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ABSTRACT

Distributed learning has gained significant interest recently as it allows for the
training of machine learning models across a set of heterogeneous agents in a
privacy-preserving manner with the growing amount of distributed data. In this
paper, we conduct an asymptotic analysis of Generalized Distributed SGD (GD-
SGD) under various communication patterns among agents, including Distributed
SGD (D-SGD) and its variants in Federated Learning (FL), as well as the increasing
communication interval in the FL setting. We examine the influence of agents’
sampling strategies, such as i.i.d. sampling, shuffling methods and Markovian
sampling, on the overall convergence speed of GD-SGD. We prove that all agents
will asymptotically reach consensus and identify the optimal model parameter,
while also analyzing the impact of sampling strategies on the limiting covariance
matrix that appears in the Central Limit Theorem (CLT). Our results theoretically
and empirically support recent findings on linear speedup and asymptotic network
independence, and generalize previous findings on the efficient Markovian sampling
strategies from vanilla SGD to GD-SGD. Overall, our results provide a deeper
understanding of the convergence speed of GD-SGD and emphasize the role of
each agent’s sampling strategy, moving beyond a focus on the worst-case agent
commonly found in existing literature.

1 INTRODUCTION

Distributed learning deals with the training of models across multiple agents over a communication
network in a distributed manner, while addressing the challenges of privacy, scalability, and high-
dimensional data (Boyd et al., 2011; McMahan et al., 2017). Each agent i ∈ [N ] holds a private
dataset Xi and an agent-specified loss function Fi : Rd × Xi → R that depends on the model
parameter θ ∈ Rd and a data point X ∈ Xi. The goal is then to find

θ∗ ∈ L , arg min
θ∈Rd

{
f(θ) ,

1

N

N∑
i=1

fi(θ)

}
, (1)

where L is the set of minimizers, the local function fi(θ) , EX∼Di
[Fi(θ,X)] and Di represents the

target distribution of data for agent i.1 Due to the distributed nature, {Di}i∈[N ] and {Xi}i∈[N ] are not
necessarily identically distributed over [N ]. We assume each agent i can locally compute the gradient
∇Fi(θ,X) ∈ Rd w.r.t. θ for every X ∈ Xi. To solve the optimization problem (1), we consider the
Generalized Distributed SGD (GD-SGD), as outlined in Koloskova et al. (2020), which encompasses
Distributed SGD (D-SGD) algorithm (Wai, 2020; Wang et al., 2020a; Olshevsky, 2022; Sun et al.,
2023), as well as its variants in Federated Learning (FL) (McMahan et al., 2017; Woodworth et al.,
2020; Li et al., 2022). At time n, each agent i ∈ [N ] updates its model parameter θin+1 as follows:

Local update: θin+1/2 = θin − γn+1∇Fi(θin, Xi
n), (2a)

Aggregation: θin+1 =
∑N
j=1 wn(i, j)θjn+1/2, (2b)

where γn denotes the step size, Xi
n is the data point sampled by agent i at time n, and Wn =

[wn(i, j)]i,j∈[N ] represents the doubly-stochastic communication matrix. Note that (2) reduces to the
vanilla SGD when N = 1 (and thus Wn = 1 for all time n).

1Throughout the paper we don’t impose convexity assumption on the objective function f(θ). For non-convex
function f(θ), the target is to find a critical point θ∗ for which ∇f(θ∗) = 0.

1



Under review as a conference paper at ICLR 2024

𝒊

𝑿𝒏
𝒊

𝑿𝒏+𝟏
𝒊

𝒋
𝒘𝒏(𝒊, 𝒋)

𝒘𝒏(𝒋, 𝒊)

𝑿𝒏
𝒋

𝑿𝒏+𝟏
𝒋

dataset 𝒳𝒊 dataset 𝒳𝒋

Communication 
pattern 𝑾𝑛

Heterogeneous 
sampling 

strategy 𝑋𝑖 , 𝑋𝑗

Figure 1: GD-SGD algorithm with a
communication network of N = 5
agents, each holding potentially distinct
datasets; e.g., agent j (in blue) samples
Xj i.i.d. and agent i (in red) samples Xi
via Markovian trajectory.

Versatile Communication Patterns {Wn}: For visual-
ization, we depict the scenarios of the GD-SGD algorithm
(2) in Figure 1. Specifically, in the D-SGD algorithm, each
agent, represented by a node in the graph, communicates
with its neighbors after each SGD computation via Wn,
representing the underlying network topology. A central
server-based aggregation can also be employed, leading to
a fully connected network among agents, with Wn degen-
erating to a rank-1 matrix Wn = 11T /N . To minimize
communication expenses, FL variants allow each agent
to perform multiple SGD steps before aggregating with
their neighbors or a central server (McMahan et al., 2017;
Stich, 2018; Woodworth et al., 2020). As a result, FL
variants feature a communication interval of length K and a communication pattern Wn=W for
n = mK, ∀m ∈ N and Wn = IN otherwise in (2).2 In particular, i) W = 11T /N corresponds
to local SGD with full client participation (L-SGD-FC), where all clients take part in each round
(Khodadadian et al., 2022; Woodworth et al., 2020; Li et al., 2022); ii) W is a random matrix
generated by partial client sampling (L-SGD-PC), where only a random subset of clients participate
in each round (McMahan et al., 2017; Chen et al., 2022; Wang & Ji, 2022); iii) W can be generated
by Metropolis-Hasting algorithm concerning the underlying network topology in hybrid local SGD
(HL-SGD) (Hosseinalipour et al., 2022; Guo et al., 2022) and decentralized FL (D-FL) (Lalitha et al.,
2018; Ye et al., 2022; Chellapandi et al., 2023). We will provide a comprehensive discussion on
incorporating these types of matrices W into the GD-SGD algorithm in Appendix B.

Markovian vs i.i.d. Sampling: Agents typically employ i.i.d. or Markovian sampling, as illustrated
in the bottom brown box of Figure 1. In cases where agents have full access to their data, D-SGD
with i.i.d sampling has been extensively studied from both asymptotic (Mathkar & Borkar, 2016;
Morral et al., 2017) and non-asymptotic (Neglia et al., 2020; Koloskova et al., 2020; Olshevsky,
2022; Le Bars et al., 2023) perspectives. In the FL literature, Li et al. (2022) specifically addressed
the Central Limit Theorem (CLT) for L-SGD-FC with increasing communication intervals, while
Chen et al. (2022); Ye et al. (2022); Guo et al. (2022); Hosseinalipour et al. (2022); Liao et al. (2023)
investigated other application-oriented FL variants to deal with the communication costs. In addition,
a unified framework for GD-SGD was analyzed in Koloskova et al. (2020). However, all of these
works solely focus on i.i.d. sampling, restricting their applicability to Markovian sampling scenarios.

The study of Markovian sampling under limited settings (shown in Table 1) has recently received
increased attention, where agents may not have independent access to their data. For instance, in
statistical applications, agents may have an unknown a priori distribution of the dataset and it is
common to use Markovian sampling instead of i.i.d. sampling (Jerrum & Sinclair, 1996; Robert et al.,
1999). In the context of HL-SGD with multiple device-to-device (D2D) networks (Guo et al., 2022;
Hosseinalipour et al., 2022), using a random walk over each D2D network can reduce communication
costs (Hu et al., 2022; Even, 2023; Ayache et al., 2023), as opposed to the Gossip algorithm in Guo
et al. (2022) that necessitates frequent parameter aggregation. The special case of a single agent
employing a random walk over a D2D network, as an application of vanilla SGD with Markovian
noise, has been widely studied in the literature with the improved communication efficiency and
privacy guarantees (Sun et al., 2018; Hu et al., 2022; Triastcyn et al., 2022; Even, 2023; Hendrikx,
2023). On the other hand, agents with full access to their datasets can adopt more efficient methods
than i.i.d. sampling. In high-dimensional and combinatorial spaces with constraints, i.i.d. sampling
using the acceptance-rejection method Brémaud (2013) can be computationally expensive due to
multiple rejections before obtaining a sample that satisfies the constraints, leading to wasted samples
(Duchi et al., 2012; Sun et al., 2018). Alternatively, agents can use more sampling-efficient Markov
Chain Monte Carlo (MCMC) methods, such as those in Dyer et al. (1993); Jerrum & Sinclair (1996).
In addition, shuffling methods can be considered as high-order Markov chains (Hu et al., 2022),
which achieves faster convergence than i.i.d. sampling (Ahn et al., 2020; Yun et al., 2021; 2022).

Influence of Agent’s Sampling Strategy: Some recent works have studied the non-asymptotic
behavior of D-SGD and FL variants under Markovian sampling, as illustrated in Table 1. However,

2In this paper, we extend Li et al. (2022) from i.i.d. sampling to Markovian sampling and additional
communication patterns in this paper, allowing the length K to increase gradually. This slows the aggregation
frequency and further reduces communication costs while maintaining convergence to the optimal point θ∗.
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Table 1: Recent works in the D-SGD and FL literature: We classify the communication patterns into
five categories, i.e., D-SGD, L-SGD-FC, L-SGD-PC, HL-SGD and D-FL. We mark ‘GD-SGD’ when
all five aforementioned patterns are included. Abbreviations: ‘Asym.’ = ‘Asymptotic’, ‘Comm.’ =
‘Communication’, ‘D.A.B’ = ‘Differentiating Agent Behavior’, ‘L.S.’ = ‘Linear Speedup’, ‘A.N.I.’
= ‘Asymptotic Network Independence’, ‘I.C.I.’ = ‘Increasing Communication Interval K’.

Reference Analysis Sampling Comm. Pattern D.A.B. L.S. A.N.I. I.C.I.
Morral et al. (2017) Asym. i.i.d. D-SGD X X X N/A

Li et al. (2022) Asym. i.i.d. L-SGD-FC X X N/A X
Koloskova et al. (2020); Le Bars et al. (2023) Non-Asym. i.i.d. GD-SGD × X × ×

Olshevsky (2022) Non-Asym. i.i.d. D-SGD × × X N/A
Chen et al. (2022); Liao et al. (2023) Non-Asym. i.i.d. L-SGD-PC × X N/A ×

Hosseinalipour et al. (2022); Guo et al. (2022) Non-Asym. i.i.d. HL-SGD × X × N/A
Ye et al. (2022); Chellapandi et al. (2023) Non-Asym. i.i.d. D-FL × X × ×

Wai (2020); Zeng et al. (2022); Sun et al. (2023) Non-Asym. Markov D-SGD × × × N/A
Khodadadian et al. (2022); Wang et al. (2023) Non-Asym. Markov L-SGD-FC × X N/A ×

Doan et al. (2019) Non-Asym. Markov GD-SGD × X × ×
Ayache et al. (2023); Even (2023) Non-Asym. Markov N/A N/A N/A N/A N/A
Hu et al. (2022); Li et al. (2023) Asym. Markov N/A N/A N/A N/A N/A

Our Work Asym. Markov GD-SGD X X X X

the finite-time upper bounds in these works are not sharp enough to unveil the real statistical
information on each agent’s sampling strategy in GD-SGD. Specifically, Wai (2020); Sun et al.
(2023) proposed the error bound O( 1/ log2(1/ρ)

n1−a ), where a ∈ (0.5, 1] and ρ is the mixing rate of the
underlying Markov chain for each agent, which is assumed to be identical for all agents, ignoring the
agent heterogeneity. Similar assumption was also made in Khodadadian et al. (2022). Recently, Zeng
et al. (2022); Wang et al. (2023) relaxed this assumption but they only considered the finite-time
bound of the form O(τ2

mix/(n+ 1)), where τmix represents the mixing time corresponding to the
Markov chain that mixes the slowest and is interpreted as the worst-performing agent.3 In other
words, the bounds in these works would remain the same even when some other agents employ better
Markov chains with faster mixing rates. Therefore, they are unable to capture the effect of other
agents on the overall system performance. This is a significant shortcoming, particularly in large-scale
machine learning applications where the worst-performing agent may be difficult to find and control
(due to strong privacy concern or sporadic unreachability). Since agents in distributed learning can
decide how to sample their local datasets, it is thus essential to understand how improvements in each
agent’s sampling strategy translate into the overall convergence speed of the GD-SGD algorithm.

Rationale for Asymptotic Analysis: Although non-asymptotic analysis has been favored over
asymptotic analysis in recent years, it is worth noting that asymptotic and non-asymptotic analyses are
both important and informative, and their combination provides a more comprehensive understanding
of the convergence behavior, as indicated in Borkar et al. (2021); Orabona (2020); Mou et al. (2020);
Li & Milzarek (2022). For vanilla SGD, Mou et al. (2020); Chen et al. (2020) emphasized that CLT
is far less asymptotic than it may appear under both i.i.d. and Markovian sampling. Specifically, the
limiting covariance matrix seen in the CLT, which is the statistical information of vanilla SGD, also
appears in the high-probability bound (Mou et al., 2020) and the explicit finite-time bound (Chen
et al., 2020). Additionally, Hu et al. (2022) numerically showed that the limiting covariance matrix
can capture the convergence more accurately than the mixing rate commonly used in finite-time upper
bounds in Duchi et al. (2012); Sun et al. (2018). Furthermore, Hu et al. (2022) argued that finite-time
analysis is unsuitable for some efficient high-order Markov chains because the mixing-rate-based
comparisons between the high-order Markov chains and their baselines are unavailable. However, a
similar comparison of each agent’s sampling strategy and its impact on overall performance is still
missing when extending from vanilla SGD to GD-SGD.

