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Abstract

Transformer Architecture Search (TAS) meth-
ods aim at automates searching the optimal
Transformer architecture configurations for a
given task. However, they are impeded by the
prohibitive cost of evaluating Transformer ar-
chitectures. Recently, several Zero-Shot TAS
methods have been proposed to mitigate this
problem by utilizing zero-cost proxies for eval-
uating Transformer architectures without train-
ing. Unfortunately, they are limited to specific
tasks and lack theoretical guarantees. To solve
this problem, we develop a new zero-cost proxy
called NTSR that combines two theoretically-
inspired indicators to measure the trainability
and expressivity of Transformer networks sep-
arately. We then integrate it into an effective
regularized evolution framework called ETAS
demonstrate its efficacy on various tasks. The
results show that our proposed NTSR proxy can
consistently achieve a higher correlation with
the true performance of Transformer networks
on both computer vision and natural language
processing tasks. Further, it can significantly
accelerate the search process for finding the
best-performing Transformer network architec-
ture configurations.

1 Introduction

Transformer networks Li et al. (2022); Zhou et al.
(2022); Chitty-Venkata et al. (2022) have attracted
tremendous interest over the last few years due to
their effectiveness in learning long-range depen-
dencies in data and superior performance across
various tasks. They have gradually replaced tradi-
tional neural networks, such as Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Net-
works (RNNs), in a variety of domains including
Natural Language Processing (NLP) (Javaheripi
et al., 2022), Computer Vision(CV) (Chen et al.,
2022), Speech Signal Processing (Chitty-Venkata
et al., 2022), and Healthcare(Chitty-Venkata et al.,
2022). Recently, the Transformer architecture has

become the de facto backbone for most large lan-
guage models (LLM). While in real applications, it
is often necessary to adjust the Transformer archi-
tecture configurations according the specific tasks
(Javaheripi et al., 2022), such as the depth of the
network, the number of attention heads, embedding
dimension, and the inner dimension of the feed-
forward layer. Manual tuning these parameters re-
quires repeated refinement with expert experience,
which is time-consuming and computationally ex-
pensive.

To solve this problem, various Transformer Ar-
chitecture Search (TAS) methods have been pro-
posed, which automates searching the optimal
Transformer architecture configurations for a given
task and data. The current popular TAS methods
include reinforcement learning evolutionary search,
one-shot and predictor-based search. However, dur-
ing the search process, they still demands a high
computational cost to evaluate several hundreds or
thousands of architectures. Training a Transformer
network can take hours or even days, thus hinder-
ing the practical application of TAS. Recently, zero-
shot Neural Architecture Search (NAS) methods
have attracted much attention as they design zero-
cost proxies to estimate the performance of a net-
work at the initialization stage. They can quickly
evaluate the performance of a network in a few
seconds by computing statistics from a single for-
ward/backward propagation pass of the network
with a minibatch of data at initialization. Neverthe-
less, Zhou et al. (2022) have showed the majority of
existing zero-cost proxies are specifically designed
for the CNN search spaces (e.g., NAS-Bench 101,
NAS-Bench 201, DARTS (Zela et al., 2022)) and
perform worse on the Transformer search space.
They leverage the characteristics of Transformer
networks and design a DSS zero-cost proxy that
estimates the synaptic diversity of multi-head self-
attention (MSA) and the synaptic saliency of multi-
layer perceptron (MLP) in the Transformer network



to rank its performance in a Vision Transformer
(ViT) search space. Later, Chen et al. (2022) in-
troduce a zero-cost proxy that measures the com-
plexity of manifold propagation through ViT to es-
timate how complex function can be approximated
by a Vision Transformer network. Javaheripi et al.
(2022) choose the number of decoder parameters in
auto-regressive Transformers as a zero-cost proxy
for perplexity of the language model without need
for any model training.

Unfortunately, the existing zero-cost for Trans-
former proxies are limited to specific computer vi-
sion or natural language processing tasks. Nonethe-
less, most of them are designed based on empir-
ical observations and lack theoretical assurances.
Can we design a theoretically-inspired zero-cost
proxy applicable to multiple vision and lan-
guage tasks ? To this end, we propose a novel
zero-cost proxy called NTSR that combines two
theoretically-inspired indicators to measure the
trainability and expressivity of Transformer net-
works. In particular, based on the theoretical un-
derpinnings of deep neural network training, we
design the NTKT metic that utilizes the trace of
the mean Neural Tangent Kernel (NTK) to quantify
the trainability of Transformer networks. Mean-
while, we design another SEPT metic that utilizes
the upper bound of separation rank induced by the
Transformer network to measure the capacity of
transformer networks to represent input dependen-
cies. To demonstrate the effectiveness of our pro-
posed NTSR zero-cost proxy for Transformer net-
works, We compare it to other popular zero-cost
proxies in multiple search spaces. The results show
that NTSR can consistently achieve a higher cor-
relation with the true performance of Transformer
networks on both computer vision and natural lan-
guage processing tasks. To investigate the ability
of our proposed NTSR zero-cost proxy to acceler-
ate the search of the best-performing Transformer
network, we further integrate it into an effective
regularized evolution framework called ETAS. The
results show that NTSR can significantly speed up
the process of finding the best-performing Trans-
former network.

