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Abstract

Intrinsic interpretable graph neural networks aim to provide transparent predictions
by identifying the influential fraction of the input graph that guides the model
prediction, i.e., the explanatory subgraph. However, current interpretable GNNs
mostly are dataset-specific and hard to generalize to different graphs. A more
generalizable GNN interpretation model which can effectively distill the universal
structural patterns of different graphs is until-now unexplored. Motivated by the
great success of recent pre-training techniques, we for the first time propose the
Pre-training Interpretable Graph Neural Network (π-GNN3) to distill the universal
interpretability of GNNs by pre-training over synthetic graphs with ground-truth ex-
planations. Specifically, we introduce a structural pattern learning module to extract
diverse universal structure patterns and integrate them together to comprehensively
represent the graphs of different types. Next, a hypergraph refining module is
proposed to identify the explanatory subgraph by incorporating the universal struc-
ture patterns with local edge interactions. Finally, the task-specific predictor is
cascaded with the pre-trained π-GNN model and fine-tuned over downstream tasks.
Extensive experiments demonstrate that π-GNN significantly surpasses the leading
interpretable GNN baselines with up to 9.98% interpretation improvement and
16.06% classification accuracy improvement. Meanwhile, π-GNN pre-trained
on graph classification task also achieves the top-tier interpretation performance
on node classification task, which further verifies its promising generalization
performance among different downstream tasks.

1 Introduction

Although graph neural networks (GNNs) [1, 2, 3, 4, 5] have achieved remarkable success in various
applications [6, 7, 8, 9], their black-box nature prevents humans from understanding the inner
decision-making mechanism [10, 11]. This issue calls for the development of intrinsic interpretable
GNNs [12, 13, 14], which can reveal the mystery of "Which fraction of the input graph is the most
vital and leads to the model prediction?" Intrinsic interpretable GNNs aim to identify an influential
subgraph of the input graph, i.e., the explanation, and make final predictions under the guidance of the
explanatory subgraph [12, 13, 14]. Constructing interpretable GNNs makes it possible to investigate
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the decision-making mechanism and justify model predictions, which is critically important to
develop trustworthy artificial intelligence.

However, a major issue of the existing interpretable GNNs [12, 13, 14] is that they are mostly
dataset-specific, which means an interpretable GNN model trained on a certain graph dataset (e.g.,
the semantic networks [15, 16, 17]) usually does not work well on another graph dataset (e.g., the
molecular graphs [18]). It is also difficult for an interpretable GNN trained on a certain task (e.g.,
graph classification [7]) to generalize to another task (e.g., node classification [6]). Compared
to the text or image data [19, 20], graphs with non-Eucildean structure are often associated with
substantial node features of various domains, making the pre-training method in NLP and CV hard
to be directly applied [21]. Recently graph representation learning based pre-training methods have
been investigated [22, 21, 23, 24], however, they target at downstream prediction tasks but ignore
the interpretability of the GNNs. It is widely acknowledged that the topological structure of various
graphs generally follows some universal structural patterns or properties which are transferable [22],
such as the scale-free property [25], the motif distribution [26], and the core-periphery structure
[27]. Therefore, in this paper we argue that the intrinsic GNN interpretation contains some universal
structural patterns, which are independent of the downstream tasks and generalizable to different
types of graphs. Motivated by the great success of pre-training technique [19, 20, 22, 21], we for
the first time study: whether we can and how to construct a pre-training interpretable GNN that is
general enough to work well on different types of graphs and downstream tasks?

The challenges of designing a pre-training interpretable GNN are three-fold. First, labeling ground-
truth explanation in the real-world graphs is extremely resource- and time-comsuming [28]. The
lacking of ground-truth explanation makes it hard to distill the universal interpretability in the pre-
training phase. Second, multiple structural patterns usually co-exist in one graph dataset, such as
the scale-free pattern and the motif distribution pattern in chemical molecule graphs [29]. How
to extract and integrate multiple structural patterns for a more comprehensive and general graph
representation during pre-training is also challenging. Third, the local structural interactions such as
the neighbor edges interaction [30] should be considered when identifying explanations. However,
due to the structural diversity of different local neighborhoods, it is non-trivial to incorporate the
global structural patterns with the local structural interactions.

In this papaer, we propose a Pre-training Interpretable Graph Neural Network model (π-GNN for
short), which is first pre-trained over a large synthetic graph dataset with ground-truth explanations
and then fine-tuned on different downstream datasets and tasks. Specifically, we first construct a
synthetic graph dataset named PT-Motifs that contains various structural patterns and ground truth
explanations, over which the π-GNN model is pre-trained. Considering the co-existence of multiple
structural patterns, a structural pattern learning module is introduced to extract and integrate multiple
structural patterns to make them generalizable to diverse graph datasets. To better identify the
explanatory subgraph, a hypergraph refining module is also proposed to capture the local structural
interaction and incorporate it with the universal structural patterns. It is also proved the structural
representation ability of π-GNN can approach the theoretical upper bound through the hypergraph
refining process. Our main contributions are summarized as follows.

• We for the first time propose a pre-training interpretable GNN model π-GNN, which can be
generalized to different graph datasets and diverse downstream tasks.

• To extract the universal interpretability of π-GNN, we construct a synthetic graph classification
dataset PT-Motifs with ground-truth explanations for pre-training.

• Two innovative modules, i.e., the structural pattern learning module and the hypergraph refining
module, are designed and integrated into π-GNN. The former captures and integrates multiple
universal structural patterns for generalizable graph representation. The latter incorporates the
universal patterns with local structural interactions to identify the explanation.

• Compared with the SOTA baselines, π-GNN achieves up to 9.98% ROC-AUC improvement in
interpretation and 16.06% accuracy improvement in prediction. Moreover, π-GNN pre-trained on
graph classification dataset is able to achieve comparable performance with the leading baselines
on the node classification task.
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2 Background

In this section, we briefly introduce the graph neural networks and the GNN explanation methods4.
The key notations are summarized in Appendix A for clarity.