Our Contributions: In this paper, we present an asymptotic analysis of the GD-SGD algorithm
(2) under heterogeneous Markovian sampling {Xi

n} and a large family of communication patterns
{Wn} among agents, including D-SGD and its FL variants, as well as the increasing communication
interval in the FL setting shown in Table 1. This enables us to differentiate the contribution of each
agent in the learning process and to gain insights into the impact of their sampling strategies on the
overall convergence speed of the GD-SGD algorithm. Main results are summarized as follows:

3While improving the finite-time upper bound to distinguish each agent may not be the focus of the
aforementioned works, their analyses require every Markov chain to be close to some neighborhood of its
stationary distribution. This naturally incurs a maximum operator, and thus convergence is strongly influenced
by the slowest mixing rate, i.e., the worst-performing agent.
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• We show that under suitable assumptions, all agents performing (2) will asymptotically reach the
consensus and find the optimal model parameter θ∗, i.e.,

lim
n→∞

‖θin − θn‖ = 0,∀i ∈ [N ], lim
n→∞

‖θn − θ∗‖ = 0 a.s. (3)

where θn , 1
N

∑N
i=1 θ

i
n is the average model parameter. Furthermore, define θ̄n , 1

n

∑n−1
s=0 θs, we

derive the CLT in the form of √
n(θ̄n − θ∗)

dist.−−−−→
n→∞

N
(
0, V̄′/N

)
(4)

where V̄′ , 1
N

∑N
i=1 V′i and V′i is the limiting covariance matrix of agent i, which depends mainly

on the sampling strategy {Xi
n} of agent i.

• We provide a comprehensive understanding of the collective impact of the sampling strategies
employed by all agents on average limiting covariance matrix V̄′. This differs from the previous non-
asymptotic analysis, which only revealed the effect of the worst-performing agent on the finite-time
bounds. Our CLT result illustrates that even when the worst-performing agent can’t be improved,
V̄′ can still be reduced, and such a reduction can be interpreted as the overall acceleration of the
convergence with smaller mean-square error (MSE). This can be achieved by refining the sampling
strategies of other agents using established efficient methods, i.e., utilizing shuffling methods in place
of i.i.d. sampling (Bottou, 2012; Ahn et al., 2020; Yun et al., 2021; 2022), or even incorporating
non-Markovian processes studied in the MCMC literature (Lee et al., 2012; Li et al., 2015; 2019).

• We demonstrate that our analysis supports recent findings from studies such as Khodadadian et al.
(2022); Wang et al. (2023), which exhibited linear speedup scaling with the number of agents under
L-SGD-FC with Markovian sampling; and Pu et al. (2020); Olshevsky (2022), which examined the
notion of ‘asymptotic network independence’ for D-SGD with i.i.d. sampling, where the convergence
of the algorithm (2) at large time n depends solely on the left eigenvector of Wn (1/N considered
in this paper) rather than the specific communication network topology encoded in Wn, but all
now under Markovian sampling. We extend these findings in view of CLT to a broader range of
communication patterns {Wn} and Markovian sampling strategies {Xi

n}.
• Our setting and results are general enough in that they reduce to recent findings in Hu et al.

(2022) as a special case with N = 1. This implies that all the results in Hu et al. (2022), such as
the relationship between the efficiency of the Markov chain and the limiting covariance matrix in
the CLT of vanilla SGD, can carry over to our GD-SGD setting. In contrast to finite-time bounds
that only capture the worst-case scenario out of N agents, our CLT result (4) directly reflects the
contribution of each agent’s sampling strategy to the overall convergence speed of GD-SGD.

• We present simulations to demonstrate the impact of agents’ sampling strategies, the length of
communication interval in the FL setting, and communication patterns on the overall convergence.
Our results suggest that utilizing efficient sampling strategies for some agents, as determined through
asymptotic analysis, leads to a reduction in the MSE over the majority of the time periods.

2 PRELIMINARIES

Basic Notations: We use ‖v‖ to indicate the Euclidean norm of a vector v ∈ Rd and ‖M‖ to
indicate the spectral norm of a matrix M ∈ Rd×d. The identity matrix of dimension d is denoted by
Id, and the all-one (resp. all-zero) vector of dimension N is denoted by 1 (resp. 0). Let J , 11T /N .
The diagonal matrix with the entries of v on the main diagonal is written as diag(v). We also use ‘�’
for Loewner ordering such that A � B is equivalent to xT (A−B)x ≥ 0 for any x ∈ Rd.

Asymptotic Covariance Matrix: Asymptotic variance is a widely used metric for evaluating the
second-order properties of Markov chains associated with a scalar-valued test function in the MCMC
literature, e.g., Chapter 6.3 Brémaud (2013), and asymptotic covariance matrix is its multivariate ver-
sion for a vector-valued function. Specifically, we consider a finite, irreducible, aperiodic and positive
recurrent (ergodic) Markov chain {Xn}n≥0 with transition matrix P and stationary distribution π,
and the estimator µ̂n(g) , 1

n

∑n−1
s=0 g(Xs) for any vector-valued function g : [N ]→ Rd. According

to the ergodic theorem Brémaud (2013); Brooks et al. (2011), we have limn→∞ µ̂n(g) = Eπ(g) a.s..
As defined in Brooks et al. (2011); Hu et al. (2022), the asymptotic covariance matrix ΣX(g) for a
vector-valued function g(·) is given by

ΣX(g), lim
n→∞

n · Var(µ̂n(g))= lim
n→∞

E
{

∆n∆T
n

}
/n, (5)
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where ∆n ,
∑n−1
s=0 (g(Xs)− Eπ(g)). By following the algebraic manipulations in Theorem 6.3.7

of Brémaud (2013) for asymptotic variance (univariate version), we can rewrite (5) in a matrix form
ΣX(g) = GT diag(π)

(
Z− IN + 1πT

)
G, (6)

where G , [g(1), · · · ,g(N)]T ∈ RN×d and Z , [IN −P + 1πT ]−1. This matrix form explicitly
shows the dependence on the transition matrix P and its stationary distribution π.

Model Description: The GD-SGD in (2) can be expressed in a compact iterative form, i.e.,
θin+1 =

∑N
j=1 wn(i, j)(θjn − γn+1∇Fj(θjn, Xj

n)), (7)
where each agent i samples according to its own Markovian trajectory {Xi

n}n≥0 with stationary
distribution πi such that EX∼πi

[Fi(θ,X)]=fi(θ). LetKl denote the communication interval between
the (l − 1)-th and l-th aggregation among N agents, and let nl ,

∑l
m=1Km be the time instance

of the l-th aggregation. Also, let τn , minl{l : nl ≥ n} denote the next aggregation at time n.
Thus, Kτn corresponds to the communication interval for the τn-th aggregation, which includes time
index n. If n 6= nl, agents perform individual SGD iterations, so Wn = IN ; otherwise, Wn = W
for aggregation between agents. We note three things: i) for Kl = 1, (7) simplifies to D-SGD; ii)
for Kl = K > 1, (7) corresponds to FL variants. iii) When Kl increases with l, we recover some
choices of Kl previously explored in Li et al. (2022) for L-SGD-FC with i.i.d. sampling. This
increasing communication interval aims to further reduce the frequency of aggregation among agents
for lower communication costs, but now under a Markovian sampling setting and a wider range of
communication patterns. We below state the needed assumptions.
Assumption 2.1 (Regularity of the gradient). For each i ∈ [N ] and X ∈ X i, the function Fi(θ,X)
is L-smooth in terms of θ, i.e., for any θ1, θ2 ∈ Rd,

‖∇Fi(θ1, X)−∇Fi(θ2, X)‖ ≤ L‖θ1 − θ2‖. (8)
In addition, f in (1) is locally strongly convex around the minimizer θ∗ ∈ L, i.e.,

H , ∇2f(θ∗) � µId. (9)
Assumption 2.1 imposes the regularity conditions on the gradient ∇Fi(·, X) and Hessian matrix of
the objective function f(·), as is commonly assumed in Borkar (2009); Kushner & Yin (2003); Fort
(2015); Hu et al. (2022). Note that (8) requires per-sample Lipschitzness of∇Fi and is stronger than
the Lipschitzness of its expected version ∇fi, which is commonly assumed under i.i.d sampling
setting, e.g., Wang et al. (2020b); Li et al. (2020); Fraboni et al. (2022). However, we remark that this
is in line with the prior works on D-SGD and L-SGD-FC under Markovian sampling as well, e.g., Wai
(2020); Khodadadian et al. (2022); Zeng et al. (2022), because ∇Fi(θ,X) is no longer the unbiased
stochastic version of ∇fi(θ) and the effect of {Xi

n} has to be taken into account in the analysis. The
local strong convexity at the minimizer is commonly assumed to analyze the convergence of the
algorithm under both asymptotic and non-asymptotic analysis, e.g., Borkar (2009); Fort (2015); Hu
et al. (2022); Kushner & Yin (2003); Li et al. (2023); Zeng et al. (2022). Moreover, Appendix C in
Hu et al. (2022) showed that (9) does not impose the convexity on f(·) and is no stricter than the
widely used Polyak-Lojasiewicz condition (Ahn et al., 2020; Wojtowytsch, 2021; Yun et al., 2022).
Assumption 2.2 (Ergodicity of Markovian sampling). {Xi

n}n≥0 is an ergodic Markov chain with
stationary distribution πi, e.g., EX∼πi

[Fi(θ,X)]= fi(θ), and is mutually independent over i∈ [N ].
The ergodicity of the underlying Markov chains, as stated in Assumption 2.2, is commonly assumed
in the literature (Duchi et al., 2012; Sun et al., 2018; Zeng et al., 2022; Khodadadian et al., 2022;
Hu et al., 2022). This assumption ensures the asymptotic unbiasedness of the loss function Fi(θ, ·),
which takes i.i.d. sampling as a special case.
Assumption 2.3 (Decreasing step size and slowly increasing communication interval). For commu-
nication interval Kτn , i) if Kτn ≤ K for all n, we assume the polynomial step size γn = 1/na and
a ∈ (0.5, 1]; ii) if Kτn →∞ as n→∞, we assume γn = 1/n and define ηn = γnK

L+1
τn , where the

sequence {Kl}l≥0 satisfies
∑
n η

2
n <∞, Kτn = o(γ

−1/2(L+1)
n ), and liml→∞ ηnl+1/ηnl+1+1 = 1.

In Assumption 2.3-i), the polynomial step size γn is standard in the literature and it has the property∑
n γn =∞,

∑
n γ

2
n <∞ (Chen et al., 2020; Li et al., 2022; Hu et al., 2022). Inspired by Li et al.

(2022), we introduce ηn to control the step size within each l-th communication interval with length
Kl to restrict the growth of Kl. Specifically,

∑
n η

2
n <∞ and Kτn = o(γ

−1/2(L+1)
n ) ensure that

ηn → 0 andKτn should not increase too fast in n. liml→∞ ηnl+1/ηnl+1+1 = 1 sets the restriction on
the increment from nl to nl+1. Several practical forms of Kl suggested by Li et al. (2022) including
Kl ∼ log(l) and Kl ∼ log log(l) also satisfy Assumption 2.3-ii). We defer to Appendix A the
mathematical verification of these two types of Kl.
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Remark 1. Assumption 2.3-ii) covers the case of increasing communication intervals with the step
size γn = 1/n. The conditions on Kl, while slightly more stringent than those in Li et al. (2022),
are necessary for our analysis under Markovian sampling. Note that Assumption 3.2 in Li et al.
(2022) only works under i.i.d sampling case. Under Markovian sampling,∇Fi(θ,X)−∇fi(θ) is not
unbiased, nor Martingale difference such that the way Li et al. (2022) used Martingale CLT cannot be
extrapolated to the Markovian sampling as is. Instead, we referred to the techniques in Fort (2015);
Morral et al. (2017) in our way to cover the increasing communication interval under Markovian
sampling, at the price of requiring the step size to be γn=1/n, which was not included in Li et al.
(2022). Relaxing this assumption for more general forms of Kl is beyond the scope of this paper.
Assumption 2.4 (Stability on model parameter). supn ‖θin‖ <∞ almost surely for all i ∈ [N ].

Assumption 2.4 claims that the sequence of {θin} always remains in a path-dependent compact set.
It is to ensure the stability of the algorithm that serves the purpose of analyzing the convergence,
which is often assumed under the asymptotic analysis of vanilla SGD with Markovian noise (Delyon
et al., 1999; Fort, 2015; Li et al., 2023). It is weaker than the uniformly bounded per-sample gradients
‖∇Fi(θ,X)‖<D which is considered a strong assumption in the literature. As mentioned in Morral
et al. (2017); Vidyasagar (2022), checking Assumption 2.4 is challenging and requires case-by-
case analysis, even under i.i.d. sampling. Only recently the stability of SGD under Markovian
sampling has been studied in Borkar et al. (2021), but the result for GD-SGD remains unknown in
the literature. Thus, we analyze each agent’s sampling strategy in the asymptotic regime under this
stability condition.
Assumption 2.5 (Contraction property of communication matrix). i). {Wn}n≥0 is independent of
the sampling strategy {Xi

n}n≥0 for all i ∈ [N ] and is assumed to be doubly-stochastic for all n; ii).
At each aggregation step nl, Wnl

is independently generated from some distribution Pnl
such that

‖EW∼Pnl
[WTW]−J‖≤C1<1 for some constant C1.

The doubly-stochasticity of Wn in Assumption 2.5-i) is widely assumed in the literature (Mathkar
& Borkar, 2016; Doan et al., 2019; Koloskova et al., 2020; Zeng et al., 2022). Assumption 2.5-ii)
is a contraction property to ensure that agents employing GD-SGD will asymptotically achieve the
consensus, which is also commonly seen in Bianchi et al. (2013); Doan et al. (2019); Zeng et al.
(2022). Examples of W that satisfy Assumption 2.5-ii), e.g., Metropolis-Hasting matrix, partial
client sampling in FL, are deferred to Appendix B due to space constraint.