2 Method

Notations Assume a standard depth-L Trans-
former network has one input embedding layer and
L transformer blocks. The input of Transformer
network is a sequence of T tokens {z; € [V]}]_,,

where V' is the number of vocabulary tokens. The
embedding layer transforms the input sequence
{z: € [V]}z;1 to T sequenced d-dimensional
vectors z},t € [T, which is defined as z} =
Wy ¢ + pg, where Wy, € R4V is the learned
word-embedding matrix, p; is the positional em-
bedding vector. After that, z/ is recursively trans-
formed into 7" sequenced d', dimensional vectors
zbt € [T),l € [L] :={1,..., L} through L trans-
former blocks. Each transformer block consists
of two sublayers, i.e., a multi-head self-attention
sublayer and a position-wise feed-forward sublayer.
Each block operation is defined as:
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where SM and LN represent the softmax and lay-
. . Lh .

ernorm operations, respectively. Attn,” is the at-

tention score matrix between the vector z! at po-

sition t € [T] and other vectors zi, at position

t'" € [T] in the [-th transformer block. fli/’[tHS A

and fé’éN is the output of the multi-head self-
attention sublayer and the point-wise feed-forward
sublayer in the [-th transformer block, separately.
Wabh Whih ywolbh ¢ Rd:*da represent query,
key, value weight matrix, respectively. Wol
Rax represents the aggregated weights across
H heads. d, is the dimension of the transformer
block [, i.e., the width of the entire block. H is
the number of heads and the dimension of each
head in the transformer block [ is d, = d\/H. o
represents the ReLLU activation function. WéFNl €
R xdi, Wi € R%: %4 represent the inner feed-
forward weight matrices. diln is the inner dimension
of the feed-forward sublayer, which is usually set to
four times of d’. Unlike traditional transformer net-
work stacking blocks with fixed sizes, in this study,
we allow each transformer block [ has different
d. and dfn dimensions for enhancing its flexibility
across different tasks and datasets.

Problem setting In the context of TAS, the goal
of zero-cost proxy is to accurately estimate the
ranking of Transformer network’s performance at



initialization. Here, we choose the widely used
Spearman’s p (Krishnakumar et al., 2022) and
Kendall’s 7 (Ning et al., 2021) rank correlation
metrics to evaluate its predictive ability, which are
defined as follows:

T = N(NQ—l)ZSgn(ui —uj)sgn (yi — yj)
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where N is the number of networks, u =
(uy, - ,uny) and y = (y1, - ,yn) are scores
of the zero-cost proxy and the true accuracy of
networks separately, R(u) and R(y) represent the
rankings of networks converted from u and y, re-
spectively. oR(y,) and o, are the standard devia-
tions of R(u) and R(y), separately.

In fact, a good neural network architecture
should have good trainability (i.e. how fast a net-
work can convergence via a gradient descent al-
gorithm) and high expressivity (i.e. how complex
functions a network can represent) (Chitty-Venkata
et al., 2022; Chen et al., 2021c). In Sec. 3.1 and
3.2, we design two theoretically-inspired indica-
tors to reflect the trainability and expressivity of
Transformer networks, separately. We then pro-
pose NTSR zero-cost proxy that combines the two
important indicators to measure the trainability and
expressivity of a given Transformer network, and
integrate it in an evolutionary search framework
called ETAS to find the best-performing Trans-
former network architecture in section 3.3.

2.1 Trainability of Transformer Network

With the rapid development of deep learning the-
ory on neural networks, the Neural Tangent Kernel
(NTK) has emerged as an effective tool for char-
acterizing the training dynamics of infinite wide
(Jacot et al., 2021) or finite wide (Novak et al.,
2022) deep networks. It solved a classic question
of “how does training of neural network work so
well despite being highly nonconvex?"(Yang, 2020).
Lee et al. (2019) have demonstrated under the large
width limit and constant NTK assumption, the pre-
dictions of a neural network evolves like a linear
model throughout gradient descent training.

NTK Formally, assume a deep neural network
f parameterized by w has D output dimension.
Let (X, )) be the training samples, and £ the loss
function. The outputs of network are f (X, w) €

RYP where N is the number of training samples.

During the gradient descent training, the evolution
of parameters w; and output f (X', ws) at time step
s can be expressed as follows:

ws = NV f(X,w0s)"Vixw)l, (1)

F(X wy) = Vo F (X, wy)ws
= _nvw.f(XawS)f(XvWS)va(Xﬂus)[’
= —nO(X, X)V¢x w,)L, ®)

where @4(X, X) € RVP*ND ig the Neural Tan-
gent Kernel (NTK) at time step s, defined as:

®S(X7X) = vwf(Xaws)vwf(Xaws)T' (9)

The NTK exactly captures the training dynamics
of the network. Especially for the infinite wide net-
work, under the mean-squared loss and a constant
NTK assumption i.e., @4(X,X) = Oy(X,X),
Equation (8) has a closed-form solution:

F (X wy) = (T—e7790%) y + 7790 f (X, wp)
(10)

where f (X, w;s) represents the outputs of the
network at time step s, I is the identity matrix,
f (X, wp) is the outputs of the network at initia-
tion, 1 is the learning rate. This implies that the
output of the network is determined by the training
samples (X', )), the initial weights w and initial
NTK f (X, wp). Through the NTK at initiation,
we can estimate the training convergence of a net-
work. Arora et al. (2019) have demonstrated that
the training convergence spped is faster in the direc-
tion corresponding to the larger NTK eigenvalues
of the network.

NTK of Transformer Assume there exists a
batch of M sequences X = {xq 1, - - 7$a,T}g[:1,
the output of Transformer network at the L-
th block is {zL,,--- ,ziT}g[zl. The Trans-
former network parameters w consists of
{WV7 Wq,l,h7 ‘)Vl»e,l,h7 vvv,l,h7 Wo,l,h, ‘/VI:IFND

WFlFNZ}lel‘ Then, we define the NTK of a Trans-
former network K(X,X) € RMdZxTxMdixT
each element of the 4-dimensional NTK tensor is :
(11

_ L L T
Ka1,t1,a2,t2 - vwzm,h (szozz,tz) )

where a1, ag € X are pair of inputs sampled from
the training batch X'. ¢;,ty € [T] is the token
index.