Graph Neural Networks. Graph structure data can be denoted as G = (V, E) with the node set
V and the edge set E . The node features are represented as the matrix X ∈ R|V|×d and the edge
features (if exist) are represented as XE ∈ R|E|×dE . The topological structure is usually represented
as an adjacency matrix A ∈ R|V|×|V|, where the element Aij = 1 indicates the edge (i, j) exists and
Aij = 0 otherwise. Graph neural networks (GNNs) aim to learn expressive representation on graphs
for the downstream tasks [1, 2, 3, 4, 32, 33], such as graph classification [7], node classification
[6, 34], and link prediction [35, 36]. Typically, to learn the representation of node vi, GNNs aggregate
the information from its neighborhood N (vi) and then combine it with vi’s own features. For
example, the operation of the k-th GCNs layer can be formulated as follows [1],

Xk+1 = F
(
D− 1

2 ÂD− 1
2XkWk

)
, (1)

where Xk and Xk+1 are the input and output of the k-th layer, Â = A+ I is the adjacent matrix
with self-loops, and D is a diagonal matrix whose element Di,i represents the degree of vi. Wk is a
trainable matrix and F (·) is a non-linear activation function.

GNN Explanation Methods. GNN explanation methods can be catogrized into the post-hoc
explanation methods [10, 11, 37, 38, 39] and the intrinsic interpretable methods [3, 40, 12, 13, 14].
The post-hoc methods target at explaining the black-box models which are fixed or unaccessible.
The interpretable methods devote to making transparent prediction from scratch, including not only
the predicted label but also the influential subgraph that guides the prediction [14]. In both the
post-hoc [10, 11, 37, 39] and the interpretable methods [12, 13, 14], the GNN explainer learns a
contribution function h which maps each feature of the input graph into the contribution score to
the predicted label. One insight in GNN explanation methods is that, the edge contribution function
is more essential to GNN explanation compared with that of the node [11, 13, 14]. For example,
when some nodes are selected, it is non-trivial to identify the explanatory subgraph. On the contrary,
when the important edges are selected, the correlated endpoints are naturally selected as well. We can
naturally identify the explanatory subgraph or further explore the important subset of node features.
In this work, we follow the previous works [11, 39, 13, 14, 3, 40] and focus on the contribution of
structure features (i.e., edges). Formally, we learn the contribution function h in terms of each edge
in graph G = (V, E) as follows,

ρ̂ = h(G), (2)

where ρ̂ ∈ R|E| and each element in ρ̂ is the contribution score of the edge to the task label. Next, a
selection module S as follows is employed to select the edges of the explanatory subgraph g, such as
the top-k selector [11, 13], the threshold selector [10], and the probabilistic selector [30, 14],

g = S(G, ρ̂). (3)

3 Methodology

The framework of the proposed π-GNN is shown in Figure 1, which contains an explainer pre-training
phase and a conjoint fine-tuning phase. In the explainer pre-training phase, we pre-train the π-GNN
explainer over the synthetic dataset PT-Motifs with ground-truth explanations, by taking the binary
edge classification as the pretext task. Afterwards, the pre-trained π-GNN explainer is incorporated
with task-specific predictor to identify explanatory subgraphs and provide transparent predictions on
different tasks. During the fine-tuning phase, the explainer and the predictor are conjointly optimized.
Next, we introduce the π-GNN model in detail.

3.1 Explainer Pre-training Phase

Due to the lack of ground-truth explanation in real-world graph datasets, we first construct a large
synthetic dataset with ground-truth explanation called PT-Motifs to support the explainer pre-training.

4In what follows, we use the term explainer and interpretor interchangeably [31].
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Figure 1: Framework of the π-GNN model. In the explainer pre-training phase, we use the synthetic
graphs with ground-truth explanations to pretrain the π-GNN explainer. In the fine-tuning phase
towards downstream tasks in real-world graphs, the pre-trained explainer and the task-specific
predictor are conjointly fine-tuned for transparent and accurate predictions.

Following previous works on generating synthetic graphs [10, 11, 13], each graph G in PT-Motifs
dataset consists of one base subgraph Gb and one explanation subgraph Ge (also known as the motif)
and the ground-truth task label y which is determined by Ge solely [10, 13]. The shapes of the
explanatory subgraphs in PT-Motifs include Diamond, House, Crane, Cycle, and Star and the basic
shapes are Clique, Tree, Wheel, Ladder, and the Barabási–Albert Net [25]. Each combination of
base and motif has the same number of samples in PT-Motifs. As shown in Figure 4(e) of Appendix
B.2, the degree distribution of PT-Motifs follows the power law function y = 106 × x−1.501. See
Appendix B.2 for more detailed structural patterns of PT-Motifs. The proposed π-GNN model distills
interpretability from the PT-Motifs dataset during the pre-training phase.

Structural Pattern Learning Module. To capture the multiple structural patterns, we propose to
parallelize multi-thread of basic pattern-learner B = {Bi|i = 1, 2, · · · , N}. Then, an integrated
pattern-learner aggregates them for a more comprehensive and general representation of various
graph structural patterns. Specifically, each basic learner Bi identifies a vectorized representation
of the structural patterns (such as the degree distribution) and the integrated learner Φ provides
a combination of each individual representation. We formally define the basic pattern-learner as
follows.

Definition 1 (Basic Pattern-Learner). Consider a graph G with n nodes, whose adjacency matrix
is A ∈ Rn×n. The basic pattern-learner Bi projects the adjacency matrix A into a low-dimensional
pattern matrix Zi ∈ Rn×d, d < n, as follows,

Zi = Bi(A). (4)

The basic pattern-learner Bi approaches the low-dimensional pattern matrix Zi by maximizing the
likelihood of preserving the graph topological structure.

