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ABSTRACT

Offline reinforcement learning (RL) is challenged by the distributional shift prob-
lem. To tackle this issue, existing works mainly focus on designing sophisticated
policy constraints between the learned policy and the behavior policy. However,
these constraints are applied equally to well-performing and inferior actions through
uniform sampling, which might negatively affect the learned policy. In this paper,
we propose Offline Decoupled Prioritized Resampling (ODPR), which designs
specialized priority functions for the suboptimal policy constraint issue in offline
RL, and employs unique decoupled resampling for training stability. Through theo-
retical analysis, we show that the distinctive priority functions induce a provable
improved behavior policy by modifying the distribution of the original behavior
policy, and when constrained to this improved policy, a policy-constrained offline
RL algorithm is likely to yield a better solution. We provide two practical im-
plementations to balance computation and performance: one estimates priorities
based on a fitted value network (ODPR-A), and the other utilizes trajectory returns
(ODPR-R) for quick computation. ODPR serves as a highly compatible plug-and-
play component with prevalent offline RL algorithms. We assess ODPR using five
algorithms, namely BC, TD3+BC, Onestep RL, CQL, and IQL. Comprehensive
experiments substantiate that both ODPR-A and ODPR-R markedly enhance the
performance across all baseline methods.

1 INTRODUCTION

Offline Reinforcement Learning (RL) aims to solve the problem of learning from previously collected
data without real-time interactions with the environment (Lange et al., 2012). However, standard
off-policy RL algorithms tend to perform poorly in the offline setting due to the distributional shift
problem (Fujimoto et al., 2019). Specifically, to train a Q-value function based on the Bellman
optimality equation, these methods frequently query the value of out-of-distribution (OOD) state-
action pairs, which leads to accumulative extrapolation error. Most existing algorithms tackle this
issue by constraining the learning policy to stay close to the behavior policy that generates the dataset.
These constraints directly operate on the policy densities, such as KL divergence (Jaques et al.,
2019; Peng et al., 2019; Wu et al., 2019), Wasserstein distance (Wu et al., 2019), maximum mean
discrepancy (MMD) (Kumar et al., 2019), and behavior cloning (Fujimoto & Gu, 2021).

However, such constraints might be too restrictive as the learned policy is forced to equally mimic bad
and good actions of the behavior policy, especially in an offline scenario where data are generated by
policies with different levels. For instance, consider a dataset D with state space S and action space
A = {a1,a2,a3} collected with behavior policy β. At one specific state s∗, the policy β assigns
probability 0.2 to action a1, 0.8 to a2 and zero to a3. However, a1 would lead to a much higher
expected return than a2. Minimizing the distribution distance of two policies can avoid a3, but forces
the learned policy to choose a2 over a1, resulting in much worse performance. Employing a policy
constraint strategy is typically essential to avoid out-of-distribution actions. However, this necessity
often results in a compromise on performance, stemming from a suboptimal policy constraint. Then
the question arises: can we substitute the behavior policy with an improved one, enabling the learned
policy to avoid out-of-distribution actions and achieve superior policy constraint simultaneously,
thereby improving performance? Indeed, as illustrated in Figure 1, if we can accurately assess the
quality of an action, we can then adjust its density to yield an improved behavior policy (blue).

Based on the above motivation, we propose data prioritization strategies for offline RL, i.e., Offline
Decoupled Prioritized Resampling (ODPR). ODPR prioritizes data by the action quality, specifically,
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assigning priority weight proportional to normalized (i.e.non-negative) advantage — the additional
reward that can be obtained from taking a specific action. In practice, we develop two implementations,
Advantage-based ODPR (ODPR-A) and Return-based ODPR (ODPR-R). ODPR-A fits a value
network from the dataset and calculates advantages with one-step TD error for all transitions. We
further advance ODPR-A by iteratively refining current behavior policy based on the previous one.
Similarly, ODPR-R, a more computation-friendly version, employs trajectory return as the priority
when trajectory information is available. Then, both ODPR-A and ODPR-R run an offline RL
algorithm with the prioritized behavior policy to learn a policy. Our contributions are three-fold:

• Innovative Approaches to Prioritized Replay for Offline RL: We introduce a unique class of
priority functions specifically tailored for offline RL. Contrary to online prioritized resampling
methods like PER (Schaul et al., 2016), which mainly aim to accelerate value function fitting, our
proposed priority is motivated by the desire to cultivate a superior behavior policy. We further
enhance the improved behavior policy through iterative prioritization. Another notable aspect of
our methodology, distinguishing it from existing resampling methods in both online and offline
RL, is the incorporation of dual samplers: a uniform one for policy evaluation and a prioritized
one for policy improvement and constraint, referred to as decoupled sampling. We demonstrate
that decoupled sampling is crucial for maintaining the stability of offline resampling training.

• Theoretical Improvement Guarantee: We theoretically demonstrate that a prioritized behavior
policy, with our proposed priority functions, yields a higher expected return than the original one.
Furthermore, under some special cases, we theoretically show that a policy-constrained offline
RL problem has an improved optimal solution when the behavior policy is prioritized.

• Empirical Compatibility and Effectiveness: We conduct extensive experiments to reveal that
our proposed prioritization strategies boost the performance of prevalent offline RL algorithms
across diverse domains in D4RL (Brockman et al., 2016; Fu et al., 2020). The performance of
CQL, IQL, and TD3+BC has been improved significantly by 34, 46, and 67 points, respectively,
on the Mujoco locomotion tasks, which shows ODPR is a plug-in orthogonal to algorithmic
improvements. Furthermore, we demonstrate that, owing to its unique fine-grained priorities,
ODPR-A is applicable within datasets without complete trajectories, a scenario where preceding
trajectory-based resampling strategies in offline RL have been unsuccessful.

2 PRELIMINARIES
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Figure 1: Action Prioritization. Actions in
x-axis are ranked by their quality. A behav-
ior policy (in red) usually follows a multi-
modal distribution. A prioritized policy (in
blue) modifies the policy densities by assign-
ing higher weights to better actions. The two
policies share the same action support (action
coverage).

Reinforcement Learning (RL). RL addresses the
problem of sequential decision-making, which
is formulated with a Markov Decision Process
⟨S,A, T, r, γ⟩. Here, S is a finite set of states; A
is the action space; T (s,a, s′) is the dynamics func-
tion; r(s,a) and γ ∈ (0, 1] are the reward function
and the discount factor respectively. The policy is de-
noted by π(a|s) and an induced trajectory is denoted
by τ . The goal of RL is to learn a policy maximizing
the expected cumulative discounted reward:

J(π) = Eτ∼pπ(τ)

[
∞∑
t=0

γtr(st,at)

]
. (1)

Offline RL as Constrained Optimization. Offline
RL considers a dataset D generated with behavior
policy β. Since β or D is fixed throughout training,
maximizing J(π) is equivalent to maximizing the
improvement J(π)− J(β). It can be measured by:
Lemma 2.1. (Performance Difference Lemma (Kakade & Langford, 2002).) For any policy π and β,

J(π)− J(β) =

∫
s

dπ(s)

∫
a

π(a|s)Aβ(s,a) da ds, (2)

where dπ(s) =
∑∞
t=0 γ

tp(st = s|π), represents the unnormalized discounted state marginal
distribution induced by the policy π, and p(st = s|π) is the probability of the state st being s.

The proof can be found in Appendix B.1. We consider the offline RL paradigm with policy constraint,
which enforces the policy π to stay close to the behavior policy β. Therefore, following TRPO (Schul-
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man et al., 2015), Equation (2) can be approximated as η̂(π, β) ≈
∫
s
dβ(s)

∫
a
π(a|s)Aβ(s,a) da ds.

Hence, η̂(π, β) represents the performance improvement of π over β. Offline RL is to maximize J(π)
while constraining π to be closed to β. It can be formulated as the following constrained optimization
problem with an expected KL-divergence constraint:

π∗ = arg max
π

η̂(π, β) s.t.

∫
s

dβ(s)DKL (π(·|s)||β(·|s)) ds ≤ ϵ and
∫
a

π(a|s) da = 1. (3)

An analytic solution π∗ of the above problem is given by Peng et al., 2019 (see Appendix B.2).
Related works on offline RL and prioritized sampling are in Appendix A due to space constraints.

3 OFFLINE DECOUPLED PRIORITIZED RESAMPLING

In this section, we develop Offline Decoupled Prioritized Resampling, which prioritizes transitions in
an offline dataset at training according to a class of priority functions. We start with an observation
that performing prioritized sampling on a dataset generated with policy β is equivalent to sampling
from a new behavior β′. Then, we theoretically justify that β′ gives better performance than β in
terms of the cumulative return when proper priority functions are chosen. In the end, we propose two
practical implementations of ODPR using transition advantage and return as the priority, respectively.

