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Abstract
Propensity scores are commonly used to bal-
ance observed confounders while estimating treat-
ment effects. When the confounders are high-
dimensional or unstructured, the learned propen-
sity scores can be miscalibrated and ineffective
in the correction of confounding. We argue that
the probabilistic output of a learned propensity
score model should be calibrated, i.e. predictive
treatment probability of 90% should correspond
to 90% individuals being assigned the treatment
group. We investigate the theoretical properties
of a calibrated propensity score model and its
role in unbiased treatment effect estimation. We
demonstrate improved causal effect estimation
with calibrated propensity scores in several tasks
including high-dimensional genome-wide associ-
ation studies.

1. Introduction
This paper studies the problem of inferring the causal effect
of an intervention from observational data. For example,
consider the problem of estimating the effect of a treatment
on a medical outcome or the effect of a genetic mutation on a
phenotype. A key challenge in this setting is confounding—
e.g., if a treatment is only given to sick patients, it may
appear to spuriously correlate with worse outcomes [8; 35].
Propensity score methods are a popular tool for correcting
for confounding in observational data [31; 3; 35; 17; 36],
and have been used to balance high-dimensional, unstruc-
tured covariates [29; 36; 37]. However, neural approxima-
tors of propensity score conditional on high-dimensional
covariates may output volatile and miscalibrated probabili-
ties close to 0 or 1 [11], thus making the propensity score
methods unreliable [12; 18]. For example, when the propen-
sity score model is overconfident (a known problem with
neural network estimators [9]), predicted assignment prob-
abilities can be too small [34], which yields a blow-up in
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the estimated causal effects. More generally, propensity
score weighting stands to benefit from accurate uncertainty
quantification [11].

This work argues that propensity score methods can be im-
proved by leveraging calibrated uncertainty estimation in
treatment assignment models. Intuitively, when a calibrated
model outputs a treatment probability of 90%, then 90%
of individuals with that prediction should be assigned to
the treatment group [26; 14]. We argue that calibration is a
necessary condition for propensity score models that also
addresses the aforementioned problems of model overcon-
fidence. This paper makes the following contributions: (1)
we provide formal arguments that explain the benefits of
uncertainty calibration in propensity score models; (2) we
propose simple algorithms that enforce calibration; (3) we
provide theoretical guarantees on the calibration and regret
of these algorithms and we demonstrate their effectiveness
in genome-wide association studies.

2. Background
Notation Formally, we are given an observational dataset
D = {(x(i), y(i), t(i))}ni=1 consisting of n units, each char-
acterized by features x(i) ∈ X ⊆ Rd, a binary treatment
t(i) ∈ {0, 1}, and a scalar outcome y(i) ∈ Y ⊆ R. We
assume D consists of i.i.d. realizations of random variables
X,Y, T ∼ P from a data distribution P . Although we as-
sume binary treatments and scalar outcomes, our approach
naturally extends beyond this setting. The feature space X
can be any continuous or discrete set.

2.1. Causal effect estimation using propensity scoring

We seek to estimate the true effect of T = t in terms of its
average treatment effect (ATE).

Y [x, t] = E[Y |X = x, do(T = t)] ATE = E[Y [x, 1]− Y [x, 0]],

where do(·) denotes an intervention [25]. We assume
strong ignorability, i.e., (Y (0), Y (1)) ⊥ T |X and 0 <
P (T |X) < 1, for all X ∈ X , T ∈ {0, 1}, where Y (0)
and Y (1) denote potential outcomes. We also make the
stable unit treatment value assumption (SUTVA) [31]. Un-
der these assumptions, the propensity score defined as
e(X) = P (T = 1|X) satisfies the conditional indepen-
dence (Y (0), Y (1)) ⊥ T |e(X) [31]. Thus, ATE can be
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expressed as τ = E
(

TY
e(X) −

(1−T )Y
1−e(X)

)
. We define the In-

verse Propensity Treatment Weight (IPTW) and Augmented
Inverse Propensity Weight (AIPW) estimators for ATE in
Appendix A.

2.2. Calibrated prediction for uncertainty estimation

This paper seeks to evaluate and improve the uncertainty of
propensity scores. We say that a propensity score model Q
is calibrated if the true probability of T = 1 conditioned on
predicting a probability p matches the predicted probability,
i.e., P (T = 1 | Q(T = 1|X) = p) = p ∀p ∈ [0, 1].

3. Calibrated propensity scores
We start with the observation that a learned propensity scor-
ing model Q(T |X) must not only correctly output the treat-
ment assignment, but also accurately estimate predictive
uncertainty. Specifically, the probability of the treatment
assignment must be correct, not just the class assignment.
While a Bayes optimal Q will perfectly estimate uncertainty,
suboptimal models will need to balance various aspects of
predictive uncertainty, such as calibration and sharpness.

3.1. Calibration: A necessary condition for propensity
scoring model

This paper argues that calibration improves propensity-
scoring methods. Intuitively, if the model Q(T = 1|X)
predicts a treatment assignment probability of 90%, then
90% of these predictions should receive the treatment. If
the prediction is larger or smaller, the downstream IPTW
estimator will overcorrect or undercorrect for the biased
treatment allocation. In other words, calibration is a neces-
sary condition for a correct propensity scoring model. We
formalize this intuition below.

Theorem 3.1. When Q(T |X) is not calibrated, there exists
an outcome function such that an IPTW estimator based
on Q yields an incorrect estimate of the true causal effect
almost surely.

Please refer to Appendix H.2 for a full proof.

3.2. Calibrated uncertainties improve propensity
scoring models

We identify settings in which calibration is either sufficient
or prevents common failure modes of IPTW estimators.
Specifically, we identify and study two such regimes: (1)
accurate but over-confident propensity scoring models (e.g.,
neural networks [9]); (2) high-variance IPTW estimators
that take as input numerically small propensity scores.

3.2.1. BOUNDING THE ERROR OF CAUSAL EFFECT
ESTIMATION USING PROPER SCORES

Firstly, we relate the error of an IPTW estimator to the dif-
ference between a model Q(T |X) and the true P (T |X).
We define πt,y(Q) =

∑
x P (y|x, t)P (t|x)

Q(t|x)P (x) as the es-
timated probability of y given t when using propensity
score model Q. It is not hard to show that the true
Y [t] := EXY [X, t] = EXE[Y |X = x,do(T = t)] can
be written as

∑
y yπy,t(P ) (see Appendix H.3). Simi-

larly, the estimate of an IPTW estimator with propensity
model Q in the limit of infinite data tends to ŶQ[1]− ŶQ[0],
where ŶQ[t] :=

∑
y yπy,t(Q). We may bound the ex-

pected L1 ATE error |Y [1] − Y [0] − (ŶQ[1] − ŶQ[0])| by∑
t |Y [t]− ŶQ[t]| ≤

∑
t

∑
y |y| · |πy,t(P )− πy,t(Q)|.

Our first lemma bounds the error |πy,t(P ) − πy,t(Q)| as
a function of the difference between Q(T |X) and the true
P (T |X). A bound on the ATE error follows from a simple
corollary.

Lemma 3.2. The expected error |πy,t(P ) − πy,t(Q)| in-
duced by an IPTW estimator with propensity score model Q
is bounded as

|πy,t(P )− πy,t(Q)| ≤ EX∼Ry,t
[ℓχ(P,Q)

1
2 ], (1)

where Ry,t ∝ P (Y = y|X,T = t)P (X) is a data distribu-

tion and ℓχ(Q,P ) =
(
1− P (T=t|X)

Q(T=t|X)

)2

is the chi-squared
loss between the true propensity score and the model Q.