As a widely adopted technique which provides global views of a graph [41, 42], node embedding can
serve as a simple yet effective basic pattern-learner. Inspired by the multi-head attention mechanism
for improving the expressive power [43], we parallelize N -thread basic pattern-learners to achieve
the structural pattern tensor Z = [Z1,Z2, · · · ,ZN ] ∈ RN×v×d which contains multiple universal
structural patterns. For each basic pattern-learner, the adjacency matrix A is randomly permuted
[42, 44]. Afterwards, the integrated learner Φ defined as follows aggregates the pattern tensor Z for a
more expressive and generalizable pattern representation ZInt [45].

Definition 2 (Integrated Pattern-Learner). Given the structural pattern tensor Z ∈ RN×v×d,
the integrated pattern-learner Φ moves forward to a convex combination ZInt ∈ Rv×dInt of each
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Figure 2: An example of the graph-hypergraph transformation. Considering the 3-degree node A in
graph G, its corresponding hyper-view is the hyperedge A which connects the hypernodes {1, 4, 5}.

individual pattern matrix Zi as

ZInt = Φ(Z) =

N∑
i=1

ωiZi, (5)

where Φ is an integration function to comprise appropriate structural patterns for diverse graphs.

Subsequently, ZInt is fed into the hypergraph refining module for computing the edge contribution
score and exploring explanatory subgraph.

Hypergraph Refining Module. With the universal structural patterns extracted from the graphs, we
next incorporate it with the edge interactions to identify the explanatory subgraph. Specifically, we
first learn the edge structural representation ZE from the integrated pattern matrix ZInt. Taking the
edge e = (i, j) as an example, the corresponding structural representation Ze

E can be approached
from the endpoint representations in ZInt as follows,

Ze
E = f (2)(Zi

Int,Z
j
Int), (6)

where f (2) is a 2-variable function and Zi
Int,Z

j
Int are the representations of nodes vi, vj , respectively.

Since the edge representation ZE directly determines the edge contribution score in the explanation,
it should express as much information as possible. Theoretically, the expressive power of ZE is
guaranteed by the following Theorem 1.

Theorem 1. Let Σn be the set of all adjacency matrix A with n nodes. Given a graph G = (V, E) ∈
Σn, n ≥ 2, let Γ∗(S,A) be a most-expressive structural representation of nodes set S ⊆ V in G.
∀A ∈ Σn, there exists a most-expressive node representation Z∗|A satisfies the relationship as
follows,

Γ∗(S,A) = EZ∗ [f (|S|)((Z∗
v)v∈S)|A],∀S ⊆ V, (7)

for an appropriate k-variable function f (k)(·).
Theorem 1 defines the upper bound of ZE representation ability [44]. The upper bound can be
approached according to the Theorem 2 as follows.

Theorem 2. The structural representation of edge e = (vi, vj) can be learnt by simply approaching
a function f (2) which satisfies Γ(e,A) = f (2)(E[(Zv)v∈{i,j}|A]).

In the hypergraph refining module, we adopt the integrated pattern matrix ZAgg as an approximation
of the expectation embedding matrix E[(Zv)v∈{i,j}|A] and a 2-layer MLP to fit the transition
function f (2) during pre-training phase [44]. See Appendix G for the proofs of Theorems 1 and 2.

Based on the edge structural representation ZE , a straightforward way is to directly estimate the con-
tribution score of each individual edge [13, 14]. However, such procedure ignores the incorporation
of universal patterns with local structural interactions, leading to the missing of the dependencies
among the edges. The edges in the explanation are supposed to interact with each other [46], form
the coalition, and guide the downstream prediction task better than individuals. We next introduce
how to capture the local edge interactions and incorporate them with the universal structural patterns.

Given the graph G = (V, E), we define its corresponding hypergraph as Gh = (Vh, Eh). For
a k-degree node v ∈ V , the corresponding hyper-view is a hyperedge connecting k hypernodes.
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Similarly, the edge e ∈ E becomes a hypernode in the corresponding hypergraph. An example of
graph-hypergraph transformation is shown in Figure 2. See Appendix H for the detailed algorithm of
graph-hypergraph transformation. During the graph-hypergraph transformation, the edge structural
representation is naturally converted to the hypernode structural representation. Therefore, we can
capture the local structural interaction by conducting hyperedge message passing. In our imple-
mentation, a 2-layer hypergraph convolutional network is employed to capture the edge interaction
information and further map the edge structural representations to the edge contribution scores ρ̂.
Finally, the hypergraph refining is formally represented as,

Z
(1)
E = Tanh(HyperConv(ZE)), (8)

ρ̂ = σ(HyperConv(Z
(1)
E )), (9)

where the Tanh(·) function is used for a zero-mean activate value and the σ(·) function normalizes
the output to a probability value within the range of [0, 1]. The normalized contribution score in ρ̂
measures the probability of each edge belongs to the explanatory subgraph.

Under the supervision of the ground-truth explanation in PT-Motifs, π-GNN distills the universal
interpretability during the pre-training phase. Specifically, for each synthetic graph G = (V, E),
the edges in EP that belong to the explanation subgraph are assigned with positive labels and the
complementary part EN receives a negative label [10, 11]. We denote the ground-truth explanation as
ρ ∈ {0, 1}|E|. π-GNN takes G as input and outputs the predicted explanation ρ̂ ∈ [0, 1]|E|, which is
optimized by the binary cross-entropy loss as follows,

L(ρ̂, ρ) = −
|E|∑
i=1

[ρi · logρ̂i + (1− ρi) · log(1− ρ̂i)]. (10)

3.2 Conjoint Fine-tuning Phase

During the conjoint fine-tuning phase, we combine the pre-trained π-GNN explainer with task-
specific predictors to identify the explanatory subgraph and make final prediction simultaneously for
real-world datasets. Note that the pre-trained π-GNN explainer is orthogonal to the post-positional
predictor. That is, we can implement a predictor with arbitrary architecture as long as it can deal
with the graph structure data. Even though the pre-training dataset PT-Motifs belongs to graph
classification task, the pre-trained π-GNN model can be easily generalized to other tasks, such as
nodel classification, by simply implementing a node classifier.