3.1 PRIORITIZED BEHAVIOR POLICY

Consider a dataset D generated with behavior policy β. Let ω(s,a) denote a weight/priority function
for transitions in D. Then, we define a prioritized behavior policy β′:

β′(a|s) = ω(s,a)β(a|s)∫
a
ω(s,a)β(a|s)da

, (4)

where the denominator is to guarantee
∫
a

β′(a|s) da = 1. As shown in Figure 1, β′ shares the
same action support as β. Suppose a dataset produced by prioritized sampling on D is D′. We have:

E(s,a)∼D′ [Lθ(s,a)] = Es∼D,a∼β′(·|s) [Lθ(s,a)] , (5)

where L represents a generic loss function, and the constant is discarded as it does not affect the
optimization. This equation shows that prioritizing the transitions in a dataset by resampling or
reweighting (LHS) can mimic the behavior of another policy β′ (RHS).

Intuitively, priority functions, denoted as ω(s,a), should be non-negative and monotonically increase
with respect to the quality of the action a. In the context of RL, advantage Aβ(s,a) represents
the extra reward that could be obtained by taking the action a over the expected return. Therefore,
advantage Aβ(s,a), as an action quality indicator, provides a perfect tool to construct ω(s,a). We
can easily construct many functions that satisfy the above properties, such as a linear function

ω(Aβ(s,a)) = C(Aβ(s,a)− min
(s,a)∈D

Aβ(s,a)), (6)

where C is a constant, set to make the sum over the dataset equal to 1.

3.2 PRIORITIZED POLICY IMPROVEMENT

We are ready to show that prioritized sampling can contribute to an improved learned policy. We first
show the prioritized version β′ is superior to β.

Behavior Policy Improvement. The below theorem underscores that prioritization can improve
the original behavior policy β if it is a stochastic policy or a mixture of policies, either of which could
result in actions of different Q-values. The detailed proof is deferred to Appendix B.3.

Theorem 3.1. Let ω(A) be any priority function with non-negative and monotonic increasing
properties. Then, we have J(β′)− J(β) ≥ 0. If there exists a state s, under which not all actions in
action support {a|β(a|s) > 0,a ∈ A} have the same Q-value, the inequation strictly holds.

Learned Policy Improvement. Further, under two special cases, we establish an improvement
guarantee on the learned policy. Consider the constrained optimization problem defined by Equa-
tion (3), we use π∗ and π′∗ to denote the optimal solution regarding behavior β and β′ respectively.
Our expectation is that π′∗ is better than π∗ in terms of cumulative return, i.e., J(π′∗) ≥ J(π∗).
In an extreme case, if the policy constraint is exceptionally strong, causing the learned policy to
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exhibit performance very similar to the behavior policy, π′∗ obviously surpasses π∗ because β′

is greater than β. In another more general case with a certain KL-divergence policy constraint,
we show that if the state marginal distribution induced by β′ is close to the distribution induced
by β, the learned policy π′∗ can be surely improved over π∗. To show this, we use the cumu-
lative return of β as a baseline to compare the performance differences η̂(π′∗, β) and η̂(π∗, β).
Formally, when we assume dβ′(s) = dβ(s), using ω(Aβ(s,a)) defined in Equation (6), we have
η̂(π′∗, β) ≥ η̂(π∗, β), where π∗ defined by Equation (3), π′∗ is defined as π′∗ = arg maxπ′ η̂(π′, β),
s.t.

∫
s
dβ′(s)DKL (π

′(·|s)||β′(·|s)) ds ≤ ϵ, and
∫
a
π′(a|s) da = 1, ∀ s. The inequation strictly

holds under the same condition with Theorem 3.1. See Appendix B.4 for detailed proof.

In this way, we have J(π′∗) ≥ J(π∗), which demonstrates that π′∗ is a better solution. Although
with an assumption about state distribution, it still offers valuable insights that the constraint induced
by prioritized behavior policy has the potential to improve the performance of the learned policy. The
rationale behind this is straightforward: when starting from a better behavior policy (Theorem 3.1),
the learned policy is more likely, though not guaranteed, to achieve a higher final performance.

Connections to policy-constrained offline RL algorithms. In offline RL, many methods fall into
this KL-constrained framework. IQL, AWAC, CRR, and OnestepRL extract policy by exponential
advantage regression, induced from KL divergence (Peng et al., 2019). Kostrikov et al. (2021a)
shows that CQL can be viewed as a KL divergence regularization between the Boltzmann policy and
the behavior policy. The BC term in TD3+BC is exactly KL divergence under Gaussian policy with
fixed variance. Therefore, our analysis should be applicable to these algorithms.

3.3 PRACTICAL ALGORITHMS

Advantage-based Offline Decoupled Prioritized Resampling (ODPR-A). We approximate prior-
ities by fitting a value function V β

ψ (s) for the behavior policy β by TD-learning:

min
ψ

E(s,a,s′,r)∼D

[(
r + γVψ(s

′)− Vψ(s)
)2]

. (7)

The advantage for i-th transition (si,ai, s
′
i, ri) in the dataset is then given by a one-step TD error:

A(si,ai) = ri + Vψ(s
′
i)− Vψ(si), (8)

which is similar to the form of priority in online PER, such as the absolute TD error, but differs in
whether the absolute value is taken. This implementation is referred to as ODPR-A in the following.
The term “decoupled” will be elucidated subsequently within this section.

Return-based Offline Decoupled Prioritized Resampling (ODPR-R). The limitation of ODPR-A
is also clear, i.e., fitting the value network incurs extra computational cost. Therefore, we propose
another variant that uses trajectory return as an alternative transition quality indicator. For the i-th
transition, we find the complete trajectory that contains it, and calculate the return for the whole
trajectory Gi =

∑Ti

k=0 rk. Ti is the length of the trajectory. Then the priority is obtained by

ωi = C(
Gi −Gmin

Gmax −Gmin
+ pbase), (9)

where Gmin = miniGi and Gmax = maxiGi. pbase is a small positive constant that prevents
zero weight. C is a constant, set to make the sum equal to 1. We term this variant as ODPR-R.
ODPR-R can only work with datasets where the trajectory information is available. We compare the
characteristics of ODPR-A and ODPR-R in Table 1.

Table 1: A summary for two algorithms.

ODPR-A ODPR-R

Prerequisite None full trajectory

Extra Runtime fit value function < 3 seconds

Feature weights can be reused

Decoupled prioritized resampling. After obtaining
priority weights, ODPR can be implemented by both
resampling and reweighting. The sampling probability
or weight is proportional to its priority. We opt for
resampling in the main text and also provide the results
of reweighting in the Appendix D.7. An offline RL
algorithm can be decomposed into three components:
policy evaluation, policy improvement, and policy constraint. In alignment with our stated motivation,
we employ prioritized data for both policy constraint and policy improvement terms to mimic
being constrained to a better behavior policy. However, we found it is crucial to conduct policy
evaluation under non-prioritized data for stability. Such a prioritization method is termed as decoupled
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(a) Visualization of prioritized behavior policies. (b) TD3+BC.

Figure 2: An illustration of the effect of ODPR on bandit. (a) Visualization of prioritized behavior
policies. As iteration goes, the prioritized dataset gradually converges to the optimal action mode
(purple). The value in parentheses represents the average reward. (b) The upper figure represents
TD3+BC learning on the original dataset, which failed to find the optimal action. In contrast, the
lower figure represents TD3+BC on the 5th prioritized dataset, converging to the optimal mode.

prioritized resampling. For decoupled prioritized resampling, two samplers are employed, one for
uniform sampling and one for prioritized sampling. A more in-depth discussion about why decoupled
resampling is crucial can be found in Section 4.3. The complete algorithm is given in Algorithm 1.

Algorithm 1 Offline Decoupled Prioritized Resampling
1: Require: Dataset D = {(s,a, s′, r)i}Ni=1, a policy-constrained algorithm I
2: Stage1: Calculate ωi according to Equation (8) or Equation (9) ( with trajectory information).
3: Stage2 (Decoupled Resampling): Train algorithm I on dataset D. Sample transition i with the

priority ωi for policy constraint and improvement. Uniform sample for policy evaluation.

3.4 IMPROVING ODPR-A BY ITERATIVE PRIORITIZATION

In Section 3.2, we demonstrate a likelihood that enhancing β(a|s) to β′(a|s) leads to an improvement
in the learned policy through offline RL algorithms. Then, a natural question arises: can we further
boost the learned policy by improving β′(a|s)? The answer is yes. Suppose we have a sequence of
behavior policies β(0), β(1), . . . , β(K) satisfying β(k)(a|s) ∝ ω(A(k−1)(a, s))β(k−1)(a|s), where
A(k−1)(a, s) represents the advantage for policy β(k−1)(a|s). We can easily justify that the behavior
policies are monotonically improving by Theorem 3.1:

J(β(0)) ≤ J(β(1)) ≤ J(β(2)) ≤ · · · ≤ J(β(K)).

