and denote the output of the m-th layer
after activation as Z. This results in the following loss function:

L = I(Z,X)− βI(Z, Y ), (1)

where I(·, ·) is the mutual information function and β is a scaling hyperparameter.
In the context of image-text representation learning, however, the loss function above is

not suitable, since—instead of using task-specific labels—we wish to extract information
from (text feature, image feature) pairs instead from (feature, label) pairs, making the above
definition of relevancy insufficient. Doing so requires a multi-modal information bottleneck
principle more akin to self-supervised learning methods for image–test representation learning
that only uses (text, image) pairs for learning (Baevski et al., 2022; Mu et al., 2021).

This learning problem fundamentally differs from supervised attribution map learning for
uni-modal tasks. For example, we may have an image Vbear of a bear and its corresponding
label Lbear “bear”. For an image classification task, we can simply minimize the I(Vbear;Ztext)
and maximize I(Lbear;Zimage) where Zimage and Ztext are the latent representations. In
contrast, in image-text representation learning, we typically have text descriptions, such as
“This is a picture of a bear” (L′

bear), instead of labels (Radford et al., 2021). In this setting,
both Vbear and L′

bear are “inputs” without a pre-defined corresponding label. To obtain a task-
agnostic image-text representation independent from any task-specific ground-truth labels,
we would like to use both input modalities and define a multi-modal information bottleneck
principle and whereas the outputs are closely dependent on the specific downstream task.
This requires defining an alternative to the “fitting term” I(Z, Y ).

Fortunately, there is a natural proxy for the relevance of information in multi-modal data.
If image and text inputs are related, a good image encoding should contain information
about the text, while a good text encoding should include information about the image
Based on this intuition, we can express a multi-modal information bottleneck for image and
text representations, respectively:

Limage = I(Zimage, Ximage)− βimageI(Zimage, Ztext) (2)

Ltext = I(Ztext, Xtext)− βtextI(Ztext, Zimage). (3)

3.2. Information Bottleneck for Attribution

To obtain an attribution map of image and text, we define an information bottleneck
attribution method for multi-modal data. To restrict the information flow, we change the
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“bottleneck terms” I(Ztext, Zimage) = I(Zimage, Ztext) by adapting the masking approach in
Schulz et al. (2020b). Specifically, we add input-indepdendent noise to the layer output Z to
obtain a masked output T ,

T (λX) = λX ⊙ Z + (1− λX)⊙ ϵ, (4)

where ⊙ is the Hadamard product, 1 is an all-one matrix having the same dimension as Z
and λX , and we let ϵ ∼ N(ϵ;µϵ, σ

2
ϵ ) for some input-independent µZ and σZ to ensure that

the masked output has the same magnitude as the original feature. In extreme cases, λi = 1
means no noise is added at index i, so Ti will be the same as the original Zi, whereas λi = 0
means Ti will be pure noise.

We then obtain multi-modal information bottleneck attribution (M2IB) objectives

Limage(λXimage) = I(Timage(λXimage), Zimage)− βimageI(Timage(λXimage), Ztext) (5)

Ltext(λXtext) = I(Ttext(λXtext), Ztext)− βtextI(Ttext(λXtext), Zimage), (6)

which we optimize with respect to a input-specific parameters λXimage and λXtext for the
image and text representations, respectively, and βimage and βtext are hyperparameters. To
make these objectives more tractable, we use a standard trick and replace the first term in
the above equations with a variational upper bound. Note that I(T,Z) = E[DKL(pT |Z ∥ pT )],
where T |Z can be sampled empirically whereas pT does not have an analytic expression
because the integral pT (t) =

∫
pT |Z(t|z)pZ(z) dz is intractable. Thus, we approximate pT (t)

by qT (t) = N (t;mT , sT ), which assumes all dimensions of T independently follow a Gaussian
distribution. This approximation leads to an upper bound on I(T,Z):

I(T,Z) = E[DKL(pT |Z ∥ qT )− DKL(pT ∥ qT ) ≤ E[DKL(pT |Z ∥ qT )]. (7)

A derivation of this upper bound can be found in Appendix 1. Thus, we obtain a more
tractable upper bound on the compression term. Since we wish to minimize the mutual
information, minimizing the upper bound has a similar effect as direct minimization.