Following existing works [11, 13, 14], given the input graph G and the corresponding task label
y, we introduce a probabilistic sampler S to comprise the explanatory subgraph g according to the
predicted edge probability ρ̂ as follows,

g = S(G, ρ̂). (11)
Going beyond the probabilistic sampling procedure, the post-positional predictor takes the explanatory
subgraph g as input and fits the mapping function to the predicted label ŷ, by optimizing a task-
specific loss function Ltask(ŷ, y). In addition, we introduce an entropy regularizer [11, 14] in the
fine-tuning phase to amplify the gap of each value in ρ̂ for sparser explanations as follows,

L(ρ̂) = −
|E|∑
i=1

[ρ̂i · logρ̂i + (1− ρ̂i) · log(1− ρ̂i)] + ||ρ̂||1. (12)

The overall objective of the fine-tuning phase is to jointly optimize the the task-specific term and the
entropy regularizer as follows,

L(ŷ, ρ̂, y) = Ltask(ŷ, y) + L(ρ̂). (13)

4 Experiment

In this section, we conduct extensive experiments to evaluate the performance of π-GNN by answering
the following two questions.

• RQ1: How effective is π-GNN when it is generalized to different graph datasets?
• RQ2: How effective is π-GNN when it is generalized to different graph tasks?
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Table 1: Interpretation Performance (ROC-AUC) Comparison. The underlined results highlight the
best baselines. The bold results mean the π-GNN or π-GNNDFT outperform the best baselines.

Model BA-2Motifs Mutag MNIST-75sp Spurious-Motif
b = 0.5 b = 0.7 b = 0.9

GNNExplainer 67.35 ± 3.29 61.98 ± 5.45 59.01 ± 2.04 62.62 ± 1.35 62.25 ± 3.61 58.86 ± 1.93
PGExplainer 84.59 ± 9.09 60.91 ± 17.10 69.34 ± 4.32 69.54 ± 5.64 72.33 ± 9.18 72.34 ± 2.91
GraphMask 92.54 ± 8.07 62.23 ± 9.01 73.10 ± 6.41 72.06 ±5.58 73.06 ± 4.91 66.68 ± 6.96
IB-Subgraph 86.06 ± 28.37 91.04 ± 6.59 51.20 ± 5.12 57.29 ± 14.35 62.89 ± 15.59 47.29 ± 13.39
DIR 82.78 ± 10.97 64.44 ± 28.81 32.35 ± 9.39 78.15 ± 1.32 77.68 ± 1.22 49.08 ± 3.66
GIN-GSAT 98.74 ± 0.55 99.60 ± 0.51 83.36 ± 1.02 78.45 ± 3.12 74.07 ± 5.28 71.97 ± 4.41
PNA-GSAT 93.77 ± 3.90 99.07 ± 0.50 84.68 ± 1.06 83.34 ± 2.17 86.94 ± 4.05 88.66 ± 2.44

π-GNN 99.33 ± 0.63 99.81 ± 0.17 92.77 ± 0.80 93.24 ± 0.72 96.92 ± 0.85 96.39 ± 0.92
π-GNNDFT 93.19 ± 1.48 95.29 ± 0.67 85.18 ± 1.08 86.29 ± 2.22 87.43 ± 2.47 89.64 ± 2.26

4.1 Experimental Settings

In the experiment, we use two popular synthetic datasets [10, 11, 13, 14] and four real-world datasets
of graph classification tasks. The details of dataset characteristics and statistics are summarized in
Appendix B. A brief introduction to the datasets is as follows.

• Synthetic Datasets. BA-2Motifs [10] and Spurious-Motif [13] are two widely-used synthetic
datasets to evaluate the interpretation performance of the GNN explanation methods.

• Real-world Datasets. We use four real-world datasets, the superpixel graph dataset MNIST-75sp
[40], the sentiment analysis dataset Graph-SST2 [16], and two chemical molecule datasets Mutag
[18] and Ogbg-Molhiv [47]. Note that, in the MNIST-75sp dataset, the subgraph with nonzero
pixel values is regarded as the ground-truth explanation [14]; in the Mutag dataset, -NO2 and -NH2

functional groups in mutagen graphs are labelled as the ground-truth explanation [28]. Hence, we
use the MNIST-75sp and Mutag datasets for both the interpretation and the prediction evaluations.

We extensively compare π-GNN with the following two types of baselines:

• Interpretation Baselines. We compare the interpretation performance with both the post-hoc
explanation methods including GNNExplainer [10], PGExplainer [11], and GraphMask [39] and
the intrinsic interpretable methods including DIR [13], IB-subgraph [12], GIN-GSAT, and PNA-
GSAT [14]. Following the standard setting, the evaluation metric is the explanation ROC-AUC
[13, 14].

• Prediction Baselines. We compare the perdiction performance with the powerful GNN models
including GIN [4] and PNA [32] and the intrinsic interpretable methods including DIR, IB-subgraph,
GIN-GSAT, and PNA-GSAT. For the OGBG-Molhiv dataset, we use the classification ROC-AUC
as the prediction metric [47]. For all the other dataset, we report the classification accuracy [13].

Additionally, we report the performance of π-GNN which directly fine-tunes on downstream datasets
without pre-training (denoted as the π-GNNDFT), to investigate the effectiveness of pre-training
phase. All the results are averaged over 10-times evaluation with different random seeds. Architecture
of the downstream GNN predictors used in π-GNN and π-GNNDFT are reported in Appendix C.