It is reasonable to anticipate, though not guarantee, the following relationship: J(π(0)∗) ≤
J(π(1)∗) ≤ J(π(2)) ≤ · · · ≤ J(π(K)∗), where π(k)∗ is the optimal solution of Equation (3)
when constrained to β(k). We build such a sequence of behaviors from a fixed policy β(0) = β and
its dataset D, which relies on the recursion β(k)(a|s) ∝

∏k−1
j=0 ω(A

(j)(a, s)) · β(0)(a|s).

It means that a dataset D(k) for behavior β(k) can be acquired by resampling the dataset D with
weight

∏k−1
j=0 ω(A

(j)(a, s)) (normalize the sum to 1). Then, the advantage A(k) can be estimated
on D(k) following Equation (7)-Equation (8). After all iterations, we scale the standard deviation of
priorities to a hyperparameter σ to adjust the strength of data prioritization. The full algorithm for
this iterative ODPR-A is presented in Algorithm 2. In the experiments, ODPR-A mainly refers to this
improved version. It is notable that priorities that are acquired in the first stage can be saved and made
public, and then offline RL algorithms could directly use the existing priorities without extra cost.

4 EXPERIMENTS

We start with a simple bandit experiment to illustrate the effect of ODPR-A and ODPR-R. Then we
apply our methods to the state-of-the-art offline RL algorithms to show their effectiveness on the
D4RL benchmark. Further, we conduct experiments to analyze the essential components in ODPR.
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Table 2: Normalized scores on MuJoCo locomotion v2 tasks. We report the average and the standard
deviation (SD) of the total score over 15 seeds. The results that have an advantage over the baselines
(denoted as vanilla) are printed in bold type. “m”, “mr”, and “me” are respectively the abbreviations
for “medium”, “medium-replay”, and “medium-expert”. “V”, “A”, and “R” denotes “vanilla”,
“ODPR-A ”, and “ODPR-R ”. Standard deviation of individual games can be found at Appendix D.5.

Dataset TD3+BC CQL IQL OnestepRL

V A R V A R V A R V A R

halfcheetah-m 48.3 50.0 48.6 48.2 48.3 48.1 47.6 47.5 47.6 48.4 48.6 48.4
hopper-m 57.3 74.1 59.1 72.1 72.7 74.9 64.1 66.0 66.4 57.2 64.8 58.2

walker2d-m 84.9 84.9 84.2 82.1 83.9 80.7 80.0 83.9 78.3 77.9 85.1 80.9
halfcheetah-mr 44.5 45.9 44.6 45.2 45.4 46.1 43.4 43.0 44.0 37.5 42.9 39.7

hopper-mr 58.0 88.7 77.4 96.1 94.2 92.3 88.4 95.3 99.9 90.1 82.6 90.6
walker2d-mr 72.9 88.2 82.7 82.3 85.9 81.7 69.1 82.7 79.1 58.2 72.4 63.7

halfcheetah-me 92.4 83.3 93.9 62.1 70.7 84.3 82.9 92.7 93.5 94.1 94.2 93.9
hopper-me 99.2 107.3 106.7 82.9 105.1 97.2 97.2 105.1 107.2 80.5 99.4 98.8

walker2d-me 110.2 111.7 110.1 110.0 107.9 109.6 109.4 111.6 110.7 111.1 112.5 111.4

total 667.7 734.1 707.3 681.0 714.1 714.9 682.1 727.8 726.7 655.0 702.5 685.6
SD(total) 18.4 10.4 7.9 15.3 6.2 14.9 22.3 11.2 8.9 21.7 6.2 16.7

4.1 TOY BANDIT PROBLEM

We consider a bandit task, where the action space is 2D continuous, A=[−1, 1]2 (Wang et al., 2023)
and as a bandit has no states, the state space S=∅. The offline dataset is as the first figure in Figure 2a
shows (see Appendix C.1 for details). The goal of the bandit task is to learn the action mode with the
highest expected reward from the offline dataset. To demonstrate the effect of ODPR-A, We show
that TD3+BC fails to find the optimal action, while with ODPR-A, it solves the problem.

We first show that prioritized datasets are improved over the original one in Figure 2a. The blue
samples with the lowest reward are substantially reduced in the first two iterations. After iterating five
times, the suboptimal red and green samples also significantly diminish. The average return of the
prioritized dataset is increased to 4.9, very close to the value of optimal actions. In the 7th iteration,
suboptimal actions almost disappear. Since the reward is exactly the return in bandit, ODPR-R is the
1st prioritized behavior policy of ODPR-A, which raises the average return from 1.0 to 2.69.

Next, we show how offline RL algorithms can be improved by ODPR-A. As Figure 2b shows,
when trained on the original dataset, TD3+BC failed to produce the optimal policy since it is
negatively affected by suboptimal actions and converges to (0.2, 0.2), the mean of four modes (policy
constraint) but biased towards the best action (policy improvement). However, if combined with
ODPR-A (iteration K=5), it successfully finds the optimal mode.

4.2 D4RL BENCHMARK

In this section, experiments on D4RL benchmark are conducted to empirically show Offline Decou-
pled Prioritized Resampling can improve popular offline RL algorithms on diverse domains.

Experiment Setups. As discussed in Section 3.2, behavior cloning (BC), as a special case of offline
RL, can be improved by ODPR. In addition, ODPR is a general plug-and-play training scheme that
improves a variety of state-of-the-art (SOTA) offline RL algorithms. In our work, we choose four
widely adopted algorithms as case studies, CQL, OnestepRL, IQL, and TD3+BC.

ODPR’s priority weights are generated in the first stage and then can be reused among baselines and
seeds, saving computation. However, to assess the variance of ODPR and verify the generalization
ability of ODPR to different algorithms, we organize experiments by sharing priority weights among
baselines but not seeds. Specifically, we take seed=1 to compute ODPR-A weights, and then apply
these weights and seed=1 to run TD3+BC, IQL, etc.We subsequently repeat this process with the
next random seed. More experiment settings can be found in Appendix C.2 and Appendix C.3.

Mujoco locomotion. Table 3a reveals that ODPR induces a better offline dataset, from which
behavior cloning produces a behavior policy with higher performance. Further, Table 2 shows
that even though the state-of-the-art algorithms have achieved a strong performance, ODPR-A and
ODPR-R can further improve the performance of all algorithms by large margins. Specifically, with
ODPR-A, TD3+BC achieves a total score of 734.1 from 667.7. In addition, IQL, when combined
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with ODPR-A and ODPR-R, also reaches 727.8 and 726.7 points, respectively. We observe that
ODPR-A generally performs better than ODPR-R. This is potentially because ODPR-A is improved
by iterative prioritization while ODPR-R simply utilizes trajectory returns. Interestingly, ODPR
occasionally attains a smaller standard deviation than the vanilla, mainly due to its ability to achieve
higher and more stable scores in some difficult environments. Another notable observation is that
although TD3+BC performs worse than IQL and CQL in their vanilla implementations, TD3+BC
eventually obtains the highest performance boost with ODPR-A and achieves the best performance
with a score of 734.1. The reason might be that TD3+BC directly constrains the policy with a BC
term, which is easier to be affected by negative samples.

(a) Averaged normalized scores of Behavior
Cloning (BC) on MuJoCo locomotion v2 tasks
over 15 seeds.

Dataset BC

V A R

halfcheetah-m 42.7 46.5 42.6
hopper-m 48.3 57.4 52.2

walker2d-m 73.3 83.8 70.1
halfcheetah-mr 33.4 41.6 39.1

hopper-mr 31.1 56.1 30.3
walker2d-mr 26.5 81.2 48.2

halfcheetah-me 62.8 95.4 81.1
hopper-me 52.3 110.7 71.2

walker2d-me 106.4 110.9 107.4
total 476.8 683.6 542.2

SD(total) 17.7 8.1 18.2

(b) Averaged normalized scores on Antmaze, Kitchen, and
Adroit tasks over 15 seeds. The results for AW (Hong et al.,
2023) were taken directly from the official source1.

IQL AW ODPR-A ODPR-R

an
tm

az
e

umaze 88.5 90.7 85.5 87.8
umaze-diverse 63.1 75.3 70.8 66.0
medium-play 70.5 61.3 76.1 72.0
medium-diverse 58.5 22.0 71.8 74.2
large-play 44.1 23.3 40.0 49.6
large-diverse 42.0 9.3 48.0 43.0
antmaze total 366.7 281.9 392.2 392.6

ki
tc

he
n complete-v0 65.9 26.3 64.2 62.7

partial-v0 51.4 73.1 66.5 69.5
mixed-v0 50.3 47.8 52.1 49.9
kitchen total 167.6 147.2 182.8 182.1

pe
n human-v0 73.1 - 72.9 83.0

cloned-v0 42.1 - 61.2 66.6

Table 3: Experiment results of ODPR.

