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Abstract

Transformer Architecture Search (TAS) meth-001
ods aim at automates searching the optimal002
Transformer architecture configurations for a003
given task. However, they are impeded by the004
prohibitive cost of evaluating Transformer ar-005
chitectures. Recently, several Zero-Shot TAS006
methods have been proposed to mitigate this007
problem by utilizing zero-cost proxies for eval-008
uating Transformer architectures without train-009
ing. Unfortunately, they are limited to specific010
tasks and lack theoretical guarantees. To solve011
this problem, we develop a new zero-cost proxy012
called NTSR that combines two theoretically-013
inspired indicators to measure the trainability014
and expressivity of Transformer networks sep-015
arately. We then integrate it into an effective016
regularized evolution framework called ETAS017
demonstrate its efficacy on various tasks. The018
results show that our proposed NTSR proxy can019
consistently achieve a higher correlation with020
the true performance of Transformer networks021
on both computer vision and natural language022
processing tasks. Further, it can significantly023
accelerate the search process for finding the024
best-performing Transformer network architec-025
ture configurations.026

1 Introduction027

Transformer networks Li et al. (2022); Zhou et al.028

(2022); Chitty-Venkata et al. (2022) have attracted029

tremendous interest over the last few years due to030

their effectiveness in learning long-range depen-031

dencies in data and superior performance across032

various tasks. They have gradually replaced tradi-033

tional neural networks, such as Convolutional Neu-034

ral Networks (CNNs) and Recurrent Neural Net-035

works (RNNs), in a variety of domains including036

Natural Language Processing (NLP) (Javaheripi037

et al., 2022), Computer Vision(CV) (Chen et al.,038

2022), Speech Signal Processing (Chitty-Venkata039

et al., 2022), and Healthcare(Chitty-Venkata et al.,040

2022). Recently, the Transformer architecture has041

become the de facto backbone for most large lan- 042

guage models (LLM). While in real applications, it 043

is often necessary to adjust the Transformer archi- 044

tecture configurations according the specific tasks 045

(Javaheripi et al., 2022), such as the depth of the 046

network, the number of attention heads, embedding 047

dimension, and the inner dimension of the feed- 048

forward layer. Manual tuning these parameters re- 049

quires repeated refinement with expert experience, 050

which is time-consuming and computationally ex- 051

pensive. 052

To solve this problem, various Transformer Ar- 053

chitecture Search (TAS) methods have been pro- 054

posed, which automates searching the optimal 055

Transformer architecture configurations for a given 056

task and data. The current popular TAS methods 057

include reinforcement learning evolutionary search, 058

one-shot and predictor-based search. However, dur- 059

ing the search process, they still demands a high 060

computational cost to evaluate several hundreds or 061

thousands of architectures. Training a Transformer 062

network can take hours or even days, thus hinder- 063

ing the practical application of TAS. Recently, zero- 064

shot Neural Architecture Search (NAS) methods 065

have attracted much attention as they design zero- 066

cost proxies to estimate the performance of a net- 067

work at the initialization stage. They can quickly 068

evaluate the performance of a network in a few 069

seconds by computing statistics from a single for- 070

ward/backward propagation pass of the network 071

with a minibatch of data at initialization. Neverthe- 072

less, Zhou et al. (2022) have showed the majority of 073

existing zero-cost proxies are specifically designed 074

for the CNN search spaces (e.g., NAS-Bench 101, 075

NAS-Bench 201, DARTS (Zela et al., 2022)) and 076

perform worse on the Transformer search space. 077

They leverage the characteristics of Transformer 078

networks and design a DSS zero-cost proxy that 079

estimates the synaptic diversity of multi-head self- 080

attention (MSA) and the synaptic saliency of multi- 081

layer perceptron (MLP) in the Transformer network 082
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to rank its performance in a Vision Transformer083

(ViT) search space. Later, Chen et al. (2022) in-084

troduce a zero-cost proxy that measures the com-085

plexity of manifold propagation through ViT to es-086

timate how complex function can be approximated087

by a Vision Transformer network. Javaheripi et al.088

(2022) choose the number of decoder parameters in089

auto-regressive Transformers as a zero-cost proxy090

for perplexity of the language model without need091

for any model training.092

Unfortunately, the existing zero-cost for Trans-093

former proxies are limited to specific computer vi-094

sion or natural language processing tasks. Nonethe-095

less, most of them are designed based on empir-096

ical observations and lack theoretical assurances.097

Can we design a theoretically-inspired zero-cost098

proxy applicable to multiple vision and lan-099

guage tasks ? To this end, we propose a novel100

zero-cost proxy called NTSR that combines two101

theoretically-inspired indicators to measure the102

trainability and expressivity of Transformer net-103

works. In particular, based on the theoretical un-104

derpinnings of deep neural network training, we105

design the NTKT metic that utilizes the trace of106

the mean Neural Tangent Kernel (NTK) to quantify107

the trainability of Transformer networks. Mean-108

while, we design another SEPT metic that utilizes109

the upper bound of separation rank induced by the110

Transformer network to measure the capacity of111

transformer networks to represent input dependen-112

cies. To demonstrate the effectiveness of our pro-113

posed NTSR zero-cost proxy for Transformer net-114

works, We compare it to other popular zero-cost115

proxies in multiple search spaces. The results show116

that NTSR can consistently achieve a higher cor-117

relation with the true performance of Transformer118

networks on both computer vision and natural lan-119

guage processing tasks. To investigate the ability120

of our proposed NTSR zero-cost proxy to acceler-121

ate the search of the best-performing Transformer122

network, we further integrate it into an effective123

regularized evolution framework called ETAS. The124

results show that NTSR can significantly speed up125

the process of finding the best-performing Trans-126

former network.127

2 Method128

Notations Assume a standard depth-L Trans-129

former network has one input embedding layer and130

L transformer blocks. The input of Transformer131

network is a sequence of T tokens {xt ∈ [V ]}Tt=1,132

where V is the number of vocabulary tokens. The 133

embedding layer transforms the input sequence 134

{xt ∈ [V ]}Tt=1 to T sequenced d1x-dimensional 135

vectors z1
t , t ∈ [T ], which is defined as z1

t = 136

WV xt + pt, where WV ∈ Rd1x×V is the learned 137

word-embedding matrix, pt is the positional em- 138

bedding vector. After that, z1
t is recursively trans- 139

formed into T sequenced dlx dimensional vectors 140

zl
t, t ∈ [T ], l ∈ [L] := {1, . . . , L} through L trans- 141

former blocks. Each transformer block consists 142

of two sublayers, i.e., a multi-head self-attention 143

sublayer and a position-wise feed-forward sublayer. 144

Each block operation is defined as: 145

Attnl,ht = SM
{

1√
da

〈
W q,l,hzl

t,W
k,l,hzl

t′

〉}
,

(1)