4.2 Main Results (RQ1)

To investigate the effectiveness of π-GNN, we compare the interpretation and the prediction perfor-
mance with the SOTA interpretation and prediction baselines. See Appendix C for the pre-training
and fine-tuning details. The overall interpretation performance and prediction performance are
summarized in Table 1 and Table 2, respectively. We conclude the following observations:

• π-GNN significantly outperforms the leading GNN explanation methods. Specifically, for
the Spurious-Motif dataset, π-GNN surpasses DIR by 27.21% on average and by 47.31% at most.
Compared with the best baselines, i.e., the GSAT with a 4-layer PNA encoder, π-GNN improves the
interpretation performance by 9.20% on average. However, we merely employ the combination of a
truncated SVD embedding and a 2-layer MLP as the encoder, which convincingly demonstrates the
effectiveness of our proposed pre-training phase. Moreover, as the degree of spurious correlation in
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Table 2: Prediction Performance (Acc) Comparison. The underlined results highlight the best
baselines. The bold results mean the π-GNN or π-GNNDFT outperform the best baselines.

Model Molhiv(AUC) Graph-SST2 MNIST-75sp Spurious-Motif
b = 0.5 b = 0.7 b = 0.9

GIN 76.69 ± 1.25 82.73 ± 0.77 95.74 ± 0.36 39.87 ± 1.30 39.04 ± 1.62 38.57 ± 2.31
PNA 78.91 ± 1.04 79.87 ± 1.02 87.20 ± 5.61 68.15 ± 2.39 66.35 ± 3.34 61.40 ± 3.56
IB-Subgraph 76.43 ± 2.65 82.99 ± 0.67 93.10 ± 1.32 54.36 ± 7.09 48.51 ± 5.76 46.19 ± 5.63
DIR 76.34 ± 1.01 82.32 ± 0.85 88.51 ± 2.57 45.49 ± 3.81 41.13 ± 2.62 37.61 ± 2.02
GIN-GSAT 76.47 ± 1.53 82.95 ± 0.58 96.24 ± 0.17 52.74 ± 4.08 49.12 ± 3.29 44.22 ± 5.57
PNA-GSAT 80.24 ± 0.73 80.92 ± 0.66 93.96 ± 0.92 68.74 ± 2.24 64.38 ± 3.20 57.01 ± 2.95

π-GNN 80.86 ± 0.61 88.05 ± 0.43 96.89 ± 0.20 74.67 ± 0.63 77.52 ± 0.77 77.46 ± 0.96
π-GNNDFT 79.71 ± 1.08 83.48 ± 1.20 92.89 ± 0.95 70.78 ± 1.63 71.02 ± 1.43 72.61 ± 1.75

Spurious-Motif (i.e., the parameter b) increasing, the performance of π-GNN does not decrease
as most of the baselines. The post-hoc explainers, including GNNExplainer, PGExplainer, and
GraphMask seems to be robust in terms of the spurious correlation, but their interpretability is
limited by the fixed prediction model. Although DIR and GSAT introduce complex mechanism
for mitigating the spurious correlation, π-GNN still performs better. We ascribe this superiority
to the generalizable knowledge which is distilled from the pre-training phase over large dataset
with ground-truth explanations. For the BA-2Motifs and the Mutag datasets, π-GNN using a more
simpler encoder architecture also achieves comparable performance. For the MNIST-75sp dataset,
π-GNN surpasses the best baseline PNA-GSAT by 4.50%. Such top-tier performance strongly
validates the effectiveness of π-GNN explainer.

• π-GNN also achieves better prediction performance than the baselines. Overall, π-GNN
outperforms all the prediction baselines consistently by a significant margin. Specifically, for the
Spurious-Motif dataset, π-GNN outperforms the best baselines by 11.05% on average, which is
a significant improvement. If we restrict the baselines into interpretable GNNs, the performance
boost is much more significant (by 13.17% on average and up to 20.45%). For the Graph-SST2
dataset, π-GNN outperforms the black-box predictor (i.e., GIN and PNA), as well as the SOTA
interpretable methods IB-Subgraph, which optimizes the explanatory subgraph based on the
information bottleneck principle. Note that, we only implement a 2-layer GCN with global mean
pooling function as the Graph-SST2 predictor. We credit such outperformance to the pre-training
phase, from which the universal patterns of the graphs are potentially distilled. For the MNIST-
75sp dataset, π-GNN achieves comparable prediction accuracy with the GSAT methods, but our
interpretation ROC-AUC exceeds GSAT by 8.09%. Additionally, one can notice that the black-box
predictors are insensitive to the spurious correlation while the interpretable baselines deteriorate
obviously. This phenomena may indicate that insufficient interpretability conflicts with the chase
of prediction accuracy, but a powerful interpretor is quite helpful to the subsequent predictor.

• The pre-training phase advances the interpretor in terms of both interpretation and perdiction
performance. As shown in Table 1 and Table 2, the π-GNN with pre-training phase significantly
improves both the interpretation and the prediction performance, compared with the reduced variant
π-GNNDFT. For the interpretation ROC-AUC, π-GNN outperforms the reduced variant by 6.91%
on average. This suggests that the universal structural patterns distilled in the pre-training phase
can indeed generalize to various downstream tasks and improve the interpretability. Compared
with the reduced variant, π-GNN consistently provides much stabler interpretation with smaller
variance. Additionally, one can observe that the reduced variant π-GNNDFT still surpasses the
best baselines on some real-world datasets, such as the interpretation performance on MNIST-75sp
dataset and the prediction performance on Graph-SST2 dataset. This may imply that the edge
interaction captured by π-GNNDFT is able to identify the influential subgraphs more accurately.

Moreover, we present the explanatory visualization, the investigate of different pre-training datasets
and the hyper-parameter analysis in Appendix D, E and F, respectively.