Proof (Sketch). Note that |πy,t(P ) − πy,t(Q)| ≤
EX∼Ry,t

∣∣∣1− P (T=t|X)
Q(T=t|X)

∣∣∣ ≤ ERy,tℓχ(P,Q)
1
2

See Appendix H.3.1 for the full proof.

Corollary 3.3. Let |y| ≤ K for all y ∈ Y . The error of an
IPTW estimator with propensity score model Q is bounded
by 2|Y|Kmaxy,t ERy,t

ℓχ(P,Q)
1
2 .

Note that ℓχ is a type of proper loss or proper scoring rule:
it is small only if Q correctly captures the probabilities in
P . A model that is accurate, but that does not output correct
probability will have a large ℓχ; conversely, when Q = P ,
the bound equals to zero and the IPTW estimator is perfectly
accurate. To the best of our knowledge, this is the first bound
that relates the accuracy of an IPTW estimator directly to
the quality of uncertainties of the probabilistic model Q.

3.2.2. CALIBRATION REDUCES VARIANCE OF INVERSE
PROBABILITY ESTIMATORS

A common failure mode of IPTW estimators arises when
the probabilities from a propensity scoring model Q(T |X)
are small or even equal to zero—division by Q(T |X) then
causes the IPTW estimator to take on very large values or
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be undefined. Furthermore, when Q(T |X) is small, small
changes in its value cause large changes in the IPTW esti-
mator, which induces problematically high variance. Here,
we show that calibration can help mitigate this failure mode.
If Q is calibrated, then it cannot take on abnormally small
values relative to P .

Theorem 3.4. Let P be the data distribution, and suppose
that 1 − δ > P (T |X) > δ for all T,X and let Q be a
calibrated model relative to P . Then 1− δ > Q(T |X) > δ
for all T,X as well.

Proof (Sketch). The proof is by contradiction. Suppose
Q(T = 1|x) = q for some x and q < δ. Then because
Q is calibrated, of the times when we predict q, we have
P (T = 1|Q(T = 1|X) = q) = q < δ, which is impossible
since P (T = 1|x) > δ for every x.

See Appendix H.3.2 for the full proof.

3.2.3. CALIBRATION IMPROVES CAUSAL EFFECT
ESTIMATION WITH ACCURATE PROPENSITY
MODELS

Unfortunately, calibration by itself is not sufficient to cor-
rectly estimate treatment effects. For example, consider
defining Q(T |X) as the marginal P (T ): this Q is calibrated,
but cannot accurately estimate treatment effects. However,
if the model Q is sufficiently accurate (as might be the case
with a powerful neural network), calibration becomes the
missing piece for an accurate IPTW estimator. Specifically,
we define separability, a condition which states that when
P (T |X1) ̸= P (T |X2) for X1, X2 ∈ X , then the model Q
satisfies Q(T |X1) ̸= Q(T |X2). Intuitively, the model Q
is able to discriminate between various T—something that
might be achievable with an expressive neural Q that has
high classification accuracy. We show that a model that is
separable and also calibrated achieves accurate causal effect
estimation.

Theorem 3.5. The error of an IPTW estimator with propen-
sity model Q tends to zero as n→∞ if:

1. Separability holds, i.e., ∀X1, X2 ∈ X , P (T |X1) ̸=
P (T |X2) =⇒ Q(T |X1) ̸= Q(T |X2])

2. The model Q is calibrated, i.e., ∀q ∈ (0, 1), P (T =
1|Q(T = 1|X) = q) = q

See Appendix H.3.3 for the proof. In Appendix B, we also
show that a post-hoc recalibrated model Q′ has vanishing
regret ℓ(Q′, Q) with respect to a base model Q and a proper
loss ℓ (including ℓχ used in our calibration bound).

4. Algorithms for calibrated propensity
scoring

4.1. A framework for calibrated propensity scoring

Algorithm 1 Calibrated Propensity Scoring
1. Split D into training set D′ and calibration set C
2. Train a propensity score model Q(T |X) on D′

3. Train recalibrator R over output of Q on C
4. Apply IPTW with R ◦Q as prop. score model

We propose Algorithm 1 to produce calibrated propensity
scoring models; it differs from standard propensity scoring
methods by the addition of a post-hoc recalibration step (step
#3) [26; 14] after training the model Q. The recalibration
step is outlined in Algorithm 3 (Appendix B). The key idea
is to learn an auxiliary model R : [0, 1] → [0, 1] such
that the joint model R ◦ H is calibrated. In Appendix B,
we discuss the choice of model R and prove that if R can
approximate the density P (T = 1|Q(T |X) = p), R ◦ Q
will be calibrated [14; 13].

5. Empirical evaluation
Genome-Wide Association Studies (GWASs) attempt to
estimate the treatment effect of genetic mutations (called
SNPs) on individual traits (called phenotypes) from observa-
tional datasets. Each SNP acts as a treatment. Confounding
occurs because of hidden ancestry: individuals with shared
ancestry have correlated genes and phenotypes.

The key takeaways can be summarized as follows. First, re-
calibration enables off-the-shelf IPTW estimators to match
or outperform a state-of-the-art GWAS analysis system
(LLM/LIMIX; see Tables 1 and 8). Second, our method
enables the use of propensity score models that would other-
wise be unusable due to the poor quality of their uncertainty
estimates (e.g., Naive Bayes; see Table 7). Third, leverag-
ing new types of propensity score models that are fast to
train (such as Naive Bayes), improves the speed of GWAS
analysis by more than two-fold (see Table 2).

Setup We simulate the genotypes and phenotypes of
individuals following a range of standard models as de-
scribed in Appendix F. The outcome is simulated as Y =
βTG+αTZ+ϵ, where G is the vector of SNPs, Z contains
the hidden confounding variables, ϵ is noise distributed as
Gaussian, β is the vector of treatment effects correspond-
ing to each SNP and α holds coefficients for the hidden
confounding variables. We assume that the aspect of hid-
den population structure in Z that needs to be controlled
for is fully contained in the observed genetic data to en-
sure ignorability [19]. To estimate the average marginal
treatment effect corresponding to each SNP, we iterate suc-
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Table 1. GWAS with calibrated propensities. We compare IPTW and AIPW estimates using calibrated propensity scores against standard
baselines and a specialized GWAS analysis system (LMM/LIMIX). Results averaged over 10 reps and std error in braces.

Dataset Spatial Spatial Spatial HGDP TGP
(α=0.1) (α=0.3) (α=0.5)

Naive 16.23 (0.91) 11.76 (0.84) 9.81 (0.69) 11.82 (0.11) 12.24 (0.71)
PCA 9.60 (0.37) 9.54 (0.41) 9.38 (0.38) 11.69 (0.20) 10.73 (0.38)
FA 9.55 (0.34) 9.53 (0.44) 9.23 (0.30) 11.65 (0.16) 10.59 (0.32)
LMM 10.24 (0.41) 9.58 (0.45) 8.15 (0.40) 10.09 (0.35) 9.44 (0.57)

IPTW (Calib) 8.13 (0.35) 8.69 (0.56) 8.32 (0.34) 10.86 (0.13) 9.57 (0.58)
IPTW (Plain) 12.56 (1.25) 10.22 (0.81) 9.09 (0.48) 11.62 (0.12) 11.76 (0.86)
AIPW (Calib) 8.94 (0.29) 9.00 (0.58) 8.59 (0.39) 11.06 (0.12) 10.32 (0.43)
AIPW (Plain) 13.89 (0.76) 10.46 (0.72) 8.99 (0.51) 11.38 (0.11) 11.56 (0.65)
∆ECE 0.022 (0.001) 0.016 (0.007) 0.015 (0.001) 0.011 (0.001) 0.022 (0.001)

cessively over the vector of SNPs such that the selected SNP
is treatment T and all the remaining SNPs are covariates X
for predicting the phenotypic outcome Y . We use logistic
regression as propensity model and isotonic regression as
recalibrator. We measure εATE as the l2 norm of the differ-
ence between true and estimated marginal treatment effect
vectors. We evaluate the calibration of the propensity score
model using expected calibration error (ECE) (Appendix
C). We compare the performance of these estimators with
standard methods to perform GWAS, including Principal
Components Analysis (PCA) [27; 28], Factor Analysis (FA),
and Linear Mixed Models (LMMs) [42; 20], implemented
in the popular LIMIX library [21]. 1% of total SNPs are
causal and we have 4000 individuals in the dataset.