While uni-modal information bottleneck attribution uses ground-truth labels and compute
the “fitting term” in the objective via a cross-entropy loss, the objectives for multi-modal
information bottleneck (M2IB) attribution for vision–text given above require computing
the mutual information between the masked embedding of one modality and the unmasked
embedding of the other modality, which is not in general tractable and we require further
approximation to obtain a tractable objective function.

For VL-PMs like CLIP, image-text representations are jointly trained and aligned in one
embedding space. To approximate the mutual information between T and Z, consider three
different estimation procedures: The analytically tractable mutual information between two
moment-matched Gaussian distributions, the Pearson correlation coefficient, and the cosine
similarity. For details on the Pearson correlation coefficient and cosine similarity estimators,
and the empirical comparison of these three estimators, see Appendix 2.2.

We take advantage of the fact that image-text representations are aligned in one embed-
ding space to obtain a tractable estimator of I(T1(λX1), Z2), where the subscripts denote
different modalities. In particular, we approximate the distributions over T1(λX1), Z2, and
[T1(λX1)

⊤, Z⊤
2 ]⊤ by p̃T1 = N (µT1 ,ΣT1), p̃Z2 = N (µZ2 ,ΣZ2), and p̃T1,Z2 = N (µT1,Z2 ,ΣT1,Z2),

respectively, with covariance matrices given by

ΣT1 =̇T1T
⊤
1 + εT1I and ΣZ2 =̇Z2Z

⊤
2 + εZ2I and ΣT1,Z2 =̇ [T⊤

1 , Z⊤
2 ]⊤[T⊤

1 , Z⊤
2 ] + εT1,Z2I, (8)
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respectively, where εT1 , εZ2 , and εT1,Z2 are diagonal offsets that ensure the resulting matrices
are positive semi-definite. We then obtain an estimator for the mutual information, given by

Î(T1, Z2) = 0.5(ln(det (ΣT1) det (ΣZ2))− ln det(ΣT1,Z2)) (9)

Combining Equation (7) and Equation (9), we obtain the loss function estimator

L(λ) = E[DKL(pT |Z ∥ qT )]− βÎ(T1, Z2). (10)

For image and text, we thus have the objective functions

Limage(λ) = E[DKL(pTimage|Zimage) ∥ qTimage))]− βimageÎ(Timage, Ztext)) (11)

Ltext(λ) = E[DKL(pTtext|Ztext) ∥ qTtext))]− βtextÎ(Ttext, Zimage)), (12)

which, for a given pair of data points (Ximage, Xtext), are optimized with respect to λXimage

and λXtext , and collectively have hyperparameters {βimage, βtext, εT1 , εZ2 , εT1,Z2 , µϵ, σϵ}.

4. Empirical Evaluation

We evaluate the proposed attribution method using CLIP (Radford et al., 2021) on (i)
Conceptual Captions (Sharma et al., 2018) consisting of diverse images and captions from the
web, and(ii) MS-CXR (Local Alignment Chest X-ray dataset; Boecking et al. (2022)), which
contains chest X-rays and texts describing radiological findings, complementing MIMIC-CXR
(MIMIC Chest X-ray; Johnson et al. (2019)) by improving the bounding boxes and captions.

4.1. Experiment Setup

For all experiments, we use pretrained CLIP model with ViT-B/32 (Dosovitskiy et al., 2021)
as the image encoder and a 12-layer self-attention transformer as the text encoder. For
Conceptual Captions, we use the pretrained weights of openai/clip-vit-base-patch32.2