4.3 Inter-Task Generalization Performance (RQ2)

To further investigate whether the universal structural patterns behind different tasks is common,
we next study the generalization ability across different tasks. Specifically, we evaluate the π-GNN
model that is pre-trained over graph classification dataset PT-Motifs on the explanation task of node
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Table 3: Inter-Task Interpretation Performance (ROC-AUC) Camparison. The bold font highlights
the best results and the underlined results highlight the second best method.

Model BA-Shapes BA-Community Tree-Cycles Tree-Grid

GRAD 88.20 75.00 90.50 61.20
Attention 81.50 73.90 82.40 66.70
GNNExplainer 92.50 83.60 94.80 87.50
PGExplainer 96.30 ± 1.10 94.50 ± 1.90 98.70 ± 0.70 90.70 ± 1.40

π-GNN 94.78 ± 0.32 94.67 ± 1.50 95.19 ± 0.88 90.11 ± 1.10
π-GNNDFT 93.17 ± 0.40 92.15 ± 1.61 92.53 ± 1.81 88.62 ± 1.87

classification datasets. The pre-trained π-GNN model and the reduced variant are both equipped with
a node classifier. Following existing works, we use four widely-used synthetic node classification
datasets [10], namely BA-Shapes, BA-Community, Tree-Cycles and Tree-Grid, whose detailed
statistics are presented in Appendix B. The main result of inter-task explanation in Table 3 shows that
π-GNN achieves comparable performan with SOTA node classification explainers. This evidence is
accordant with our basic premise that the universal structural patterns can generalize across datasets
of different tasks. For the BA-Community dataset, π-GNN even supasses PGExplainer with smaller
varience. This may be because the community structure in the BA-Community graph conforms more
to the universal patterns embedded in π-GNN.

4.4 Ablation Study

As shown in Figure 3, we conduct ablation study on π-GNN, by evaluate the performance of its three
variants. First, π-GNN-SPL substitutes the structural pattern learning module with N -thread GNN
encoders. Second, π-GNN-HPR removes the hypergraph refining module and directly calculates the
edge contribution score. Third, we simultaneously conduct the two ablations above and denote it as
π-GNN-ALL. Additionally, we report the performance of the variant without pre-training phase.

Specifically, when removing the structural pattern learning module, the interpretation performance on
Mutag decreases by 3.85% on average and the prediction performance on Graph-SST2 decreases
by 1.08% on average. For the variant π-GNN-HPR, the interpretation and prediction performance
decreases by 6.56% and 1.84%, respectively. When we remove the two modules simultaneously, the
interpretation and prediction performance decreases by 7.56% and 2.16%, respectively. The ablation
study on the two modules demonstrates their effectiveness in capturing universal structural patterns
and identifying the explanatory subgraphs. Moreover, for all the variants, π-GNN consistently
outperforms the variant without pre-training phase by 5.59% in terms of ROC-AUC on Mutag and
2.84% in terms of accuracy on Graph-SST2.

5 Related Work

Intrinsic interpretable GNNs. The leading interpretable GNNs [12, 13, 14] usually consist of an
explainer module and a predictor module. The prepositional explainer takes the raw graph as input
and outputs the explanation subgraph. The subsequent predictor calculates the prediction strictly
relying on the explanation. Graph neural networks with attention mechanism are regarded as the
initial interpretable GNNs [13, 14], such as graph attention network [3], self-attention graph pooling
[40], where the learned weights can be interpreted as the importance of certain features. Recently,
invariant learning is introduced to construct intrinsic interpretable GNNs [48, 49], such as DIR [13].
It argues that augmenting training data with causal intervention may assist explainer to distinguish
the causal and non-causal parts. Besides, interpretable GNNs based on the information bottleneck
principle [50], such as IB-Subgraph [12] and GSAT [14], are proposed to constraint the information
flow from the input graph to the prediction, where the label-relevant graph components will be kept
while the label-irrelevant ones are reduced.

Pre-training on Graphs. The research focus of current graph pre-training is the graph representation
learning problem, whose objective is to learn a generic encoder f(A,X) for various downstream
tasks [51, 52]. The development of graph pre-training can be broadly divided into pre-trained graph
embeddings [41, 53, 42] and pre-trained graph encoders [23, 22, 24, 21]. Pre-trained graph embedding
models aim to provide good graph embeddings for various tasks, while the models themselves are no
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(a) Interpretation performance on Mutag (b) Interpretation performance on Spurious-Motif

(c) Prediction performance on Graph-SST2 (d) Prediction performance on Spurious-Motif

Figure 3: The ablation study of π-GNN on Mutag, Graph-SST2, and Spurious-Motif datasets.

longer needed to the tasks. DeepWalk [41] explores the graph embeddings by conducting random
walks over graphs to generate node sequences which contain the co-occurrence relationship. Further,
Node2vec [42] defines a flexible node neighborhood and proposes a biasd random walk process. The
goal of pre-trained graph encoder models is a generic encoder model which can deal with different
tasks. Gpt-GNN [23] pre-trains a 5-layer GIN encoder across the graph-level and node-level tasks.
GCC [22] introduces the contrastive learning framework to pre-train the encoder over subgraph
discrimination task. However, the precursor graph pre-training works are not designed to the graph
explanation problem and can not be directly applied to the pre-training interpretable GNNs.

6 Conclusion

In this work, we for the first time investigated the universal interpretation problem in graph data
and proposed the Pre-training Interpretable Graph Neural Network named π-GNN. π-GNN is able
to work well on different types of graphs and downstream tasks. π-GNN was pre-trained over a
constructed large synthetic graph dataset with ground-truth explanations to distill the generalizable
interpretability. Then, π-GNN was fine-tuned on downstream tasks. Technically, we proposed
an intergrated embedding module to capture and integrate multiple graph structural patterns for
more generalizable representations. A hypergarph refining module was aslo proposed to incorporate
the universal patterns with local interaction for more faithful explanatory subgraphs identification.
Extensive experiments on different datasets and tasks demonstrated the promising generalizable
interpretability as well as prediction performance of π-GNN.
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A Notations

In Table 4, we give the mathematical symbols and their descriptions used in this paper for clarity.