3 ASYMPTOTIC ANALYSIS OF GD-SGD

3.1 MAIN RESULTS

Almost-sure Convergence: Denote by θn , 1
N

∑N
i=1 θ

i
n the consensus among all the agents at

time n, we establish the asymptotic consensus of the local parameters θin, as stated in Lemma 3.1.
Lemma 3.1. With Assumptions 2.1, 2.3, 2.4 and 2.5, the GD-SGD iteration (7) under Markovian
sampling leads to the consensus almost surely, i.e.,

lim
n→∞

∥∥θin − θn∥∥ = 0,∀i ∈ [N ] a.s. (10)

Lemma 3.1 can be seen as an extension of Proposition 1 in Morral et al. (2017) but now incorporated
with Markovian sampling, FL setting, and increasing communication interval Kl (with Assumption
2.3). We provide its proof in Appendix C, while the main difficulty lies in showing the boundedness
of a sequence {γ−1

n (θin − θn)}n≥0 almost surely for all i ∈ [N ], which is proved in Lemma C.1.
Next, with additional Assumption 2.2, we are able to obtain the almost-sure convergence to θ∗ ∈ L.
Theorem 3.2. Under Assumptions 2.1 - 2.5, the consensus θn converges to L almost surely, i.e.,

lim sup
n

inf
θ∗∈L

‖θn − θ∗‖ = 0 a.s. (11)

Theorem 3.2 follows from the convergence guarantees in Theorem 2 of Delyon et al. (1999) by
decomposing the Markovian noise term∇Fi(θin, Xi

n)−∇fi(θin) by the Poisson equation technique
(Benveniste et al., 2012; Fort, 2015; Chen et al., 2020) into a Martingale difference noise term,
along with additional noise terms, and transforming (7) into a stochastic-approximation-like iteration
(which is shown in (57)) and verifying all the conditions on the noise terms therein under the given
assumptions here. It also implies that GD-SGD guarantees almost-sure convergence to an optimal
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point θ∗ ∈ L for every agent, even when Kl increases in l, as allowed by Assumption 2.3-ii). The
proof is deferred to Appendix D.

Central Limit Theorem: Denote by Ui , ΣXi(∇Fi(θ∗, ·)) the asymptotic covariance matrix
(defined in (6)) associated with agent i ∈ [N ], given its sampling strategy {Xi

n} and function
∇Fi(θ∗, ·). Let U , 1

N2

∑N
i=1 Ui. We assume the polynomial step-size γn∼ γ?/na, a∈ (0.5, 1]

and γ? > 0. In the case of a = 1, we further assume γ? > 1/2µ, where µ is defined in (9).
Theorem 3.3. Let Assumptions 2.1 - 2.5 hold. Then,

γ−1/2
n (θn − θ∗)

dist.−−−−→
n→∞

N (0,V), (12)

where the limiting covariance matrix V is in the form of

V =

∫ ∞
0

eMtUeM
T tdt. (13)

Here, we have M = −H if a ∈ (0.5, 1), or M = Id/2γ? −H if a = 1, where H is defined in (9).

Moreover, let θ̄n = 1
n

∑n−1
s=0 θs. Then, for a ∈ (0.5, 1) and let V′ , H−1UH−T , we have

√
n(θ̄n − θ∗)

dist.−−−−→
n→∞

N (0,V′). (14)

The proof of Theorem 3.3 is included in Appendix E. To obtain the CLT result, we need to quantify
the second-order conditions for the decomposition of the Markovian noise term that are absent in the
i.i.d. sampling case (Morral et al., 2017; Koloskova et al., 2020; Li et al., 2022), which inherently
contains the consensus error analyzed in Lemma 3.1. The details are deferred to Appedix E.1 – E.3.
We require γ? > 1/2µ in the case of a = 1 to ensure that the largest eigenvalue of M is negative, as
this is a necessary condition for the existence of V in (13) (otherwise the integration diverges). As a
specific instance, when there is only one agent (N = 1), V and V′ reduce to the matrices specified
in the CLT result of vanilla SGD, e.g., Lemma 3.1 in Hu et al. (2022). By modifying (14) under
different time scales and assuming Kl = K for all l, we can recover the CLT result in Li et al. (2022)
and the detailed discussion is included in Appendix F. Further elaboration on the implications of
Theorem 3.3 is given next.

3.2 DISCUSSION

Connection between CLT and Weighted MSE. The asymptotic convergence rates for θn − θ∗

and θ̄n − θ∗ in Theorem 3.3 are O(
√
γn) and O(1/

√
n), respectively, and align with the rates in

vanilla SGD (Borkar, 2009; Kushner & Yin, 2003; Fort, 2015), a special case N=1 for GD-SGD.
In addition, the interpretation of CLT in vanilla SGD for weighted MSE, as presented in Hu et al.
(2022), can be extended to GD-SGD, e.g., for any weight vector a∈Rd and large n, the weighted
MSE can be approximated as E[‖aT (θn − θ∗)‖2] = aTE[(θn − θ∗)(θn − θ∗)T ]a ≈ γnaTVa.

Asymptotic Network Independence. In D-SGD with constant doubly-stochastic W, Olshevsky
(2022) showed that after a transient period that depends on second largest eigenvalue modulus (SLEM)
of W, their finite-time bounds become independent of the underlying communication topology. This
is also reflected in the CLT result of Corollary 1 in Morral et al. (2017), where the choice of Wn

does not affect the limiting covariance matrix. Our Theorem 3.3 reaffirms this property in that the
communication network does not influence the limiting covariance matrix in the asymptotic regime,
extending Corollary 1 of Morral et al. (2017) for i.i.d. sampling into Markovian sampling and for
more various types of {Wn}. This implies that the effect of network topology is on the order of
o(
√
γn) (or o(1/

√
n)), which is consistent with the finite-time bound in Pu et al. (2020) such that

the effect of network topology is on the higher order term. It diminishes faster than the dominant
factor: agent’s sampling strategy. One heuristic approach for enhancing the overall convergence
can be to initially employ W with a smaller SLEM, as studied in Dimakis et al. (2010); Zhang
(2020); Ye et al. (2022), to accelerate the mixing process. This is followed by a transition to sparse
graphs, as investigated in Karakus et al. (2017); Neglia et al. (2020); Song et al. (2022), to reduce
communication costs among agents.

Linear Speedup. Recent works (Koloskova et al., 2020; Khodadadian et al., 2022; Wang et al.,
2023) have demonstrated that the factor 1/N is embedded in the dominant term of their convergence
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bounds under both i.i.d. sampling and Markovian sampling, leading to linear speedup in the number
of agents N . Our Theorem 3.3 also suggests this linear speed up in the number of agents. To see this,
we first define matrices Vi, V′i of each agent i, i.e., with matrix M defined in Theorem 3.3,

Vi =

∫ ∞
0

eMtUie
MT tdt, V′i = H−1UiH

−T . (15)

Then, we can decompose V and V′ in Theorem 3.3 into

V = V̄/N, V′ = V̄′/N, (16)

where V̄ =
∑N
i=1 Vi/N, V̄

′ =
∑N
i=1 V′i/N represent the average limiting covariance matrices

among N agents. (16) implies the approximated weighted MSEs in the form of aT V̄a/N and
aT V̄′a/N , suggesting that the overall convergence will also be improved by 1/N .

Improvement on Sampling Strategy. The SLEM-based technique has been widely used in the
non-asymptotic analysis in the SGD, D-SGD and FL literature (Duchi et al., 2012; Sun et al., 2018;
Zeng et al., 2022; Khodadadian et al., 2022), i.e., for each agent i ∈ [N ] and some constant C > 0,

‖Fi(θ,Xi
n)− fi(θ)‖ ≤ C‖θ‖ρni , (17)

where ρi represents the SLEM of the underlying Markov chain’s transition matrix. However, recent
works usually rely on the largest SLEM ρ , maxi ρi, in other words, the worst-performing agent in
their finite-time bounds (Wang et al., 2020a; Zeng et al., 2022; Khodadadian et al., 2022).

In contrast, as per (15), each agent holds its own limiting covariance matrices Vi and V′i, which
are mainly determined by the matrix Ui that encapsulates the agent’s sampling strategy {Xi

n}, and
contributes equally to the overall performance of GD-SGD, as seen from (16). For any agent i,
denote by UX

i and UY
i the asymptotic covariance matrices associated with two candidate sampling

strategies {Xi
n} and {Y in}, respectively. Let VX and VY be the limiting covariance matrices in (13)

when agent i employs {Xi
n} and {Y in}, respectively, while keeping other agents’ sampling strategies

unchanged. Then, we have the following.
Corollary 3.4. For agent i, if there exists two sampling strategies {Xi

n}n≥0 and {Y in}n≥0 such that
UX
i � UY

i , we have VX � VY .

Corollary 3.4 directly follows from the definition of Loewner ordering, and Loewner ordering being
closed under addition (i.e., A � B implies A + C � B + C), as well as (16). It says, even if only
one agent improves its sampling strategy from {Xi

n} to {Y in}, it leads to an overall reduction in V
(in terms of Loewner ordering), thereby decreasing the weighted MSE and benefiting the entire group
of N agents. The subsequent question then arises: How do we find an improved sampling strategy
{Y in} over the baseline {Xi

n} for each agent i?

This question has been addressed by Hu et al. (2022), which investigates the ‘efficiency ordering’ of
two sampling strategies in vanilla SGD (for a single agent). In particular, Theorem 3.6 (i) of Hu et al.
(2022) shows that sampling strategy {Yn} is more efficient than {Xn} if and only if ΣX(g) � ΣY (g)
for any vector-valued function g(·) ∈ Rd. Consequently, in the GD-SGD framework, if agent i utilizes
{Y in}, which is more efficient than baseline {Xi

n}, it results in ΣXi(∇Fi(θ∗, ·)) � ΣY i(∇Fi(θ∗, ·)),
that is, UX

i � UY
i by definition. Corollary 3.4 then gives VX � VY and implies the overall

improvement in GD-SGD. For illustration purpose, we list a few examples stated in Hu et al. (2022)
where two competing sampling strategies follow the efficiency ordering: i) When an agent has
unrestricted access to the entire dataset, shuffling methods, including single shuffling and random
reshuffling, are more efficient than i.i.d. sampling;4 ii) When an agent is working with a graph-like
data structure and employs a random walk, e.g., agent i in Figure 1, using non-backtracking random
walk (NBRW) is more efficient than simple random walk (SRW).5 More examples of efficient MCMC
samplers can be found in Haario et al. (2006); Yang & Rodríguez (2013).

4Random reshuffling refers to the repeated shuffling of a dataset after each complete traversal of the data
points, while single shuffling only shuffles the dataset once and adheres to that specific order throughout the
training process. In the L-SGD-FC framework, Yun et al. (2022) also proved that random reshuffling is better
than i.i.d sampling via non-asymptotic analysis.

5Simple random walk refers to the walker that chooses one of the neighboring nodes uniformly at random.
NBRW, as studied in Alon et al. (2007); Lee et al. (2012); Ben-Hamou et al. (2018) is a variation, which selects
one of the neighbors uniformly at random, with the exception of the one visited in the last step.
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(a) D-SGD.
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(b) D-FL.
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(c) L-SGD-FC.
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(d) L-SGD-PC.

Figure 2: Simulation results for logistic regression problem. (a) D-SGD with four combinations of
sampling strategies. (b) D-FL with different communication intervals K = 5, 10 and Kl = log(l) (l:
number of aggregations). (c) L-SGD-FC with K = 10 and four combinations of sampling strategies.
(d) L-SGD-PC with without-replacement client sampling method and the client set size |S| = 20, 40.

4 EXPERIMENTS

In this section, we empirically evaluate the consistency of our asymptotic results, presented in
Section 3.2, i.e., the effect of sampling strategies of each agent, communication intervals and
communication patterns in GD-SGD. We consider the L2-regularized logistic regression problem

f(θ)= 1
NB

∑N
i=1

∑B
j=1 log(1+exp(−yi,jxTi,jθ))+ 1

2‖θ‖
2, (18)

where xi,j , yi,j are data point j and its label held by agent i. We use the CIFAR-10 dataset (Krizhevsky
& Hinton, 2009), which is distributed evenly to two groups of 50 agents (N = 100 agents in total)
and each agent holds B = 500 data points. Each agent in the first group has full access to its entire
dataset, thus can employ i.i.d. sampling or single shuffling. On the other hand, each agent in the
other group has a graph-like structure and uses SRW or NBRW with reweighting to sample its local
dataset with uniform weight, e.g., scenarios depicted in Figure 1.6 We employ a decreasing step size
γn = n−0.9. Due to space constraints, we include more simulation result in Appendix G.

The simulation results illustrated in Figure 2 enter the asymptotic regime very early. All four subplots
consistently demonstrate that a more efficient sampling strategy generally leads to a smaller MSE,
e.g., single shuffling and NBRW outperform i.i.d sampling and SRW, even when only a subset of
agents adopt improved strategies. This also suggests that efficient sampling strategies can achieve
the same accuracy with fewer iterations. Note that purple and blue curves in Figures 2(a) and 2(c)
take some time to outperform orange and green curves, respectively, which aligns with Ahn et al.
(2020); Yun et al. (2022) because shuffling methods outperform i.i.d. sampling only after some
period. Additionally, we observe in Figures 2(b) to 2(d) that communication intervals/patterns have
minimal impact on MSE in the asymptotic regime (achieved by the straight line in the log-log scale).
In Appendix G, we also present an experiment where the simulation does not enter the asymptotic
regime early, causing communication intervals/patterns to affect MSE. However, employing more
efficient sampling strategies can still help mitigate negative effects of less frequent aggregation.

5 CONCLUSION

In this work, we proposed a unified framework for the asymptotic analysis of GD-SGD. We demon-
strated that individual agents can improve the overall performance of the distributed learning system
by optimizing their sampling strategies. This is particularly relevant in large-scale machine learning,
even when some agents are out of control or unavailable, which cannot be captured under finite-
time upper bounds. In addition, we theoretically and empirically showed the limited impact on the
convergence in the asymptotic regime under various communication patterns, as well as increasing
communication interval, implying reduced communication costs. Future studies could pivot towards
developing fine-grained finite-time bounds to individually characterize each agent’s behavior, moving
away from the current focus in the literature on establishing upper bounds predominantly associated
with the worst-performing agent.