146

f l,t
MHSA =

T∑
t′=1

H∑
h=1

Attnl,ht W o,l,hW v,l,hzl
t′ , (2) 147

f l,t
FFN = W l

FFN2 σ(W
l
FFN1 LN(f l,t

MHSA + zl
t)),

(3)
148

zl+1
t = LN(f l,t

FFN), (4) 149

where SM and LN represent the softmax and lay- 150

ernorm operations, respectively. Attnl,ht is the at- 151

tention score matrix between the vector zl
t at po- 152

sition t ∈ [T ] and other vectors zl
t′ at position 153

t′ ∈ [T ] in the l-th transformer block. f l,t
MHSA 154

and f l,t
FFN is the output of the multi-head self- 155

attention sublayer and the point-wise feed-forward 156

sublayer in the l-th transformer block, separately. 157

W q,l,h,W k,l,h,W v,l,h ∈ Rdlz×dla represent query, 158

key, value weight matrix, respectively. W o,l,h ∈ 159

Rdla×dlz represents the aggregated weights across 160

H heads. dla is the dimension of the transformer 161

block l, i.e., the width of the entire block. H is 162

the number of heads and the dimension of each 163

head in the transformer block l is dla = dlz/H . σ 164

represents the ReLU activation function. W l
FFN1 ∈ 165

Rdlz×dlin ,W l
FFN2 ∈ Rdlin×dlz represent the inner feed- 166

forward weight matrices. dlin is the inner dimension 167

of the feed-forward sublayer, which is usually set to 168

four times of dlz . Unlike traditional transformer net- 169

work stacking blocks with fixed sizes, in this study, 170

we allow each transformer block l has different 171

dlz and dlin dimensions for enhancing its flexibility 172

across different tasks and datasets. 173

Problem setting In the context of TAS, the goal 174

of zero-cost proxy is to accurately estimate the 175

ranking of Transformer network’s performance at 176
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initialization. Here, we choose the widely used177

Spearman’s ρ (Krishnakumar et al., 2022) and178

Kendall’s τ (Ning et al., 2021) rank correlation179

metrics to evaluate its predictive ability, which are180

defined as follows:181

τ =
2

N(N − 1)

∑
i<j

sgn (ui − uj) sgn (yi − yj) ,

(5)182183

ρ =
cov(R(u),R(y))

σR(u)σR(y)
, (6)184

where N is the number of networks, u =185

(u1, · · · , uN ) and y = (y1, · · · , yN ) are scores186

of the zero-cost proxy and the true accuracy of187

networks separately, R(u) and R(y) represent the188

rankings of networks converted from u and y, re-189

spectively. σR(u) and σR(y) are the standard devia-190

tions of R(u) and R(y), separately.191

In fact, a good neural network architecture192

should have good trainability (i.e. how fast a net-193

work can convergence via a gradient descent al-194

gorithm) and high expressivity (i.e. how complex195

functions a network can represent) (Chitty-Venkata196

et al., 2022; Chen et al., 2021c). In Sec. 3.1 and197

3.2, we design two theoretically-inspired indica-198

tors to reflect the trainability and expressivity of199

Transformer networks, separately. We then pro-200

pose NTSR zero-cost proxy that combines the two201

important indicators to measure the trainability and202

expressivity of a given Transformer network, and203

integrate it in an evolutionary search framework204

called ETAS to find the best-performing Trans-205

former network architecture in section 3.3.206

2.1 Trainability of Transformer Network207

With the rapid development of deep learning the-208

ory on neural networks, the Neural Tangent Kernel209

(NTK) has emerged as an effective tool for char-210

acterizing the training dynamics of infinite wide211

(Jacot et al., 2021) or finite wide (Novak et al.,212

2022) deep networks. It solved a classic question213

of “how does training of neural network work so214

well despite being highly nonconvex?"(Yang, 2020).215

Lee et al. (2019) have demonstrated under the large216

width limit and constant NTK assumption, the pre-217

dictions of a neural network evolves like a linear218

model throughout gradient descent training.219

NTK Formally, assume a deep neural network220

f parameterized by w has D output dimension.221

Let (X ,Y) be the training samples, and L the loss222

function. The outputs of network are f(X ,w) ∈223

RND, where N is the number of training samples. 224

During the gradient descent training, the evolution 225

of parameters ws and output f(X ,ws) at time step 226

s can be expressed as follows: 227

ẇs = −η∇wf(X ,ws)
⊺∇f(X ,ws)L, (7) 228

ḟ(X ,ws) = ∇wf(X ,ws)ẇs 229

= −η∇wf(X ,ws)f(X ,ws)
⊺∇f(X ,ws)L 230

= −ηΘs(X ,X )∇f(X ,ws)L, (8) 231

where Θs(X ,X ) ∈ RND×ND is the Neural Tan- 232

gent Kernel (NTK) at time step s, defined as: 233

Θs(X ,X ) = ∇wf(X ,ws)∇wf(X ,ws)
⊺. (9) 234

The NTK exactly captures the training dynamics 235

of the network. Especially for the infinite wide net- 236

work, under the mean-squared loss and a constant 237

NTK assumption i.e., Θs(X ,X ) ≡ Θ0(X ,X ), 238

Equation (8) has a closed-form solution: 239

f (X ,ws) =
(
I− e−ηΘ0s

)
y + e−ηΘ0sf (X ,w0) ,

(10)
240

where f (X ,ws) represents the outputs of the 241

network at time step s, I is the identity matrix, 242

f (X ,w0) is the outputs of the network at initia- 243

tion, η is the learning rate. This implies that the 244

output of the network is determined by the training 245

samples (X ,Y), the initial weights w0 and initial 246

NTK f (X ,w0). Through the NTK at initiation, 247

we can estimate the training convergence of a net- 248

work. Arora et al. (2019) have demonstrated that 249

the training convergence spped is faster in the direc- 250

tion corresponding to the larger NTK eigenvalues 251

of the network. 252

NTK of Transformer Assume there exists a 253

batch of M sequences X = {xα,1, · · · ,xα,T }Mα=1, 254

the output of Transformer network at the L- 255

th block is {zL
α,1, · · · , zL

α,T }Mα=1. The Trans- 256

former network parameters w consists of 257

{WV ,W
q,l,h,W k,l,h,W v,l,h,W o,l,h,W l

FFN1, 258

W l
FFN2}Ll=1. Then, we define the NTK of a Trans- 259

former network K(X ,X ) ∈ RMdLz ×T×MdLz ×T , 260

each element of the 4-dimensional NTK tensor is : 261

Kα1,t1,α2,t2 = ∇wz
L
α1,t1

(
∇wz

L
α2,t2

)⊺
, (11) 262

where α1, α2 ∈ X are pair of inputs sampled from 263

the training batch X . t1, t2 ∈ [T ] is the token 264

index. 265
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Theorem 2.1 (Yang (2020)). Let f be a neural net-266