Discussions on Data Prioritizing. In particular, we observe that on the locomotion tasks, the
performance boost of ODPR-A and ODPR-R mainly comes from the “medium-replay” and “medium-
expert” level environments. To better understand this phenomenon, we visualize trajectory return
distributions of hopper on these two levels in Figure 6. The visualizations suggest that these tasks
have a highly diverse data distribution. This is consistent with our intuition that the more diverse the
data quality is, the more potential for the data to be improved through data prioritizing by quality.
More experiments with varying behavior policies can be found at Appendix D.1 and Appendix D.2.

Antmaze, Kitchen and Adroit. In addition to the locomotion tasks, we evaluate our methods in
more challenging environments. Given that IQL achieves the absolute SOTA performance in these
domains and other algorithms, e.g., CQL, do not give an ideal performance in these domains, we pick
IQL as a case study. We present the results in Table 3b. Similarly, we observe that both ODPR-A and
ODPR-R can further improve the performance of IQL on all three domains. In the most challenging
Antmaze environments, ODPR-A and ODPR-R successfully improve the most difficult medium and
large environments. For Kitchen and Adroit tasks, we have observed a similar trend of improvement.

4.3 ABLATION STUDIES

Table 4: Effect of the number of iterations K (15 seeds).

K vanilla 1 2 3 4 5

BC 476.8 651.0 674.5 664.5 683.6 662.1

TD3+BC 667.7 711.2 706.3 719.7 725.1 734.1

Effect of the number of iterations K. In
Table 4, as the iteration progresses, the
overall performance of BC and TD3+BC
combined with ODPR-R on the locomotion
tasks continues to increase. For BC, per-
formance declines when K = 5, which may
be due to some transitions having dispro-
portionately large or small weights, which affects the gradient descent’s convergence. However,
the improvement is significant even with just one iteration compared to the original algorithm. We
typically choose a value of K between 3 and 5 for the best performance.

Comparison with longer training. ODPR-A requires additional computational cost to calculate
priorities. To provide a fair comparison, we ran vanilla TD3+BC for twice as long. We found that

1https://github.com/Improbable-AI/harness-offline-rl
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TD3+BC converges rapidly, and the results at 2M steps were similar to those at 1M steps (677.7 vs.
672.7). This indicates that the superior performance of ODPR-A is not due to extra computation, but
rather stems from the improved policy constraint.

Table 5: Effect of decoupled resampling. Results are
the total scores on Mujoco tasks with 15 seeds. “+CNT”
and “+IPV” denotes using the prioritized sampling for
policy constraint and policy improvement term, respec-
tively2. “all” denotes using the prioritized sampling for
all three terms. Very low scores are marked with red.

vanilla +CNT +CNT+IPV all

TD3+BC 667.7 ODPR-A 723.7 734.1 731.7
ODPR-R 608.7 707.6 707.3

CQL 681.0 ODPR-A 674.9 714.1 652.8
ODPR-R 672.3 714.9 708.3

IQL 682.1 ODPR-A - 727.8 674.3
ODPR-R - 706.5 726.7

OnestepRL 655.0 ODPR-A - 702.5 658.1
ODPR-R - 685.6 681.1

Analysis of decoupled resampling. A ba-
sic recipe of offline RL algorithms com-
prises policy evaluation, policy improve-
ment, and policy constraint. Since ODPR
focuses on producing a better behavior pol-
icy for policy constraint, it seems natural
to solely apply prioritized data to the con-
straint term. However, this does not always
improve performance. For instance, as Ta-
ble 5 shows, on TD3+BC with ODPR-R,
only prioritizing data for constraint results
in a dramatic drop. We observed that it
suffers from extrapolation error and results
in Q-value overestimation in several tasks.
We suspect it is because, when only pri-
oritizing the constraint term, it imposes a
weaker constraint on low-priority actions,
while the policy improvement remains unchanged. As a result, the extrapolation error of low-priority
samples accumulates. To validate our hypothesis, if we clip the priority weights less than 1 to 1, the
results will be much better (608.7 v.s. 672.9). However, clipping gives a biased estimation to the
weights and hinders the performance of ODPR-A. A more straightforward and effective solution is to
apply data prioritization to both improvement and constraint terms.

For applying data prioritization to policy evaluation, we empirically found that usually it severely
degrades the performance except for few cases. We hypothesize that data prioritization changes the
state-action distribution of the dataset and intensifies the degree of off-policy between the curent policy
and the dataset. Although it does not harm policy learning, it might potentially cause instability in
policy evaluation when combined with bootstrap and function approximators (Sutton & Barto, 2018;
Van Hasselt et al., 2018; Tsitsiklis & Van Roy, 1996). This also explains why ODPR-A is severely
impaired by data prioritization for policy evaluation, whereas ODPR-R is not. The underlying cause
can be that ODPR-A evaluates the policy on more off-policy data obtained by multiple iterations.
Similar effect of decoupled resampling on Antmaze are observed in Appendix D.4.

4.4 THE BENEFIT OF FINE-GRAINED PRIORITIES

Table 6: ODPR-A on 50% Transitions.

50% Dataset TD3+BC IQL

10 seeds V A V A

halfcheetah-m 48.5 49.9 44.1 47.3
hopper-m 60.4 72.9 57.0 68.8

walker2d-m 66.0 82.5 67.7 81.7
halfcheetah-mr 43.2 45.2 35.5 39.2

hopper-mr 76.4 74.9 78.5 91.2
walker2d-mr 53.3 89.6 55.6 75.2

halfcheetah-me 89.1 77.7 90.8 89.9
hopper-me 100.0 108.4 106.9 108.9

walker2d-me 110.3 111.6 109.4 112.2
total 647.2 712.7 645.5 714.4

SD (total) 25.2 13.1 23.9 14.7

Existing resampling works such as AW/RW (Hong et al.,
2023) and percentage sampling (Chen et al., 2021) as-
signed the same weights to all transitions in a trajectory
according to the trajectory return. Instead, ODPR-A re-
samples each transition according to its advantage, which
we term fine-grained priorities. Here we will provide more
explanation and empirical evidence to illustrate the benefit
of fine-grained priorities.

Applicability to Datasets Lacking Trajectory. Even
when trajectory is unavailable, ODPR-A can be employed
due to its fine-grained property. To illustrate the benefit
of ODPR-A in such a scenario, we constructed transition-
based datasets by randomly sampling 50% of transitions
from the D4RL Mujoco datasets. Table 6 demonstrates that ODPR-A improves the total score of
TD3+BC from 647.2 to 712.7, enhancing performance in 7 out of 9 tasks. Similar enhancements
were observed in the IQL case. This evidence reveals that ODPR-A can significantly boost popular
offline RL algorithms even without access to trajectory information.

2IQL and OnestepRL utilize weighted regression, coupling policy constraint and improvement together.
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Figure 3: The toy example for
trajectory concatenation.

Concatenating Trajectories to Create Better Behaviors. The
fine-grained priorities also enable ODPR-A to combine favor-
able segments of suboptimal trajectories, thereby forming im-
proved behavior. This concept is illustrated by Figure 3,
where we consider two suboptimal trajectories in the dataset:
{s1, a1, 1, s2, a1, 0, s3}, {s1, a2, 0, s2, a2, 1, s3}. Since two trajec-
tories yield equal returns, AW/RW would not affect the original
dataset. In contrast, ODPR-A calculates normalized advantage as
priority weights, assigning near-zero weight to {s1, a2, 0, s2}, {s2, a1, 0, s3}, and consequently de-
riving an optimal dataset {s1, a1, 1, s2}, {s2, a2, 1, s3}. Moreover, we substantiate the enhanced
performance yielded by fine-grained priorities by comparing ODPR-A with AW, employing TD3+BC
and IQL in the D4RL Mujoco experiments. As outlined in Table 7, ODPR-A outperforms AW in 8 out
of 9 tasks in both TD3+BC and IQL, highlighting its effectiveness in achieving superior performance.

4.5 COMPARISON WITH ONLINE SAMPLING METHODS.

0 200 400 600 800 1000
K steps

550

600

650

700

750
All D4RL Locomotion Tasks

TD3+BC
PER
ODPR-A
ODPR-R

Figure 4: Compare ODPR and PER
on offline Mujoco.

In this section, we compare ODPR with representative
PER (Schaul et al., 2016), which aims to accelerate value func-
tion fitting by dynamically employing the absolute TD-error as
the priority. Consider a sample with large negative TD errors
(i.e., advantage), PER gives high priorities to them while ODPR
discourages them. Specifically, PER thinks the sample contains
more information for value fitting, while ODPR thinks the sam-
ple’s action is not good behavior. In Figure 4, every curve is an
average of 9 mujoco locomotion tasks. The results show that
PER slightly harms TD3+BC in offline Mujoco domains. In
contrast, ODPR greatly enhances the performance.