6Agents in both D-SGD and D-FL collaborate together to generate a deterministic communication matrix
with Metropolis Hasting algorithm. The communication network among 100 agents and the graph-like structure
of the dataset held by each agent are generated by connected_watts_strogatz_graph() in networkx package.
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A DISCUSSION OF ASSUMPTION 2.3-II)

When Kl ≈ log(l) (resp. Kl ≈ log log(l)), as suggested by Li et al. (2022), it trivially satisfies
Kτn = o(γ

−1/2(L+1)
n ) = o(n1/2(L+1)) since by definition Kτn < Kn ≈ log(n) (resp. log log(n)),

and log(n) = o(nε) (resp. log log(n) = o(nε)) for any ε > 0. Besides,
∑
n η

2
n =

∑
n γ

2
nK

2(L+1)
τn .∑

n n
−2n2(L+1)ε =

∑
n n

2(L+1)ε−2. To ensure
∑
n η

2
n <∞, it is sufficient to have 2(L+1)ε−2 <

−1, or equivalently, ε < 1/2(L + 1). Since ε can be arbitrarily small to satisfy the condition,∑
n η

2
n <∞ is satisfied.

When Kl ≈ log(l), we can rewrite the last condition as

ηnl+1

ηnl+1+1
=

γnl+1

γnl+1+1

KL+1
l

KL+1
l+1

=

(
nl+1 + 1

nl + 1

)(
log(l + 1) + 1

log(l) + 1

)L+1

=

(
1 +

Kl+1

nl + 1

)(
log(l + 1) + 1

log(l) + 1

)L+1

,

(19)

where we have nl ≈ log(l!) such thatKl+1/nl ≈ log(l+1)/ log(l!)→ 0 and log(l+1)/ log(l)→ 1
as l → ∞, which leads to limn→∞ ηnl+1/ηnl+1+1 = 1. Similarly, for Kl ≈ log log(l), we
have nl ≈ log(

∏l
s=1 log(s)) such that Kl+1/nl ≈ log log(l + 1)/ log log(

∏l
s=1 log(s)) → 0 and

log log(l + 1)/ log log(l)→ 1 as l→∞, which also leads to limn→∞ ηnl+1/ηnl+1+1 = 1.

B EXAMPLES OF COMMUNICATION MATRIX W

B.1 METROPOLIS HASTING ALGORITHM

In the decentralized learning such as D-SGD, HL-SGD and D-FL, W at the aggregation step can be
generated locally using the Metropolis Hasting algorithm based on the underlying communication
topology, and is deterministic (Pu et al., 2020; Koloskova et al., 2020; Zeng et al., 2022). Specifically,
each agent i exchanges its degree di with its neighbors j ∈ N(i), forming the weight

W(i, j) =

{
min{1/di, 1/dj}, j ∈ N(i),

1−
∑
j 6=N(i) W(i, j), j = i.

(20)

In this case, W is doubly stochastic and symmetric. By Perron-Frobenius theorem, its SLEM
λ2(W) < 1 . Then, ‖WTW− J‖ = ‖W2− J‖ = λ2

2(W) < 1, which satisfies Assumption 2.5-ii).

B.2 PARTIAL CLIENT SAMPLING IN FL

For L-SGD-FC studied in Stich (2018); Woodworth et al. (2020); Khodadadian et al. (2022), W =
11T /N trivially satisfies Assumption 2.5-ii). For L-SGD-PC, on the other hand, only a small
fraction of agents participate in each aggregation step for consensus (Li et al., 2020; Fraboni et al.,
2022). Denote by S a randomly selected set of agents (without replacement) of fixed size |S| ∈
{1, 2, · · · , N} at time n and WS plays a role of aggregating θin for agent i ∈ S, i.e., WS(i, j) =
1/|S| for i, j ∈ S, WS(i, i) = 1 for i /∈ S, and WS(i, j) = 0 otherwise. Additionally, the central
server needs to broadcast updated parameter θn+1 to the newly selected set S ′ with the same size,
which results in a bijective mapping σ (for S → S ′ and [N ]/S → [N ]/S ′) and a corresponding
permutation matrix TS→S′ . Specifically, TS→S′(i, j) = 1 if j = σ(i) and TS→S′(i, j) = 0
otherwise. Then, the communication matrix becomes W = TS→S′WS . Note that WS is now a
random matrix, since S is a randomly chosen subset of size |S|. Clearly, for each choice of S , WS is
doubly stochastic, symmetric and W2

S = WS . Taking the expectation of WS w.r.t the randomly
selected set S gives

ES [WS ](i, j) =

{
(|S| − 1)/N(N − 1), j 6= i,

1− (|S| − 1)/N, j = i,
(21)
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for i ∈ [N ]. Note that ES [WS ] has all positive entries. Therefore, we use the fact TTT = I for
a permutation matrix T such that ‖E[WTW] − J‖ = ‖ES,S′ [WT

STT
S→S′TS→S′WS ] − J‖ =

‖ES [WT
SWS ]− J‖ = ‖ES [WS ]− J‖ < 1 by Perron–Frobenius theorem and eigendecomposition,

which satisfies Assumption 2.5-ii).

Next, we discuss the mathematical equivalence between our client sampling scheme and the com-
monly used FedAvg in the FL literature (Li et al., 2020; Fraboni et al., 2022) as follows:

1. At time n, the central server updates its global parameter θn = 1
|S|
∑
i∈S θ

i
n from the

agents in the previous set S. Then, the central server selects a new subset of agents S ′ and
broadcasts θn to agent i ∈ S ′, i.e., θin = θn;

2. Each selected agent i computes K steps of SGD locally and consecutively updates its local
parameter θin+1, · · · , θin+K according to (2a);

3. Each selected agent i ∈ S ′ uploads θin+K to the central server.

Then, the central server repeats the above three steps with θn+K and a new set of selected agents.

In our client sampling scheme, at the aggregation step n, the design of WS results in θ̃in =
1
|S|
∑
j∈S θ

j
n for a selected agent i ∈ S, and θ̃in = θin for an unselected agent i /∈ S. Mean-

while, the central server updates the global parameter θ̃n = θ̃in for i ∈ S. Then, the permutation
matrix TS→S′ ensures that the newly selected agent i ∈ S ′ will use θ̃n as the initial point for its subse-
quent SGD iterations. Consequently, from the selected agents’ perspective, the communication matrix
W = TS→S′WS corresponds to step 1 in FedAvg. As we can observe, both algorithms update
the global parameter identically from the central server’s viewpoint, rendering them mathematically
equivalent regarding the global parameter update.

We acknowledge that under the i.i.d sampling strategy, the behavior of unselected agents in our
algorithm differs from FedAvg. Specifically, unselected agents are idle in FedAvg, while they
continue the SGD computation in our algorithm (despite not contributing to the global parameter
update). Importantly, when an unselected agent is later selected, the central server overwrites its local
parameter during the broadcasting process. This ensures that the activities of agents when they are
unselected have no impact on the global parameter update.

As far as we are aware, the FedAvg algorithm under the Markovian sampling strategy remains
unexplored in the FL literature. Extrapolating the behavior of unselected agents in FedAvg from i.i.d
sampling to Markovian sampling suggests that unselected agents would remain idle. In contrast, our
algorithm enables unselected agents to continue evolving Xi

n. These additional transitions contribute
to faster mixing of the Markov chain for each unselected agent and a smaller bias of Fi(θ,Xi

n)
relative to its mean-field fi(θ), potentially accelerating the convergence.

C PROOF OF LEMMA 3.1

Let J⊥ , IN − J ∈ RN×N and J⊥ , J⊥ ⊗ Id ∈ RNd×Nd, where ⊗ is the Kronecker product.
Let Θn = [θ1

n, · · · , θNn ]T ∈ RNd. Then, motivated by Morral et al. (2017), we define a sequence
φn , η−1

n+1J⊥Θn ∈ RNd in the increasing communication interval case (resp. φn , γ−1
n+1J⊥Θn in

the bounded communication interval case), where ηn+1 is defined in Assumption 2.3-ii). J⊥Θn =
Θn − 1

N (11T ⊗ Id)Θn represents the consensus error of the model.

We first give the following lemma that shows the pathwise boundedness of φn.

Lemma C.1. Let Assumptions 2.1, 2.3, 2.4 and 2.5 hold. For any compact set Ω ⊂ RNd, the
sequence φn satisfies

sup
n

E[‖φn‖21∩j≤n−1{Θj∈Ω}] <∞

for both increasing and bounded communication interval cases.

Lemma C.1 and Assumption 2.3 imply that for any n ≥ 0, there exists some constant C dependent
on Ω such that
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• increasing communication interval case:

E[‖J⊥Θn‖21∩j≤n−1{Θj∈Ω}] = η2
n+1E[‖φn‖21∩j≤n−1{Θj∈Ω}] ≤ Cη2

n+1.

• bounded communication interval case:

E[‖J⊥Θn‖21∩j≤n−1{Θj∈Ω}] = γ2
n+1E[‖φn‖21∩j≤n−1{Θj∈Ω}] ≤ Cγ2

n+1.

By Markov’s inequality, we have

P (‖J⊥Θn‖1∩j≤n−1{Θj∈Ω} > ε) ≤
E
[
‖J⊥Θn‖21∩j≤n−1{Θj∈Ω}

]
ε2

(22)

for an arbitrary constant ε > 0 . Since {γn}n≥0 and {ηn}n≥0 are square-summable from Assumption
2.3, we have

∞∑
n=1

P (‖J⊥Θn‖1∩j≤n−1{Θj∈Ω} > ε) <∞.

Thus, from Borel-Cantelli lemma, we have

lim
n→∞

J⊥Θn1∩j≤n−1{Θj∈Ω} = 0 a.s.

Let {Ωm}m≥0 be a sequence of increasing compact subset of RNd such that
⋃
m Ωm = RNd.

Together with Lemma C.1, we know that for any m ≥ 0,

lim
n→∞

J⊥Θn1∩j≤n−1{Θj∈Ωm} = 0 a.s. (23)

(23) indicates either one of the following two cases:

• there exists some trajectory-dependent indexm′ such that each trajectory {Θn}n≥0 is always
within the compact set Ωm′ , i.e., 1∩j≤n{Θj∈Ωm′} = 1 (satisfied by the construction of
increasing compact sets {Ωm}m≥0 and Assumption 2.4), and we have limn→∞ J⊥Θn = 0;

• Θn will escape the compact set Ωm eventually for any m ≥ 0 in finite time such that
1∩j≤n−1{Θj∈Ωm} = 0 when n is large enough.

We can see that the second case contradicts Assumption 2.4 because we assume every trajectory
{Θn}n≥0 is within some compact set. Therefore, (23) for any m ≥ 0 is equivalent to showing
limn→∞ J⊥Θn = 0, which completes the proof of Lemma 3.1.

Proof of Lemma C.1. We begin by rewriting the GD-SGD iterates in the matrix form,

Θn+1 =Wn (Θn − γn+1∇F(Θn,Xn)) , (24)

where Xn , (X1
n, X

2
n, · · · , XN

n ) and∇F(Θn,Xn) , [∇F1(θ1
n, X

1
n)T , · · · ,∇FN (θNn , X

N
n )T ]T ∈

RNd. Recall θn , 1
N

∑N
i=1 θ

i
n ∈ Rd and we have [θTn , · · · , θTn ]T = 1

N (11T ⊗ Id)Θn ∈ RNd.

Case 1 (Increasing communication interval Kτn ): By left multiplying (24) with 1
N (11T ⊗ Id),

along with γn+1 = ηn+1/K
L+1
τn+1

in Assumption 2.3-ii), we have the following iteration

1

N
(11T ⊗ Id)Θn+1 =

1

N
(11T ⊗ Id)Θn − ηn+1

1

N
(11T ⊗ Id)

∇F(Θn,Xn)

KL+1
τn+1

, (25)

where the equality comes from 1
N (11T ⊗ Id)Wn = 1

N (11TWn ⊗ Id) = 1
N (11T ⊗ Id). With (24)

and (25), we have

Θn+1 −
1

N
(11T ⊗ Id)Θn+1

=

(
Wn −

1

N
(11T ⊗ Id)

)
Θn − ηn+1

(
Wn −

1

N
(11T ⊗ Id)

)
∇F(Θn,Xn)

KL+1
τn+1

=(J⊥Wn ⊗ Id)J⊥Θn − ηn+1(J⊥Wn ⊗ Id)
∇F(Θn, Xn)

KL+1
τn+1

=ηn+1(J⊥Wn ⊗ Id)

(
η−1
n+1J⊥Θn −

∇F(Θn,Xn)

KL+1
τn+1

)
,

(26)
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where the second equality comes fromWn − 1
N (11T ⊗ Id) = (Wn − 1

N 11T )⊗ Id = J⊥Wn ⊗ Id
and (J⊥Wn ⊗ Id)J⊥ = J⊥WnJ⊥ ⊗ Id = J⊥Wn ⊗ Id. Let an , ηn/ηn+1, dividing both sides
of (26) by ηn+2 gives

φn+1 = an+1(J⊥Wn ⊗ Id)

(
φn −

∇F(Θn,Xn)

KL+1
τn+1

)
. (27)

Define the filtration {Fn}n≥0 as Fn , σ{Θ0,X0,W0,Θ1,X1,W1, · · · ,Xn−1,Wn−1,Θn,Xn}.
Recursively computing (27) w.r.t the time interval [nl, nl+1] gives

φnl+1
=

[
nl+1∏

k=nl+1

ak

]([
J⊥

nl+1−1∏
k=nl

Wk

]
⊗Id

)
φnl
−
nl+1−1∑
k=nl

[
nl+1∏
i=k+1

ai

]([
J⊥

nl+1−1∏
i=k

Wi

]
⊗Id

)
∇F(Θk,Xk)

KL+1
l+1

=
ηnl+1

ηnl+1+1
(J⊥Wnl

⊗ Id)φnl
−
nl+1−1∑
k=nl

ηnl+1

ηk+2
(J⊥Wnl

⊗ Id)
∇F(Θk,Xk)