work of standard architecture with scalar output267

and randomly initialized weights ω ∼ N
(
0, σ2

ω

)
.268

If it satisfies Condition 1 in Yang (2020) and its non-269

linearities have polynomially bounded weak deriva-270

tives, then its NTK Θ converges almost surely, over271

any finite set of inputs, to a deterministic kernel Θ0,272

i.e., Θ a.s.−−→ Θ0 as its widths go to infinity.273

This theorem indicates the NTK of standard274

Transformer network at initialization K(X ,X ) has275

a well-defined infinite-width limit. We can use it276

to predict the training convergence of the network.277

As shown in Equation (10), we can estimate the278

training convergence of network through NTK at279

initialization. If Θ0 can be represented through280

its eigenvectors and corresponding eigenvalues λi,281

then it can be inferred that the eigenvectors of Θ0282

coincide with those of e−ηΘ0t, with a transforma-283

tion of eigenvalues to e−ηλit. This observation284

reveals that the network’s convergence rate is inti-285

mately connected to the eigenstructures of its NTK286

Θ0. Consequently, a network with a NTK charac-287

terized by a greater total sum of eigenvalues, i.e.,288 ∑
i λi, is likely to achieve faster convergence and289

lower loss.290

However, directly computing
∑

i λi of the 4-291

dimensional NTK tensor K(X ,X ) of a Trans-292

former network is extremely challenging. This dif-293

ficulty arises due to the dynamic nature of the net-294

work connections in Transformers, where the out-295

put at each token index focuses on different parts296

of the input sequence, as shown in Equation (1),297

resulting in distinct outputs for each token index.298

To solve this problem, we take a mean of the NTK299

tensor K(X ,X ) over the token indexes, which is300

defined as K̄(X ,X ) ∈ RMdLz ×MdLz , where each301

element is :302

K̄α1,α2 =
1

T 2

T∑
t1=1

T∑
t2=1

∇wz
L
α1,t1

(
∇wz

L
α2,t2

)⊺
.

(12)

303

Through the above operation, the four-dimensional304

NTK tensor K(X ,X ) is reduced to a standard two-305

dimensional matrix K̄α1,α2 . Besides, the matrix is306

symmetric and positive semi-definite, the sum of307

eigenvalues is equivalent to the trace of K̄(X ,X ).308

Calculating the trace of a matrix offers computa-309

tional efficiency, effectively bypassing the complex-310

ities involved in eigenvalue determination. Conse-311

quently, we use the trace of K̄α1,α2 as an indicator312

called NTKT for the training convergence of the313

network, which is defined as: 314

NTKT(f) =
∥∥K̄(X ,X )

∥∥
tr 315

=
M∑
i=1

∥∥K̄αi,αi

∥∥
tr 316

=
1

T 2

M∑
αi=1

T∑
ti=1

dLz∑
j=1

∥∥∇wz
L
αi,ti,j

∥∥2
2
.

(13)

317

Theorem 2.2. Assume a standard Transformer 318

net f with randomly initialized weights ω ∼ 319

N
(
0, σ2

ω

)
. Under vanilla stochastic gradient de- 320

scent (SGD) optimizer and the first-order Tay- 321

lor expansion, the mean of output over tokens at 322

time step s + 1 satisfies: f̄s+1(X ) − f̄s(X ) = 323

−ηsK̄(X ,X )L′ (f̄s (X )
)
, where ηs is the learning 324

rate at steo s. Then, NTKT(f) is positively cor- 325

related with the convergence rate of the network 326

f . 327

The proof of this theorem can be found in the 328

supplementary material. This theorem shows that 329

NTKT provides a reasonable estimate for the train- 330

ing convergence of the network. In general, a 331

larger NTKT score indicates that the correspond- 332

ing network will converge faster and learn more 333

efficiently. 334

2.2 Expressivity of Transformer Network 335

The success of Transformer networks largely re- 336

liance on the core attention mechanism to learn 337

complex dependencies among input sequences for 338

different tasks. Intuitively, the stronger a Trans- 339

former network can model dependencies between 340

inputs, the greater its capability to represent input 341

information. Is there exists a quantitative metric 342

to measure the expressivity of Transformer net- 343

work at initialization? To solve this problem, we 344

introduce separation rank as a measure that quanti- 345

fies the ability of a Transformer network to model 346

dependencies between inputs. 347

Separation Rank Separation rank is first pro- 348

posed by Beylkin and Mohlenkamp (2002) for high- 349

dimensional numerical analysis, and then applied 350

to various areas including machine learning (Ghas- 351

semi et al., 2019), chemistry (Chinnamsetty et al., 352

2007), and physics(Validi, 2014). Recently, it has 353

been applied to measure the input dependencies 354

modeled by deep convolutional and recurrent net- 355

works (Cohen and Shashua, 2017; Cohen et al., 356
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2016). Let (A,B) be a partition of the input loca-357

tions, i.e., A and B are disjoint subsets of input358

sequence [T ] := {1, . . . , T} and A ∪ B = [T ].359

The separation rank of a function y(x1, . . . ,xT )360

w.r.t. partition (A,B) is the minimal number of361

summands that together sum up to equal y, where362

each summand is multiplicatively separable w.r.t.363

the partition (A,B), i.e., each summand is equal364

to a product of two functions — one that takes in365

only inputs from the subset {xi : i ∈ A} and an-366

other that intakes only inputs from the other subset367

{xj : j ∈ B}. Formally, the separation rank of368

y :
(
Rdx

)T → R w.r.t. the partition (A,B) is369

defined as:370

sep(A,B)(y) := min
{
R ∈ N ∪ {0} :371

∃gA1 , . . . , gAR, gB1 , . . . , gBR :
(
Rdx

)N/2
→ R,372

y(x1, . . . ,xT ) =373

R∑
r=1

gAr ({xi : i ∈ A}) gBr ({xj : j ∈ B})
}
.