Theorem 2.1 (Yang (2020)). Let f be a neural net-
work of standard architecture with scalar output
and randomly initialized weights w ~ N (0, UUQJ).
If it satisfies Condition I in Yang (2020) and its non-
linearities have polynomially bounded weak deriva-
tives, then its NTK O converges almost surely, over
any finite set of inputs, to a deterministic kernel ©,
i.e., © =25 Og as its widths go to infinity.

This theorem indicates the NTK of standard
Transformer network at initialization K(X', X') has
a well-defined infinite-width limit. We can use it
to predict the training convergence of the network.
As shown in Equation (10), we can estimate the
training convergence of network through NTK at
initialization. If ®g can be represented through
its eigenvectors and corresponding eigenvalues \;,
then it can be inferred that the eigenvectors of @¢
coincide with those of e~7®0!, with a transforma-
tion of eigenvalues to e~"*. This observation
reveals that the network’s convergence rate is inti-
mately connected to the eigenstructures of its NTK
©;. Consequently, a network with a NTK charac-
terized by a greater total sum of eigenvalues, i.e.,
> i, is likely to achieve faster convergence and
lower loss.

However, directly computing » . \; of the 4-
dimensional NTK tensor K(X', X') of a Trans-
former network is extremely challenging. This dif-
ficulty arises due to the dynamic nature of the net-
work connections in Transformers, where the out-
put at each token index focuses on different parts
of the input sequence, as shown in Equation (1),
resulting in distinct outputs for each token index.
To solve this problem, we take a mean of the NTK
tensor K(X, X') over the token indexes, which is
defined as K(X, X) € RMdzxMdZ \where each
element is :

T T
_ 1 L L T
KOéLOQ - T2 Z Z v'wzal,h (vU’zO@,tz) :
t1=1tx=1
(12)

Through the above operation, the four-dimensional
NTK tensor K(X, X) is reduced to a standard two-
dimensional matrix I_(aha,z. Besides, the matrix is
symmetric and positive semi-definite, the sum of
eigenvalues is equivalent to the trace of K(X, X).
Calculating the trace of a matrix offers computa-
tional efficiency, effectively bypassing the complex-
ities involved in eigenvalue determination. Conse-
quently, we use the trace of I'_(Oéha2 as an indicator
called NTKT for the training convergence of the

network, which is defined as:

NTKT(f) = ||K(X, X)||

Mo
:ZHK%%‘
i=1
M T df

1
= 2 S Vel

a;=1t;=1j5=1

tr

tr

(13)

Theorem 2.2. Assume a standard Transformer
net f with randomly initialized weights w ~
N (0, 0'(%). Under vanilla stochastic gradient de-
scent (SGD) optimizer and the first-order Tay-
lor expansion, the mean of output over tokens at
time step s + 1 satisfies: fsi1(X) — fo(X) =
—nsK(X, X)L (fs (X)), where ns is the learning
rate at steo s. Then, NTKT(f) is positively cor-
related with the convergence rate of the network
I

The proof of this theorem can be found in the
supplementary material. This theorem shows that
NTKT provides a reasonable estimate for the train-
ing convergence of the network. In general, a
larger NTKT score indicates that the correspond-
ing network will converge faster and learn more
efficiently.

2.2 Expressivity of Transformer Network

The success of Transformer networks largely re-
liance on the core attention mechanism to learn
complex dependencies among input sequences for
different tasks. Intuitively, the stronger a Trans-
former network can model dependencies between
inputs, the greater its capability to represent input
information. Is there exists a quantitative metric
to measure the expressivity of Transformer net-
work at initialization? To solve this problem, we
introduce separation rank as a measure that quanti-
fies the ability of a Transformer network to model
dependencies between inputs.

Separation Rank  Separation rank is first pro-
posed by Beylkin and Mohlenkamp (2002) for high-
dimensional numerical analysis, and then applied
to various areas including machine learning (Ghas-
semi et al., 2019), chemistry (Chinnamsetty et al.,
2007), and physics(Validi, 2014). Recently, it has
been applied to measure the input dependencies
modeled by deep convolutional and recurrent net-
works (Cohen and Shashua, 2017; Cohen et al.,



2016). Let (A, B) be a partition of the input loca-
tions, i.e., A and B are disjoint subsets of input
sequence 1] := {1,...,T} and AU B = [T].
The separation rank of a function y(z1,..., )
w.r.t. partition (A, B) is the minimal number of
summands that together sum up to equal y, where
each summand is multiplicatively separable w.r.t.
the partition (A, B), i.e., each summand is equal
to a product of two functions — one that takes in
only inputs from the subset {x; : i € A} and an-
other that intakes only inputs from the other subset
{z; : j € B}. Formally, the separation rank of
Y (Rdz)T — R w.r.t. the partition (4, B) is
defined as:

sep(4,p)(y) := min {R e NU{0}:

N/2
A A @
Hgl,...,gR,ng,...,gﬁ:<Rd) - R,

y(x1,...,x7) =

R

> gt {mii € AN gP ({515 € BY) |
r=1

(14)

The separation rank quantifies the amount of in-
put inter-dependency induced by the function
y(xy,...,xp) w.rt. partition (A, B). If the sepa-
ration rank of a function y(x1, . .., xr) w.r.t. par-
tition (A, B) is 1, the function y(x1,...,x7) is
multiplicatively separable w.r.t. partition (A4, B),
meaning that {x; : i € A} and {x; : j € B} are
statistically independent. The larger sep (4 p)(y)
is, the more it models inter-dependency between
{z; : i € A} and {x; : j € B}. In other
words, it means that the function y(x1,...,xr)
can learn higher correlation between {x; : i € A}
and {z; : j € B}.