Results. In Table 1, we demonstrate the effectiveness of
estimators using calibrated propensities on five different
GWAS datasets (Appendix F). Here, we have a total of
100 SNPs. In Table 8 (Appendix G), we increase the pro-
portion of causal SNPs for the Spatial simulation and con-
tinue to see improved performance under calibration. In
Table 7 (Appendix G), we compare different base models
to learn propensity scores and show that calibration im-
proves the performance in each case. We also see that the
performance of plain Naive Bayes as the base propensity
score model is very poor owing to the simplistic condi-
tional independence assumptions, but calibration improves
its performance significantly. In Table 2, we compare the
computational throughput of calibrated Naive Bayes as the
propensity score model with logistic regression. Here, we
have a total of 1000 SNPs. We see that using calibrated
Naive Bayes obtains performance competitive with logistic
regression at a significantly higher throughput.

In Appendix D, we demonstrate several additional experi-
ments on the effectiveness of calibrated propensity scores
under varying treatment assignment functions and base
propensity models. In Appendix E we evaluate calibrated
propensities for image as an unstructured confounder.

Table 2. Calibrated Naive Bayes yields lower ϵATE (IPTW) and
uses lower computational resources as compared to logistic regres-
sion.

Method ϵATE Tput (SNPs/sec)

LMM 19.908 (3.592) -
Calibrated NB 18.210 (1.705) 47.6
Plain NB 1455.992 (185.084) 68.6
Calibrated LR 23.618 (3.832) 19.5
Plain LR 27.921 (4.713) 20.1

6. Related work
Calibrated uncertainties have been used to improve deep
reinforcement learning [23; 13], natural language process-
ing [16], Bayesian optimization [4], etc. Lenis et al. [18],
Kang and Schafer [12] demonstrate the degradation in treat-
ment effect estimation in response to misspecified treat-
ment and outcome models. Different notions of calibra-
tion have been proposed to reduce the bias in treatment
effect estimation by optimizing the covariate balancing prop-
erty [10; 43; 24] and by correcting measurement error [33].
Our notion of calibration is easier to implement and does
not require modification to the training of propensity model.

7. Conclusions
We proposed a simple technique to perform post-hoc calibra-
tion of the propensity score model. We show that calibration
is a necessary condition to obtain accurate treatment effects
and calibrated uncertainties improve propensity scoring
models. We show improved treatment effect estimates for
high-dimensional, unstructured covariates over a range of
base models including the popular logistic regression. Cali-
bration also allows us to utilize simpler models like Naive
Bayes and obtain higher computational throughput while
maintaining competitive performance for high-dimensional
covariates.
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A. Estimators for Average Treatment Effects

We expressed ATE as τ = E
(

TY
e(X) −

(1−T )Y
1−e(X)

)
. Following

Smith et al. [32], we can simplify the following term

E
[
TY

e(X)

]
= E[E

(
TY

e(X)
|T,X

)
]

= E[
(
TE(Y |T,X)

e(X)

)
]

= E[
(
TE(Y |T = 1, X)

e(X)

)
]

= E[E
(
TE(Y |T = 1, X)

e(X)
|X

)
]

= E[
(
E(Y |T = 1, X)P (T = 1|X)

e(X)

)
]

= E[E(Y |T = 1, X)].

Similarly,

E
[
(1− T )Y

1− e(X)

]
= E[E(Y |T = 0, X)].

Thus, we can show that ATE is indeed equivalent to

E
(

TY
e(X) −

(1−T )Y
1−e(X)

)
.

The Inverse Propensity of Treatment Weight (IPTW) esti-
mator uses an approximate model Q(T = 1|X) of P (T =
1|X) to produce an estimate τ̂ of the ATE, which is com-

puted as τ̂ = 1
n

∑n
i=1

(
t(i)y(i)

Q(T=1|x(i))
− (1−t(i))y(i)

1−Q(T=1|x(i))

)
.

Due to sensitivity of the IPTW estimator toward mis-
specification of propensity score model, Robins et al.
[30] propose doubly robust Augmented Inverse Propensity
Weighted (AIPW) estimator for ATE. The AIPW estimate
is asymptotically unbiased when either the treatment as-
signment (propensity) model or the outcome model is well-
specified.

We define the outcome model as f(X = x, T = t) to
approximate the outcome Y [X = x, T = t] as defined in
Section 2.

With this, we define the AIPW estimator as

τ̂ =
1

n

n∑
i=1

[f(Xi, T = 1)− f(Xi, T = 0) +

Ti(Yi − f(Xi, T = 1))

e(Xi)
− (1− Ti)(Yi − f(Xi, T = 0))

1− e(Xi)
]
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B. Algorithms for calibrated propensity
scoring

B.1. A framework for calibrated propensity scoring

Algorithm 2 Calibrated Propensity Scoring
1. Split D into training set D′ and calibration set C
2. Train a propensity score model Q(T |X) on D′

3. Train recalibrator R over output of Q on C
4. Apply IPW with R ◦Q as prop. score model

Next, we propose algorithms that produce calibrated propen-
sity scoring models. Our approach is outlined in Algorithm
2; it differs from standard propensity scoring methods by
the addition of a post-hoc recalibration step (step #3) after
training the model Q.

The recalibration step in Algorithm 2 implements a post-hoc
recalibration procedure [26; 14] and is outlined in Algorithm
3. The key idea is to learn an auxiliary model R : [0, 1]→
[0, 1] such that the joint model R ◦H is calibrated. Below,
we argue that if R can approximate the density P (T =
1|Q(T |X) = p), R ◦Q will be calibrated [14; 13].

Learning R that approximates P (T = 1|Q(T |X) = p)
requires specifying (1) a model class for R and (2) a learn-
ing objective ℓ. One possible model class for R are non-
parametric kernel density estimators over [0, 1]; their
main advantage is that they can provably learn the one-
dimensional conditional density P (T = 1|Q(T |X) = p).
Examples of such algorithms are RBF kernel density esti-
mation or isotonic regression. Alternatively, one may use
a family of parametric models for R: e.g., logistic regres-
sion, neural networks. Such parametric recalibrators can be
implemented easily within deep learning frameworks and
work well in practice, as we later demonstrate empirically.

Our learning objective for R can be any proper scoring rule
such as the L2 loss, the log-loss, or the Chi-squared loss.
Optimizing it is a standard supervised learning problem.

Algorithm 3 Recalibration Step
Input: Pre-trained model Q : X → [0, 1], recalibrator
R : [0, 1]→ [0, 1], calibration set C
Output: Recalibrated model R ◦H : X → [0, 1].