KL+1
l+1

,

(28)

where
∏

is the backward multiplier, the second equality comes from J⊥WnJ⊥ = J⊥Wn

and Wk = IN for k /∈ {nl}. In Assumption 2.5, we have ‖EW∼Pnl
[WTJ⊥W]‖ =

‖EW∼Pnl
[WTW − J]‖ ≤ C1 < 1. Then,

E[‖φnl+1
‖2|Fnl

]

=

(
ηnl+1

ηnl+1+1

)2

φTnl
EWnl∼Pnl

[
(J⊥Wnl

⊗ Id)
T

(J⊥Wnl
⊗ Id)

]
φnl

− 2E

[
nl+1−1∑
k=nl

η2
nl+1

ηnl+1+1ηk+2
φTnl

(J⊥Wnl
⊗ Id)

T
(J⊥Wnl

⊗ Id)
∇F(Θk,Xk)

KL+1
l+1

∣∣∣∣∣Fnl

]

+ E

∥∥∥∥∥
nl+1−1∑
k=nl

ηnl+1

ηk+2
(J⊥Wnl

⊗ Id)
∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥
2
∣∣∣∣∣∣Fnl


≤
(
ηnl+1

ηnl+1+1

)2

φTnl
EWnl∼Pnl

[(
WT

nl
J⊥Wnl

⊗ Id
)]
φnl

− 2

(
ηnl+1

ηnl+1+1

)2

E

[
nl+1−1∑
k=nl

φTnl

(
WT

nl
J⊥Wnl

⊗ Id
) ∇F(Θk,Xk)

KL+1
l+1

∣∣∣∣∣Fnl

]

+

(
ηnl+1

ηnl+1+1

)2

E

∥∥∥∥∥(J⊥Wnl
⊗ Id)

nl+1−1∑
k=nl

∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥
2
∣∣∣∣∣∣Fnl


≤
(
ηnl+1

ηnl+1+1

)2

C1‖φnl
‖2 + 2

(
ηnl+1

ηnl+1+1

)2

C1‖φnl
‖E

[∥∥∥∥∥
nl+1−1∑
k=nl

∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥
∣∣∣∣∣Fnl

]

+

(
ηnl+1

ηnl+1+1

)2

C1E

∥∥∥∥∥
nl+1−1∑
k=nl

∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥
2
∣∣∣∣∣∣Fnl

 ,

(29)

where the first inequality comes from JT⊥J⊥ = J⊥ and ηk+2 ≥ ηnl+1+1 for k ∈ [nl, nl+1 − 1].
Then, we analyze the norm of the gradient ‖∇F(Θk,Xk)‖ in the second term on the RHS of (29)
conditioned on Fnl

. By Assumption 2.4, we assume Θnl
is within some compact set Ω at time

nl such that supi∈[N ],Xi∈Xi
∇Fi(θinl

, Xi) ≤ CΩ for some constant CΩ. For n = nl + 1 and any
X ∈ X1 ×X2 × · · · × XN , we have

‖∇F(Θnl+1,X)‖ ≤ ‖∇F(Θnl+1,X)−∇F(Θnl
,X)‖+ ‖∇F(Θnl

,X)‖.
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Considering ‖∇F(Θnl
,X)‖, we have

sup
X
‖∇F(Θnl

,X)‖2 ≤
N∑
i=1

sup
Xi∈Xi

‖∇Fi(θinl
, Xi)‖2 ≤ NC2

Ω

such that ‖∇F(Θnl
,X)‖ ≤

√
NCΩ. In addition, we have

‖∇F(Θnl+1,X)−∇F(Θnl
,X)‖2 =

N∑
i=1

‖∇Fi(θinl+1, X
i)−∇Fi(θinl

, Xi)‖2

≤
N∑
i=1

L2‖θinl+1 − θinl
‖2

≤
N∑
i=1

γ2
nl+1L

2‖∇Fi(θinl
, Xi

nl
)‖2

≤γ2
nl+1L

2NC2
Ω

(30)

such that ‖∇F(Θnl+1,X)−∇F(Θnl
,X)‖ ≤

√
Nγnl+1LCΩ. Thus, for any X,

‖∇F(Θnl+1,X)‖ ≤ (1 + γnl+1L)
√
NCΩ. (31)

For n = nl + 2 and any X, we have

‖∇F(Θnl+2,X)‖ ≤ ‖∇F(Θnl+2,X)−∇F(Θnl+1,X)‖+ ‖∇F(Θnl+1,X)‖.

Similar to the steps in (30), we have

‖∇F(Θnl+2,X)−∇F(Θnl+1,X)‖2 ≤
N∑
i=1

γ2
nl+2L

2‖∇Fi(θinl+1, X
i
nl+1)‖2

=γ2
nl+2L

2‖∇F(Θnl+1,Xnl+1)‖2.

(32)

Then, ‖∇F(Θnl+2,X)‖ ≤ (1 + γnl+2L) supX ‖∇F(Θnl+1,X)‖ and, together with (31), we have

‖∇F(Θnl+2,X)‖ ≤ (1 + γnl+2L)(1 + γnl+1L)
√
NCΩ. (33)

By induction, ‖∇F(Θnl+m,X)‖ ≤
∏m
s=1(1 + γnl+sL)

√
NCΩ for m ∈ [1,Kl+1 − 1].

The next step is to analyze the growth rate of
∏m
s=1(1 + γnl+sL). By 1 + x ≤ ex for x ≥ 0, we have

m∏
s=1

(1 + γnl+sL) ≤ eL
∑m

s=1 γnl+s .

For step size γn = 1/n, we haveL
∑m
s=1 γnl+s = L

∑m
s=1 1/(nl+s) < L

∑m
s=1 1/s < L(log(m)+

1) such that
∏m
s=1(1 + γnl+sL) < (em)L. Then,∥∥∥∥∥

nl+1−1∑
k=nl

∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥ ≤ 1

KL+1
l+1

nl+1−1∑
k=nl

‖∇F(Θk,Xk)‖ ≤ 1

KL+1
l+1

√
NeLCΩ

Kl+1−1∑
m=0

mL ≤
√
NeLCΩ,

(34)
where the last inequality comes from

∑Kl+1−1
m=0 mL < Kl+1(Kl+1 − 1)L < KL+1

l+1 . We can see the
sum of the norm of the gradients are bounded by

√
NeLCΩ, which only depends on the compact set

Ω at time n = nl.

Let δ1 ∈ (C1, 1). Since from Assumption 2.3-ii), liml→∞ ηnl+1/ηnl+1+1 = 1, there exists some
large enough l0 such that (

ηnl+1

ηnl+1+1
)2C1 < δ1 < δ2 := (δ1 + 1)/2 < 1 for any l > l0. Note that δ1

depends only on C1 and is independent of Fn. Then, let C̃Ω :=
√
NeLCΩ, we can rewrite (29) as

E[‖φnl+1
‖2|Fnl

] ≤δ1‖φnl
‖2 + 2δ1C̃Ω‖φnl

‖+ δ1C̃
2
Ω

≤δ2‖φnl
‖2 +MΩ,

(35)
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where MΩ satisfies MΩ > 8C̃2
Ω/(1 − δ1) + δ1C̃

2
Ω, which is derived from rearranging (35) as

MΩ ≥ (δ1 − δ2)‖φnl
‖2 + 2δ1C̃Ω‖φnl

‖ + δ1C̃
2
Ω and upper bounding the RHS. Upon noting that

1∩j≤nl
{Θj∈Ω} ≤ 1∩j≤nl−1

{Θj∈Ω}, we obtain

E
[
‖φnl+1

‖21∩j≤nl
{Θj∈Ω}

]
≤ δ2E

[
‖φnl
‖21∩j≤nl−1

{Θj∈Ω}

]
+MΩ. (36)

The induction leads to E[‖φnl+1
‖21∩j≤nl

{Θj∈Ω}] ≤ δ
nl+1−nl0
2 E[‖φnl0

‖21∩j≤nl0−1
{Θj∈Ω}] +

M/(1 − δ2) < ∞ for any l ≥ l0. Besides, for m ∈ (nl, nl+1), by following the above steps
(29) applied to (27), we have

E[‖φm‖2|Fnl
] ≤
(
ηnl+1

ηm+1

)2

‖φnl
‖2 + 2

(
ηnl+1

ηm+1

)2

‖φnl
‖E

[∥∥∥∥∥
m−1∑
k=nl

∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥
∣∣∣∣∣Fnl

]

+

(
ηnl+1

ηm+1

)2

E

∥∥∥∥∥
m−1∑
k=nl

∇F(Θk,Xk)

KL+1
l+1

∥∥∥∥∥
2
∣∣∣∣∣∣Fnl

 . (37)

By (34) we already show that ‖
∑nl+1−1
k=nl

∇F(Θk,Xk)

KL+1
l+1

‖ < ∞ conditioned on Fnl
. Therefore,

E[‖φm‖21∩j≤nl
{Θj∈Ω}] < ∞ for m ∈ (nl, nl+1). This completes the boundedness analysis of

E[‖φn‖1∩j≤n−1{Θj∈Ω}].

Case 2 (Bounded communication interval Kτn ≤ K): In this case, we do not need the auxiliary
step size ηn and can directly work on γn = 1/na for a ∈ (0.5, 1]. Similar to (26), we have

Θn+1 −
1

N
(11T ⊗ Id)Θn+1 = γn+1(J⊥Wn ⊗ Id)

(
γ−1
n+1J⊥Θn −∇F(Θn,Xn)

)
, (38)

and let bn , γn/γn+1, dividing both sides of above equation by γn+2 gives

φn+1 = bn+1(J⊥Wn ⊗ Id) (φn −∇F(Θn,Xn)) . (39)

Then, by following the similar steps in (28) and (29), we obtain

E[‖φnl+1
‖2|Fnl

] ≤
(
γnl+1

γnl+1+1

)2

C1

(
‖φnl
‖2 + 2‖φnl

‖E

[∥∥∥∥∥
nl+1−1∑
k=nl

∇F(Θk,Xk)

∥∥∥∥∥
∣∣∣∣∣Fnl

]

+ E

∥∥∥∥∥
nl+1−1∑
k=nl

∇F(Θk,Xk)

∥∥∥∥∥
2
∣∣∣∣∣∣Fnl

).
(40)

Also similar to (31) - (34), we can bound the sum of the norm of the gradients as∥∥∥∥∥
nl+1−1∑
k=nl

∇F(Θk,Xk)

∥∥∥∥∥ ≤
nl+1−1∑
k=nl

[
k∏

s=nl

(1 + γs+1L)

]
√
NCΩ. (41)

Now that Kl is bounded above by K,
∏k
s=nl

(1 + γs+1L) ≤ eL
∑k

s=nl
γs+1

< eL
∑K−1

s=0 γs+1 := CK .
Then, we further bound (41) as∥∥∥∥∥

nl+1−1∑
k=nl

∇F(Θk,Xk)

∥∥∥∥∥ ≤ √NKCKCΩ. (42)

The subsequent proof is basically a replication of (35) - (37) and is therefore omitted.

D PROOF OF THEOREM 3.2

We focus on analyzing the convergence property of θ, which is obtained by left multiplying (24) with
1
N (1T ⊗ Id), i.e.,

θn+1 =
1

N
(1T ⊗ Id)Θn+1 = θn − γn+1

1

N
(1T ⊗ Id)∇F(Θn,Xn). (43)
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where the second equality comes from Wn being doubly stochastic and 1
N (1T ⊗ Id)Wn =

1
N (1TWn ⊗ Id) = 1

N (1T ⊗ Id).

For self-contained purpose, we first give the almost sure convergence result for the stochastic
approximation that will be used in our proof.
Theorem D.1 (Theorem 2 Delyon et al. (1999)). Consider the stochastic approximation in the form
of

θn+1 = θn + γn+1h(θn) + γn+1en+1 + γn+1rn+1. (44)
Assume that

C1. w.p.1, the closure of {θn}n≥0 is a compact subset of Rd;

C2. {γn} is a decreasing sequence of positive number such that
∑
n γn =∞;

C3. w.p.1, limp→∞
∑p
n=1 γnen exists and is finite. Moreover, limn→∞ rn = 0.

C4. vector-valued function h is continuous on Rd and there exists a continuously differentiable
function V : Rd → R such that 〈∇V (θ), h(θ)〉 ≤ 0 for all θ ∈ Rd. Besides, the interior of
V (L) is empty where L , {θ ∈ Rd : 〈∇V (θ), h(θ)〉 = 0}.

Then, w.p.1, lim supn d(θn,L) = 0.

We can rewrite (43) as

θn+1 =θn − γn+1
1

N
(1T ⊗ Id)∇F(Θn,Xn)

=θn − γn+1∇f(θn)− γn+1

(
1

N

N∑
i=1

∇fi(θin)−∇f(θn)

)

− γn+1

(
1

N

N∑
i=1

∇Fi(θin, Xi
n)− 1

N

N∑
i=1

∇fi(θin)

)
,

(45)

and work on the converging behavior of the third and fourth term. By definition of the mean-field
function ∇f(·), we have

r(A)
n ,

1

N

N∑
i=1

∇fi(θin)−∇f(θn) =
1

N

N∑
i=1

[
∇fi(θin)−∇fi(θn)

]
. (46)

Additionally, we let

r(B)
n ,

1

N

N∑
i=1

∇Fi(θin, Xi
n)− 1

N

N∑
i=1

∇fi(θin).

D.1 ANALYSIS ON SEQUENCE {r(A)
n }

By Lipschitz continuity of function∇Fi(·, X), we have∥∥∥r(A)
n

∥∥∥ ≤ 1

N

N∑
i=1

L‖θin − θn‖ ≤
L√
N

∥∥∥∥Θn −
1

N
(11T ⊗ Id)Θn

∥∥∥∥ =
L√
N
‖J⊥Θn‖, (47)

where the second inequality comes from the Cauchy-Schwartz inequality. In Appendix C, we have
shown limn J⊥Θn = 0 almost surely such that limn→∞ r

(A)
n = 0 almost surely.