Separation rank for Transformer As shown in
Equation (14), the separation rank directly reflect
the success behind the core attention mechanism
in Transformer network. The self-attention layer
dynamically learns to correlate any inter-dependent
subsets of the inputs (Levine et al., 2020). When a
transformer network learn more dependencies be-
tween inputs, the separation rank induced by this
network will have a higher value. Levine et al.
(2020) have demonstrated a tight bound on the sep-
aration rank of Transformer network with respect
to the dependence on depth and width. Further,
they leverage this bound to determine the optimal

depth-to-width for a given Transformer network
size.

Theorem 2.3 (Levine et al. (2020)). Let y-t-L:d=-H
be the i-th scalar output at the t token index of a
standard depth-L Transformer net f with dimen-
sion d, and the number of headsH per layer. Then,
its separation rank w.r.t. balanced partitions,
which obey AU B = [T],|A| = |B| =T/2, is in-
variant to the identity of the partition, i.e., AUB =
[T],fl UB = [T), s.t. |A|,|B], |f~1\, |B =T/2:
Sep(A’B)(yi,t,L,dz,H) _ Sep(A,B)(yi,t,L,dz,H).

This theorem reveals that the separation rank
induced by the standard Transformer network
keeps consistent under different balanced partition
of inputs. Next, we will omit the specification
of any balanced partition of inputs, denoting as
sep(y®t-Lde 7 Wies et al. (2021) further demon-
strate the existence of an embedding rank bottle-
neck that limits the expressivity of the Transformer
network. They showed that log sep(y*t1d= 1) =
O (L -min {r,d,}), where 7 is the embedding
rank defined as r = rank(Wy/).

However, the current study mainly focus on the
separation rank of the Transformer network with
the same dimension d, per layer. In this study,
we extend the separation rank to the Transformer
network with each block  has different d’ and d!,
dimensions. This makes it more difficult to analyze.
To solve this problem, we do some relaxations fol-
lowed by Wies et al. (2021) and Levine et al. (2020).
We put all the position-wise feed-forward layer at
the end since the feed-forward operation does not
mix different locations and learn the dependencies
between inputs. We then remove all the normaliza-
tion layers, and omit the ReLLU and softmax non-
linearities. The reasons to do it can be referred to
Wies et al. (2021) and Levine et al. (2020). Though
these relaxations are shown to weaken the overall
network performance, they are much less pertinent
to the ability of the core self-attention mechanism
to model dependencies between different places at
the input. Consequently, the multi-head attention
operation of each block [ in Equation (2) can be
simplified as:

T H

ﬁz+1zzz <Wq,z,hﬁz 7Wk,l7h'ﬁl/> Wo,l,th,l,hf;l/ _

t=1 h=1
(15)

By forward propagating the above operations layer-
by-layer, We can obtain the upper bound on the



separation rank of the Transformer network with
different dimensions d’, per layer.

Theorem 2.4. Let fF be the output at the t to-

ken index of a standard depth-L Transformer net

f with dimension d' and the number of heads H

per layer. Then, its separation rank w.r.t. bal-

anced partitions, which satisfies log(sep(f})) <
T+

log(S1-, db)+Hlog(Sy *5%—).

The proof of this theorem is shown in appendix.
This theorem shows that the separation rank of
the Transformer net f can be upper bounded by
a constant, which is related to the depth of the
network L, the number of tokens 7" and the sum
of dimensions Zle d’. Thus, we use this bound
to measure the amount of dependencies modeled

by the Transformer net. We name this measure as
SEPT, which is defined as:

L L T+1
1—d

SEPT(f) = log(z dlz)—i—log(z ﬁ)

=1 =1
(16)

SEPT measures the Transformer network’s ability
to model dependencies between different places of
the input. In general, a larger SEPT score indicates
that the corresponding Transformer network has a
stronger expressivity about different dependencies
between inputs.

2.3 Zero-Shot Transformer Architecture
Search via Network Trainability and
Expressivity

NTSR How to combine the two NTKT and SEPT
theoretically-inspired indicators to find the best-
performing Transformer network at initialization?
To answer this question, we propose a new zero-
cost proxy called NTSR to make a trade-off be-
tween the network trainability and expressivity.
Note that the magnitudes of NTKT and SEPT score
may differ much and the ranges of them are agnos-
tic before computing on the whole search space.
Hence, we can’t directly normalize NTKT and
SEPT scores before searching the network. To
avoid this problem, instead of using the numerical
values of NTKT and SEPT, we combine the rela-
tive ranking of NTKT and SEPT by comparing the
sampled set of architectures, which is defined as:

NTSR() = 5 (RNTKT($)) + R(SEPT(f))).
a7

where R(NTKT(f)) and R(SEPT(f)) represent
the relative ranking of the network f converted
from the NTKT(f) and SEPT( f) among the sam-
pled set of architectures. In general, a higher rank
of NTSR indicates that the network has a better
trainability and expressivity.

ETAS As described above, our proposed NTSR
zero-cost proxy provides a reasonable estimation
of the network’s performance. The next major
question is how to construct an efficient NAS
framework on top of it? To solve this problem,
we integrate it into a popular regularized evolution
framework called ETAS. We first randomly sample
Ny network architectures from the search space
and then pick the top ng networks according the
ranking of NTSR as the initial parent population
to warmup the whore algorithm. Through warmup,
we can find a better local initial population, thus
potentially expediting the discovery of the optimal
network. Note that the sample size Ny is much
larger than the number of networks we can afford
to train. After that, we generate IV,,, candidate ar-
chitectures by mutating the parent architectures at
each iteration m and then select top n,,, architec-
tures from the current [V,,, candidate architectures
according the ranking of NTSR. We then evalu-
ate the selected architectures and update the parent
population. The algorithm details of our proposed
ETAS framework is given in the Appendix.