1. Create a recalibrator training set:
S = {(Q(x), y) | x, y ∈ C}

2. Fit the recalibration model R on S:
minR

∑
(p,y)∈S L (R(p), y)

B.2. Ensuring calibration in propensity scoring models

Next, we seek to show that Algorithms 2 and 3 provably
yield a calibrated model R◦Q. This shows that the desirable
property of calibration can be maintained in practice.

Notation We have a calibration dataset C of size m sam-
pled from P and we train a recalibrator R : [0, 1] →
[0, 1] over the outputs of a base model Q to minimize
a proper loss L. We denote the Bayes-optimal recali-
brator by B := P (T = 1 | Q(X)); the probability
of T = 1 conditioned on the forecast (R ◦ Q)(X) is
S := P (T = 1 | (R ◦ Q)(X)). To simplify notation, we
omit the variable X , when taking expectations over X,T ,
e.g. E[L(R ◦Q,T )] = E[L(R(Q(X)), T )].

Our first claim is that if we can perform density estimation,
then we can ensure calibration. We first formally define the
task of density estimation.
Task B.1 (Density Estimation). The model R approximates
the density B := P (T = t | Q(X)). The expected proper
loss of R tends to that of B as m→∞ such that w.h.p.:

E[L(B ◦Q,T )] ≤ E[L(R ◦Q,T )] < E[L(B ◦Q,T )] + δ

where δ > 0, δ = o(m−k), k > 0 is a bound that decreases
with m.

Note that non-parametric kernel density estimation is for-
mally guaranteed to solve one-dimensional density estima-
tion given enough data.
Fact B.2 (Wasserman [39]). When R implements kernel
density estimation and L is the log-loss, Task B.1 is solved
with δ = o(1/m2/3).

We now show that when we can solve Task B.1, our ap-
proach yields models that are asymptotically calibrated
in the sense that their calibration error tends to zero as
m→∞.
Theorem B.3. The model R◦Q is asymptotically calibrated
and the calibration error E[Lc(R ◦ Q,S)] < δ for δ =
o(m−k), k > 0 w.h.p.

See Appendix H.4.1 for the full proof.

B.3. No-regret calibration

Next, we show that Algorithms 2 and 3 produce a model
R ◦Q that is asymptotically just as good as the original Q
as measured by the proper loss L.
Theorem B.4. The recalibrated model has asymptotically
vanishing regret relative to the base model: E[L(R ◦
Q,T )] ≤ E[L(Q,T )] + δ, where δ > 0, δ = o(m).

Proof (Sketch). Solving Task B.1 implies E[L(R◦Q,T )] ≤
E[L(B◦Q,T )]+δ ≤ E[L(Q,T )]+δ; the second inequality
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Figure 1. Recalibrating propensity score model reduces the bias in
estimating treatment effect from observational data.

holds because a Bayes-optimal B has lower loss than an
identity mapping.

See Appendix H.4.2 for the full proof. Thus, given enough
data, we are guaranteed to produce calibrated forecasts and
preserve base model performance as measured by L (includ-
ing Lχ used in our calibration bound).

C. Analysis of calibration
We evaluate the calibration of the propensity score

model using expected calibration error (ECE) defined as
Ep∼Q(T=1|X)[|P (T = 1|Q(T = 1|X) = p) − p|], where
Q(T = 1|X) models the treatment assignment mechanism
P (T = 1|X). To compute ECE, we divide the probabilistic
output range [0, 1] into equal-sized intervals {I0, I1, .., IM}
such that we can generate buckets {Bi}Mi=1, where Bi =
{(X,T, Y )|Q(T = 1|X) ∈ Ii}. The estimated ECE is
then computed as

∑M
i=1

|Bi|
|
⋃M

j=1 Bj |
|avgi(Bi)− predi(Bi)|,

where avgi(Bi) =
∑|Bi|

j=1 Tj/|Bi| and predi(Bi) =∑|Bi|
j=1 Q(T = 1|Xj)/|Bi|.

D. Drug Effectiveness Study
We simulate an observational study of recovery time from
disease in response to the administration of a drug [41]. The
decision to treat an individual with the drug is dependent
on the covariates specified as age, gender, and severity of
disease. We use logistic regression as the propensity score
model. In Figure 1, we see that weighing using recalibrated
propensities allows us to approximate the distribution of
individual treatment effect estimates better than uncalibrated
propensities.

Experimental Setup. We model the outcome using ran-
dom forests such that the covariates and treatment is taken
as input. Logistic regression is used as the propensity score

model and the inverse propensity scores are used to weigh
each sample while training the outcome model. We use
isotonic regression as the recalibrator. The treatment effect
is expressed as the ratio E(Y (1))/E(Y (0)), where Y (T ) is
the potential outcome Y obtained by setting treatment to
T . The outcome is time taken by the patient to make full
recovery from the disease. We use 10 cross-val splits to gen-
erate the recalibration dataset. Isotonic regression is used
as the recalibrator. We use the Inverse-Propensity Treat-
ment Weight (IPTW) and Augmented Inverse Propensity
Weight (AIPW) estimators in our experiments. We com-
pare the estimates obtained through calibrated propensities
with baselines including estimators based on uncalibrated
propensity scores. We measure the performance in terms
of the absolute error in estimating ATE as ϵATE = |τ̂ − τ |,
where τ is the true treatment effect and τ̂ is our estimated
treatment effect.

D.1. Simulation

The covariates contain gender (x1), age (x2) and disease
severity (x3), while treatment (t) corresponds to administra-
tion of drug. Outcome (y) is the time taken for recovery of
patient.

We simulate the covariates as

x1 ∼ Bernoulli(0.5)
x2 ∼ Gamma(α = 8, β = 4)

x3 ∼ Beta(α = 3, β = 1.5).

The outcome is simulated as

y ∼ Poisson(2 + 0.5x1 + 0.03x2 + 2x3 − t).

The treatment t is assigned on the basis of the covariates
age, gender and severity of disease defined above. The
simulations differ in their treatment assignment functions,
which are described as follows

1. Simulation A: If (x1 = 1), set t = (x2 > 45) else set
t = (x3 > 0.3).

2. Simulation B: If (x1 = 1), set t = (x3 > 0.3) else set
t = (x2 > 40).

3. Simulation C: If x2 > 50 AND x3 > 0.7 then set
t = 1 else t = 0.

4. Simulation D: If x2 > 50 XOR x3 > 0.7 then set
t = 1 else t = 0.

For a linear model predicting treatment given covariates,
Simulation C is easier to learn as compared to A, B and D.
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Table 3. Recalibrating the output of the propensity score model results in a lower error in estimating causal effects. Reduction in ECE
implies that the calibration of the model improves with our technique. Results are averaged over 10 experimental repetitions and braces
contain the standard error.

Setting εATE with Plain Propensities Recalibrated Propensities
naive estimation εATE ECE εATE ECE

Simulation A 0.495 (0.002) 0.477 (0.007) 0.033 (0.001) 0.156 (0.027) 0.027 (0.001)
Simulation B 0.222 (0.003) 0.210 (0.002) 0.040 (0.001) 0.193 (0.002) 0.016 (0.001)
Simulation C 0.273 (0.003) 0.153 (0.003) 0.053 (0.001) 0.147 (0.002) 0.025 (0.002)
Simulation D 0.290 (0.004) 0.066 (0.005) 0.118 (0.001) 0.026 (0.004) 0.026 (0.002)

D.2. Results

In Table 3, we employ different treatment assignment mech-
anisms in each simulated observational study, allowing us to
compare mechanisms that may or may not be well-specified
by a linear model. We see that calibrated propensities pro-
duce lower absolute error in estimating average treatment
effect (ϵATE) under varying mechanisms. Here, the naive
estimation computes the outcomes without weighing the
samples with propensities. In Table 5, we also compare
a range of base propensity score models for Simulation A
and see the benefits of calibration across these setups. In
Figure 2, we see that the calibration curve of propensity
score model gets closer to the diagonal after applying recal-
ibration.