For the MIMIC-CXR dataset, we compare the results of pretrained CLIP and CLIP that is
finetuned on MIMIC-CXR and compare the impact of finetuning in Appendix 5. For each
{image, caption} pair, we insert an information bottleneck into the given layer of the text
encoder and image encoder of CLIP separately, then train the bottleneck using the same
setup as the Per-Sample Bottleneck of original IBA (Schulz et al., 2020a), which duplicates
a single sample for 10 times to stabilize training and runs 10 iterations using the Adam
optimizer with a learning rate of 1. Experiments show no significant difference between
different learning rates and more training steps. The crucial hyper-parameters here are the
index of the layer m, the scaling factor β, and the variance σ2, as shown in Figure 3. For
CAM baselines, we use the implementation in pytorch-gradcam library.3 For a discussion
of hyperparameters in the multi-modal information bottleneck objective, see Appendix 2.
For an ablation study on the effect of variations in the hyperparameters, see Figure 3 (also
in Appendix 2). For an ablation study on the effect of variations in the mutual information
estimators, see Appendix 2.2.

2. See https://huggingface.co/openai/clip-vit-base-patch32.
3. See https://github.com/jacobgil/pytorch-grad-cam.
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Table 1: Quantitative Results. The bold number in grey is the best in the row.

Methods GradCAM GradCAM++ HiResCAM EigenCAM Ours

% Conf. Drop ↓ 4.35 ± 0.25 5.06 ± 0.51 4.48 ± 0.52 4.05 ± 4.05 1.11 ± 0.14
CC % Conf. Incr. ↑ 20.6 ± 4.22 16.00 ± 3.85 13.2 ± 2.99 13.00 ± 2.97 35.60 ± 3.61

image % ROAD Comb. ↑ 0.86 ± 0.21 0.96 ± 0.09 0.92 ± 0.21 0.01 ± 0.09 1.49 ± 0.14
% ROAR+ ↑ 23.23 ± 25.43 13.03 ± 36.83 -3.43 ±23.75 -2.85 ± 22.25 32.90 ± 32.93

CC % Conf. Drop ↓ 7.28 ± 0.19 7.04 ± 0.36 7.24 ± 0.34 7.05 ± 0.34 3.47 ± 0.32
text % Conf. Incr ↑ 4.60 ± 1.20 3.00 ± 1.41 4.40 ± 1.50 3.00 ± 1.41 14.6 ± 3.01

% ROAR+ ↑ 16.58 ± 51.6 24.40 ± 54.26 28.84 ± 25.89 15.43 ± 48.17 33.35 ± 56.79

% Conf. Drop ↓ 1.61 ± 0.13 2.52 ± 0.17 1.69 ± 0.26 2.66 ± 0.26 0.51 ± 0.05
MSCXR % Conf. Incr. ↑ 32.25 ± 1.79 20.25 ± 1.92 26.00 ± 5.24 15.25 ± 1.48 43.8 ± 3.87
image % ROAD Comb. ↑ 0.30 ± 0.09 0.49 ± 0.13 0.46 ± 0.10 -0.10 ± 0.05 0.78 ± 0.10

% ROAR+ ↑ 30.38 ± 3.02 30.76 ± 5.52 32.52 ± 4.51 35.86 ±2.05 50.54 ± 4.12
% Localization ↑ 8.95 ± 0.41 7.18 ± 0.67 13.07 ± 0.95 8.47 ± 0.43 17.60 ± 0.83

MSCXR % Conf. Drop ↓ 10.99 ± 0.47 8.31 ± 0.28 10.40 ± 0.60 8.44 ± 0.29 4.37 ± 0.12
text % Conf. Incr. ↑ 3.25 ± 1.09 4.50 ± 1.50 4.50 ± 2.96 4.50 ± 1.50 5.6 ± 0.80

% ROAR+ ↑ 15.29 ± 7.41 13.30 ± 6.62 12.16 ± 6.34 9.56 ± 4.66 15.42 ± 10.43

4.2. Results

We compare our method with 4 CAM-based methods (GradCAM (Selvaraju et al., 2016),
GradCAM++ (Chattopadhay et al., 2018), HiResCAM (Draelos and Carin, 2021), Eigen-
CAM (Muhammad and Yeasin, 2020)). As shown in Figure 1 and Appendix 3, our method
is able to capture all relevant objects appearing in both modalities, while other methods
tend to focus on one major object.