(14)

374

The separation rank quantifies the amount of in-375

put inter-dependency induced by the function376

y(x1, . . . ,xT ) w.r.t. partition (A,B). If the sepa-377

ration rank of a function y(x1, . . . ,xT ) w.r.t. par-378

tition (A,B) is 1, the function y(x1, . . . ,xT ) is379

multiplicatively separable w.r.t. partition (A,B),380

meaning that {xi : i ∈ A} and {xj : j ∈ B} are381

statistically independent. The larger sep(A,B)(y)382

is, the more it models inter-dependency between383

{xi : i ∈ A} and {xj : j ∈ B}. In other384

words, it means that the function y(x1, . . . ,xT )385

can learn higher correlation between {xi : i ∈ A}386

and {xj : j ∈ B}.387

Separation rank for Transformer As shown in388

Equation (14), the separation rank directly reflect389

the success behind the core attention mechanism390

in Transformer network. The self-attention layer391

dynamically learns to correlate any inter-dependent392

subsets of the inputs (Levine et al., 2020). When a393

transformer network learn more dependencies be-394

tween inputs, the separation rank induced by this395

network will have a higher value. Levine et al.396

(2020) have demonstrated a tight bound on the sep-397

aration rank of Transformer network with respect398

to the dependence on depth and width. Further,399

they leverage this bound to determine the optimal400

depth-to-width for a given Transformer network 401

size. 402

Theorem 2.3 (Levine et al. (2020)). Let yi,t,L,dx,H 403

be the i-th scalar output at the t token index of a 404

standard depth-L Transformer net f with dimen- 405

sion dx and the number of headsH per layer. Then, 406

its separation rank w.r.t. balanced partitions, 407

which obey A ∪B = [T ], |A| = |B| = T/2, is in- 408

variant to the identity of the partition, i.e., A∪B = 409

[T ], Ã ∪ B̃ = [T ], s.t. |A|, |B|, |Ã|, |B̃| = T/2 : 410

sep(A,B)(y
i,t,L,dx,H) = sep(Ã,B̃)(y

i,t,L,dx,H). 411

This theorem reveals that the separation rank 412

induced by the standard Transformer network 413

keeps consistent under different balanced partition 414

of inputs. Next, we will omit the specification 415

of any balanced partition of inputs, denoting as 416

sep(yi,t,L,dx,H). Wies et al. (2021) further demon- 417

strate the existence of an embedding rank bottle- 418

neck that limits the expressivity of the Transformer 419

network. They showed that log sep(yi,t,L,dx,H) = 420

Õ (L ·min {r, dx}), where r is the embedding 421

rank defined as r = rank(WV ). 422

However, the current study mainly focus on the 423

separation rank of the Transformer network with 424

the same dimension dx per layer. In this study, 425

we extend the separation rank to the Transformer 426

network with each block l has different dlz and dlin 427

dimensions. This makes it more difficult to analyze. 428

To solve this problem, we do some relaxations fol- 429

lowed by Wies et al. (2021) and Levine et al. (2020). 430

We put all the position-wise feed-forward layer at 431

the end since the feed-forward operation does not 432

mix different locations and learn the dependencies 433

between inputs. We then remove all the normaliza- 434

tion layers, and omit the ReLU and softmax non- 435

linearities. The reasons to do it can be referred to 436

Wies et al. (2021) and Levine et al. (2020). Though 437

these relaxations are shown to weaken the overall 438

network performance, they are much less pertinent 439

to the ability of the core self-attention mechanism 440

to model dependencies between different places at 441

the input. Consequently, the multi-head attention 442

operation of each block l in Equation (2) can be 443

simplified as: 444

f l+1
t =

T∑
t′=1

H∑
h=1

〈
W q,l,hf l

t ,W
k,l,hf l

t′

〉
W o,l,hW v,l,hf l

t′ .

(15)

445

By forward propagating the above operations layer- 446

by-layer, We can obtain the upper bound on the 447
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separation rank of the Transformer network with448

different dimensions dlz per layer.449

Theorem 2.4. Let fL
t be the output at the t to-450

ken index of a standard depth-L Transformer net451

f with dimension dlz and the number of heads H452

per layer. Then, its separation rank w.r.t. bal-453

anced partitions, which satisfies log(sep(fL
t )) ≤454

log(
∑L

l=1 d
l
z)+log(

∑L
l=1

1−dl
T+1
z

1−dlz
).455

The proof of this theorem is shown in appendix.456

This theorem shows that the separation rank of457

the Transformer net f can be upper bounded by458

a constant, which is related to the depth of the459

network L, the number of tokens T and the sum460

of dimensions
∑L

l=1 d
l
z . Thus, we use this bound461

to measure the amount of dependencies modeled462

by the Transformer net. We name this measure as463

SEPT, which is defined as:464

SEPT(f) = log(

L∑
l=1

dlz)+log(

L∑
l=1

1− dl
T+1

z

1− dlz
)

(16)

465

SEPT measures the Transformer network’s ability466

to model dependencies between different places of467

the input. In general, a larger SEPT score indicates468

that the corresponding Transformer network has a469

stronger expressivity about different dependencies470

between inputs.471

2.3 Zero-Shot Transformer Architecture472

Search via Network Trainability and473

Expressivity474

NTSR How to combine the two NTKT and SEPT475

theoretically-inspired indicators to find the best-476

performing Transformer network at initialization?477

To answer this question, we propose a new zero-478

cost proxy called NTSR to make a trade-off be-479

tween the network trainability and expressivity.480

Note that the magnitudes of NTKT and SEPT score481

may differ much and the ranges of them are agnos-482

tic before computing on the whole search space.483

Hence, we can’t directly normalize NTKT and484

SEPT scores before searching the network. To485

avoid this problem, instead of using the numerical486

values of NTKT and SEPT, we combine the rela-487

tive ranking of NTKT and SEPT by comparing the488

sampled set of architectures, which is defined as:489

NTSR(f) =
1

2
(R(NTKT(f)) + R(SEPT(f))),

(17)