4.6 COMPARISON WITH OFFLINE SAMPLING METHODS.

In Section 4.4, we demonstrate that fine-grained priorities enables ODPR-A to maintain applicability
without trajectory and concatenate suboptimal segments, two features not shared by return-based
methods such as AW/RW and percentage sampling. In this section, we further elucidate the distinc-
tions between ODPR and these methods.

A vital differentiation between ODPR and AW/RW lies in decoupled resampling. Unlike AW/RW,
ODPR-R does not prioritize policy evaluation, opting instead to employ two separate samplers. As
we verify in Section 4.3, prioritizing policy evaluation can intensify the degree of off-policy and lead
to potential performance degradation. The AW column of Table 3b illustrates this point, where we
compared ODPR-R/ODPR-A and AW using the default hyperparameters of IQL for a fair comparison.
In Antmaze, while AW outperformed ODPR slightly in two simpler tasks, it significantly lagged
in four more challenging tasks, resulting in a substantial deficit in total performance. This contrast
highlights the value of decoupled resampling, an approach unique to ODPR.

Percentage sampling runs algorithms such as TD3+BC and IQL on only top X% data ordered by
trajectory returns. In Figure 5, we tested values of 1%, 10%, 25%, 50%, and 75% and found that
50% is nearly the optimal value for both TD3+BC and IQL. However, 50% percentage sampling
still underperforms ODPR-A/R (695.2 v.s. 727.8/726.7 in IQL; 687.6 v.s. 734.1/707.3 in TD3+BC),
further highlighting the effectiveness of ODPR.

5 CONCLUSION AND LIMITATION

This paper proposes a plug-and-play component ODPR for offline RL algorithms by prioritizing data
according to our proposed action-quality priority function and decoupled sampling. Furthermore, we
theoretically show that a better policy constraint is likely induced when the proposed ODPR is used.
We develop two practical implementations, ODPR-A and ODPR-R, to compute priority. Extensive
experiments demonstrate that both ODPR-A and ODPR-R can effectively boost the performance of
popular RL algorithms. The iterative computation of ODPR-A adds an extra computational burden.
In this paper, ODPR-A mitigates this issue by sharing weights across different algorithms. Exploring
more efficient methods for obtaining priority weights remains an avenue for future work.

9
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6 ETHICS STATEMENT

In the paper, we develop a data prioritization component that aims to boost the performance of offline
RL algorithms. From this perspective, any negative societal impact that our method may cause is
similar to that of general RL algorithms. We advocate that RL-based robotics systems, game AI, and
other applications should follow fair and safe principles.

7 REPRODUCIBILITY

To ensure the reproducibility of our results, we have included the source code within the supplementary
materials and have provided a comprehensive description of the experimental setup in Appendix C.
Upon publication, the code and priority weights will be made publicly available on the Internet. We
have reported the average results from multiple runs, the majority of which exhibit a relatively small
standard deviation. We assure that all the results presented in this paper can be reproduced effortlessly
by executing our provided code.
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APPENDIX

A RELATED WORKS

Offline RL with Behavior Regularization. To alleviate the distributional shift problem, a general
framework employed by prior offline RL research is to constrain the learned policy to stay close
to the behavior policy. Many works (Jaques et al., 2019; Wu et al., 2019) opt for KL-divergence
as policy constraint. Exponentially advantage-weighted regression (AWR), an analytic solution of
the constrained policy search problem with KL-divergence, is adopted by AWR (Peng et al., 2019),
CRR (Wang et al., 2020b) and AWAC (Nair et al., 2020). IQL (Kostrikov et al., 2021b) follows
AWR for policy improvement from the expectile value function that enables multi-step learning.
BEAR (Kumar et al., 2019) utilizes maximum mean discrepancy (MMD) to approximately constrain
the learned policy in the support of the dataset, while Wu et al. (Wu et al., 2019) find MMD has
no gain over KL divergence. Other variants of policy regularization include the use of Wasserstein
distance (Wu et al., 2019) and BC (Fujimoto & Gu, 2021; Wang et al., 2023; Chen et al., 2023).
An alternative approach to regularize behavior involves modifying the Q-function with conservative
estimates (Kumar et al., 2020b; Buckman et al., 2021; Yu et al., 2021; An et al., 2021; Nikulin et al.,
2022; Ghasemipour et al., 2022).

Prioritized Sampling. Many resampling methods, i.e., prioritization methods, have been proposed
for RL in an online setting, including PER (Schaul et al., 2016), DisCor (Kumar et al., 2020a),
LFIW (Sinha et al., 2022), PSER (Brittain et al., 2019), ERE (Wang et al., 2020a), and ReMER(Liu
et al., 2021b). These methods mainly aim to expedite temporal difference learning. SIL (Oh et al.,
2018) only learns from data with a discounted return higher than current value estimate. In offline
RL, schemes based on imitation learning (IL) aim to learn from demonstration, naturally prioritizing
data with high return. These approaches include data selection (Chen et al., 2020; Liu et al., 2021a)
and weighted imitation learning (Wang et al., 2018). BAIL (Chen et al., 2020) estimates the optimal
return, based on which good state-action pairs are selected to imitate. For RL-based learning from
offline data, CQL (ReDS) (Singh et al., 2022) is specifically designed for CQL to reweight the data
distribution. It works via a modified CQL constraint where the values of bad behaviors are being
penalized.This approach is non-trivial to transfer to algorithms like TD3+BC or IQL, since they lack
existing components to penalize certain actions. In contrast, ODPR serves as a plug-and-play solution,
designed to enhance a broad range of offline RL algorithms. ODPR might be the preferable choice
for tasks where other SOTA policy constraint algorithms outperform CQL, such as in the Antmaze or
computation-limited environments. Hong et al. (2023) and Yue et al. (2022) proposed to reweight
the entire trajectories according to their returns. Although sharing some conceptual similarities, our
method offers a more fine-grained approach by resampling transitions rather than entire trajectories.
Another distinction lies in our use of two samplers for promoting performance and stability, a uniform
sampler for policy evaluation, and a prioritized sampler for policy improvement and policy constraint.

Algorithm 2 Advantage-based Offline Decoupled Prioritized Resampling

1: Require: Dataset D = {(s,a, s′, r)i}Ni=1, i.e., behavior policy β(0), the number of iterations K,
standard deviation σ, and a policy-constrained algorithm I

2: Stage1: Initialize transition priorities ωNi=1 = 1
3: for step k in {1, . . . , K} do
4: Evaluate advantage A(k−1) of behavior policy β(k−1) by sampling transition i with the

probability ωi.
5: Calculate ω(A(k−1)(si,ai)) by Equation (6).
6: ωi := ωi ∗ ω(A(k−1)(si,ai))
7: end for
8: Scale the standard deviation of ωi to σ.
9: Stage2: Train algorithm I on dataset D. Sample transition i with the priority ωi for policy

constraint and improvement. Uniform sample for policy evaluation.
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B PROOF AND DERIVATION

B.1 PROOF OF PERFORMANCE DIFFERENCE LEMMA

Assume that π and β are two arbitrary policies. p(s0) denotes the initial state distribution independent
of policy. According to previous works (Kakade & Langford, 2002), we have:

J(π)− J(β) (10)

=Eτ∼pπ(τ)

[ ∞∑
t=0

γtr(st,at)

]
− Es0∼p(s0)

[
V β(s0)

]
(11)

=Eτ∼pπ(τ)

[ ∞∑
t=0

γtr(st,at)− V β(s0)

]
(12)

=Eτ∼pπ(τ)

[ ∞∑
t=0

γt
(
r(st,at) + γV β(st+1)− V β(st)

)]
(13)

=Eτ∼pπ(τ)

[ ∞∑
t=0

γtAβ(st,at)

]
(14)

=

∞∑
t=0

∫
s

p(st = s|π)
∫
a

π(a|s)γtAβ(s,a) da ds (15)

=

∫
s

∞∑
t=0

γtp(st = s|π)
∫
a

π(a|s)Aβ(s,a) da ds (16)

=

∫
s

dπ(s)

∫
a

π(a|s)Aβ(s,a) da ds, (17)

where dπ(s) =
∑∞
t=0 γ

tp(st = s|π) represents the unnormalized discounted state marginal dis-
tribution induced by the policy π, and p(st = s|π) is the probability of the state st being s when
following policy π.