D.2 ANALYSIS ON SEQUENCE {r(B)
n }

Next, we further decompose r(B)
n in (45). For an ergodic transition matrix P and a function v

associated with the same state space X , define the operator

Pkv(x) ,
∑
y∈X

Pk(x, y)v(y)
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for the k-step transition probability Pk(x, y). Denote by P1, · · · ,PN the underlying transition
matrices of all N agents with corresponding stationary distribution π1, · · · ,πN . Then, for every
function ∇Fi(θi, ·) : Xi → Rd, there exists a corresponding Lipschitz-continuous function mθi(·) :
Xi → Rd such that

mθi(x)−Pimθi(x) = ∇Fi(θi, x)−∇fi(θi). (48)

We defer the discussion about function mθi(·) and its Lipschitz property later in Section D.3.

Now with (48) we can decompose∇Fi(θin, Xi
n)−∇fi(θin) as

∇Fi(θin, Xi
n)−∇fi(θin) =mθin

(Xi
n)−Pimθin

(Xi
n)

=mθin
(Xi

n)−Pimθin
(Xi

n−1)︸ ︷︷ ︸
ein+1

+ Pimθin
(Xi

n−1)︸ ︷︷ ︸
νi
n

−Pimθin+1
(Xi

n)︸ ︷︷ ︸
νi
n+1

+ Pimθin+1
(Xi

n)−Pimθin
(Xi

n)︸ ︷︷ ︸
ξin+1

.

(49)

Here {γnein} is a Martingale difference sequence and we need the martingale convergence theorem
in Theorem D.2 as follows.

Theorem D.2 (Theorem 6.4.6 Ross et al. (1996)). For anFn-Martingale Sn, setXn−1 = Sn−Sn−1.
If for some 1 ≤ p ≤ 2,

∞∑
n=1

E[‖Xn−1‖p|Fn−1] <∞ a.s. (50)

then Sn converges almost surely.

We want to show that
∑
n γ

2
n+1E[‖ein+1‖2|Fn] < ∞ such that

∑
n γne

i
n converges almost surely

by Theorem D.2. As we will later see in (60), with Lemma D.3 and Assumption 2.4, for a sample
path (Θn within a compact set Ω), supn ‖mθin

(x)‖ <∞ and supn ‖Pimθin
(x)‖ <∞ almost surely

for all x ∈ Xi. This ensures that ein+1 is an L2-bounded martingale difference sequence, i.e.,
supn ‖ein+1‖ ≤ supn(‖mθin

(Xi
n+1)‖ + ‖Pimθin

(Xi
n)‖) ≤ DΩ < ∞. Together with Assumption

2.3, we get ∑
n

γ2
n+1E[‖ein+1‖2|Fn] ≤ DΩ

∑
n

γ2
n+1 <∞ a.s. (51)

and thus
∑
n γne

i
n converges almost surely.

Next, for the term νin, by Abel transformation, we have

p∑
k=0

γk+1(νik − νik+1) =

p∑
k=0

(γk+1 − γk)νik + γ0ν
i
0 − γp+1ν

i
p+1. (52)

As previously mentioned, for a given sample path, there always exists a compact subset such that
‖Pimθin

(x)‖ is bounded for all n and x ∈ X i such that supn ‖νin‖ < ∞ almost surely. Since
limn→∞(γn+1 − γn) = 0, we have limn→∞(γn+1 − γn)νin = 0. Note that there exists a path-
dependent constant C (that bounds ‖νin‖) such that for any n ≥ m,∥∥∥∥∥

n∑
k=m

(γk+1 − γk)νik

∥∥∥∥∥ ≤ C
n∑

k=m

(γk − γk+1) = C(γm − γn+1) < Cγm. (53)

Since limn→∞ γn = 0, there exists a positive integer M such that for all n ≥ m ≥M , γm < ε/C
and ‖

∑n
k=m(γk+1−γk)νik‖ < ε for every ε > 0. Therefore, by definition {

∑p
k=0(γk+1−γk)νik}p≥0

is a Cauchy sequence and
∑∞
k=0(γk+1 − γk)νik converges by Cauchy convergence criterion. The last

term of (52) tends to zero. Therefore,
∑∞
k=0 γk+1(νik − νik+1) converges and is finite.
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For the last term ξin, Lemma D.3 leads to

1

N

N∑
i=1

∥∥ξin+1

∥∥ ≤ C ′

N

N∑
i=1

‖θin+1 − θin‖ ≤
C ′√
N
‖Θn+1 −Θn‖. (54)

for the Lipschitz constant C ′ of Pimθi(x). However, the relationship between θn and θn+1 is
not obvious in the D-SGD and FL setting due to the update rule (24) with communication matrix
Wn, unlike the classical stochastic approximation shown in (44). We come up with the novel
decomposition of ξin, which takes the consensus error into account, to solve this issue, i.e.,

ξin+1 =
[
Pimθin+1

(Xi
n)−Pimθn+1(Xi

n)
]

+
[
Pimθn+1(Xi

n)−Pimθn(Xi
n)
]

+
[
Pimθn(Xi

n)Pimθin
(Xi

n)
]
.

(55)

Now, we have

1

N

N∑
i=1

∥∥ξin+1

∥∥ ≤C ′
N

N∑
i=1

(∥∥θin+1 − θn+1

∥∥+ ‖θn+1 − θn‖+
∥∥θn − θin∥∥)

≤ C ′√
N

∥∥∥∥Θn+1 −
1

N

(
11T ⊗ Id

)
Θn+1

∥∥∥∥+ C ′ ‖θn+1 − θn‖

+
C ′√
N

∥∥∥∥Θn −
1

N

(
11T ⊗ Id

)
Θn

∥∥∥∥
=
C ′√
N

(‖J⊥Θn+1‖+ ‖J⊥Θn‖) + C ′ ‖θn+1 − θn‖

=
C ′√
N

(‖J⊥Θn+1‖+ ‖J⊥Θn‖) + C ′γn+1

∥∥∥∥ 1

N
(1T ⊗ Id)∇F(Θn,Xn)

∥∥∥∥ .

(56)

In Appendix C we have shown limn→∞ J⊥Θn = 0 almost surely. Moreover, ‖ 1
N (1T ⊗

Id)∇F(Θn,Xn)‖ is bounded per sample path. Therefore, limn→∞
1
N

∑N
i=1 ‖ξin+1‖ = 0 such

that limn→∞
1
N

∑N
i=1 ξ

i
n+1 = 0 almost surely.

To sum up, we decompose (45) into

θn+1 = θn − γn+1∇f(θn)− γn+1r
(A)
n − γn+1

1

N

N∑
i=1

(
ein+1 + νin − νin+1 + ξin+1

)
. (57)

Now that limp→∞
∑p
n=1

1
N

∑N
i=1 γne

i
n and limp→∞

∑p
n=0

1
N

∑N
i=1 γn+1(νin − νin+1) converge

and are finite, limn→∞ r
(A)
n = 0, limn→∞

1
N

∑N
i=1 ξ

i
n = 0 , all the conditions of C3 in Theorem

D.1 are satisfied. Additionally, Assumption 2.4 corresponds to C1, Assumption 2.3 meets C2, and C4
is automatically satisfied when we choose the Lyapunov function V (θ) = f(θ) and Assumption 2.1.
Therefore, lim supn infθ∗∈L ‖θn − θ∗‖ = 0.

D.3 DISCUSSION ABOUT FUNCTION mθi(·)

The solution of the Poisson equation (48) has been studied in the literature, e.g., Kushner & Yin
(2003); Chen et al. (2020); Hu et al. (2022). For self-contained purpose, we include the derivation
of the closed-form mθi(x) from scratch. Let∇Fi(θ

i) , [∇Fi(θi, 1), · · · ,∇Fi(θi, |Xi|)] ∈ Rd×|Xi|

and recall that Pi ∈ R|Xi|×|Xi|. We use [A]:,i to denote the i-th column of matrix A. For each agent
i ∈ N , we can obtain function mθi(x) in the infinite sum form as follows.

mθi(x) =

∞∑
k=0

([
∇Fi(θ

i)(Pk
i )T
]
[:,x]
−∇fi(θi)

)
=

∞∑
k=0

[
∇Fi(θ

i)
(
(Pk

i )T − πi1
T
)]

[:,x]
.

(58)
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Additionally,

Pimθi(x) =

∞∑
k=1

[
∇Fi(θ

i)
(
(Pk

i )T − πi1
T
)]

[:,x]
.

Therefore, the form of mθi(x) in (58) satisfies the Poisson equation (48). Note that by induction we
can get

Pk
i − 1(πi)

T =
(
Pi − 1(πi)

T
)k
,∀k ∈ N, k ≥ 1. (59)

Then, we can further simplify (58) so that the closed-form expression of mθi(x) is given by

mθi(x) =

∞∑
k=0

[
∇Fi(θ

i)
(
(Pi)

T − πi1
T
)k]

[:,x]
−∇fi(θi)

=

[
∇Fi(θ

i)

∞∑
k=0

(
(Pi)

T − πi1
T
)k]

[:,x]

−∇fi(θi)

=
[
∇Fi(θ

i)
(
I−Pi + 1(πi)

T
)−1
]

[:,x]
−∇fi(θi)

=
∑
y∈Xi

(
I−Pi + 1(πi)

T
)−1

(x, y)∇Fi(θi, y)−∇fi(θi),

(60)

where the first equality comes from (59). Since function ∇Fi is Lipschitz continuous, we have the
following lemma.

Lemma D.3. Under assumption (A1), functionsmθi(x) and Pimθi(x) are both Lipschitz continuous
in θi for any x ∈ Xi.

Proof. By (60), for any θi1, θ
i
2 ∈ Rd and x ∈ Xi, we have

∥∥∥mθi1
(x)−mθi2

(x)
∥∥∥ ≤

∥∥∥∥∥∥
∑
y∈Xi

(
I−Pi + 1(πi)

T
)−1

(x, y)
[
∇Fi(θi1, y)−∇Fi(θi2, y)

]∥∥∥∥∥∥
+
∥∥∇fi(θi1)−∇fi(θi2)

∥∥
≤Ci max

y∈Xi

∥∥∇Fi(θi1, y)−∇Fi(θi2, y)
∥∥+

∥∥∇fi(θi1)−∇fi(θi2)
∥∥

≤(CiL+ 1)‖θi1 − θi2‖,

(61)

where the second inequality holds for a constant Ci that is the largest absolute value of the entry
in the matrix (I − Pi + 1(πi)

T )−1. Therefore, mθi(x) is Lipschitz continuous in θi. Moreover,
following the similar steps as above, we have

∥∥∥Pimθi1
(x)−Pimθi2

(x)
∥∥∥ =

∥∥∥∥∥∥
∑
y∈Xi

Pi(x, y)mθi1
(y)−

∑
y∈Xi

Pi(x, y)mθi2
(y)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
y∈Xi

Pi(x, y)
(
mθi1

(y)−mθi2
(y)
)∥∥∥∥∥∥

≤
∑
y∈X i

Pi(x, y)
∥∥∥mθi1

(y)−mθi2
(y)
∥∥∥

≤ max
y∈X i

∥∥∥mθi1
(y)−mθi2

(y)
∥∥∥

≤ (CiL+ 1)‖θi1 − θi2‖

(62)

such that Pimθi(x) is also Lipschitz continuous in θi, which completes the proof.
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E PROOF OF THEOREM 3.3

To obtain Theorem 3.3, we need to utilize the existing CLT result for general SA in Theorem E.1 and
check all the necessary conditions therein.

Theorem E.1 (Theorem 2.1 Fort (2015)). Consider the stochastic approximation iteration (44),
assume

C1. Let θ∗ be the root of function h, i.e., h(θ∗) = 0, and assume limn→∞ θn = θ∗. Moreover,
assume the mean field h is twice continuously differentiable in a neighborhood of θ∗, and
the Jacobian H , ∇h(θ∗) is Hurwitz, i.e., the largest real part of its eigenvalues B < 0;

C2. The step size
∑
n γn = ∞,

∑
n γ

2
n < ∞, and either (i). log(γn−1/γn) = o(γn), or (ii).

log(γn−1/γn) ∼ γn/γ? for some γ? > 1/2|B|;

C3. supn ‖θin‖ <∞ almost surely for any i ∈ [N ];

C4. (a) {en}n≥0 is an Fn-Martingale difference sequence, i.e., E[en|Fn−1] = 0, and there
exists τ > 0 such that supn≥0 E[‖en‖2+τ |Fn−1] <∞;

(b) E[en+1e
T
n+1|Fn] = U + D

(A)
n + D

(B)
n , where U is a symmetric positive semi-definite

matrix and {
D

(A)
n → 0 almost surely,

limn γnE
[∥∥∥∑n

k=1 D
(B)
k

∥∥∥] = 0.
(63)

C5. Let rn = r
(1)
n + r

(2)
n , rn is Fn-adapted, and

∥∥∥r(1)
n

∥∥∥ = o(
√
γn) a.s.

√
γn

∥∥∥∑n
k=1 r

(2)
k

∥∥∥ = o(1) a.s.
(64)

Then,
1
√
γn

(θn − θ∗)
dist.−−−−→
n→∞

N (0,V), (65)

where {
VHT + HV = −U in case C2 (i),
V(Id + 2γ?H

T ) + (Id + 2γ?H)V = −2γ?U in case C2 (ii).
(66)

Note that the matrix U in the condition C4(b) of Theorem E.1 was assumed to be positive definite
in the original Theorem 2.1 Fort (2015). It was only to ensure that the solution V to the Lyapunov
equation (66) is positive definite, which was only used for the stability of the related autonomous
linear ODE (e.g., Theorem 3.16 Chellaboina & Haddad (2008) or Theorem 2.2.3 Horn & Johnson
(1991)). However, in this paper, we do not need strict positive definite matrix V. Therefore, we
extend U to be positive semi-definite such that V is also positive semi-definite (see Lemma E.2 for
the closed form of matrix V). Such kind of extension does not change any of the proof steps in Fort
(2015).