490

where R(NTKT(f)) and R(SEPT(f)) represent 491

the relative ranking of the network f converted 492

from the NTKT(f) and SEPT(f) among the sam- 493

pled set of architectures. In general, a higher rank 494

of NTSR indicates that the network has a better 495

trainability and expressivity. 496

ETAS As described above, our proposed NTSR 497

zero-cost proxy provides a reasonable estimation 498

of the network’s performance. The next major 499

question is how to construct an efficient NAS 500

framework on top of it? To solve this problem, 501

we integrate it into a popular regularized evolution 502

framework called ETAS. We first randomly sample 503

N0 network architectures from the search space 504

and then pick the top n0 networks according the 505

ranking of NTSR as the initial parent population 506

to warmup the whore algorithm. Through warmup, 507

we can find a better local initial population, thus 508

potentially expediting the discovery of the optimal 509

network. Note that the sample size N0 is much 510

larger than the number of networks we can afford 511

to train. After that, we generate Nm candidate ar- 512

chitectures by mutating the parent architectures at 513

each iteration m and then select top nm architec- 514

tures from the current Nm candidate architectures 515

according the ranking of NTSR. We then evalu- 516

ate the selected architectures and update the parent 517

population. The algorithm details of our proposed 518

ETAS framework is given in the Appendix. 519

3 Experiments and Discussion 520

In this section, we choose to search the most popu- 521

lar Vision Transformer (ViT) and GPT-2 architec- 522

tures in computer vision and natural language pro- 523

cessing domains separately. We compare our pro- 524

posed NTSR zero-cost proxy with several zero-cost 525

proxies for Transformer include DSS(Zhou et al., 526

2022), Length Distortion (LD)(Chen et al., 2022) 527

and conventional zero-cost proxies for CNN like 528

snip, grad_norm, NASWOT, zico and MeCo. Since 529

Ning et al. (2021) have demonstrated the number 530

of flops and parameters serve as the competitive 531

proxies for the network performance than most 532

zero-cost proxies under the CNN search space, we 533

also add them for comparison. To make an abla- 534

tion study on our proposed NTSR proxy, we add 535

NTKT and SEPT alone as zero-cost proxies for 536

comparison. 537
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Figure 1: The best-found valid loss over the number of iterations (beyond initial points) of various methods on (a)
the ImageNet1k dataset of the Autoformer tiny search space, (b) the ImageNet1k dataset of the Autoformer small
search space, (c) the ImageNet1k dataset of the Autoformer base search space, (d) the Wikitex103 dataset of the
GPT-2 search space.

Zero-cost
proxies

tiny small base
KT SPR KT SPR KT SPR

params 0.57±0.00 0.76±0.00 0.64±0.00 0.81±0.00 0.60±0.00 0.81±0.00
flops 0.49±0.00 0.68±0.00 0.58±0.00 0.78±0.00 0.52±0.00 0.74±0.00
snip 0.56±0.03 0.74±0.03 0.59±0.01 0.76±0.03 0.58±0.06 0.79±0.08

grad_norm 0.33±0.05 0.51±0.04 0.54±0.03 0.72±0.03 0.58±0.04 0.77±0.06
NASWOT 0.54±0.02 0.71±0.02 0.57±0.03 0.75±0.04 0.50±0.02 0.71±0.03

zico 0.48±0.03 0.65±0.03 0.43±0.02 0.62±0.03 0.43±0.04 0.62±0.05
MeCo 0.46±0.03 0.68±0.02 0.47±0.01 0.66±0.03 0.47±0.01 0.66±0.02
DSS 0.66±0.01 0.80±0.02 0.65±0.02 0.82±0.02 0.64±0.03 0.84±0.05
LD 0.52±0.02 0.69±0.02 0.60±0.03 0.81±0.04 0.59±0.03 0.80±0.03

SEPT 0.71±0.00 0.89±0.00 0.72±0.00 0.89±0.00 0.69±0.00 0.87±0.00
NTKT 0.70±0.02 0.87±0.02 0.70±0.03 0.86±0.02 0.72±0.02 0.90±0.02
NTSR 0.74±0.01 0.90±0.02 0.74±0.02 0.91±0.02 0.75±0.01 0.92±0.01

Table 1: The ranking correlation of different zero-cost proxies on the AutoFormer search space over 5 independent
runs with different random seeds, where KT and SPR represent the Kendall’s τ and Spearman’s ρ rank correlation
metrics separately.
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3.1 Searching for ViT538