B.2 SOLUTION DERIVATION OF CONSTRAINED POLICY SEARCH PROBLEM

Following AWR, we simplify the constrained policy search problem, relaxing the hard KL constraint
by converting it into a soft constraint with coefficient λ. So we can formulate the Lagrangian function:

L(π, β, α) =
∫
s

dβ(s)

∫
a

π(a|s)Aβ(s,a) da ds+ λ

(
ϵ−

∫
s

dβ(s)DKL (π(·|s)||β(·|s)) ds
)

+

∫
s

αs

(
1−

∫
a

π(a|s)da
)
ds,

(18)
By solving the Lagrangian function, setting ∂L

∂π = 0, the optimal policy is given by

π∗(a|s) = 1

Z(s)
β(a|s) exp

(
1

λ
Aβ(s,a)

)
, (19)

Z is given by

Z(s) =

∫
a

β(a|s) exp
(
1

λ
Aβ(s,a)

)
da. (20)

B.3 PROOF OF THEOREM 3.1

Behavior Policy Improvement Guarantee. Following Performance Difference Lemma (Equa-
tion (2)), we have

J(β′)− J(β) =

∫
s

dβ′(s)

∫
a

β′(a|s)Aβ(s,a) da ds. (21)
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For simplicity, we use Aβ instead of Aβ(s,a). The inner integral is:∫
a

β′(a|s)Aβ da (22)

=

∫
a

ω(Aβ)β(a|s)∫
a
ω(Aβ)β(a|s)da

Aβ da (23)

=

∫
a

(
ω(Aβ)− ω(0)

)
β(a|s)Aβ da∫

a
ω(Aβ)β(a|s)da

. (24)

The derivation from Equation (23) to Equation (24) utilizes the property of advantage
∫
a
Aββ(a|s)da

= 0 and ω(0) is a constant with respect to action. The sign of the integrand in Equation (24)
depends on

(
ω(Aβ)− ω(0)

)
Aβ . Since ω(Aβ) is monotonic increasing with respect to Aβ , Aβ and

ω(Aβ) − ω(0) have an identical sign. The integrand is always non-negative, which implies that
J(β′) − J(β) ≥ 0 always holds. If there exists a state s, under which not all actions in action
support {a|β(a|s) > 0,a ∈ A} have zero advantage, the inequation strictly holds. By the definition
of advantage, all actions have zero advantage if and only if all actions have the same Q-value. To
summarize, Theorem 3.1 suggests that policy improvement is ensured if the current policy is weighted
according to its normalized advantage. This concept echoes the core principle of policy gradient
methods that optimize the likelihood of actions in proportion to the magnitude of their advantage.

B.4 PROOF OF LEARNED POLICY IMPROVEMENT UNDER ASSUMPTIONS

In this section, we prove that the learned policy π′∗ is better than π∗ when assuming dβ′(s) = dβ(s).
Let ω(Aβ(s,a)) = Aβ(s,a)− min

(s,a)
Aβ(s,a), we need to prove

η̂(π′∗, β)− η̂(π∗, β) ≥ 0, (25)

where the analytic solution of π∗ is given in Appendix B.2. Then we have:

η̂(π′, β)

=J(π′)− J(β)

=

∫
s

dπ′(s)

∫
a

π′(a|s)Aβ(s,a) da ds

≈
∫
s

dβ′(s)

∫
a

π′(a|s)Aβ(s,a) da ds,

Since π′ is constrained to be close to the new behavior policy β′, the last step approximation
above holds (Schulman et al., 2015; Peng et al., 2019) Therefore, following the similar process in
Appendix B.2, the analytic solution of π′∗ is

π′∗(a|s) = 1

Z ′(s)
β′(a|s) exp

(
1

λ
Aβ
)
, (26)

Note that in Equation (26), the first term β′(a|s) comes from constraining the learned policy to be
near around β′, while the second term exp

(
1
λA

β
)

comes from the performance baseline β.

Z ′ is given by

Z ′(s) =

∫
a

β′(a|s) exp
(
1

λ
Aβ
)
da =

∫
a
ω(a, s)β(a|s)exp

(
1
λA

β
)
da∫

a
ω(a, s)β(a|s)da

. (27)

Combining the analytic solution of π∗ and π′∗, and the definition of η̂(π′∗, β) and η̂(π∗, β), the goal
is equivalent to proving∫

s

dβ′(s)

∫
a

1

Z ′(s)
β′(a|s)exp

(
1

λ
Aβ
)
Aβ da ds

−
∫
s

dβ(s)

∫
a

1

Z(s)
β(a|s)exp

(
1

λ
Aβ
)
Aβ da ds > 0.

(28)
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According to the assumption, we have dβ′(s) = dβ(s). Therefore, we can ignore the outer integration
with respect to s in Equation (28) for a moment. We just consider∫

a

1

Z ′(s)
β′(a|s)exp

(
1

λ
Aβ
)
Aβ da−

∫
a

1

Z(s)
β(a|s)exp

(
1

λ
Aβ
)
Aβ da (29)

=

∫
a

exp

(
1

λ
Aβ
)
Aβ
(
β′(a|s)
Z ′(s)

− β(a|s)
Z(s)

)
da (30)

=

∫
a

exp

(
1

λ
Aβ
)
Aββ(a|s)

(
ω(s,a)∫

a
ω(s,a)β(a|s)exp

(
1
λA

β
)
da

− 1∫
a
β(a|s) exp

(
1
λA

β
)
da

)
da

(31)

=
L(β)

(
∫
a
ω(s,a)β(a|s)exp

(
1
λA

β
)
da) (

∫
a
β(a|s)exp

(
1
λA

β
)
da)

(32)

=C(s)L(β). (33)

where C(s) is the reciprocal of the denominator in Equation (32), obviously a positive constant with
respect to a, and L(β) is:

L(β) = (

∫
a

β(a|s)exp
(
1

λ
Aβ
)
da)(

∫
a

β(a|s)Aβω(s,a)exp
(
1

λ
Aβ
)
da)

− (

∫
a

β(a|s)ω(s,a)exp
(
1

λ
Aβ
)
da)(

∫
a

β(a|s)Aβexp
(
1

λ
Aβ
)
da).

(34)

When the priority function is linear, we have

L(β) = (

∫
a

β(a|s)exp
(
1

λ
Aβ
)
da)(

∫
a

β(a|s)Aβ(Aβ − min
(s,a)

Aβ)exp

(
1

λ
Aβ
)
da)

− (

∫
a

β(a|s)(Aβ − min
(s,a)

Aβ)exp

(
1

λ
Aβ
)
da)(

∫
a

β(a|s)Aβexp
(
1

λ
Aβ
)
da).

(35)

Simplify the terms:

L(β) = (

∫
a

β(a|s)exp
(
1

λ
Aβ
)
da)(

∫
a

β(a|s)AβAβexp
(
1

λ
Aβ
)
da)− (

∫
a

β(a|s)Aβexp
(
1

λ
Aβ
)
da)2.

(36)

By Cauchy–Schwarz inequality, we have

(

∫
a

β(a|s)exp
(
1

λ
Aβ
)
da)(

∫
a

β(a|s)AβAβexp
(
1

λ
Aβ
)
da)

≥

{∫
a

√
β(a|s)exp

(
1

λ
Aβ
)√

β(a|s)AβAβexp
(
1

λ
Aβ
)
da

}2

=(

∫
a

β(a|s)Aβexp
(
1

λ
Aβ
)
da)2.

(37)

Thus we have L(β) ≥ 0. Equality is achieved if and only if Aβ(s,a)Aβ(s,a) is a constant for any
action in action support B = {a|β(a|s) > 0,a ∈ A}, i.e., Aβ(s,a) = 0, ∀ a ∈ B. So LHS of
Equation (25) is equivalent to ∫

s

dβ(s)

∫
a

C(s)L(β) da ds, (38)

which is obviously non-negative. That is to say the target of Equation (25) holds. The inequality
strictly holds when there exists a state s, under which not all actions in action support B have the
same Q-value.
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C EXPERIMENT SETUP

C.1 TOY BANDIT

The offline dataset is collected by four 2D Gaussian distribution policies with means µ ∈
{(0.6, 0.6), (0.6,−0.6), (−0.6, 0.6), (−0.6,−0.6)}, standard deviations σ=(0.05, 0.05), and corre-
lation coefficient ρ = 0. The reward of each action is sampled from a Gaussian distribution, whose
mean is determined by its action center and the standard deviation is 0.5. Each policy contributes
2500 samples to the dataset, imitating real scenarios where various policies collect data.

C.2 ODPR

ODPR-A experiment setup. In Equation (7), we adopt double value network to fit the value
function (Hasselt, 2010; Fujimoto et al., 2018). Specifically, we employ a one-step bootstrap for
value function fitting. For each iteration in value function fitting, we utilize 0.5M gradient steps.
Pure value fitting comsumes less computation time than policy iteration. While this lengthy number
of gradient steps ensures convergence, a lesser number may suffice in practice. For Mujoco tasks,
BC and TD3+BC prioritize data using priority weights from the 4th and 5th iterations, respectively,
achieving optimal results (refer to Table 4). For other algorithms, i.e., CQL, IQL, and OnestepRL, we
do not perform hyperparameter search and, following BC, simply set the number of iterations to 4.