E.1 DISCUSSION ABOUT C1-C3

Our Assumption 2.1 corresponds to C1 by letting function h(θ) = −∇f(θ) therein. We can also let
γ? in Theorem 3.3 large enough to satisfy C2. The typical form of step size, also indicated in Fort
(2015), is polynomial step size γn ∼ γ?/n

a for a ∈ (0.5, 1]. Note that a ∈ (0.5, 1) satisfies C2 (i)
and a = 1 satisfies C2 (ii). Assumption 2.4 corresponds to C3.7

7Theorem E.1 is slightly modified in terms of condition C3, which is mentioned as a special case in Section
2.2 Fort (2015). For the sake of mathematical simplicity, we stick to condition C3 in the proof.
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E.2 ANALYSIS OF C4

To check condition C4, we need to analyze the Martingale difference sequence {ein}. Recall
ein+1 = mθin

(Xi
n)−Pimθin

(Xi
n−1) such that there exists a constant C,

E
[∥∥ein+1

∥∥2+τ |Fn
]
≤ CE

[∥∥mθin
(Xi

n)
∥∥2+τ

+
∥∥Pimθin

(Xi
n−1)

∥∥2+τ
∣∣∣Fn]

= C
∑
Y ∈X i

Pi(X
i
n−1, Y )

∥∥mθin
(Y )
∥∥2+τ

+ C
∥∥Pimθin

(Xi
n−1)

∥∥2+τ
.

(67)

Since ‖mθin
(Y )‖ <∞ almost surely by Assumption 2.4 and X i is a finite state space, at all time n,

we have ∑
Y ∈X i

Pi(X
i
n−1, Y )

∥∥mθin
(Y )
∥∥2+τ

<∞ a.s. (68)

and there exists another constant C ′ such that by definition of Pimθin
(Xi

n−1), we have∥∥Pimθin
(Xi

n−1)
∥∥2+τ ≤ C ′

∑
Y ∈X i

Pi(X
i
n−1, Y )

∥∥mθin
(Y )
∥∥2+τ

<∞ a.s. (69)

Therefore, E[‖ein+1‖2+τ |Fn] <∞ a.s. for all n and C4.(a) is satisfied.

We now turn to C4.(b). Note that for any i 6= j, we have E[ein+1(ejn+1)T |Fn] = E[ein+1|Fn] ·
E[(ejn+1)T |Fn] = 0 due to the independence between agent i and j, and E[ein+1|Fn] = 0. Then, we
have

E

( 1

N

N∑
i=1

ein+1

)(
1

N

N∑
i=1

ein+1

)T ∣∣∣∣∣∣Fn
 =

1

N2

N∑
i=1

E
[
ein+1(ein+1)T

∣∣Fn] . (70)

The analysis of E[ein+1(ein+1)T |Fn] is inspired by Section 4 Fort (2015) and Section 4.3.3 Delyon
(2000), where they constructed another Poisson equation to further decompose the noise terms
therein.8 Here, expanding E[ein+1(ein+1)T |Fn] gives

E
[
ein+1(ein+1)T

∣∣Fn] =E[mθin
(Xi

n)mθin
(Xi

n)T |Fn] + Pimθin
(Xi

n−1)
(
Pimθin

(Xi
n−1)

)T
−E[mθin

(Xi
n)|Fn]

(
Pimθin

(Xi
n−1)

)T−Pimθin
(Xi

n−1)E[mθin
(Xi

n)T |Fn]

=
∑
y∈Xi

Pi(Xn−1, y)mθin
(y)mθin

(y)T−Pimθin
(Xi

n−1)
(
Pimθin

(Xi
n−1)

)T
.

(71)

Denote by

Gi(θ
i, x) ,

∑
y∈Xi

Pi(x, y)mθi(y)mθi(y)T −Pimθi(x) (Pimθi(x))
T
, (72)

and let its expectation w.r.t the stationary distribution πi be gi(θi) , Ex∼πi
[Gi(θ

i, x)], we can
construct another Poisson equation, i.e.,

E
[
ein+1(ein+1)T

∣∣Fn]− ∑
Xi

n∈Xi

π(Xi
n)E

[
ein+1(ein+1)T

∣∣Fn]
=Gi(θ

i
n, X

i
n−1)− gi(θin)

=ϕiθin(Xi
n−1)−Piϕ

i
θin

(Xi
n−1),

(73)

8However, we note that Fort (2015); Delyon (2000) considered the Lipschitz continuity of function F iθi(x)
defined in (74) as an assumption instead of a conclusion, where we give a detailed proof for this. We also obtain
matrix Ui in an explicit form, which coincides with the definition of asymptotic covariance matrix and was not
simplified in Fort (2015). The discussion on the improvement of Ui is outlined in Section 3.2, which was not
the focus of Fort (2015); Delyon (2000) and was not covered therein.
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for some matrix-valued function ϕi : Rd ×Xi → Rd×d. Following the similar steps shown in (48) -
(60), we can obtain the closed-form expression

ϕiθi(x) =
∑
y∈Xi

(
I−Pi + 1(πi)

T
)−1

(x, y)Gi(θ
i, x)− gi(θi). (74)

Then, we can decompose (71) into

Gi(θ
i
n, X

i
n−1) = gi(θ

∗)︸ ︷︷ ︸
Ui

+ gi(θ
i
n)− gi(θ∗)︸ ︷︷ ︸
D

(1)
i,n

+ϕiθin(Xi
n)−Piϕ

i
θin

(Xi
n−1)︸ ︷︷ ︸

D
(2,a)
i,n

+ϕiθin(Xi
n−1)− ϕiθin(Xi

n)︸ ︷︷ ︸
D

(2,b)
i,n

.

(75)
Let U , 1

N2

∑N
i=1 Ui, D

(1)
n , 1

N2

∑N
i=1 D

(1)
1,n, D

(2,a)
n , 1

N2

∑N
i=1 D

(2,a)
i,n , and D

(2,b)
n ,

1
N2

∑N
i=1 D

(2,b)
i,n , we want to prove that D

(1)
n satisfies the first condition in C4, and D

(2,a)
n ,D

(2,b)
n

meet the second condition in C4.

We now show that for all i, Gi(θi, x) is Lipschitz continuous in θi ∈ Ω for some compact subset
Ω ⊂ Rd. For any x ∈ Xi and θi1, θ

i
2 ∈ Ω, we can get

‖mθi1
(x)mθi1

(x)T −mθi2
(x)mθi2

(x)T ‖

=‖mθi1
(x)(mθi1

(x)−mθi2
(x))T − (mθi1

(x)−mθi2
(x))mθi2

(x)T ‖
≤‖mθi1

(x)−mθi2
(x)‖(mθi1

(x)‖+ ‖mθi2
(x)‖)

≤C‖θi1 − θi2‖,

(76)

for some constant C, where the last inequality comes from ‖mθi1
(x)‖ < ∞ since θi1 ∈ Ω and the

Lipschitz continuous functionmθi(x). Similarly, we can get ‖Pimθi1
(x)−Pimθi2

(x)‖ ≤ C‖θi1−θi2‖.
Therefore, Gi(θi, x) and gi(θi) are Lipschitz continuous in θi ∈ Ω for any x ∈ Xi.

For the sequence {D(1)
i,n}n≥0, by applying Theorem 3.2 and conditioned on limn→∞ θn = θ∗ for

an optimal point θ∗ ∈ L, we have limn→∞ ‖gi(θin) − gi(θ∗)‖ ≤ limn→∞ C‖θin − θ∗‖ = 0. This
implies D

(1)
i,n → 0 for every i ∈ [N ] and thus D

(1)
n → 0 as n→∞ almost surely, which satisfies the

first condition in (63).

For the Martingale difference sequence {D(2,a)
i,n }n≥0, we use Burkholder inequality (e.g., Theorem

2.10 Hall et al. (2014), Davis (1970)) such that for p ≥ 1 and some constant Cp,

E

[∥∥∥∥∥
n∑
i=1

D
(2,a)
i,n

∥∥∥∥∥
p]
≤ CpE

( n∑
i=1

∥∥∥D(2,a)
i,n

∥∥∥2
)p/2 . (77)

By the definition (72) and Assumption 2.4, for a sample path, supn ‖Gi(θin, x)‖ <∞ for any x ∈ Xi,
as well as supn ‖gi(θin)‖ <∞, which leads to supn ‖ϕiθin(x)‖ <∞ for any x ∈ Xi because of (74).

Then, we have supn ‖D
(2,a)
i,n ‖ ≤ C <∞ for the path-dependent constant C. Taking p = 1 and we

have

lim
n→∞

γnCp

√√√√ n∑
i=1

∥∥∥D(2,a)
i,n

∥∥∥2

≤ lim
n→∞

CpCγn
√
n = 0 a.s. (78)

Thus, Lebesgue dominated convergence theorem gives

lim
n→∞

γnCpE

√√√√ n∑
i=1

‖D(2,a)
i,n ‖2

 = E

 lim
n→∞

γnCp

√√√√ n∑
i=1

‖D(2,a)
i,n ‖2

 = 0

and we have limn→∞ γnE[‖
∑n
i=1 D

(2,a)
i,n ‖] = 0.
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For the sequence {D(2,b)
i,n }n≥0, we have

n∑
k=1

D
(2,b)
i,k =

n∑
k=1

(
ϕiθik

(Xi
k−1)− ϕiθik−1

(Xi
k−1)

)
+ ϕiθi0

(Xi
0)− ϕiθin(Xi

n)

=

n∑
k=1

(
ϕiθik

(Xi
k−1)−ϕiθk(X

i
k−1)+ϕiθk(X

i
k−1)−ϕiθk−1(X

i
k−1)+ϕiθk−1(X

i
k−1)−ϕiθik−1(X

i
k−1)
)

+ ϕiθi0
(Xi

0)− ϕiθin(Xi
n).

(79)

Since Gi(θi, x) and gi(θi) are Lipschitz continuous in θi ∈ Ω, ϕiθi(x) is also Lipschitz continuous
in θi ∈ Ω and is bounded. We have∥∥∥∥∥

n∑
k=1

D
(2,b)
i,k

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
k=1

ϕiθik
(Xi

k−1)− ϕiθik−1
(Xi

k−1)

∥∥∥∥∥+
∥∥∥ϕiθi0(Xi

0)
∥∥∥+

∥∥∥ϕiθin(Xi
n)
∥∥∥

≤

∥∥∥∥∥
n∑
k=1

ϕiθik
(Xi

k−1)− ϕiθik−1
(Xi

k−1)

∥∥∥∥∥+D1

≤
n∑
k=1

D2DΩγk +D1

(80)

where ‖ϕi
θi0

(Xi
0)‖ + ‖ϕiθin(Xi

n)‖ ≤ D1 for a given sample path, D2 is the Lipschitz constant of

ϕiθi(x), and ‖∇Fi(xi, Xi)‖ ≤ DΩ for any xi ∈ Ω and Xi ∈ X i. Then,

γn

∥∥∥∥∥
n∑
k=1

D
(2,b)
i,k

∥∥∥∥∥ ≤ D2DΩγn

n∑
k=1

γk + γnD1 → 0 as n→∞ (81)

because γn
∑n
k=1 γk = O(n1−2a) by assumption 2.3. Therefore, the second condition of C4 is

satisfied.

E.3 ANALYSIS OF C5

We now analyze condition C5. The decreasing rate of each term in (57) has been proved in Ap-
pendix D. Specifically, by assumption 2.4, there exists a compact subset for a given sample path,
and

• we have shown that
∥∥∥r(A)
n

∥∥∥ = O(ηn) a.s., which implies
∥∥∥r(A)
n

∥∥∥ = o(
√
γn) a.s.

• For 1
N

∑N
i=1 ξ

i
n, in the case of increasing communication interval, 1

N

∑N
i=1 ξ

i
n = O(γn +

ηn), by Assumption 2.3-ii), we know (γn + ηn)/
√
γn =

√
γn +

√
γnK

L+1
τn = o(1) such

that ‖ 1
N

∑N
i=1 ξ

i
n‖ = o(

√
γn) almost surely. On the other hand, in the case of bounded

communication interval, 1
N

∑N
i=1 ξ

i
n = O(γn) such that ‖ 1

N

∑N
i=1 ξ

i
n‖ = o(

√
γn) a.s.

• Since supn ‖νin‖ < ∞ almost surely, we have supp ‖ 1
N

∑N
i=1

∑p
k=0(νik − νik+1)‖ =

supp ‖ 1
N

∑N
i=1(νi0 − νip+1)‖ < ∞ almost surely. Then, √γp‖ 1

N

∑N
i=1

∑p
k=0(νik −

νik+1)‖ = O(
√
γp) leads to√γp‖ 1

N

∑N
i=1

∑p
k=0(νik − νik+1)‖ = o(1) a.s.

Let r(1)
n , r

(A)
n + 1

N

∑N
i=1 ξ

i
n and r(2)

n , 1
N

∑N
i=1(νik − νik+1). From above, we can see that C5 in

Theorem E.1 is satisfied and we show that all the conditions in Theorem E.1 have been satisfied.