To make a fair comparison, we employ the same539

of search space of AutoFormer(Chen et al., 2021a),540

which searchs the key components of the ViT ar-541

chitecture include embedding dimension, Q-K-V542

dimension, number of heads, MLP ratio, and net-543

work depth. It contains more than 1.7× 1016 can-544

didate architectures covering three common ranges545

of model size i.e., tiny (4-9 M), small (14-34 M),546

and base (42-75 M). We randomly sample 1000547

networks for each network setup since it is compu-548

tationally infeasible to evaluate all networks of the549

large AutoFormer search space. After that, we com-550

pute the rank correlation between these zero-cost551

proxy scores and true accuracy of these sampled552

networks on ImageNet-1K dataset. Table Table 1553

shows the performance of various zero-cost prox-554

ies across three setups i.e, tiny, small and base.555

To demonstrate the effect of NTSR proxy in on556

accelerating TAS, we integrate it into the ETAS557

framework. Here, we choose to incorporate top-558

5 zero-cost proxies on the Table Table 1 into our559

proposed ETAS framework for evaluating their per-560

formance on impact on speeding up the regularized561

evolution algorithm in discovering the best ViT ar-562

chitecture. These methods’ implementation details563

and experimental settings are summarized in the564

Appendix Appendix A.4.1. Figures 1(a) to 1(c)565

shows the best-found valid loss over the number of566

iterations of various methods. The test loss of vari-567

ous methods on the test set of ImageNet-1k dataset568

are showed in Table 2. The results reveal that our569

proposed NTSR zero-cost proxy can achieve the570

highest rank correlation across three setpus. It can571

find a Transformer network architecture with lower572

validation loss using fewer iterations.573

3.2 Searching for GPT-2574

The GPT-2 search space used in this section is575

largely based on the design of LTS (Javaheripi576

et al., 2022) search space on the two WikiText-577

103 (Merity et al., 2017) and One Billion Word578

(LM1B) (Chelba et al., 2014) datasets. It consists579

the number of layers (n_layer ∈ {2, . . . , 16}|1),580

number of attention heads (n_head ∈ {2, 4, 8}), de-581

coder output dimension for each layer (d_model582

∈ {128, . . . , 1024}|64), inner dimension of the583

feed forward network for each layer (d_inner ∈584

{256, . . . , 4096}|64), and embedding dimension585

(d_embed ∈ 128, 256, 512). Unlike LTS search586

space, we fix the adaptive input embedding factor587

to k = 4 to approximate the standard Transformer 588

network with non-adaptive input embedding. We 589

add a constraint that the d_inner must large than 590

2d_model to avoid the training collapse of the net- 591

work. For each dataset, we randomly sample 500 592

networks and compute zero-cost proxies for each 593

network. We train each GPT-2 model from scratch 594

to obtain its true validation perplexity. After that, 595

we compute the rank correlation between these 596

zero-cost proxy scores and true validation perplex- 597

ity of these sampled networks on WikiText-103 598

and One Billion Word datasets. Table 3 shows 599

the performance of various zero-cost proxies. To 600

demonstrate the effect of NTSR proxy in on speed- 601

ing up TAS, we integrate it into the ETAS frame- 602

work. Here, we choose to incorporate top-5 zero- 603

cost proxies on the Table Table 3 into our proposed 604

ETAS framework for evaluating their performance 605

on impact on speeding up the regularized evolution 606

algorithm in discovering the best GPT-2 architec- 607

ture in the WikiText-103 dataset. These methods’ 608

implementation details and experimental settings 609

are summarized in the Appendix Section 3.2. The 610

validation perplexity of various methods on the 611

GPT-2 search space are showed in Table 4. The 612

results reveal that our proposed NTSR zero-cost 613

proxy have a higher rank correlation with the true 614

validation perplexity . It can significantly speed up 615

finding a better performance Transformer Network 616

architectures with fewer iterations. In contrast, the 617

zero-cost proxies for Transformer like DSS and LD 618

perform worse on this GPT-2 search space. This 619

may be because they are specially designed for the 620

ViT transformer architecture and thus generalize 621

worse on the GPT Transformer network. 622

4 Limitation and Conclusion 623

In this study, we propose a novel zero-cost proxy 624

for Transformer network called NTSR to evalu- 625

ate the performance of Transformer at initializa- 626

tion. Compared to other popular zero-cost proxies 627

for Transformer networks, our proposed proxy is 628

designed based the deep neural network learning 629

theory in terms of the trainability and expressivity 630

of Transformer networks. However, our proposed 631

method is limited to decoder-only Transformer ar- 632

chitecture. In future, we hope our proposed proxy 633

can extend to other complex types of Transformer 634

Networks like Bert (Devlin et al., 2019) and T5 635

(Raffel et al., 2020) . 636
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A Appendix 811

A.1 Related Work 812

Transformer Architecture Search The goal of 813

Transformer Architecture Search (TAS) aims at 814

searching the best-performing Transformer config- 815

urations in an automated way for a given task. Re- 816

cently, various TAS methods have been proposed. 817

One most popular method is evolution-based Trans- 818

former architecture search (So et al., 2019, 2021; 819

Su et al., 2022). They use evolutionary search al- 820

gorithm to find optimal Transformer architecture 821

at a given target budget. Another classic method 822

is reinforcement learning (Zhu et al., 2021; Zhu, 823

2021), which uses a controller to sample high- 824

quality Transformer architectures and updates the 825

controller using the network’s performance as a 826

reward. However, current evolutionary search and 827

reinforcement learning approaches need collecting 828

a substantial number of network samples to train, 829

which is costly and time-consuming. To reduce 830

the search cost of TAS, One-shot methods (Chen 831

et al., 2021a,b; ?) have been proposed. They only 832

trained a huge supernetwork and obtain the perfor- 833

mance of the sampled subnetwork through weight 834

sharing. Nevertheless, training a huge supernet- 835

work is non-trival and memory consumption of 836

Transformer Supernetwork increases with hidden 837

size and runs out even with small values (Chitty- 838

Venkata et al., 2022). Predictor-based methods 839

train a surrogate model using a certain number of 840

Transformer architecture-accuracy pairs and then 841

use it to estimate the performance of unseen net- 842

works. Overall, the current popular TAS methods 843

still need fully training a large number of architec- 844

tures to find the optimal network, which demand a 845

high computational cost. This highlights the great 846

potential of developing zero-shot methods to re- 847

place the expensive training process in NAS with 848

zero-cost proxies. 849
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Zero-Cost Proxies In recently years, various850

type of zero-cost proxies have been proposed to851

rank the performance of networks at the initial-852

ization stage. One type consists of parametric853

saliency-based zero-cost proxies. They score the854

whole network by summing the changes in the855

saliency metric when a specific parameter of the856

network is removed. Abdelfattah et al. (2021)857

adopt several pruning-at-initialization metrics in-858

clude snip, grasp, synflow, and fisher as parameter-859

level saliency-based zero-cost proxies for the net-860

work performance with a minibatch of data at ini-861

tialization. They show that these zero-cost proxies862

achieve a high correlation with the true accuracy of863

networks in both both NAS-Bench-101 and NAS-864

Bench-201 benchmarks. Another type is Network865

expressivity-based zero-cost proxies. They esti-866

mate the network performance by the expressivity867

of the network(Tu et al., 2022). Mellor et al. (2021)868

develop a heuristic NASWOT metic that utilizes869

the correlation of network activations between dif-870

ferent datas at initialization. Meanwhile, Chen871

et al. (2021c) select the number of linear activated872

regions represented by the network to measure the873

expressivity of a network. Additionally, there exits874

a type of zero-cost proxies inspired by the deep875

learning theory. Chen et al. (2021c) choose the876

condnum of Neural Tangent Kernel (NTK) to mea-877

sure the trainability of networks and show it is878

negatively correlated with network performance.879

Later, Shu et al. (2022) develop a label-agnostic880

and data-agnostic NASI metric that leverage the881

trace of NTK as an indicative for network perfor-882

mance. More recently, Li et al. (2023) found that883

the mean value and standard deviation of gradients884

across different samples affects the training con-885

vergence of networks. Based on the generalization886

theory of deep neural networks, they propose a887

theoretically-inspired zero-cost proxy called ZiCo888

that considers both the mean value and standard889

deviation of gradients in each layer of the network.890

Meanwhile, Jiang et al. (2023) use the minimum891

eigenvalue of the pearson correlation matrix upon892

each layer of the feature maps to indicate the con-893

vergence of the network.894

However, most of the existing zero-cost proxies895

are specially designed for CNN networks, whose896

internal architecture is distinctly different from the897

Transformer network. Zhou et al. (2022) have898

showed that the current zero cost proxies for CNN899

can not generalize well to the Transformer search900

space. To adapt well for the Transformer network,901

we develop a novel zero-cost proxy called NTSR 902

that combines two theoretically-inspired indicators 903

for measuring the trainability and expressivity of 904

the Transformer network. 905

A.2 Proof 906

Proof of Theorem 2.2. Under vanilla stochastic 907

gradient descent (SGD) optimizer, the weight pa- 908

rameter is updated as follows: 909

ws+1 = ws − ηs
∂L
∂w

∣∣∣∣
w=ws

(18) 910

Then, under the first-order Taylor expansion, the 911

mean of output over tokens at time step s+ 1 satis- 912

fies: 913

f̄s+1(X ) = f̄s(X )− ηs(
∂L
∂w

∂f̄s(X )