Scale Deviation. ODPR-A utilizes Equation (6) to calculate weights. However, most of the weights
are close to 1, weakening the effect of data prioritization. Therefore, we scale the standard deviation
of weights to the hyperparameter σ by the following equation:

ω(Aβ(s,a)) = min(
ω(Aβ(s,a))− 1

σ0
∗ σ + 1, 0.1),

where σ0 is the standard deviation of the unscaled weights. After scaling, the mean and standard
deviation of the weights are approximately equal to 1 and sigma, respectively. Across all Mujoco
tasks, we set σ to 2.0. For Antmaze tasks, we use σ = 5.0, while for Kitchen and Pen tasks, we set
σ = 0.5.

ODPR-R experiment setup. The base priority pbase in Equation (9) is set to zero across all tasks,
with the exception of Antmaze where it is assigned a value of 0.2. This exception is made because
the trajectory return in Antmaze can either be zero or one. If pbase were set to zero, all trajectories
with a return of zero would be disregarded.

Resampling Implementation. PER (Schaul et al., 2016) employs a dynamic update of priorities
during training and implements a sophisticated ”sum-tree” structure to optimize efficiency. Con-
versely, ODPR first computes priorities from the offline dataset in an initial stage, and subsequently
employs static priorities throughout training. This static priority sampling is straightforwardly imple-
mented using “np.random.choice”. While the utilization of a sum tree allows for sampling from a
list of probabilities in O(logn) time, an aspect independent of online versus offline scenarios, the
use of “np.random.choice” incurs a linear O(n) cost for sampling from the same list of probabilities.
However, it’s important to note that the single operation of np.random.choice” is time-efficient. Addi-
tionally, since ODPR’s priorities are static, we can pre-sample the entire index list, thus accelerating
the sampling process due to the parallelized implementation of np.random.choice”. In the context of
training on a D4RL dataset (comprising 1M data points with priority, 1M gradient steps, and a batch
size of 256), it only takes approximately 53.8 seconds to execute all “np.random.choice” operations.
This adds a negligible time cost to the overall training process. Furthermore, the implementation
of ODPR demands merely 10 lines of code changes, which contrasts with the more complex imple-
mentation of a sum tree. Therefore, from a practical standpoint, implementing “np.random.choice”
is fairly straightforward and only marginally increases the actual runtime. Lastly, for larger dataset
sizes (such as 10M or 100M) and a larger number of gradient steps, the additional time cost can be
further mitigated by parallelizing the index generation process with the agent training process.

Computational Cost. It’s important to note that the priority weights generated by ODPR-A can
be reused across different algorithms. Indeed, all the algorithms utilized in this study (including
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TD3+BC, IQL, etc.) utilize the same set of weights. Furthermore, training the value network to
estimate priority in ODPR-A (when K=5) does not necessitate five times the computational resources
compared to standard TD3+BC. Contrasting ODPR-A to TD3+BC, ODPR-A requires no actor update
and does not need to query the actor during policy evaluation, making it less time-intensive per
step. In our tests conducted on an NVIDIA 3090, 1M gradient steps took 69 minutes for the official
TD3+BC, whereas our JAX implementation of ODPR-A took only 7 minutes for 0.5M steps. Thus,
even with the number of iterations set to K = 5, ODPR-A priority estimation takes less time (35
minutes) than TD3+BC (69 minutes). In summary, ODPR-A does not consume excessive time.

C.3 OFFLINE RL ALGORITHMS

For a fair comparison with the baselines, we implement ODPR on top of the official implementation
of OnestepRL, TD3+BC, and IQL; for CQL, we use a reliable third-party implementation3, which,
unfortunately, causes a slight discrepancy with PyTorch version results reported in the CQL paper.
We run every algorithm for 1M gradient steps and evaluate it every 5,000 steps, except for antmaze-v0
environments, in which we evaluate every 100,000 steps. For antmaze-v0, each evaluation contains
100 trajectories; for others, 10 trajectories are used following Kostrikov et al., 2021b. For OnestepRL,
we choose exponentially weighted regression as the policy improvement operator. The original
paper (Brandfonbrener et al., 2021) does not specify the value of temperature τ . Therefore, we search
on a small set{0.1, 0.3, 1.0, 3.0, 10.0, 30.0} and use τ = 1 because it can reproduce the reported
results.
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Figure 5: Compare ODPR and percentage sampling on mujoco locomotion based on TD3+BC and
IQL. 50% is the optimal value for percentage sampling, still far behind ODPR.

Table 7: Compare ODPR-A with AW. AW resamples all transitions in a trajectory with the same
probability without fine-grained priorites. We maintained identical hyperparameters for both ODPR-A
and AW to ensure a fair comparison. ODPR-A achieves the best score in 8 out of 9 tasks.

TD3+BC IQL

vanilla ODPR-A AW vanilla ODPR-A AW

halfcheetah-m 48.2 50.0 48.6 47.6 47.5 45.1
hopper-m 58.8 74.1 61.1 64.3 73.5 62.7

walker2d-m 84.3 84.9 80 79.9 83.1 76.1
halfcheetah-mr 44.6 45.9 45.1 43.4 44.1 42.2

hopper-mr 58.1 88.7 87.4 89.1 103 93.3
walker2d-mr 73.6 88.2 80.3 69.6 81 62.6

halfcheetah-me 93.0 83.3 97.7 83.5 88.9 93.7
hopper-me 98.8 107.3 102.9 96.1 100.3 93.3

walker2d-me 110.3 111.7 110.2 109.2 111.4 108.8
total 669.7 734.1 708.7 682.7 732.8 677.8

3https://github.com/young-geng/JaxCQL
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D ADDITIONAL EXPERIMENTS

D.1 HOW DOES ODPR PERFORM WHEN THE BEHAVIOR POLICY IS A MIXTURE OF POLICIES

To validate our core proposition, we also constructed a mixed dataset by mixing random and expert
datasets. Table 8(a) reflects that the vanilla TD3+BC underperforms within these mixed datasets. In
contrast, ODPR-R manages to target beneficial actions, resulting in a performance that stands on par
with a pure expert.

D.2 HOW DOES ODPR PERFORM WHEN THE BEHAVIOR POLICY EXHIBITS SIMILAR AND
POOR PERFORMANCE

We ran a comparative study using vanilla TD3+BC and the ODPR-R variation on three D4RL random
datasets. As displayed in Table 8(b), ODPR’s performance mirrors the vanilla. This observation
aligns with our key hypothesis that ODPR’s enhancements are primarily sourced from the behavioral
diversity inherent in the dataset. In contrast, the random dataset, generated through a poor policy,
exhibits limited behavioral variance.

Table 8: Performance of ODPR-R on random and mixed datasets with standard deviation (10 seeds).
(a) Left: Random Dataset. (b) Right: Mixed dataset of random and expert.

Mixed Dataset TD3+BC

Vanilla ODPR-R

halfcheetah 89.3 96.6
hopper 102.2 108.7

walker2d 25.6 110.0
total 217.1± 11.8 315.3± 4.7

Random Dataset TD3+BC

Vanilla ODPR-R

halfcheetah 9.8 10.3
hopper 8.4 8.3

walker2d 0.9 1.0
total 19.1± 1.8 19.6± 1.6

D.3 HOW DOES ODPR PERFORM WHEN VALUE ESTIMATIONS ARE INACCURATE

According to DisCor (Kumar et al., 2020a), value-based techniques can suffer from a lack of
corrective feedback in some cases such as a tree-structured MDP. Although value estimation in
Equation (7) works well in D4RL environments, we investigate how does ODPR-A performs when
value estimations are inaccurate, which bears significance for the application of ODPR-A in scenarios
without corrective feedback. In this context, we tested ODPR-A’s performance when the value
estimations are inaccurate by adding independent Gaussian noise N(0, sx) to priority weights, where
x represents the average distance between the mean point and all weights. We set s to 0.1, 1, 2, 5
and test TD3+BC with ODPR-A with two environments with 10 seeds. These two environments
highlight situations where ODPR-A’s performance is either comparable to or better than the standard
method. Please refer to Table 9. It’s worth noting that when noise is as large as the average distance
x, ODPR-A’s performance remains nearly unimpaired. Even when the noise is five times x on
hopper-medium-replay, ODPR still outperforms the vanilla. On walker-medium-expert, ODPR
demonstrates stability despite varying noise levels. The empirical findings suggest that ODPR-A
retains effectiveness even with relatively substantial noise in estimating priority.
Table 9: The performance of ODPR-A with TD3+BC when the priority weights are added with
Gaussian noise N(0, sx) to priority weights, where x represents the average distance between the
mean point and all weights.