Table 4: Symbols and their descriptions.

Symbol Description

G,V, E Graph instance, node set, edge set
X Node feature matrix
XE Edge feature matrix

A, Aij Adjacency matrix, element at the i-th row, j-th column of A
v, vi; e, ei Node instance; edge instance
N (v) Neighborhood of node v
W Trainable parameter matrix

F (·), σ(·) Non-linear activation function, Sigmoid function
h Edge contribution function
ρ, ρ̂ Ground-truth explanation, predicted explanation
S Selection module
g Explanatory subgraph

B, Bi Set of basic pattern-learners, basic pattern-learner
N Number of basic pattern-learners

Zi,Z Pattern matrix, pattern tensor
Φ Integrated pattern-learner

ZInt Integrated pattern representation
ZE Edge structural representation
S Subset of node

f (2) Node to edge transition function
Gh,Vh, Eh Hypergraph instance, hypernode set, hyperedge set
EP , EN Positive (Negative) edge set

b Degree of spurious correlation in Spurious-Motif dataset

B Datasets

We introduce the datasets used in the main experiment as follows.

• BA-2Motifs [10] is a synthetic dataset with binary graph classes for evaluating the interpretation
performance. House motifs and cycle motifs decide the graph labels and serve as the ground-truth
explanations of the two classes, respectively.

• Spurious-Motif [13] is a synthetic dataset with three graph classes for evaluating both the in-
terpretation and the prediction performance. Each class corresponds to a particular motif which
is regarded as the ground-truth explanation. During the synthesis process, spurious correlations,
including the unbalanced base sampling and the scale drift, are injected into the training dataset. A
hyper-parameter b controls the degree of spurious correlation, usually set as {0.5, 0.7, 0.9}.

• Mutag [18] is a chemical molecule dataset with binary graph classes which represents mutagenic
property. Benefiting from domain knowledge, -NO2 and -NH2 functional groups in mutagen
graphs are labelled as the ground-truth explanation. Therefore, we employ the Mutag dataset for
the evaluation of interpretation and prediction performance.

• MNIST-75sp [40] converts the MNIST image dataset into a superpixel graph dataset with ten
graph classes. The nodes are superpixels, while edges are the spatial distance between the related
endpoints. The subgraph with nonzero pixel values is regarded as the ground-truth explanation.
Hence, the Mnist-75sp is used for both the interpretation and the prediction evaluations.

• Graph-SST2 [16] is a sentiment analysis dataset with binary graph labels, where each sequence
in SST2 dataset is transformed to a graph. Since no ground-truth explanations are available, we
evaluate the prediction performance only.
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• OGBG-Molhiv [47] is a molecular dataset with binary graph labels according to the inhibition
effect on HIV virus replication, where nodes are atoms, and edges are chemical bonds. As there
are no ground-truth explanations, we merely evaluate the prediction performance.

B.1 Statistical Characteristics

We show the detailed statistics of the datasets in Table 5.

Table 5: Detailed statistics of graph classification datasets in main experiment.

BA-2Motifs Spurious-Motif Mutag
Train Val Test Train Val Test Train Val Test

#Classes 2 3 2
#Graphs 400 400 200 9,000 3,000 6,000 1000 1000 951
Avg. #Nodes 25.0 25.0 25.0 25.4 26.1 88.7 30.1 30.1 30.2
Avg. #Edges 50.9 51.0 50.9 35.4 36.2 131.1 61.3 60.2 61.2

MNIST-75sp Graph-SST2 OGBG-Molhiv
Train Val Test Train Val Test Train Val Test

#Classes 10 2 2
#Graphs 20,000 5,000 10,000 28,237 3,147 12,305 32,901 4,113 4,113
Avg. #Nodes 66.8 67.3 67.0 17.7 17.3 3.45 25.3 27.8 25.3
Avg. #Edges 539.3 545.9 540.9 33.3 33.5 4.89 54.1 61.1 55.6

We show the detailed statistics of datasets that used in the inter-task evaluation in Table 6.

Table 6: Detailed statistics of node classification datasets in inter-task experiment.

BA-Shapes BA-Community Tree-Cycles Tree-Grid

#Classes 4 8 2 2
#Nodes 700 1,400 871 1,231
#Edges 4,110 8,920 1,950 3,410

B.2 Structural Patterns

Degree Distribution. As shown in Figure 4, we visualize the degree distribution of the four real-world
datasets, i.e., Mutag, MNNIST-75sp, Ogbg-Molhiv, and Graph-SST2, and our synthetic scale-free
dataset PT-Motifs. The power-law like degree function D(x) = cx−α of each real-world dataset is
formally represented as follows, optimized by the ordinary least square error. Here D(x) represents
the number of x-degree nodes and R2 is the coefficient of determination.

• Mutag: D(x) = 54447x−1.537, R2 = 0.9015.

• MNIST-75sp: D(x) = 107x−5.913, R2 = 0.6713.

• Ogbg-Molhiv: D(x) = 3× 106x−6.039, R2 = 0.6828.

• Graph-SST2: D(x) = 8× 106x−4.988, R2 = 0.8491.

• PT-Motifs: D(x) = 106x−1.501, R2 = 0.9677.