3 Experiments and Discussion

In this section, we choose to search the most popu-
lar Vision Transformer (ViT) and GPT-2 architec-
tures in computer vision and natural language pro-
cessing domains separately. We compare our pro-
posed NTSR zero-cost proxy with several zero-cost
proxies for Transformer include DSS(Zhou et al.,
2022), Length Distortion (LD)(Chen et al., 2022)
and conventional zero-cost proxies for CNN like
snip, grad_norm, NASWOT, zico and MeCo. Since
Ning et al. (2021) have demonstrated the number
of flops and parameters serve as the competitive
proxies for the network performance than most
zero-cost proxies under the CNN search space, we
also add them for comparison. To make an abla-
tion study on our proposed NTSR proxy, we add
NTKT and SEPT alone as zero-cost proxies for
comparison.
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Figure 1: The best-found valid loss over the number of iterations (beyond initial points) of various methods on (a)
the ImageNet1k dataset of the Autoformer tiny search space, (b) the ImageNet1k dataset of the Autoformer small
search space, (c) the ImageNetlk dataset of the Autoformer base search space, (d) the Wikitex103 dataset of the
GPT-2 search space.

Zero-cost tiny small base

proxies KT SPR KT SPR KT SPR
params 0.57+0.00 0.76£0.00 0.64+0.00 0.81£0.00 0.60+0.00 0.81+£0.00
flops 0.49+0.00 0.68+0.00 0.58+0.00 0.78=+0.00 0.524+0.00 0.74+£0.00
snip 0.56+0.03 0.7440.03 0.59+0.01 0.76+0.03 0.58+0.06 0.79£0.08
grad_norm 0.33£0.05 0.51+0.04 0.54+0.03 0.72+0.03 0.584+0.04 0.77£0.06
NASWOT 0.54+0.02 0.71+£0.02 0.57+0.03  0.75£0.04 0.504+0.02 0.71£0.03
zico 0.484+0.03 0.65+0.03 0.43+0.02 0.62+0.03 0.43+0.04 0.62£0.05
MeCo 0.461+0.03  0.68£0.02 0.47+0.01 0.66+0.03 0.47+0.01 0.66£0.02
DSS 0.66+0.01 0.80£0.02 0.65+0.02 0.82£0.02 0.641+0.03  0.84£0.05
LD 0.52+0.02 0.69£0.02 0.60+0.03  0.81£0.04 0.594+0.03  0.80£0.03
SEPT 0.71+0.00  0.89£0.00 0.72+0.00  0.89£0.00 0.69+0.00 0.87£0.00
NTKT 0.70+0.02  0.87£0.02 0.70+0.03  0.86£0.02 0.7240.02  0.90£0.02
NTSR 0.74+0.01  0.90+0.02 0.74+0.02  0.91£0.02 0.75+0.01 0.92+0.01

Table 1: The ranking correlation of different zero-cost proxies on the AutoFormer search space over 5 independent
runs with different random seeds, where KT and SPR represent the Kendall’s 7 and Spearman’s p rank correlation
metrics separately.



3.1 Searching for ViT

To make a fair comparison, we employ the same
of search space of AutoFormer(Chen et al., 2021a),
which searchs the key components of the ViT ar-
chitecture include embedding dimension, Q-K-V
dimension, number of heads, MLP ratio, and net-
work depth. It contains more than 1.7 x 106 can-
didate architectures covering three common ranges
of model size i.e., tiny (4-9 M), small (14-34 M),
and base (42-75 M). We randomly sample 1000
networks for each network setup since it is compu-
tationally infeasible to evaluate all networks of the
large AutoFormer search space. After that, we com-
pute the rank correlation between these zero-cost
proxy scores and true accuracy of these sampled
networks on ImageNet-1K dataset. Table Table 1
shows the performance of various zero-cost prox-
ies across three setups ¢.e, tiny, small and base.
To demonstrate the effect of NTSR proxy in on
accelerating TAS, we integrate it into the ETAS
framework. Here, we choose to incorporate top-
5 zero-cost proxies on the Table Table 1 into our
proposed ETAS framework for evaluating their per-
formance on impact on speeding up the regularized
evolution algorithm in discovering the best ViT ar-
chitecture. These methods’ implementation details
and experimental settings are summarized in the
Appendix Appendix A.4.1. Figures 1(a) to 1(c)
shows the best-found valid loss over the number of
iterations of various methods. The test loss of vari-
ous methods on the test set of ImageNet-1k dataset
are showed in Table 2. The results reveal that our
proposed NTSR zero-cost proxy can achieve the
highest rank correlation across three setpus. It can
find a Transformer network architecture with lower
validation loss using fewer iterations.

3.2 Searching for GPT-2

The GPT-2 search space used in this section is
largely based on the design of LTS (Javaheripi
et al., 2022) search space on the two WikiText-
103 (Merity et al., 2017) and One Billion Word
(LM1B) (Chelba et al., 2014) datasets. It consists
the number of layers (n_layer € {2,...,16}|1),
number of attention heads (n_head € {2,4,8}), de-
coder output dimension for each layer (d_model
€ {128,...,1024}|64), inner dimension of the
feed forward network for each layer (d_inner €
{256, ...,4096}|64), and embedding dimension
(d_embed € 128,256,512). Unlike LTS search
space, we fix the adaptive input embedding factor