E.4 CLOSED FORM OF LIMITIMG COVARIANCE MATRIX

Lastly, we need to analyze the closed-form expression of U as in C4 (b) of Theorem E.1. Recall
that U = 1

N2

∑N
i=1 Ui and Ui = gi(θ

∗) in (75). We now give the exact form of function gi(θ∗) as
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follows:

gi(θ
∗) =

∑
x∈Xi

πi(x)

mθ∗(x)mθ∗(x)T −

∑
y∈Xi

Pi(x, y)mθ∗(y)

∑
y∈Xi

Pi(x, y)mθ∗(y)

T


= E

( ∞∑
s=0

[∇Fi(θ∗, Xs)−∇fi(θ∗)]

)( ∞∑
s=0

[∇Fi(θ∗, Xs)−∇fi(θ∗)]

)T
− E

( ∞∑
s=1

[∇Fi(θ∗, Xs)−∇fi(θ∗)]

)( ∞∑
s=1

[∇Fi(θ∗, Xs)−∇fi(θ∗)]

)T
= E

[(
∇Fi(θ∗, Xi

0)−∇fi(θ∗)
) (
∇Fi(θ∗, Xi

0)−∇fi(θ∗)
)T ]

+ E

(∇Fi(θ∗, Xi
0)−∇fi(θ∗)

)( ∞∑
s=1

[∇Fi(θ∗, Xs)−∇fi(θ∗)]

)T
+ E

[( ∞∑
s=1

[∇Fi(θ∗, Xs)−∇fi(θ∗)]

)(
∇Fi(θ∗, Xi

0)−∇fi(θ∗)
)T]

= Cov(∇Fi(θ∗, X0),∇Fi(θ∗, X0))

+

∞∑
s=1

[Cov(∇Fi(θ∗, X0),∇Fi(θ∗, Xs)) + Cov(∇Fi(θ∗, Xs),∇Fi(θ∗, X0))] ,

= Σ(∇F (θ∗, ·)).
(82)

where the second equality comes from the recursive form of mθi(x) in (60), and that the process
{Xn}n≥0 is in its stationary regime, i.e., X0 ∼ πi from the beginning. The last equality comes
from rewriting Cov(∇Fi(θ∗, Xi),∇Fi(θ∗, Xj)) in a matrix form. Note that gi(θ∗) is exactly the
asymptotic covariance matrix of the underlying Markov chain {Xi

n}n≥0 associated with the test
function ∇Fi(θ∗, ·). By utilizing the following lemma, we can obtain the explicit form of V as
defined in (66).
Lemma E.2. If all the eigenvalues of matrix M have negative real part, then for every positive semi-
definite matrix U there exists a unique positive semi-definite matrix V satisfying U+MV+VMT =
0. The explicit solution V is given as

V =

∫ ∞
0

eMtUe(MT )tdt. (83)

Proof. Most of the following steps are from the proof of Theorem 3.16 Chellaboina & Haddad (2008).
However, it requires positive definite matrix U, which is not needed in this paper. Therefore, we
attach the proof of Lemma E.2 with relaxed condition on matrix U (e.g., being positive semi-definite
instead of positive definite) for self-contained purpose.

We first show that V is the solution to the equation U + MV + VMT = 0. Note that

MV + VMT =

∫ ∞
0

MeMtUe(MT )tdt+

∫ ∞
0

eMtUe(MT )tMT dt

=

∫ ∞
0

d

dt

(
eMtUeM

T t
)
dt

= eMtUeM
T t
∣∣∣∞
0

= −U,

(84)

which implies that V in the form of (83) is a solution to the equation U + MV + VMT = 0. Since
the integrand in (83) involves a sum of terms of the form eλit, where {λi}i∈[d] are the eigenvalues of
matrix M and Re(λi) < 0, the integral in (83) is well-defined.
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Next, we show the uniqueness of V. Assume there exist two solutions V1 and V2 and V1 6= V2.
Then,

MV1 + V1M
T + U = 0, (85a)

MV2 + V2M
T + U = 0. (85b)

Subtracting (85b) from (85a) yields

M(V1 −V2) + (V1 −V2)MT = 0. (86)

Then,

0 = eMt
[
M(V1 −V2) + (V1 −V2)MT

]
=

d

dt

(
eMt(V1 −V2)eM

T

t
)
dt. (87)

Taking integral of (87) on both sides gives

0 =

∫ ∞
0

d

dt

(
eMt(V1 −V2)eM

T t
)
dt = eMt(V1 −V2)eM

T

t
∣∣∣∞
0

= V2 −V1. (88)

This contradicts to the assumption V1 6= V2, and hence, V in (83) is the unique solution to the
equation U + MV + VMT = 0.

E.5 CLT OF POLYAK-RUPPERT AVERAGING

We now consider the CLT result of Polyak-Ruppert averaging θ̄n =
∑n−1
k=0 θk. The steps follow

similar way by verifying that the conditions in the related CLT of Polyak-Ruppert averaging for the
stochastic approximation are satisfied. The additional assumption is given below.

C6. For the sequence {rn} in (44), n−1/2
∑n
k=0 r

(1)
k → 0 with probability 1.

Then, the CLT of Polyak-Ruppert averaging is as follows.
Theorem E.3 (Theorem 3.2 of Fort (2015)). Consider the iteration (44), assume C1, C3, C4, C5 in
Theorem E.1 are satisfied. Moreover, assume C6 is satisfied. Then, with step size γn ∼ γ?/n

a for
a ∈ (0.5, 1), we have

√
n(θ̄n − θ∗)

dist.−−−−→
n→∞

N (0,V′), (89)

where V′ = H−1UH−T .

Discussion about C1 and C3 can be found in Section E.1. Condition C4 has been analyzed in Section
E.2 and condition C5 has been examined in Section E.3. The only condition left to analyze is C6,
which is based on the results obtained in Section E.3. In view of (57), r(1)

n = r
(A)
n + 1

N

∑N
i=1 ξ

i
n+1,

so C6 is equivalent to

n−1/2
n∑
k=1

[
r

(A)
k +

1

N

N∑
i=1

(
ξik+1

)]
→ 0 w.p.1. (90)

In Section E.3, we have shown that
∥∥∥r(A)
n

∥∥∥ = O(ηn), 1
N

∑N
i=1 ξ

i
n = O(γn). Note that by Assumption

2.3, we consider bounded communication interval for step size γn ∼ γ?/n
a for a ∈ (0.5, 1), and

hence, ηn = O(γn) such that
∥∥∥r(A)
n

∥∥∥ = O(γn). We then know that

n∑
k=1

∥∥∥r(A)
n

∥∥∥ = O(n1−a),

n∑
k=1

‖ 1

N

N∑
i=1

ξin‖ = O(n1−a), (91)

such that

n−1/2
n∑
k=1

∥∥∥∥∥r(A)
k +

1

N

N∑
i=1

(
ξik+1

)∥∥∥∥∥ = O(n1/2−a) = o(1), (92)

which proved (90) and C6 is verified. Therefore, Theorem E.3 is proved under our Assumptions 2.1 -
2.5.
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F DISCUSSION ON THE COMPARISON OF THEOREM 3.3 TO THE CLT RESULT
IN LI ET AL. (2022)

As a byproduct of our Theorem 3.3, we have the following corollary.
Corollary F.1. Under Assumptions 2.1 - 2.5, for the sub-sequence {nl}l≥0 where Kl = K for all l,
we have

1
√
nl

l∑
k=1

(θ̄nk
− θ∗) dist.−−−→

l→∞
N (0,V′) (93)

Proof. Since Kl = K for all l, we have nl = Kl. There is an existing result showing the CLT result
of the partial sum of a sub-sequence (after normalization) has the same normal distribution as the
partial sum of the original sequence.

Theorem F.2 (Theorem 14.4 of Billingsley (2013)). Given a sequence of random variable θ1, θ2, · · ·
with partial sum Sn ,

∑n
k=1 θk such that 1√

n
Sn

dist.−−−−→
n→∞

N (0,V). Let nl be some positive random

variable taking integer value such that θnl
is on the same space as θn. In addition, for some sequence

{bl}l≥0 going to infinity, nl/bl → c for a positive constant c. Then, 1√
nl
Snl

dist.−−−→
l→∞

N (0,V).

Applying Theorem F.2 along with our Theorem 3.3, we have 1√
nl

∑l
k=1(θ̄nk

− θ∗) dist.−−−→
l→∞

N (0,V′).

Recently, Li et al. (2022) studied the CLT result under the L-SGD-FC algorithm with i.i.d sampling
(with slightly different setting of the step size). We are able recover Theorem 3.1 of Li et al. (2022)
under the constant communication interval while adjusting their step size to make a fair comparison.
We state their algorithm below for self-contained purpose. During each communication interval
n ∈ (nl, nl+1],

θin+1 =

{
θin − γl∇Fi(θin, Xi

n) if n ∈ (nl, nl+1),
1
N

∑N
i=1(θin − γl∇Fi(θin, Xi

n)) if n = nl+1.
(94)

The CLT result associated with (94) is given below.
Theorem F.3 (Theorem 3.1 of Li et al. (2022)). Under L-SGD-FC algorithm with i.i.d. sampling, we
have √

nl
l

l∑
k=1

(
θ̄nk
− θ∗

) dist.−−−→
l→∞

N (0, νV′), (95)

where ν , liml→∞
1
l2 (
∑l
k=1Kl)(

∑l
k=1K

−1
l ).

Note that ν = 1 for constant K. We can rewrite (95) as
√
nl
l

l∑
k=1

(
θ̄nk
− θ∗

)
=

√
nl√
l

1√
l

l∑
k=1

(θ̄nk
− θ∗) =

√
K

1√
l

l∑
k=1

(θ̄nk
− θ∗) (96)

such that
1√
l

l∑
k=1

(θ̄nk
− θ∗) dist.−−−→

l→∞
N (0,

1

K
V′). (97)

Note that the step size in (94) keeps unchanged during each communication interval, while the step
size in our GD-SGD itereates keeps decreasing even in the same communication interval. This makes
our step size decreasing faster than theirs. To make a fair comparison, we only choose a sub-sequence
{nKl}l≥0 in (97) such that it is ‘equivalent’ to see that our step sizes become the same at each
aggregation step. In this case, we again use Theorem F.2 to obtain

1√
Kl

l∑
s=1

(θ̄nKs
− θ∗) dist.−−−→

l→∞
N (0,

1

K
V′), (98)
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such that
1√
l

l∑
s=1

(θ̄nKs
− θ∗) =

√
K

1√
Kl

l∑
s=1

(θ̄nKs
− θ∗) dist.−−−→

l→∞
N (0,V′). (99)

Therefore, our Corollary F.1 also recovers Theorem 3.1 of Li et al. (2022) under the constant
communication interval K with more general communication patterns W and Markovian sampling.

G ADDITIONAL SIMULATIONS OF GD-SGD ALGORITHM

In this part, we test a non-convex objective function used in Allen-Zhu & Yuan (2016); Gower et al.
(2019); Hu et al. (2022) as follows:

f(θ) =
1

NB

N∑
i=1

B∑
j=1

θT (xi,jx
T
i,j + Di,j)θ + bT θ, (100)

where xi,j is the data point in CIFAR-10 dataset, b is a shared vector among all the agents where
each entry is randomly generated in the range (0, 1), and Di,j is a diagonal matrix such that∑
i,j(xi,jx

T
i,j + Di,j) is invertible and has at least one negative eigenvalue in order to make objective

function f(·) non-convex. We know that (100) has a unique saddle point at

θ∗ =

 1

NB

N∑
i=1

B∑
j=1

xi,jx
T
i,j + Di,j

−1
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(b) D-FL.
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(c) L-SGD-FC.

101 102 103 104

iteration n

100

101

102

103

M
SE

 E
||

n
*|

|2

|S| = 20, i.i.d. sampling, SRW
|S| = 20, shuffling, NBRW
|S| = 40, i.i.d. sampling, SRW
|S| = 40, shuffling, NBRW

(d) L-SGD-PC.

Figure 3: Simulation results for objective function (100). (a) D-SGD with four combinations of
sampling strategies. (b) D-FL with different communication intervals K = 5, 10 and Kl = log(l).
(c) L-SGD-FC with K = 10 and four combinations of sampling strategies. (d) L-SGD-PC with
without-replacement client sampling method and the client set size |S| = 20, 40.

Note that Figure 3 shows that the GD-SGD iterate is yet to enter the asymptotic regime and the
communication pattern still affects the MSE. All four subplots imply that more efficient sampling
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strategy leads to smaller MSE most of the time, e.g., single shuffling and NBRW outperform i.i.d
sampling and SRW, even if only partial agents improve their strategies, which share the same trend as
in Section 4. Moreover, we observe that communication intervals and communication patterns do
affect the convergence speed in the non-asympototic regime. Recall that our analysis in Appendix C
shows the consensus error at a rate of O(γn), which is faster than the typical convergence rate
O(
√
γn) in the CLT result in Theorem 3.3, and is also consistent with previous studies Pu et al.

(2020); Olshevsky (2022). In Figure 3, the consensus error, although is on the higher order term, still
contributes a lot to the MSE. Specifically, Figure 3 shows that the convergence speed can be affected
by large K, fewer client participation and different communication matrix, which is consistent with
the current non-asymptotic analysis in the literature (Chen et al., 2022; Cho et al., 2022; Luo et al.,
2022). For the trade-off purpose, employing increasing Kl = log(l) in Figure 3(b) still performs
good since it leads to frequent aggregation in the early stage while reducing the aggregation frequency
for large time, seeking the balance between convergence speed and communication cost. More
importantly, we observe that employing more efficient sampling strategies, e.g., NBRW and shuffling,
can greatly reduce the MSE and perform better than the baseline sampling strategies, e.g., SRW
and i.i.d sampling. For example, even for larger communication interval K = 10, the scenario with
NBRW and shuffling still shows faster convergence than the one with baseline sampling strategies and
K = 5. Besides, in Figure 3(d), employing efficient sampling strategies with |S| = 20 outperforms
the baseline sampling strategies with more client participation |S| = 40. This suggests a practical
conclusion to employ efficient sampling strategies to balance the loss due to less aggregation.

33


	Introduction
	Preliminaries
	Asymptotic Analysis of GD-SGD
	Main Results
	Discussion

	Experiments
	Conclusion
	Discussion of Assumption 2.3-ii)
	Examples of Communication Matrix W
	Metropolis Hasting Algorithm
	Partial Client Sampling in FL

	Proof of lemma:consensus
	Proof of theorem: almostsureconvergence
	Analysis on Sequence {r(A)n}
	Analysis on Sequence {r(B)n}
	Discussion about Function mi()

	Proof of theorem: CLTD-SGD
	Discussion about C1-C3
	Analysis of C4
	Analysis of C5
	CLosed Form of Limitimg Covariance Matrix
	CLT of Polyak-Ruppert Averaging

	Discussion on the comparison of theorem: CLTD-SGD to the CLT result in li2022stat
	Additional Simulations of GD-SGD algorithm