Vanilla ODPR-A (s)

0 0.1 1.0 2.0 5.0

hopper-medium-replay 58.0 ± 5.8 88.7 ± 5.5 88.4 ± 4.7 88.3 ± 7.4 74.6 ± 3.4 73.0 ± 7.2
walker2d-medium-expert 110.2 ± 0.2 111.7 ± 0.2 111.5 ± 0.2 111.3 ± 0.4 110.7 ± 0.3 110.5 ± 0.3

D.4 MORE EXPERIMENTS ABOUT DECOUPLED RESAMPLING

In Section 4.3, we conduct experiments on locomotion tasks to analyze the effect of prioritizing
for different terms and conclude that prioritizing data for both policy improvement and policy
constraint is crucial for high performance. Not prioritizing data for policy evaluation is also crucial
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for limiting the degree of off-policy and remaining stable. Here, we further analyze the influence of
prioritizing data for policy evaluation on other domains and report results in Table 11. We observe a
phenomenon analogous to that in Table 3b, wherein prioritizing for policy evaluation significantly
impairs performance. The prioritization of data for evaluation markedly compromises the version
with decoupled resampling, culminating in near-zero scores in four out of the six tasks. In conclusion,
the prioritization of policy evaluation detrimentally affects both resampling methods, whether by
return or advantage.

Table 10: Two samplers.

mujoco-v2 total

vanilla 667.7

two samplers 674.9

ODPR-A 734.1

As shown in Section 4.3, for ODPR-A, the best results are obtained
by decoupled resampling, where two samplers are employed, one
for uniform sampling and one for prioritized sampling. We conduct
experiments here to prove that the introduction of two samplers itself
does not improve performance, and the improvement comes from
prioritized replay. The original TD3+BC with one uniform sampler
scored 667.7 points on Mujoco locomotion. Then we use two
uniform samplers for the actor (policy constraint and improvement)
and critic (policy evaluation), respectively. The result (674.9 points)
is quite similar to the vanilla one. Then we use a prioritized sampler
for the actor and a uniform sampler for the critic, respectively, achieving a high score of 734.1 points.
It implies that the improvement comes from prioritized replay rather than two samplers.

Table 11: Effect of decoupled resampling. “-EVAL” denotes data prioritization for only policy
constraint and policy improvement terms (i.e., decopuled sampling). “all” denotes data prioritization
for all three terms.

vanilla IQL ODPR-A ODPR-R

-EVAL all -EVAL all

antmaze-umaze 88.5 85.5 77.3 87.8 89.2
antmaze-umaze-diverse 63.1 70.8 67.7 66.0 79.8
antmaze-medium-play 70.5 76.1 0 72.0 68.4

antmaze-medium-diverse 58.5 71.8 0 74.2 38.4
antmaze-large-play 44.1 40.0 0 49.6 14.6

antmaze-large-diverse 42.0 48.0 0 43.0 37.6

antmaze total 366.7 392.2 145.0 392.6 328.0

D.5 RESULTS WITH STANDARD DEVIATION

Results with standard deviation are reported in Table 12 and Table 13. For Mujoco locomotion tasks,
ODPR consistently achieves a performance boost, as evidenced by the non-overlapping deviation
intervals. For tasks with larger variance, such as Antmaze, Kitchen, and Adroit, the performance
improvement brought by ODPR is statistically significant according to t-test results.

Table 12: Averaged normalized scores of TD3+BC on MuJoCo locomotion v2 tasks over 15 seeds.

Dataset TD3+BC

V A R

halfcheetah-m 48.3 ± 0.1 50.0 ± 0.1 48.6 ± 0.1
hopper-m 57.3 ± 1.4 74.1 ± 2.8 59.1 ± 1.2

walker2d-m 84.9 ± 0.6 84.9 ± 0.3 84.2 ± 0.3
halfcheetah-mr 44.5 ± 0.2 45.9 ± 0.4 44.6 ± 0.4

hopper-mr 58.0 ± 5.8 88.7 ± 5.5 77.4 ± 4.2
walker2d-mr 72.9 ± 8.7 88.2 ± 2.0 82.7 ± 2.2

halfcheetah-me 92.4 ± 0.5 83.3 ± 3.0 93.9 ± 0.7
hopper-me 99.2 ± 6.3 107.3 ± 4.1 106.7 ± 3.1

walker2d-me 110.2 ± 0.2 111.7 ± 0.2 110.1 ± 0.1

total 667.7 ± 18.4 734.1 ± 10.4 707.3 ± 7.9

D.6 THE EFFECT OF HYPERPARAMETER σ

Intuitively, if the weights of all transitions are close to 1, our methods degrade to the vanilla offline RL
algorithm. Only when the standard deviation of the weights of transitions is relatively large, ODPR
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Table 13: Averaged normalized scores of IQL on Antmaze, Kitchen, and Adroit tasks over 15 seeds.

vanilla IQL ODPR-A ODPR-R

antmaze-umaze 88.5±3.0 85.5±4.4 87.8±3.0
antmaze-umaze-diverse 63.1±6.4 70.8±7.8 66±7.8
antmaze-medium-play 70.5±4.6 76.1±5.1 72±5.4

antmaze-medium-diverse 58.5±7.2 71.8±6.6 74.2±9.4
antmaze-large-play 44.1±4.6 40±5.3 49.6±4.0

antmaze-large-diverse 42±4.7 48±4.0 43±4.9
total 366.7±18.2 392.2±19.1 392.6±20.4

kitchen-complete-v0 65.9±8.4 64.2±6.1 62.7±7.8
kitchen-partial-v0 51.4±9.7 66.5±13.2 69.5±6.9
kitchen-mixed-v0 50.3±6.8 52.1±6.7 49.9±3.3

total 167.6±16.5 182.8±15.9 182.1±14.4

pen-human-v0 73.1±18.0 72.9±15.5 83±17.2
pen-cloned-v0 42.1±21.1 61.2±13.6 66.6±21.4

can take effect. We observed that the standard deviation of original ODPR-A weights in Equation (8)
is typically small, ranging from approximately 0.02 to 0.2 across different environments. In contrast,
the standard deviation of ODPR-R weights falls within a suitable range of around 0.3 to 1.0. Thus,
ODPR-A needs to be scaled, while ODPR-R can work without scaling. We test the effect of σ on
three environments where ODPR-A gives the clearest improvements. In Table 14, we demonstrate
how the performance of ODPR-A is influenced by the hyperparameter σ, which the standard deviation
of weights will be scaled to. We select 2 as the default value for σ.

Table 14: Effect of σ on ODPR-A. The results come from TD3+BC with 15 seeds. “w.o. scale”
denotes disabling scaling.

σ vanilla w.o. scale 0.5 2.0 4.0

hopper-mr 57.9 70.1 73.8 88.7 88.9
walker-mr 73.1 81.9 84.9 88.2 86.6
hopper-me 98.5 99.1 106.9 107.3 105.1

total 229.5 251.1 265.6 284.2 280.6

D.7 RESAMPLING V.S. REWEIGHTING

Resampling and reweighting are statistically equivalent with regards to the expected loss function. We
provide implementations for both approaches in ODPR. As seen in Table 15 and Table 16, resampling
and reweighting yield comparable scores on Mujoco locomotion, as well as Kitchen and Adroit
tasks. These results indicate that both reweighting and resampling can successfully implement ODPR.
Further, they suggest that the effectiveness of ODPR does not rely on the specific implementation, but
rather arises from the prioritization of data itself. The only exception we encountered is observed in
the two Pen tasks, where for IQL with ODPR-R, resampling performed well while reweighting was
unable to achieve meaningful scores. Notably, in these two tasks, some priority weights of ODPR-R
are extremely large due to the presence of exceptionally high returns in the return distributions (see
Figure 7). We hypothesize that these exceedingly large weights may alter the learning rate, thereby
affecting the gradient descent process.

Table 15: Compare resampling and reweighting implementations for ODPR on Mujoco locomotion.

TD3+BC (ODPR-A) TD3+BC (ODPR-R) IQL (ODPR-A) IQL (ODPR-R)

resample reweight resample reweight resample reweight resample reweight

mujoco-v2 total 734.1 740.3 707.3 705.3 727.8 725.4 726.7 727.0
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Table 16: Compare resampling and reweighting implementations of IQL (ODPR-A) on Adroit and
Kitchen.

reweighting resampling

kitchen-complete-v0 68.0 64.2
kitchen-partial-v0 61.5 66.5
kitchen-mixed-v0 45.3 52.1

kitchen total 174.8 182.8

pen-human-v0 73.9 72.9
pen-cloned-v0 61.6 61.2
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Figure 6: Trajectory Return Distributions of hopper-medium-replay (left) and hopper-medium-expert
(right). Medium-replay datasets usually have a long-tailed distribution, and medium-expert often
display two peaks. Both are composed of policies with varying quality.
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(d) Adroit

Figure 7: Full Visualization of Trajectory Return Distributions.
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