Figure 2. Calibration of propensity score model for Drug Effective-
ness Study.

E. Unstructured Covariates Experiment
Setup. We use the Inverse-Propensity Treatment Weight
(IPTW) and Augmented Inverse Propensity Weight (AIPW)
estimators in our experiments. We compare the estimates
obtained through calibrated propensities with several base-

lines including estimators based on uncalibrated propensity
scores. We use sigmoid or isotonic regression as the re-
calibrator and utilize cross-validation splits to generate the
calibration dataset. We measure the performance in terms
of the absolute error in estimating ATE as ϵATE = |τ̂ − τ |,
where τ is the true treatment effect and τ̂ is our estimated
treatment effect.

We simulate a simple observational study following Louizos
et al. [22] and Deshpande et al. [5] such that variables
X,T, Y ∼ P are binary and the true ATE is zero. Specifi-
cally, we generate a synthetic observational dataset consist-
ing of binary variables X,T, Y ∼ P, such that

P(Z = 1) = P(Z = 0) = 0.5 P(X = 1|Z = 1) = 0.3

P(X = 1|Z = 0) = 0.1 P(T = 1|Z = 1) = 0.4

P(T = 1|Z = 0) = 0.2 Y = T ⊕ Z.

Louizos et al. [22] show that the true ATE under this sim-
ulation is zero. We would like to note that the presence of
hidden confounder Z implies that ignorability is not sat-
isfied in this experiment. Following Deshpande et al. [5],
we also introduce an unstructured image covariate X that
represents X as a randomly chosen MNIST image of a zero
or one, depending on whether X = 0 or X = 1. Specifi-
cally, P(X|X = 1) is uniform over MNIST images of ‘1’
and P(X|X = 0) is uniform over MNIST images of ‘0’.

We use a multi-layer perceptron as the propensity score
model and recalibrate its output. In Table 4, we compare
the IPTW estimates for ATE using binary X and image
X covariates. The ECE is higher for the plain propensity
score model trained on image covariates, indicating higher
miscalibration. We see that recalibration also improves ATE
estimates with high-dimensional, unstructured covariates.

F. Simulated GWAS Datasets
We have N individuals and M number of total SNPs for
each individual. Thus, we need to simulate a SNP matrix
G ∈ {0, 1}N×M and an outcome vector Y ∈ RN . We also
have a matrix of confounding variables Z ∈ RN×D for
these N individuals. We do not observe the confounding
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Table 4. Comparison of structured and unstructured covariates.

Setting εATE with Plain Propensities Recalibrated Propensities
naive estimation εATE ECE εATE ECE

Image Covariate 0.187 (0.010) 0.161 (0.046) 0.107 (0.029) 0.095 (0.005) 0.024 (0.003)
Binary Covariate 0.176 (0.019) 0.140 (0.029) 0.052 (0.011) 0.099 (0.008) 0.028 (0.004)

variables. Following Wang and Blei [38], we generate the
following genotype simulations.

To generate the SNP matrix, we generate an allele frequency
matrix F ∈ RN×M such that F = SΓ⊤, where S ∈ RN×D

encodes genetic population structure and Γ ∈ RM×D maps
how structure affects alleles.

Thus, gij ∼ Binomial(1, Fij).

The outcome is modeled as Y = βTG+αTZ+ϵ, where β is
the vector of treatment effects for each SNP, α is the vector
of coefficients corresponding to the hidden confounders in
Z and ϵ is noise distributed independently as a Gaussian.

We simulate a high signal-to-noise ratio while simulating
outcomes by replacing λi = (αTZ)i as

λi ←

[
s.d.{

∑m
j=1 βjgij}Ni=1√
νgene

][ √
νconf

s.d.{λi}Ni=1

]
λi

ϵi ←

[
s.d.{

∑m
j=1 βjgij}Ni=1√
νgene

][ √
νnoise

s.d.{ϵi}ni=1

]
ϵi,

where νgene = 0.4, νconf = 0.4, and νnoise = 0.2.

Below, we reproduce the simulation details as described by
Wang and Blei [38]. Γ and S are simulated in different ways
to generate the following datasets.

1. Spatial Dataset: The matrix Γ was generated by sam-
pling γik ∼ 0.9 × Uniform(0, 0.5) , for k = 1, 2 and
setting γik = 0.05. The first two rows of S correspond
to coordinates for each individual on the unit square
and were set to be independent and identically dis-
tributed samples from Beta(α, α), α = 0.1, 0.3, 0.5,
while the third row of S was set to be 1, i.e. an inter-
cept. As α =⇒ 0, the individuals are placed closer to
the corners of the unit square, while when α = 1, the
individuals are distributed uniformly.

2. Balding-Nichols Model (BN): Each row i of Γ has
three independent and identically distributed draws
taken from the Balding- Nichols model: γik ∼
BN(pi, Fi), where k ∈ 1, 2, 3. The pairs (pi, Fi) are
computed by randomly selecting a SNP in the HapMap
data set, calculating its observed allele frequency and
estimating its FST value using the Weir & Cocker-
ham estimator [40]. The columns of S were Multino-

mial(60/210,60/210,90/210), which reflect the subpop-
ulation proportions in the HapMap dataset.

3. 1000 Genomes Project (TGP) [1]: The matrix Γ was
generated by sampling γik ∼ 0.9Uniform× (0, 0.5) ,
for k = 1, 2 and setting γik = 0.05. In order to gener-
ate S, we compute the first two principal components
of the TGP genotype matrix after mean centering each
SNP. We then transformed each principal com- ponent
to be between (0,1) and set the first two rows of S to
be the transformed principal components. The third
row of S was set to 1, i.e. an intercept.

4. Humane Genome Diversity Project (HGDP) [6; 2]:
Same as TGP but generating S with the HGDP geno-
type matrix.

These simulations and the ATE estimation experiments were
all done on a laptop with 2.8GHz quad-core Intel i7 proces-
sor.

G. Additional Experimental Results
For the GWAS experiments, we provide a complete table of
dataset simulations and acomparison against different base
propensity models in Table 8 and Table 7 respectively.

H. Theoretical Analysis
H.1. Notation

As described in Section 2, we are given an observational
dataset D = {(x(i), y(i), t(i))}ni=1 consisting of n units,
each characterized by features x(i) ∈ X ⊆ Rd, a binary
treatment t(i) ∈ {0, 1}, and a scalar outcome y(i) ∈ Y ⊆ R.
We assume D consists of i.i.d. realizations of random vari-
ables X,Y, T ∼ P from a data distribution P . Although
we assume binary treatments and scalar outcomes, our ap-
proach naturally extends beyond this setting. The feature
space X can be any continuous or discrete set.

H.2. Calibration: a Necessary Condition for Propensity
Scoring Models

Theorem H.1. When Q(T |X) is not calibrated, there exists
an outcome function such that an IPTW estimator based
on Q yields an incorrect estimate of the true causal effect
almost surely.
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Table 5. Calibration reduces the bias in treatment effect estimation across different base models.

Base classifier Plain Propensities Recalibrated Propensities
εTE ECE εTE ECE

Logistic Regression 0.479 (0.005) 0.029 (0.001) 0.091 (0.022) 0.017 (0.001)
MLP 0.455 (0.042) 0.038 (0.001) 0.027 (0.031) 0.014 (0.001)
SVM 0.485 (0.004) 0.041 (0.001) 0.454 (0.013) 0.018 (0.000)
Naive Bayes 0.471 (0.003) 0.064 (0.000) 0.021 (0.018) 0.003 (0.000)

Table 7. Comparing propensity score models. We compare the AIPW estimate using calibrated propensities and observe reduction in error
across a range of base propensity score models.