To quantitatively evaluate the performance of our model, we conduct the following
localization and degradation tests and summarize the results in Table 1. Given the model
under evaluation achieves state-of-the-art performance, a good attribution method should
be able to detect the relevant objects in the image according to the text (i.e., zero-shot
localization, see Appendix 4.1). Moreover, removing pixels or tokens with lower attribution
scores according to our method generally increases the mutual information with the other
modality (quantified by the evaluation metrics “Confidence Drop”, “Confidence Increase”,
and “Remove and Debias” (ROAD), which are described in detail in Appendix 4.2), while
masking by our attribution map generally decreases the relevance with the other modality
and makes the model perform worse after retraining (ROAR+, see Appendix 4.2). Our
method outperforms all CAM-based methods in all numerical metrics.

To further confirm the effectiveness and understand the limitation of our method, we
include a sanity check in Appendix 5 and an error analysis in Appendix 6.

5. Discussion and Conclusions

The proposed information-theoretic approach can be extended easily to other vision-language
models, and even beyond image-text representations. Its main limitation is that the features
of all modalities must be projected into a shared embedding space—which has been widely
adopted as a convention in state-of-the-art multi-modal models. We provided evidence that
M2IB increases attribution accuracy and improves the interpretability of complex machine
learning models. We hope that this work encourages further research into multi-modal
information-theoretic attribution methods that can help introduce modern machine learning
methods into safety-critical domains where interpretability is critical.
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Appendix

Visual Explanations of Image-Text Representations

via Multi-Modal Information Bottleneck Attribution
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1. Derivations

Upper bound on mutual information:

I(T,Z) = E[DKL(pT |Z ∥ pT )] (1.1)

=

∫
Z
p(z)

(∫
T
p(t|z) log p(t|z)

p(t)
dt

)
dz (1.2)

=

∫
Z

∫
T
p(t, z) log

p(t|z)
p(t)

dt dz (1.3)

=

∫
Z

∫
T
p(t, z) log

p(t|z)
p(t)

q(t)

q(t)
dt dz (1.4)

=

∫
Z

∫
T
p(t, z) log

p(t|z)
q(t)

dt dz +

∫
Z

∫
T
p(t, z) log

q(t)

p(t)
dtdz (1.5)

=

∫
Z

∫
T
p(t, z) log

p(t|z)
q(t)

dt dz +

∫
T
p(t)

(∫
Z
p(z|t)dz

)
log

q(t)

p(t)
dtdz (1.6)

= E[DKL(pT |Z ∥ qT )]− DKL(pT ∥ qT ) (1.7)

≤ E[DKL(pT |Z ∥ qT )] (1.8)
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2. Experimental Details and Further Experimental Results

2.1. Hyperparameters

εT1 , εZ2 , and εT1,Z2 are diagonal jitter terms added on the covariance matrics ΣT1 , ΣZ2 , and
ΣT1,Z2 . We use the smallest value (εT1 = 1, εZ2 = 1, εT1,Z2 = 1) such that the resulting
matrices are positive semi-definite.

β controls the relative importance of the fitting term. The larger the β is, the more
information is allowed to flow through this layer. As shown in Figure 3(a), too large and
too small β generates similar attribution maps in terms of relative importance. However,
too large β allows nearly everything through the bottleneck, whereas too small β nearly
discards everything.

µϵ and σϵ control the values of the noise added to the intermediate representations. Since
we insert the information bottleneck after layer normalization, we fix µϵ to be 0. When σϵ is
very small, the values of the noise will be close to 0, thus having minimal impact on the
intermediate representations. This effect is similar to the situation when β is very large and
IB will add almost no noise (Figure 3(b)). σϵ also directly affect the compression term as
smaller σϵ will lead to higher KL divergence. Thus, σϵ and β are correlated with each other
and we perform a grid search to find the best combination.

Layer m where the information bottleneck is inserted also impacts the attribution.
Inserting the bottleneck too early will prevent the model from learning informative features
while inserting the bottleneck too late reduces the impact (Figure 3(c)). We also observe
that the attribution of texts is usually more stable than images.