to k = 4 to approximate the standard Transformer
network with non-adaptive input embedding. We
add a constraint that the d_inner must large than
2d_model to avoid the training collapse of the net-
work. For each dataset, we randomly sample 500
networks and compute zero-cost proxies for each
network. We train each GPT-2 model from scratch
to obtain its true validation perplexity. After that,
we compute the rank correlation between these
zero-cost proxy scores and true validation perplex-
ity of these sampled networks on WikiText-103
and One Billion Word datasets. Table 3 shows
the performance of various zero-cost proxies. To
demonstrate the effect of NTSR proxy in on speed-
ing up TAS, we integrate it into the ETAS frame-
work. Here, we choose to incorporate top-5 zero-
cost proxies on the Table Table 3 into our proposed
ETAS framework for evaluating their performance
on impact on speeding up the regularized evolution
algorithm in discovering the best GPT-2 architec-
ture in the WikiText-103 dataset. These methods’
implementation details and experimental settings
are summarized in the Appendix Section 3.2. The
validation perplexity of various methods on the
GPT-2 search space are showed in Table 4. The
results reveal that our proposed NTSR zero-cost
proxy have a higher rank correlation with the true
validation perplexity . It can significantly speed up
finding a better performance Transformer Network
architectures with fewer iterations. In contrast, the
zero-cost proxies for Transformer like DSS and LD
perform worse on this GPT-2 search space. This
may be because they are specially designed for the
ViT transformer architecture and thus generalize
worse on the GPT Transformer network.

4 Limitation and Conclusion

In this study, we propose a novel zero-cost proxy
for Transformer network called NTSR to evalu-
ate the performance of Transformer at initializa-
tion. Compared to other popular zero-cost proxies
for Transformer networks, our proposed proxy is
designed based the deep neural network learning
theory in terms of the trainability and expressivity
of Transformer networks. However, our proposed
method is limited to decoder-only Transformer ar-
chitecture. In future, we hope our proposed proxy
can extend to other complex types of Transformer
Networks like Bert (Devlin et al., 2019) and T5
(Raffel et al., 2020) .
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A Appendix
A.1 Related Work

Transformer Architecture Search The goal of
Transformer Architecture Search (TAS) aims at
searching the best-performing Transformer config-
urations in an automated way for a given task. Re-
cently, various TAS methods have been proposed.
One most popular method is evolution-based Trans-
former architecture search (So et al., 2019, 2021;
Su et al., 2022). They use evolutionary search al-
gorithm to find optimal Transformer architecture
at a given target budget. Another classic method
is reinforcement learning (Zhu et al., 2021; Zhu,
2021), which uses a controller to sample high-
quality Transformer architectures and updates the
controller using the network’s performance as a
reward. However, current evolutionary search and
reinforcement learning approaches need collecting
a substantial number of network samples to train,
which is costly and time-consuming. To reduce
the search cost of TAS, One-shot methods (Chen
et al., 2021a,b; ?) have been proposed. They only
trained a huge supernetwork and obtain the perfor-
mance of the sampled subnetwork through weight
sharing. Nevertheless, training a huge supernet-
work is non-trival and memory consumption of
Transformer Supernetwork increases with hidden
size and runs out even with small values (Chitty-
Venkata et al., 2022). Predictor-based methods
train a surrogate model using a certain number of
Transformer architecture-accuracy pairs and then
use it to estimate the performance of unseen net-
works. Overall, the current popular TAS methods
still need fully training a large number of architec-
tures to find the optimal network, which demand a
high computational cost. This highlights the great
potential of developing zero-shot methods to re-
place the expensive training process in NAS with
ZEro-cost proxies.



Zero-Cost Proxies In recently years, various
type of zero-cost proxies have been proposed to
rank the performance of networks at the initial-
ization stage. One type consists of parametric
saliency-based zero-cost proxies. They score the
whole network by summing the changes in the
saliency metric when a specific parameter of the
network is removed. Abdelfattah et al. (2021)
adopt several pruning-at-initialization metrics in-
clude snip, grasp, synflow, and fisher as parameter-
level saliency-based zero-cost proxies for the net-
work performance with a minibatch of data at ini-
tialization. They show that these zero-cost proxies
achieve a high correlation with the true accuracy of
networks in both both NAS-Bench-101 and NAS-
Bench-201 benchmarks. Another type is Network
expressivity-based zero-cost proxies. They esti-
mate the network performance by the expressivity
of the network(Tu et al., 2022). Mellor et al. (2021)
develop a heuristic NASWOT metic that utilizes
the correlation of network activations between dif-
ferent datas at initialization. Meanwhile, Chen
et al. (2021c¢) select the number of linear activated
regions represented by the network to measure the
expressivity of a network. Additionally, there exits
a type of zero-cost proxies inspired by the deep
learning theory. Chen et al. (2021c) choose the
condnum of Neural Tangent Kernel (NTK) to mea-
sure the trainability of networks and show it is
negatively correlated with network performance.
Later, Shu et al. (2022) develop a label-agnostic
and data-agnostic NASI metric that leverage the
trace of NTK as an indicative for network perfor-
mance. More recently, Li et al. (2023) found that
the mean value and standard deviation of gradients
across different samples affects the training con-
vergence of networks. Based on the generalization
theory of deep neural networks, they propose a
theoretically-inspired zero-cost proxy called ZiCo
that considers both the mean value and standard
deviation of gradients in each layer of the network.
Meanwhile, Jiang et al. (2023) use the minimum
eigenvalue of the pearson correlation matrix upon
each layer of the feature maps to indicate the con-
vergence of the network.

However, most of the existing zero-cost proxies
are specially designed for CNN networks, whose
internal architecture is distinctly different from the
Transformer network. Zhou et al. (2022) have
showed that the current zero cost proxies for CNN
can not generalize well to the Transformer search
space. To adapt well for the Transformer network,
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we develop a novel zero-cost proxy called NTSR
that combines two theoretically-inspired indicators
for measuring the trainability and expressivity of
the Transformer network.