Dataset Metrics LR MLP Random Forest Adaboost NB

Spatial εATE (plain) 13.886 (0.755) 17.403 (1.070) 12.911 (0.612) 16.234 (0.916) 582.731 (64.514)
(α=0.1) εATE (calib) 8.942 (0.287) 14.661 (0.762) 8.706 (0.322) 8.524 (0.297) 8.526 (0.472)

∆ECE 0.022 (0.001) 0.072 (0.003) 0.060 (0.001) 0.252 (0.006) 0.281 (0.002)

Spatial εATE (plain) 10.460 (0.720) 12.636 (0.730) 10.578 (0.768) 11.764 (0.839) 400.643 (49.301)
(α=0.3) εATE (calib) 9.000 (0.58) 11.550 (0.747) 9.277 (0.532) 8.909 (0.549) 9.121 (0.535)

∆ECE 0.016 (0.007) 0.070 (0.003) 0.063 (0.001) 0.244 (0.006) 0.281 (0.002)

Spatial εATE (plain) 8.990 (0.510) 10.408 (0.694) 9.277 (0.518) 9.814 (0.691) 276.017 (24.183)
(α=0.5) εATE (calib) 8.590 (0.390) 9.728 (0.650) 8.687 (0.224) 8.520 (0.286) 8.592 (0.216)

∆ECE 0.015 (0.001) 0.070 (0.002) 0.065 (0.001) 0.239 (0.007) 0.269 (0.003)

Balding εATE (plain) 17.660 (1.330) 18.282 (1.267) 18.419 (1.210) 19.248 (1.169) 95.892 (6.350)
Nichols εATE (calib) 16.810 (1.390) 17.033 (1.391) 16.611 (1.385) 16.938 (1.367) 16.833 (1.392)

∆ECE 0.013 (0.002) 0.041 (0.002) 0.052 (0.002) 0.259 (0.010) 0.261 (0.009)

HGDP εATE (plain) 11.380 (0.110) 12.358 (0.197) 11.529 (0.107) 11.816 (0.108) 138.086 (5.086)
εATE (calib) 11.060 (0.120) 11.198 (0.106) 11.299 (0.143) 11.070 (0.123) 11.430 (0.133)

∆ECE 0.011 (0.001) 0.069 (0.002) 0.053 (0.001) 0.275 (0.006) 0.206 (0.003)

TGP εATE (plain) 11.560 (0.650) 11.965 (0.754) 11.677 (0.614) 12.246 (0.713) 87.329 (5.716)
εATE (calib) 10.320 (0.430) 11.530 (0.633) 10.519 (0.402) 10.244 (0.398) 9.070 (0.316)

∆ECE 0.022 (0.001) 0.061 (0.002) 0.070 (0.002) 0.204 (0.007) 0.267 (0.004)

Example. Consider a toy binary setting where X = T =
{0, 1},Y = {0, 1}2.

We set Y = (X ⊕ T, X̄ ⊕ T̄ ), P (T = 1|X = 0) =
p0, P (T = 1|X = 1) = p1 and P (X = 1) = 0.5 such
that ⊕ is logical ‘AND’ and V̄ denotes logical negation of
binary variable V . We see that true ATE is τ = (0.5,−0.5).
Let us assume that Q(T = 1|X = 0) = q0 and Q(T =
1|X = 1) = q1. Thus, with IPTW estimator based on

Q, we estimate τ ′ = E
(

TY
Q(T=1|X) −

(1−T )Y
1−Q(T=1|X)

)
=

(− 0.5(1−p0)
1−q0

, 0.5.p1

q1
). The treatment effect τ ′ = τ only when

q0 = p0 and q1 = p1, which is not true if Q is not calibrated.

Proof. Let P be a space of valid probability distributions on
Y . We would like to prove that ∃P ′(Y |X = x, T = t) ∈ P
such that

lim
n→∞

Probability(τ̂n = τ) = 0

where

• τ is the true ATE

• τ̂n is the ATE estimated using IPTW estimator such
that we have n individuals and propensity score model
is Q(T = 1|X)

• The probability is taken over all propensity models
Q(T = 1|X) such that ∃q ∈ [0, 1], P (T = 1|Q(T =
1|X) = q) ̸= q, and all data-generating distributions
P ′(Y, T,X) = P ′(Y |X,T ).P (T,X).

Let SQ = {q|∃X ∈ X , Q(T = 1|X) = q}. We partition X
into buckets {Bq}q∈Sq

such that Bq = {X|Q(T = 1|X) =
q}.
Let τ̂(Q) = limn→∞ τn. Thus, for discrete X , we could
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Table 8. Increasing proportion of causal SNPs. Calibrated propensities reduce the bias in treatment effect estimation across all setups and
compare favorably against standard GWAS methods.

Method 1% Causal SNPs 2% Causal SNPs 5% Causal SNPs 10% Causal SNPs

Naive 22.408 (5.752) 15.150 (2.213) 23.388 (5.021) 14.846 ( 2.272)
PCA 18.104 (5.378) 13.699 (2.413) 15.837 (3.331) 11.683 (0.983)
FA 18.532 (3.641) 14.166 (2.259) 16.855 (2.764) 11.963 (0.958)
LMM 17.575 (3.408) 13.896 (2.152) 14.681 (3.366) 10.108 (0.827)

IPTW (Calib) 17.237 (3.054) 13.113 (1.775) 14.587 (3.432) 8.625 (0.838)
IPTW (Plain) 19.297 (3.425) 14.372 (1.482) 18.290 (3.788) 11.859 (0.95240)
AIPW (Calib) 17.647 (3.208) 13.382 (1.676) 15.166 (3.597) 9.078 (0.928)
AIPW (Plain) 20.652 (3.286) 13.720 (1.798) 21.321 (4.750) 12.904 (1.990)

write

τ̂(Q)

= EY ∼P ′(.|T,X);T,X∼P

[(
TY

Q(T = 1|X)
− (1− T )Y

1−Q(T = 1|X)

)]
Computing expectation over X

=
∑
X∈X

EY ∼P ′(.|T,X);T∼P (.|X)

[
TY P (X)

Q(T = 1|X)

]
−

∑
X∈X

EY ∼P ′(.|T,X);T∼P (.|X)

[
(1− T )Y P (X)

1−Q(T = 1|X)

]
Computing expectation over T

=
∑
X∈X

EY ∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)
P (X)

]
+

∑
X∈X

EY ∼P ′(.|X,T=0)

[(
− (1− P (T = 1|X))Y

1−Q(T = 1|X)

)
P (X)

]
=

∑
X∈X

(EY ∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)]
− EY ∼P ′(.|X,T=0)

[(
(1− P (T = 1|X))Y

1−Q(T = 1|X)

)]
)P (X)

Expressing the summation over X differently

=
∑
q∈SQ

∑
X∈Bq

(EY ∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)]

− EY ∼P ′(.|X,T=0)

[(
(1− P (T = 1|X))Y

1−Q(T = 1|X)

)]
)P (X)

Since Q(T = 1|X) is not calibrated, we know that ∃q ∈
[0, 1], P (T = 1|Q(T = 1|X) = q) ̸= q. Let us pick q′ ∈
SQ such that P (T = 1|Q(T = 1|X) = q′) ̸= q′.