These hyperparameters can be chosen according to numerical metrics mentioned in
Appendix 4.2. We perform a grid search for the best combination of β = {1, 10, 100, 1000}
and σ2

ϵ = {1, 0.1, 0.01, 0.001} and l = {7, 8, 9, 10} (indexing from 0), and find the best layer
index is 9 for both datasets (2). Then, we fix the layer index and perform a grid search for
the best combination of β and σϵ, as shown in Table 2.

(a) (b)

Figure 2: Layer index hyperparameter selection. The plots show the average ROAR+ score for
different layer indices over 3 random seeds. Layer index 9 gives the best score for both
modalities of both datasets.
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Table 2: Hyperparameter tuning results for β and σϵ: We calculate the ROAR+ score for different
combinations of β and σϵ for 3 runs and report the average. For each table, the highest
score is in bold and indicates the performance is optimal for this set of hyperparameters.
Since ROAR+ uses binarized saliency maps (75% threshold for image pixels and 50%
threshold for text tokens, it mainly focuses on the features with high attribution scores
and neglects the change in the attribution for less important features. Thus, sometimes
hyperparameters with slightly lower ROAR+ scores might generate more visually appealing
results, as shown in 3. But the numerical results are consistent with qualitative examples
in general.

(a) Conceptual Captions - Image
σ2
ϵ=1 σ2

ϵ=0.1 σ2
ϵ=1e-2 σ2

ϵ=1e-3

β=1 27.71 61.16 -49.40 -17.36
β=10 25.34 -2.57 -0.73 -31.00
β=1e2 18.10 8.24 117.78 48.37
β=1e3 -15.13 0.45 28.84 -8.18

(b) Conceptual Captions - Text
σ2
ϵ=1 σ2

ϵ=0.1 σ2
ϵ=1e-2 σ2

ϵ=1e-3

β=1 10.22 -4.76 -21.36 -7.89
β=10 39.14 -2.61 57.80 30.03
β=1e2 65.16 31.42 24.76 -38.70
β=1e3 8.82 0.46 13.63 -1.09

(c) MSCXR - Image
σ2
ϵ=1 σ2

ϵ=0.1 σ2
ϵ=1e-2 σ2

ϵ=1e-3

β=1 44.01 27.50 38.68 55.08
β=10 43.98 46.74 34.63 31.38
β=1e2 56.00 45.29 30.06 33.73
β=1e3 40.45 52.58 27.53 30.99

(d) MSCXR - Text
σ2
ϵ=1 σ2

ϵ=0.1 σ2
ϵ=1e-2 σ2

ϵ=1e-3

β=1 10.18 5.46 21.87 -3.10
β=10 6.50 6.14 8.77 9.21
β=1e2 5.56 6.85 11.27 0.96
β=1e3 9.34 14.63 18.75 18.71
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! = 100 ! = 1000! = 10! = 0.1 ! = 1

(a) Impact of scaling factor β: Higher β means higher weight of the fitting term.

&!" = 0.001 &!" = 0.0001&!" = 0.01&!" = 1 &!" = 0.1

(b) Impact of noise variance σ2
ϵ : Smaller σ2

ϵ means lower impact of compression.

' = 9 ' = 10' = 8' = 6 ' = 7

(c) Impact of the index of the layer where IB is inserted l: Larger l means deeper
layer in the network.

Figure 3: Visualization of the impact of different hyperparameters. β and σ2
ϵ that make fitting term

and compression at a similar scale and deeper layer l, usually give better performance.
Note that the attribution score is assigned to each token, instead of each word, due to
tokenization.
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2.2. Comparison of Different Estimators for fitting term

Since image and text features are projected into a shared embedding space, we consider the
following three estimators for the fitting term I(T,Z). We have presented a single-sample
multivariate Gaussian estimator in Section 3.2, where the latent space dimension determines
the dimensionality of the multivariate Gaussian distribution. Alternatively, we also consider
an estimator where each latent space dimension is viewed as a sample of one-dimensional
representations. Computing the empirical variance and again making a Gaussian moment
matching assumption, we obtain the mutual information estimator

Î(T1, Z2) =
1

2
ln

(
1

1− r(T1, Z2)2

)
(2.9)

where r(T1, Z2) is the Pearson correlation coefficient between the representations T1 and
Z2. Lastly, we also consider approximating the mutual information by the cosine similarity
between the representations T1 and Z2, which directly measures the similarity between text
and image features. The very ad-hoc estimator is given by

Î(T1, Z2) =
T1 · Z2

||T1|| · ||Z2||
. (2.10)

The qualitative and quantitative results are shown in Figure 4 and Table 3. Perhaps
surprisingly, these three estimators yield similar results.

𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑡𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

Figure 4: Impact of different estimators for the fitting term.
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Table 3: Comparison of performance of different estimators.

Cosine Similarity Pearson Correlation Multivariate Gaussian

% Conf. Drop ↓ 0.85 ± 0.05 0.88 ± 0.14 1.11 ± 0.14
CC % Conf. Incr. ↑ 37.80 ± 3.66 41.6 ± 5.54 35.60 ± 3.61

image % ROAD Comb. ↑ 1.78 ± 0.05 1.73 ± 0.13 1.49 ± 0.14
% ROAR+ ↑ -2.70 ± 21.32 27.97 ± 48.03 32.90 ± 32.93

CC % Conf. Drop ↓ 2.84 ± 0.26 2.9 ± 0.3 3.47 ± 0.32
text % Conf. Incr ↑ 20.00 ± 2.00 19.8 ± 4.87 14.6 ± 3.01

% ROAR+ ↑ 25.68 ± 62.94 6.98 ± 22.32 33.35 ± 56.79

% Conf. Drop ↓ 0.45 ± 0.04 0.51 ± 0.09 0.51 ± 0.05
MSCXR % Conf. Incr. ↑ 48.8 ± 2.64 43.0 ± 3.1 43.80 ± 3.87
image % ROAD Comb. ↑ 0.81 ± 0.06 0.8 ± 0.05 0.78 ± 0.10

% ROAR+ ↑ 36.95 ± 6.00 34.40 ± 6.93 50.54 ± 4.12
% Localization ↑ 17.65 ± 1.50 18.22 ± 1.52 17.60 ± 0.83

MSCXR % Conf. Drop ↓ 4.19 ± 0.07 4.78 ±0.21 4.37 ± 0.12
text % Conf. Incr. ↑ 6.20 ± 2.14 5.40 ± 2.24 5.60 ± 0.80

% ROAR+ ↑ 18.05 ± 18.20 4.44 ± 1.88 15.42 ± 10.43
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3. Attribution Maps for Additional Examples

Ours GradCAM HiResCAMGradCAM++ EigenCAMOriginal

Figure 5: Attribution maps for randomly picked examples from the Conceptual Captions
dataset
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Ours GradCAM HiResCAMGradCAM++ EigenCAMOriginal

Figure 6: Attribution maps for randomly picked examples from the MS-CXR chest x-ray
dataset.
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4. Quantiative Metrics

4.1. Localization Test

We quantitatively measure the effectiveness of our proposed attribution method by evaluating
its accuracy in zero-shot detection for images. We binarize the saliency map such that the
area with scores higher than the threshold (75%) is assigned 1 while the rest is assigned
0. We denote the resulting binary map as Spred. We also construct a ground-truth binary
map, Sgt, using the bounding boxes provided by MS-CXR (Boecking et al., 2022), where the
region inside the bounding boxes is assigned to 1 while the outside is assigned to 0. Note
that some samples have multiple bounding boxes and we should consider all of them to test
the method’s multi-occurrence detection ability. Then, we calculate the IoU (Intersection
over Union) of Spred and Sgt. Namely, for images with a height of n and a width of m, the
score is calculated by

Localization =

∑n
i=1

∑m
i=1 1Sij

pred ∧ Sij
gt∑n

i=1

∑m
j=1 1Sij

pred ∥ Sij
gt

(4.11)

where 1 is the indicator function, ∧ is the logical and ∥ is the logical or.