∂w
) 914

= f̄s(X )− ηsL′(f̄s)(
∂f̄s(X )

∂w
)(
∂f̄s(X )

∂w
)⊺ 915

= f̄s(X )− ηsL′(f̄s)K̄(X ,X ). (19) 916

This reduces to a kernel gradient descent method. 917

Thus, the convergence rate of the network is de- 918

termined by the eigenstructure of the mean NTK 919

K̄(X ,X ). If it can be diagonalized by eigenfunc- 920

tions with corresponding eigenvalues λi, the sum 921

of eigenvalues
∑

λi provides a upper bound for the 922

convergence of the network. Since the mean NTK 923

K̄(X ,X ) matrix is symmetric and symmetric. The 924

trace of K̄(X ,X ) i.e., NTKT is equal to the sum of 925

eigenvalues
∑

λi. Therefore, a larger NTKT score 926

of the Transformer network indicates it converge 927

faster. 928

Proof of Theorem 2.4. According to the Equa- 929

tion (15), the output of each block l can be ex- 930

pressed as follows: 931

f l+1
t =

T∑
t′=1

H∑
h=1

〈
W q,l,hf l

t ,W
k,l,hf l

t′

〉
W o,l,hW v,l,hf l

t′ .

(20)

932

Let M l,h = W q,l,hf l
t f

lT
t W k,l,hT

, the Equa- 933

tion (15) can be expressed as: 934

f l+1
t =

T∑
t′=1

H∑
h=1

W o,l,hM l,hW v,l,hf l
t′ . (21) 935

Assume there exits a balanced partition of the in- 936

put locations (A,B), i.e., each token index Pt ∈ 937
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Method
tiny small base

top1(%) params(M) flops(B) top1(%) params(M) flops(B) top1(%) params(M) flops(B)
ViT/16 74.5 5.7 1.2 78.8 22.1 4.7 77.9 86 55.4
DeiT 72.2 5.7 1.2 79.9 22.1 4.7 81.8 86 17.5

CONViT 73.1 6.0 1.0 81.3 27.0 5.4 82.4 86 17.0
Autoformer 74.7 5.9 1.3 81.7 22.9 4.9 82.4 54 11.0
PRENAS 77.1 5.9 1.4 81.8 22.9 5.1 82.6 54 11.0

ETAS(none) 73.6 5.8 1.2 80.2 23.7 5.2 80.2 51 10.4
ETAS(parameters) 74.6 5.9 1.2 81.6 29.2 6.1 81.9 86 18.0

ETAS(SEPT) 77.2 5.9 1.2 82.3 27.6 5.8 82.4 54 11.2
ETAS(NTKT) 76.9 5.8 1.3 82.1 24.5 5.2 82.9 84 17.6
ETAS(DSS) 75.3 5.9 1.4 81.7 22.6 4.9 82.1 52 12.0

ETAS(NTSR) 78.1 5.9 1.4 82.6 28 5.9 83.4 82 15.5

Table 2: The test loss of various methods on the test set of ImageNet-1k dataset, where ETAS(none) represents the
ETAS without zero-cost proxy.

Zero-cost
proxies

WikiText103 LM1B
KT SPR KT SPR

params 0.79±0.00 0.94±0.00 0.77±0.00 0.92±0.00
flops 0.65±0.00 0.80±0.00 0.51±0.00 0.72±0.00
snip 0.40±0.02 0.57±0.04 0.48±0.02 0.66±0.03

grad_norm 0.15±0.02 0.23±0.03 0.06±0.01 0.14±0.01
NASWOT 0.24±0.02 0.37±0.02 0.32±0.01 0.48±0.02

zico 0.18±0.01 0.36±0.02 0.15±0.01 0.26±0.02
MeCo 0.49±0.02 0.65±0.02 0.42±0.01 0.61±0.01
DSS 0.26±0.02 0.35±0.02 0.24±0.01 0.32±0.01
LD 0.48±0.03 0.64±0.03 0.37±0.01 0.50±0.02

SEPT 0.78±0.00 0.94±0.00 0.79±0.00 0.95±0.00
NTKT 0.80±0.02 0.96±0.02 0.78±0.01 0.92±0.02
NTSR 0.81±0.01 0.98±0.01 0.80±0.01 0.96±0.01

Table 3: The ranking correlation of different zero-cost
proxies on the WikiText103 and LM1B dataset of the
gpt-2 search space over 5 independent runs with dif-
ferent random seeds, where KT and SPR represent the
Kendall’s τ and Spearman’s ρ rank correlation metrics
separately.

Methods
valid perplexity

(PPL)
params

(M)
flop
(B)

GPT-2 (117M) 29.41 117 -
GPT-2 (345M) 22.76 345 -
ETAS(none) 28.47±0.04 211 14.1

ETAS(parameters) 23.51±0.05 223 14.9
ETAS(flop) 26.21±0.05 213 14.5

ETAS (SEPT) 24.07±0.03 201 13.9
ETAS (NTKT) 23.72±0.04 182 13.6
ETAS(NTSR) 21.72±0.03 189 13.8

Table 4: The validation perplexity of different methods
on the WikiText103 on the gpt-2 search space over 5
independent runs with different random seeds.

{A,B}, A and B are disjoint subsets of input se- 938

quence [T ] := {1, . . . , T} and A ∪ B = [T ]. The 939

matrix multiplication in the M l,h can be divided 940

the sum over inputs indexed by A and B: 941

M l,h
r1,r2 =

T∑
t=1

[W q,l,hf l
t ]r1,t[f

lT

t W k,l,hT

]t,r2 942

=
∑
t∈A

[W q,l,hf l
t ]r1,t[f

lT

t W k,l,hT

]t,r2 943

+
∑
t∈B

[W q,l,hf l
t ]r1,t[f

lT

t W k,l,hT

]t,r2 .