We could design P ′(Y |X,T ) = I(Y = T.I(X ∈ Bq′)).

Now, we can write

τ̂(Q) =
∑
q∈SQ

∑
X∈Bq

(EY ∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)]

− EY ∼P ′(.|X,T=0)

[(
(1− P (T = 1|X))Y

1−Q(T = 1|X)

)]
)P (X)

(Since Y = 0 when T = 0 or X /∈ Bq′ )

=
∑

X∈Bq′

((
P (T = 1|X)P (X)

Q(T = 1|X)

))

=
∑

X∈Bq′

((
P (T = 1|X)P (X)

q′

))

=
P (T = 1|X ∈ Bq′)P (X ∈ Bq′)

q′

Also, for the above data-generation process,

τ = τ̂(P )

=
∑
X∈X

(EY ∼P ′(Y |X,do(T=1))[Y ]

− EY ∼P ′(Y |X,do(T=0))[Y ]).P (X)

=
∑
q∈SQ

∑
X∈Bq

(EY ∼P ′(Y |X,do(T=1))[Y ]

− EY ∼P ′(Y |X,do(T=0))[Y ]).P (X)

=
∑

X∈Bq′

P (X)

= P (X ∈ Bq′))

Thus,

lim
n→∞

Prob(τn = τ)

= Prob(τ̂(Q) = τ)

= Prob
(
P (T = 1|X ∈ Bq′)P (X ∈ Bq′)

q′
= P (X ∈ Bq′)

)
= Prob (P (T = 1|X ∈ Bq′) = q′)

= Prob (P (T = 1|Q(T = 1|X) = q′) = q′)

= 0,
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since we began with the assumption that P (T = 1|Q(T =
1|X) = q′) ̸= q′.

Please note that we could have defined a set of outcome
functions that produce Y = 0 for X ∈ Bq′ , thus, poten-
tially letting us compute unbiased treatment effects despite
working with a miscalibrated model. However, we want our
IPTW estimator to provide unbiased ATE estimates over all
possible outcome functions. Here, we can see that IPTW
estimator for ATE that uses a miscalibrated propensity score
model cannot obtain unbiased treatment effect estimates on
all possible outcome functions.

H.3. Calibrated Uncertainties Improve Propensity
Scoring Models

We define the true ATE as

τ = Ey∼P (Y=y|do(T=1))[y]− Ey∼P (Y=y|do(T=0))[y]

=
∑
y

y(
∑
X

P (Y = y|X, do(T = 1))P (X)−

∑
X

P (Y = y|X, do(T = 0))P (X))

=
∑
y

y(
∑
X

P (Y = y|X,T = 1)P (X)−

∑
X

P (Y = y|X,T = 0)P (X))

Next, recall that the finite-sample Inverse Propensity of
Treatment Weight (IPTW) estimator with a model Q(T =
1|X) of P (T = 1|X) produces an estimate τ̂n(Q) of the
ATE, which is computed as

τ̂n(Q) =
1

n

n∑
i=1

(
t(i)y(i)

Q(T = 1|x(i))
− (1− t(i))y(i)

1−Q(T = 1|x(i))

)
.

We define τ(Q) as the limit limn→∞τ̂n(Q) when the
amount of data goes to infinity. Notice that we can write

lim
n→∞

(τ̂n(Q)) = τ̂(Q) =
∑
y

y[πy,1(Q)− πy,0(Q)],

where

πy,t(Q) = P (T = t)
∑
X

P (Y = y|X,T = t)
P (X|T = t)

Q(T = t|X)

=
∑
X

P (Y = y|X,T = t)
P (T = t|X)

Q(T = t|X)
P (X)

We have a multiplicative term P (T = t) in the above expres-
sion since we are dividing by n in the finite-sample formula
as opposed to nt (the number of samples with treatment t).

In other words, in order for the finite-sample formula to be
a valid Monte Carlo estimator with samples coming from
P (X|T = t), there needs to be an "effective adjustment
factor" of nt/n (such that (nt/n) · (1/nt) = (1/n)), and
this term is P (T = t) in the limit of infinite data.

Clearly, if Q = P we have τ̂(Q) = τ̂(P ) = τ . If not, we
can consider the error

E = |(τ̂(P )− τ̂(Q))|.

H.3.1. BOUNDING THE ERROR OF CAUSAL EFFECT
ESTIMATION USING PROPER LOSSES

We can form a bound on E as

E = |[τ̂(P ) − τ̂(Q)]|

=

∣∣∣∣∣∣
∑
y

y[(πy,1(P ) − πy,0(P )) − (πy,1(Q) − πy,0(Q))]

∣∣∣∣∣∣
≤
∑
t

∣∣∣∣∣∣
∑
y

y[(πy,t(P ) − πy,t(Q)]

∣∣∣∣∣∣
≤
∑
t

∑
y

[|y||πy,t(P ) − πy,t(Q)|]

=
∑
t

∑
y

|y|[

∣∣∣∣∣∣
∑
X

P (Y = y|X,T = t)P (X)

(
1 −

P (T = t|X)

Q(T = t|X)

)∣∣∣∣∣∣]
≤
∑
t

∑
y

|y|[
∑
X

P (Y = y|X,T = t)P (X)

∣∣∣∣∣1 −
P (T = t|X)

Q(T = t|X)

∣∣∣∣∣]
=
∑
t

∑
y

|y|.[
∑
X

P (Y = y|X,T = t)P (X)ℓX (P,Q)
1/2

]

where ℓX (P,Q) =

(
1 −

P (T = t|X)

Q(T = t|X)

)2

=
∑
t

∑
y

|y|.EX∼Ry,t
[ℓX (P,Q)

1/2
]

where Rt,y ∝ P (Y = y|X,T = t)P (X) (i.e. Rt,y ∼
k.P (Y = y|X,T = t)P (X), k is constant) and ℓX(P,Q)
is a type of expected Chi-Squared divergence between P,Q.
It is a type of proper score. Thus when P = Q, we get zero
error, and otherwise we get a bound.

In the above derivation, we see that the expected error
|πy,t(P ) − πy,t(Q)| induced by an IPTW estimator with
propensity score model Q is bounded as

|πy,t(P )− πy,t(Q)| ≤ EX∼Ry,t
[ℓχ(P,Q)

1
2 ].

H.3.2. CALIBRATION REDUCES VARIANCE OF INVERSE
PROBABILITY ESTIMATORS

Theorem H.2. Let P be the data distribution, and suppose
that 1 − δ > P (T |X) > δ for all T,X and let Q be a
calibrated model relative to P . Then 1− δ > Q(T |X) > δ
for all T,X as well.

Proof. Suppose Q(T = 1|x) = q for some x and q < δ.
Since Q is calibrated, we have P (T = 1|Q(T = 1|X) =
q) = q < δ.
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However P (T = 1|x) > δ for every x. Hence, P (T =
1|X ∈ A) > δ, for all sets A ⊆ X . This implies that
P (T = 1|Q(T = 1|X) = q) > δ for all q ∈ [0, 1].

Thus, we have a contradiction.

H.3.3. CALIBRATION IMPROVES THE ACCURACY OF
CAUSAL EFFECT ESTIMATION

Theorem H.3. The error of an IPTW estimator with propen-
sity model Q tends to zero as n→∞ if:

1. Separability holds, i.e., ∀X1, X2 ∈ X , P (T |X1) ̸=
P (T |X2) =⇒ Q(T |X1) ̸= Q(T |X2)

2. The model Q is calibrated, i.e., ∀q ∈ (0, 1), P (T =
1|Q(T = 1|X) = q) = q

Proof. We prove this for discrete inputs at first and then
prove it for continuous inputs.