As a result, our method obtains 17.60% average IoU for this zero-shot detection task,
which is significantly larger than CAM-based methods in comparison (Table 1). Despite
outperforming other models, the score is still lower than expected, which is probably caused
by the following two factors. (i) Our method indeed generates segmentation instead of
bounding boxes, so evaluation by bounding boxes might underestimate the quality of the
saliency map. (ii) The model under evaluation is CXR-RePaiR (Endo et al., 2021), which
is a chest x-ray report generation model that is trained on MIMIC-CXR (Johnson et al.,
2019). Since medical diagnosis is a challenging task and CXR-RePaiR is not finetuned for
detection, the learned image-text representation might be less useful.

4.2. Degradation Test

Although the localization test suggests the potential of the attribution method as zero-shot
detection and segmentation tool, it might underestimate the accuracy of attribution methods.
Even a perfect attribution method can produce a low localization score because the model
under evaluation is poor at extracting useful information, which is very likely for challenging
tasks like chest X-ray classification.

Therefore, we use the following three evaluation metrics to further compare our method
with baselines. The idea is that removing features with high attribution scores should
decrease the performance while discarding features with low attribution scores can improve
the performance (because noisy information is ignored). We randomly sample 100 pairs
from each dataset and run five experiments for each metric (Table 1). The first two metrics
are implemented by pytorch-gradcam.4

4. GradCAM and its variants are usually applied to image classification and use the softmax outputs of each
class as confidence scores. Since our setting does not contain any labels, we use cosine similarity with the
other modality instead. The idea is similar to pytorch-gradcam’s official tutorial where cosine similarity
is used as targets in attribution for image embedding (https://github.com/jacobgil/pytorch-grad-
cam/blob/master/tutorials/Pixel%20Attribution%20for%20embeddings.ipynb).
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a man holds what is believed to be 
some of the debris that caused 
damage to vehicles .

a <B> what is believed <B>  <B> be 
some of the <B> caused <B> to <B> 

Original Saliency Map Attribution Weighted Image Corrupted (binarized M)

<B> man holds <B> <B> <B> to 
<B> <B> <B> <B> debris that <B> 
damage <B> vehicles .

Figure 7: Visualization of saliency map and degradation. The third column is obtained by calculating
the element-wise product of the original image and saliency map, while the text with
attribution scores lower than 50% percentile is masked by a blank token ¡B¿. It is used
in the Increase in Confidence metric and its inverse is used in Drop in Confidence. The
fourth column is an example of the training data in ROAR+. We replace the image pixels
with attribution scores higher than 75 % percentile by the channel mean and replace the
text tokens with attribution scores higher than 50 % by a blank token ¡B¿. The results in
Table 1 use a space as the blank token.

Drop in Confidence (Chattopadhay et al., 2018). An ideal attribution method
should only assign high scores to important features, thus we should not observe a drop in
performance if only the high-attribution parts are allowed in the input. For images, we use
point-wise multiplication of the saliency map and the image input. Since scaling token ids
is meaningless, we use binarization similar to Wang et al. (2020) where only tokens with
attribution scores in the top 50% are kept. Formally, we define this score by

Confidence Drop =
1

N

∑
max(0, oi − si) (4.12)

where oi is the cosine similarity of features of original images and texts, and si is the
new cosine similarity when one modality is distilled according to the attribution. The lower
this metric is, the better the attribution method is.

Increase in Confidence (Chattopadhay et al., 2018). Similarly, removing noisy
information in the input might increase the model’s confidence. We compute

Confidence Increase =
1

N

∑
1(oi < si) (4.13)

where 1 is the indicator function and the definition of oi and si is the same as above. A
higher value indicates better performance.

Remove and Debias (ROAD; Rong et al. (2022)). This method replaces pixels
with the average of their neighbors and has two metrics: LoRF (Least Relevant First)
representing the target score when removing the least relevant features, and MoRF (Most
Relevant First) representing the target score when most relevant features are removed.
Similar to the above, we use cosine similarity as the target score. We use a combined
score implemented by pytorch-gradcam, which calculates (LoRF(t) - MoRF(t))/2, across
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thresholds t = [20, 40, 60, 80]. Since the average of token ids is meaningless, we only use this
metric for images.