(22)

944

Then the Equation (21) can be reformed as: 945

f l+1
t =

∑
h∈[H]

dla∑
r1,...,rT=1

∑
P1,...,PT

W o,l,hW v,l,hf l
t 946

( T∏
t=1

[W q,l,hf l
t ]rt,t[f

lT

t W k,l,hT

]t,rt

)
947

=
∑
h∈[H]

dla∑
r1,...,rT=1

∑
P1,...,PT

W o,l,hW v,l,hf l
t 948

(∑
t∈A

[W q,l,hf l
t ]rt,t[f

lT

t W k,l,hT

]t,rt 949

∑
t∈B

[W q,l,hf l
t ]rt,t[f

lT

t W k,l,hT

]t,rt

)
950

≤
T∑
t=1

dla∑
r1,...,rt=1

H =
T∑
t=1

(Hdla)
t 951

= dlz
1− dl

T+1

z

1− dlz
.

(23)

952
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The separation rank at the l block satisfies:953

log(
sep(f l+1

t )

sep(f l
t

) ≤ log(dlz) + log(
1− dl

T+1

z

1− dlz
)

(24)

954

Then, the separation rank at the last block L satis-955

fies:956

log(sep(fL
t ))≤ log(

L∑
l=1

dlz)+log(
L∑
l=1

1− dl
T+1

z

1− dlz
)

(25)

957

958

A.3 Algorithm Details of ETAS959

To integrate our proposed NTSR zero-cost proxy960

into the ETAS framework, we first randomly sam-961

ple N0 networks from the Transformer search space962

and compute the relative rankings of N0 networks963

by NTSR. After that, we choose the top n0 net-964

work structures with NTSR as the parent popula-965

tion and evaluate these networks to obtain their966

true performance. We add the network-peformance967

pairs into the observed set. For each iteration m,968

we generate a pool of Nm candidate architectures969

by mutating the current parent population and se-970

lect the top nm architectures from Nm in terms of971

NTSR. We then evaluate the nm architectures and972

add their network-peformance pairs into the current973

observed set. The parent population is updated by974

selecting the top n0 networks from the current ob-975

served set. At last, we select the top-performance976

architecture from the observed set. This process977

continues until the maximum number of iterations978

M is reached or the current best value that has not979

improved for five successive iterations. The de-980

tailed algorithm of our proposed ETAS framework981

is summarized in the Algorithm 1. Note that our982

proposed ETAS framework can also incorporate983

other zero-cost proxies.984

A.4 Experimental settings985

A.4.1 Experimental settings of Section 3.1986

To evaluate the performance of zero-cost proxies987

in the ImageNet-1K dataset, we compute Spear-988

man’s ρ (Krishnakumar et al., 2022) and Kendall’s989

τ (Ning et al., 2021) rank correlation between the990

zero-cost proxy scores and the validation accuracy991

of these sampled networks. We run each experi-992

ment over 5 independent runs with different ran-993

dom seeds and compute the mean and standard994

Algorithm 1: ETAS
Input: Total number of iterations M ,

search space A, parent population =
⊘, observed population = ⊘

Output: The best-performing architecture
f∗

1 Randomly sample N0 networks from the
search space A;

2 Compute the relative ranking of N0 initial
networks by NTSR;

3 Select the top n0 networks as the parent
population;

4 Evaluate n0 networks and add the
corresponding validation accuracy into the
observed population;

5 for m = 1 to M do
6 Generate Nm candidate architectures by

mutating the network from the parent
population;

7 Compute the relative ranking of Nm

initial networks by NTSR;
8 Select the top nm networks and evaluate

them to obtain the corresponding
validation accuracy;

9 Add the nm networks and their
corresponding validation accuracy into
the current observed set;

10 Update the parent population by
selecting the top n0 networks from the
current observed set;

11 end
12 return the best-performing architecture from

the observed set.
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deviation of rank correlations. As showed by Chen995

et al. (2021a), the initial weight inherit from the996

pre-trained supernet can achieve the performance997

comparable to that of the retrained one, we obtain998

the true accuracies of sampled network when they999

inherit their weights from the pre-trained super-1000

net. During the search of ETAS, we first randomly1001

sample 500 networks from the Transformer search1002

space and compute the relative rankings of 5001003

networks in terms of the zero-cost proxy. After1004

that, we choose the top-3 network structures as the1005

parent population and evaluate these networks to1006

obtain their true performance. For each iteration1007

m, we generate a pool of 100 candidate architec-1008

tures by mutating the current parent population and1009

select the top-3 architectures from 100 candidate1010

architectures in terms of the zero-cost proxy. The1011

mutation probability is set to 0.4. The parent pop-1012

ulation is updated by selecting the top-3 networks1013

from the current observed set. We set the number1014

of iterations M to 10. We then find the optimal1015

ViT network from the observed set. At last, we fol-1016

low the training configuration in AutoFormer Chen1017

et al. (2021a) to train the optimal ViT network and1018

obtain its test accuracy on the test set of ImageNet-1019

1k dataset. All experiments are conducted in a1020

machine with an Intel Xeon Gold 5218R CPU and1021

two NVIDIA GeForce RTX 3090 GPUs.1022

A.4.2 Experimental settings of Section 3.21023

We run each experiment over 5 independent runs1024

with different random seeds and compute the mean1025

and standard deviation of rank correlations. We1026

train each GPT-2 model from scratch following1027

the settings of Radford et al. (2019). Validation1028

perplexity is measured over a sequence length of1029

192 and 32 tokens for WikiText-103 and LM1B1030

datasets, respectively. We use the BPE tokenizer1031

and set the vocab size to 50264. For the WikiText-1032

103 dataset, we train the GPT-2 network 4e4 steps1033

by LAMB (You et al., 2020) optimizer with batch1034

size 128, learning rate 1e− 2 with cosine sched-1035

uler, attention dropout is set to 0.1. For the LM1B1036

dataset, we Train the GPT-2 network 1e5 steps by1037

LAMB optimizer with batch size 128, learning rate1038

3e− 4 with cosine scheduler, attention dropout is1039

set to 0.1. During the search of ETAS, we first ran-1040

domly sample 300 networks from the search space1041

to warmup the entire ETAS algorithm. We compute1042

the relative rankings of these networks in terms of1043

the zero-cost proxy. After that, we choose the top-1044

3 network structures as the parent population and1045

evaluate these networks to obtain their true perfor- 1046

mance. For each iteration m, we generate a pool of 1047

100 candidate architectures by mutating the current 1048

parent population and select the top-3 architectures 1049

from the 100 candidate architectures in terms of the 1050

zero-cost proxy. The mutation probability is set to 1051

0.3. The parent population is updated by selecting 1052

the top-3 networks from the current observed set. 1053

We set the number of iterations M to 10. All ex- 1054

periments are conducted in a machine with an Intel 1055

Xeon Gold 5218R CPU and two NVIDIA GeForce 1056

RTX 3090 GPUs. 1057
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