Discrete Input Space.

If our input space X is discrete, then the number of dis-
tinct values that Q(T = 1|X) can take is countable. Let
us assume that Q(T = 1|X) takes values {qi}Mi=1. Thus,
we can partition X into buckets {Bi}Mi=1 such that Bi =
{X|Q(T = 1|X) = qi}. Due to separability, we have
∀X1, X2 ∈ X , Q(T |X1) = Q(T |X2) =⇒ P (T |X1) =
P (T |X2). Thus, we have ∀i, ∀X1, X2 ∈ Bi, Q(T =
1|X1) = Q(T = 1|X2), and P (T = 1|X1) = P (T =
1|X2).

Let us assume that for each bucket Bi, our true propensity
P (T = 1|X) is pi, i.e, if X ∈ Bi then Q(T = 1|X) = qi
and P (T = 1|X) = pi.

Assuming positivity, 0 < pi < 1.

Now, for all i, we can write

P (T = 1|Q(T = 1|X) = qi) = P (T = 1|X ∈ Bi)

= pi.

If Q is calibrated, then by definition pi = qi.

Now, we can write the expression for ATE τ as

τ = τ̂(P ) = EY,T,X [
TY

P (T = 1|X)
− (1− T )Y

(1− P (T = 1|X))
]

=

N∑
i=1

P (X ∈ Bi)EY,T

(
TY

pi
− (1− T )Y

(1− pi)

)

Using our propensity score model Q(T = 1|X), we esti-

mate τ̂ as

τ̂(Q) = EY,T,X [
TY

Q(T = 1|X)
− (1− T )Y

(1−Q(T = 1|X))
]

=

N∑
i=1

P (X ∈ Bi)EY,T

(
TY

qi
− (1− T )Y

(1− qi)

)

If our model Q is calibrated, then pi = qi. Hence, 0 < qi <
1 and τ̂ is well-defined. Also, τ = τ̂(P ) = τ̂(Q).

When our observational data contains n units, the IPTW
estimator based on model Q(T = 1|X) is τ̂n =
1
n

∑n
i=0

(
T (i)Y (i)

Q(T=1|X(i))
− (1−T (i))Y (i)

1−Q(T=1|X(i))

)
.

Hence, limn→∞ τ̂n = τ̂(Q) = τ̂(P ) = τ.

Continuous Input Space.

When X is continuous, the number of buckets can be
uncountable. The buckets can now be formed as Bq =
{X|Q(T = 1|X) = q},∀q ∈ [0, 1]. It is easy to see that
{Bq}q∈[0,1] partitionsX . Note that Bq can be empty if there
exists no X such that Q(T = 1|X) = q.

Due to separability, ∀X1, X2 ∈ X , Q(T |X1) =
Q(T |X2) =⇒ P (T |X1) = P (T |X2). Thus, for all q,
P (T = 1|X) takes on a unique value for all X ∈ Bq, i.e.,
∀q ∈ [0, 1], P (T = 1|X ∈ Bq) = f(q), where function
f : [0, 1]→ [0, 1].

Hence, we can write

∀q ∈ [0, 1], P (T = 1|Q(T = 1|X) = q) = P (T = 1|X ∈ Bq)

= f(q).

When model Q(T = 1|X) is calibrated by our definition,
then ∀q ∈ [0, 1], q = f(q).

Therefore, ∀q ∈ [0, 1], Q(T = 1|X ∈ Bq) = q = f(q) =
P (T = 1|X ∈ Bq).

Since {Bq}q∈[0,1] partitions X , we have ∀X ∈ X , P (T =
1|X) = Q(T = 1|X). Thus, τ̂(P ) = τ̂(Q).

H.4. Algorithms for Calibrated Propensity Scoring

H.4.1. ASYMPTOTIC CALIBRATION GUARANTEE

Theorem H.4. The model R◦Q is asymptotically calibrated
and the calibration error E[Lc(R ◦ Q,S)] < δ(m) for
δ(m) = o(m−k), k > 0 w.h.p.

Proof. Any proper loss can be decomposed as: proper loss
= calibration - sharpness + irreducible term [9]. The cal-
ibration term consists of the error E[Lc(R ◦ Q,S)]. The
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sharpness and irreducible term can be represented as the
refinement term E(Lr(S)). Table 9 provides examples of
some proper loss functions and the respective decomposi-
tions. The rest of our proof uses the techniques of Kuleshov
and Deshpande [13] in the context of propensity scores.

Kull and Flach [15] show that the refinement term can be
further divided as E(Lr(S)) = E(Lg(S,B◦Q))+E(L(B◦
Q,T )). Here, B is the Bayes optimal recalibrator P (T =
1|Q(T = 1|X)) and S is P (T = 1|R ◦Q).

Recall that if we solve the Task B.1, we have for δ(m) =
o(1)

E(L(B ◦Q,T )) ≤ E(L(R ◦Q,T ))

≤ E(L(B ◦Q,T )) + δ(m)

Using Gneiting et al. [7], Kull and Flach [15] we
decompose E(L(R ◦Q,T ))

=⇒ E(L(B ◦Q,T )) ≤
(E(Lc(R ◦Q,S))+E(Lg(S,B ◦Q))+

E(L(B ◦Q,T ))) ≤ E(L(B ◦Q,T )) + δ(m)

=⇒ E(Lc(R ◦Q,S)) + E(Lg(S,B ◦Q)) ≤ δ(m)

=⇒ E(Lc(R ◦Q,S)) ≤ δ(m)

Thus, solving Task B.1 allows us to obtain asymptotically
calibrated R ◦Q such that the calibration error is bounded
as E[Lc(R ◦Q,S)] < δ(m).

H.4.2. NO-REGRET CALIBRATION

Theorem H.5. The recalibrated model has asymptotically
vanishing regret relative to the base model: E[L(R ◦
Q,T )] ≤ E[L(Q,T )] + δ, where δ > 0, δ = o(m−k), k >
0.

Proof. Solving Task B.1 implies E[L(R◦Q,T )] ≤ E[L(B◦
Q,T )] + δ ≤ E[L(Q,T )] + δ. The first inequality comes
from definition of Task B.1 and the second inequality holds
because a Bayes-optimal B has lower loss than an identity
mapping [13].



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Calibrated Propensities for Causal Effect Estimation

Proper Score Loss Calibration Refinement
L(F,G) Lc(F, S) Lr(S)

Logarithmic Ey∼G log f(y) KL(s||f) H(s)
CRPS Ey∼G (F (y)−G(y))2

∫∞
−∞(F (y)− S(y))2dy

∫∞
−∞ S(y)(1− S(y))dy

Quantile Eτ∈U [0,1]
y∼G ρτ (y − F−1(τ))

∫ 1

0

∫ F−1(τ)

S−1(τ)
(S(y)− τ)dydτ Eτ∈U [0,1]

y∼S ρτ (y − S−1(τ))

Table 9. Proper loss functions. A proper loss is a function L(F,G) over a forecast F targeting a variable y ∈ Y whose true distribution is
G and for which S(F,G) ≥ S(G,G) for all F . Each L(F,G) decomposes into the sum of a calibration loss term Lc(F, S) (also known
as reliability) and a refinement loss term Lr(S) (which itself decomposes into sharpness and an uncertainty term). Here, S(y) denotes
the cumulative distribution function of the conditional distribution P(Y = y | FX = F ) of Y given a forecast F , and s(y), f(y) are
the probability density functions of S and F , respectively. We give three examples of proper losses: the log-loss, the continuous ranked
probability score (CRPS), and the quantile loss.
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