Remove and Retrain + (ROAR+, extending the original ROAR; Hooker et al. (2019)).
We finetune the base model on the degraded images and texts where the most important

parts are replaced by the uninformative values (channel mean of images or spaces for text)
and evaluate on a validation set of original inputs.5 If the attribution method is accurate, a
sharp decrease in performance is expected because all useful features are removed and the
model cannot learn anything relevant from the degraded data. We sample 500 image-text
pairs from each dataset with 80% for training and 20% for validation. We use the same
contrastive loss as CLIP uses in pretraining, and define the score by (lc − lo)/lo where lo is
the validation losses of retraining using original data and lc is that with corrupted data.

5. Sanity Check

Pretrained Projection Layer 10 Layer 8 Layer 6 Layer 4 Layer 2 RandomFinetuned

O
ur
s

G
ra
dC
A
M

Ei
ge
nC
A
M

Figure 8: Saliency maps for sanity checks. For our method, we insert M2IB at layer 9. “Finetuned”
represents the model that is finetuned on MIMIC-CXR (Johnson et al., 2019), a Chest
X-ray dataset. “Pretrained” represents pretrained CLIP (Radford et al., 2021) from
OpenAI. “Projection” represents the final layer of the image encoder and test encoder
of CLIP that projects image and text features into a shared embedding space. The rest
columns represent models with weights randomized starting from the last to the first layer,
where “random” means that all parameters in the model are randomly initiated. The
outcomes of our method indicate that the saliency maps are sensitive to model weights
and thus our method passes the sanity check. However, the output of EigenCAM does
not vary much for the last few layers when weights are randomized.

We conduct a sanity check on our method to ensure our method will produce different
results if the model parameters changes. We follow the sanity check proposed by Adebayo
et al. (2018) where parameters in the model are randomized starting from the last to the
first layer. As shown in Figure 8, our method passes the sanity check as the attribution
scores of image pixels and text tokens change as the model weights change. Our method also

5. The original ROAR also corrupts the validation data. However, different methods will have different
training and validation data under this setting, which makes it hard to compare. We use the same original
data as the validation data for all methods instead.
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produces more accurate saliency maps for finetuned models compared to pretrained models,
which further confirms that the resulting attribution can successfully reflect the quality of
the model. Since we restrict the information to a selected layer, the randomization of the
previous layer appears to have a larger influence on the output.

6. Error Analysis and Limitations

We notice that our proposed attribution method generally performs well on text, but
sometimes shows less satisfying performance on images. By inspecting the qualitative
examples, we observe that the proposed method sometimes fails to detect the entire relevant
regions in images. As shown in Figure 9 and the fourth (“scarf” example) and sixth (“beauty”
example) rows in Figure 5, our method only highlights a fraction of the object in the image
though it should include the whole foreground. This kind of error is particularly common in
the ROCO dataset where the caption usually refers to the major objects in the image. This
is probably because the model under evaluation only relies on a few patterns in the image
to make its prediction. Increasing the relative importance of the fitting term (i.e. using
larger β) helps to enlarge the highlighted area. However, we don’t suggest using too large
β because it will break the balance between fitting term and compression and thus make
information bottleneck unable to squeeze information.

𝛽 = 1 𝛽 = 1𝑒5

Figure 9: Attribution maps for MRI and CT examples from the ROCO dataset. The red box
indicates the visualization generated by the selected hyperparameters according
to our hyperparameter search in 2.1. Irrelevant background is included when β is
too large.

We also note that the most significant limitation of M2IB is the sensitivity to hyper-
parameters. As discussed in 2.1, different combinations of hyperparameters will generate
different saliency maps. We show how to use the ROAR+ score to systematically select the
optimal hyperparameters and also provide visualization to illustrate the effect of different
hyperparameters. Since there is no convention on evaluating the attribution method, we
suggest taking into consideration of various evaluation metrics, visualization of examples,
and the goal of the attribution task when choosing hyperparameters. We emphasize our
method should be used with caution since attributing the success or failure of a model solely
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to a set of features can be overly simplistic and different attribution methods might have
very different results.
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