A.2 Proof

Proof of Theorem 2.2. Under vanilla stochastic
gradient descent (SGD) optimizer, the weight pa-
rameter is updated as follows:

oL
Ws41 = Ws — 77587
w=ws

(18)

Then, under the first-order Taylor expansion, the
mean of output over tokens at time step s + 1 satis-
fies:

fs-‘rl(X) = 75(')() _ns(g,lia‘];SSUX))
= 20— /(£ (210 21)
= fo(X) — 0L (FOK(X, X). (19

This reduces to a kernel gradient descent method.
Thus, the convergence rate of the network is de-
termined by the eigenstructure of the mean NTK
K(X, X). If it can be diagonalized by eigenfunc-
tions with corresponding eigenvalues \;, the sum
of eigenvalues > | \; provides a upper bound for the
convergence of the network. Since the mean NTK
K(X, X) matrix is symmetric and symmetric. The
trace of K(X', X) i.e., NTKT is equal to the sum of
eigenvalues Y \;. Therefore, a larger NTKT score
of the Transformer network indicates it converge

faster. O

Proof of Theorem 2.4. According to the Equa-
tion (15), the output of each block [/ can be ex-
pressed as follows:

T H
I+1_ Lhpl yirklhgl Lhxro,lhpl
£ —ZZ<W‘1 £LW ft,>W" wobhgl
t'=1 h=1

(20)

Let Mbh = Wq’l’hftlftlT WHLLT - the Equa-
tion (15) can be expressed as:

T H
f;l—H:ZZWo’l’hMl’th’l’h_ﬁl/. (21)
t'=1 h=1

Assume there exits a balanced partition of the in-
put locations (A, B), i.e., each token index P; €



tiny small base

Method topl(%) params(M) flops(B) topl(%) params(M) flops(B) topl(%) params(M) flops(B)
ViT/16 74.5 5.7 1.2 78.8 22.1 4.7 77.9 86 55.4
DeiT 72.2 5.7 1.2 79.9 22.1 4.7 81.8 86 17.5
CONVIT 73.1 6.0 1.0 81.3 27.0 54 82.4 86 17.0
Autoformer 74.7 5.9 1.3 81.7 22.9 4.9 82.4 54 11.0
PRENAS 77.1 5.9 14 81.8 22.9 5.1 82.6 54 11.0
ETAS(none) 73.6 5.8 1.2 80.2 23.7 5.2 80.2 51 10.4
ETAS(parameters) 74.6 5.9 1.2 81.6 29.2 6.1 81.9 86 18.0
ETAS(SEPT) 77.2 5.9 1.2 82.3 27.6 5.8 82.4 54 11.2
ETAS(NTKT) 76.9 5.8 1.3 82.1 24.5 52 82.9 84 17.6
ETAS(DSS) 75.3 5.9 14 81.7 22.6 4.9 82.1 52 12.0
ETAS(NTSR) 78.1 5.9 1.4 82.6 28 5.9 834 82 15.5

Table 2: The test loss of various methods on the test set of ImageNet-1k dataset, where ETAS(none) represents the
ETAS without zero-cost proxy.

{A, B}, A and B are disjoint subsets of input se-
quence [T] :={1,...,T}and AU B = [T]. The
Zero-cost WikiText103 LMI1B matrix multiplication in the M"" can be divided

proxies KT SPR KT SPR . . .
params  0.7940.00 0945000  0.7740.00 0.920.00 the sum over inputs indexed by A and B:

flops 0.65+£0.00 0.8040.00 0.51+0.00 0.7240.00
snip 0.40+0.02  0.574+0.04 0.484+0.02 0.661+0.03

T
grad_norm 0.15+0.02 0.234+0.03 0.06+0.01 0.1440.01 L.h Lh el EklRT
NASWOT 024002 037£0.02 0324001 0.48=0.02 M., = E (LA A TR 7 7 i P
zico  0.18+001 036£0.02  0.15£0.01 0.26+0.02

MeCo 0494002 0654002  0.42+0.01 0.61+0.01 T T

Wbk [T yykiLh

DSS  0.26+£0.02 035+£0.02 0244001 032001 = £ 4l Jt,ra
LD 048+£0.03 0.64+0.03  0.37+001 0.50+0.02 P A

SEPT  0.78+0.00 094+000  0.79£0.00 0.9540.00 o T T
NTKT ~ 0.80+£0.02 0.96+0.02  0.78£0.01 0.92+0.02 + E waebh gl D Wb, L
NTSR 081001 0984001  0.80+0.01 0.9640.01 tcB

Table 3: The ranking correlation of different zero-cost (22)

proxies on the WikiText103 and LM 1B dataset of the
gpt-2 search space over 5 independent runs with dif-  Then the Equation (21) can be reformed as:
ferent random seeds, where KT and SPR represent the
Kendall’s 7 and Spearman’s p rank correlation metrics

separately. FiHi= Z Z Z Wobhpyvlhgl
he[H]r1y-,r7=1 Py,...
T T T
( [Iw e il whth h,n)
t=1
valid perplexity params flop
Methods (PPL) M) (B) Z Z Z wWeo: l, th,l,hfl
GPT-2 (117M) 29.41 117 - he[H]r1,...,r7=1 P1,...,Pr
GPT-2 (345M) 22.76 345 - " T
ETAS(none) 28474004 211 141 <Z[W‘”’h Fral £ WhERT,
ETAS(parameters) 23.51+0.05 223 14.9 teA
ETAS(flop) 26.21+0.05 213 14.5 - T
ETAS (SEPT) 24074003 201 139 LA AN A Wm*hhﬂ)
ETAS (NTKT) 23.72+0.04 182 13.6 teB
ETAS(NTSR) 21.72+0.03 189 13.8
l
Table 4: The validation perplexity of different methods < Z Z H= Z Hd,)

t=1r1,...,;r¢=1
l 1 le+1

on the WikiText103 on the gpt-2 search space over 5
independent runs with different random seeds.

(23)
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The separation rank at the [ block satisfies:

L1y _ T

Sep( t l 1 z
(24)

Then, the separation rank at the last block L satis-
fies:

L L 1_le+1
log(sep(f{")) < log(y_ L) +log (Y =)
=1 =1 z
(25)
]

A.3  Algorithm Details of ETAS

To integrate our proposed NTSR zero-cost proxy
into the ETAS framework, we first randomly sam-
ple Ny networks from the Transformer search space
and compute the relative rankings of Ny networks
by NTSR. After that, we choose the top ng net-
work structures with NTSR as the parent popula-
tion and evaluate these networks to obtain their
true performance. We add the network-peformance
pairs into the observed set. For each iteration m,
we generate a pool of V,,, candidate architectures
by mutating the current parent population and se-
lect the top n,, architectures from N, in terms of
NTSR. We then evaluate the n,, architectures and
add their network-peformance pairs into the current
observed set. The parent population is updated by
selecting the top ng networks from the current ob-
served set. At last, we select the top-performance
architecture from the observed set. This process
continues until the maximum number of iterations
M is reached or the current best value that has not
improved for five successive iterations. The de-
tailed algorithm of our proposed ETAS framework
is summarized in the Algorithm 1. Note that our
proposed ETAS framework can also incorporate
other zero-cost proxies.

A.4 Experimental settings
A.4.1 Experimental settings of Section 3.1

To evaluate the performance of zero-cost proxies
in the ImageNet-1K dataset, we compute Spear-
man’s p (Krishnakumar et al., 2022) and Kendall’s
7 (Ning et al., 2021) rank correlation between the
zero-cost proxy scores and the validation accuracy
of these sampled networks. We run each experi-
ment over 5 independent runs with different ran-
dom seeds and compute the mean and standard
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Algorithm 1: ETAS

Input: Total number of iterations M,
search space .4, parent population =
©, observed population = ©

Output: The best-performing architecture

f*

1 Randomly sample Ny networks from the
search space A;

2 Compute the relative ranking of Ny initial
networks by NTSR;

3 Select the top ng networks as the parent
population;

4 Evaluate ng networks and add the
corresponding validation accuracy into the
observed population;

s form =1to M do

6 Generate N,,, candidate architectures by
mutating the network from the parent
population;

7 Compute the relative ranking of N,,
initial networks by NTSR;

8 Select the top n,, networks and evaluate

them to obtain the corresponding
validation accuracy;

9 Add the n,, networks and their
corresponding validation accuracy into
the current observed set;

10 Update the parent population by
selecting the top ng networks from the
current observed set;

11 end

2 return the best-performing architecture from

the observed set.

-




deviation of rank correlations. As showed by Chen
et al. (2021a), the initial weight inherit from the
pre-trained supernet can achieve the performance
comparable to that of the retrained one, we obtain
the true accuracies of sampled network when they
inherit their weights from the pre-trained super-
net. During the search of ETAS, we first randomly
sample 500 networks from the Transformer search
space and compute the relative rankings of 500
networks in terms of the zero-cost proxy. After
that, we choose the top-3 network structures as the
parent population and evaluate these networks to
obtain their true performance. For each iteration
m, we generate a pool of 100 candidate architec-
tures by mutating the current parent population and
select the top-3 architectures from 100 candidate
architectures in terms of the zero-cost proxy. The
mutation probability is set to 0.4. The parent pop-
ulation is updated by selecting the top-3 networks
from the current observed set. We set the number
of iterations M to 10. We then find the optimal
ViT network from the observed set. At last, we fol-
low the training configuration in AutoFormer Chen
et al. (2021a) to train the optimal ViT network and
obtain its test accuracy on the test set of ImageNet-
1k dataset. All experiments are conducted in a
machine with an Intel Xeon Gold 5218R CPU and
two NVIDIA GeForce RTX 3090 GPUs.

A.4.2 Experimental settings of Section 3.2

We run each experiment over 5 independent runs
with different random seeds and compute the mean
and standard deviation of rank correlations. We
train each GPT-2 model from scratch following
the settings of Radford et al. (2019). Validation
perplexity is measured over a sequence length of
192 and 32 tokens for WikiText-103 and LM1B
datasets, respectively. We use the BPE tokenizer
and set the vocab size to 50264. For the WikiText-
103 dataset, we train the GPT-2 network 4e4 steps
by LAMB (You et al., 2020) optimizer with batch
size 128, learning rate le — 2 with cosine sched-
uler, attention dropout is set to 0.1. For the LM1B
dataset, we Train the GPT-2 network 1eb steps by
LAMB optimizer with batch size 128, learning rate
3e— 4 with cosine scheduler, attention dropout is
set to 0.1. During the search of ETAS, we first ran-
domly sample 300 networks from the search space
to warmup the entire ETAS algorithm. We compute
the relative rankings of these networks in terms of
the zero-cost proxy. After that, we choose the top-
3 network structures as the parent population and
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evaluate these networks to obtain their true perfor-
mance. For each iteration m, we generate a pool of
100 candidate architectures by mutating the current
parent population and select the top-3 architectures
from the 100 candidate architectures in terms of the
zero-cost proxy. The mutation probability is set to
0.3. The parent population is updated by selecting
the top-3 networks from the current observed set.
We set the number of iterations M to 10. All ex-
periments are conducted in a machine with an Intel
Xeon Gold 5218R CPU and two NVIDIA GeForce
RTX 3090 GPUs.
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