In Table 7, we report the average value of the four structural patterns over each individual graphs in
the datasets, including

• Transitivity is defined as the fraction of all possible triangles present in the given graph G. It
measures the tendency of connections or relationships between nodes to form triangles or triplets
and captures the clustering characteristics in a given graph. Let triads be the structure that two
edges with a shared node, then the transitivity can be formally represented as follows,

Transitivity = 3
#Triangles

#Triads
, (14)

where #Triangles and #Triads are the number of triangles and triads in G, respectively.
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(a) Degree distribution of Mutag (b) Degree distribution of MNIST-75sp

(c) Degree distribution of Ogbg-Molhiv (d) Degree distribution of Graph-SST2

(e) Degree distribution of PT-Motifs

Figure 4: The degree distribution of four real-world graph datasets (Mutag, MNIST-75sp, Ogbg-
Molhiv, and Graph-SST2) and our synthetic dataset PT-Motifs. The x axis is the node degree.

• Assortativity is defined as the similarity of connections in the given graph G with respect to the
node degree. It measures the preference of nodes to connect with nodes of similar or different
characteristics. Assortativity helps uncover the underlying patterns of connectivity and provides
insights into the organization and functioning of complex networks. The average assortativity of
the given graph G is the mean value over all nodes.

• Efficiency of a pair of nodes is defined as the multiplicative inverse of the shortest path distance
between the endpoints in the given graph G. The average global efficiency of a graph is the average
efficiency of all pairs of nodes.

16



• Clustering of the node v is defined as the fraction of possible triangles through that node. The
corresponding clustering coefficient cu can be formulated as,

cv = 2
#Trianglesu

degu(degu − 1)
, (15)

where #Trianglesu is the number of triangles through node u and degu is degree of node u. The
average clustering coefficient C of the given graph G with n nodes is defined as follows,

C =
1

n

∑
v∈G

cv. (16)

Table 7: Structural patterns of the PT-Motifs dataset and four real-world datasets.

PT-Motifs Mutag MNIST-75sp Molhiv Graph-SST2

Transitivity 0.3620 0.0013 0.5005 0.0021 0
Avg Assortativity 0.1525 -0.4196 0.3235 -0.2678 -0.6269
Avg Efficiency 0.5044 0.3261 0.3977 0.3243 0.5491
Avg Clustering 0.4185 0.0010 0.5408 0.0020 0

For an intuitive understanding of the graph structural patterns, we visualize the distribution of node
pair efficiency and node assortativity in Figure 5 and Figure 6, respectively. One can notice that
the efficiency distributions of PT-Motifs, Mutag, MNIST-75sp, and Molhiv all follow a bell-shaped
curve, while that of Graph-SST2 is a little different. Similarly, we found that the node assortativity
distributions of Mutag, MNIST-75sp, Molhiv, and PT-Motifs all have one main peak which largely
surpasses the adjacent values, while the node assortativity of Graph-SST2 dataset has four peaks.

Overall, the structural patterns above, including the degree distribution, the transitivity, the assor-
tativity, the efficiency, and the clustering, are universal and generalizable across different datasets.
However, the expression degree of different structural patterns may differ largely in different datasets.
As shown above, the Graph-SST2 dataset strictly follows the power law shaped degree distribution,
but its node pair efficiency and node assortativity distributions are different from the other three real-
world datasets. Therefore, we propose the structural pattern learning module in π-GNN, to capture
multiple structural patterns and integrate them for a more universal and generalizable representation.

C Experimental Details

We first present the details of the pre-training phase over the synthetic PT-Motifs dataset. The
PT-Motifs dataset is split into the training set of 50,000 graphs, the validation set of 10,000 graphs,
and the testing set of 20,000 graphs. Each graph class has equal number of instances in the three sets.
During the pre-training phase, the batchsize is set as {32, 64, 128, 256} and the learning rate is set
as {10−3, 5× 10−3, 10−4, 10−5, 10−6}. The pre-training epoch is set as {20, 40, 60, 80}. We select
the pre-trained π-GNN model according to the validation performance. During the pre-training and
the fine-tuning phases, we use the Adam optimizer.

As shown in Tables 8 and 9, we present both the downstream predictor architecture and the fine-tuning
details of the graph classification datasets and the node classification datasets, respectively. For all
the graph classification datasets, we use the global mean pooling as the pooling function. Specially,
in the Molhiv predictor, we introduce the virtual node and weighted loss tricks to mitigate the class-
imbalance issue (39,684 negative examples and only 1,443 positive examples). All experiments are
conducted on a single NVIDIA GeForce 3090 GPU (24GB).

D Explanatory Visualization

For an intuitive understanding on the π-GNN explanation, we present a few visualized explanation
results of the Graph-SST2 dataset in Figure 7. Overall, π-GNN has the ability to highlight the
influential phrases that directly express the positive or negative sentiments in the sentence. Specifically,
π-GNN correctly allocates large weights to the positive words "a legend" in Figure 7(a), as well as
"bewilderingly brilliant" and "entertaining" in Figure 7(c). Furthermore, the negative word, such
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(a) Node pair efficiency distribution of Mutag (b) Node pair efficiency distribution of MNIST-75sp

(c) Node pair efficiency distribution of Ogbg-Molhiv (d) Node pair efficiency distribution of Graph-SST2

(e) Node pair efficiency distribution of PT-Motifs

Figure 5: The node pair efficiency distribution of four real-world graph datasets (Mutag, MNIST-75sp,
Ogbg-Molhiv, and Graph-SST2) and the synthetic dataset PT-Motifs.

Table 8: Predictor architecture and fine-tuning details of graph classification datasets.

BA-2Motifs Spurious-Motif Mutag MNIST-75sp Molhiv Graph-SST2

Backbone GCN GCN GCN GIN GIN GCN
Layers 1 1 1 2 2 1
Batchsize 256 128 64 256 128 32
Learning rate 8× 10−4 4× 10−4 1× 10−4 1× 10−3 1× 10−3 1× 10−4

Epochs 30 30 30 50 40 40

as "absurd lengths" and "skip dreck" in Figure 7(b) and Figure 7(d), are identified by π-GNN for a
transparent sentiment prediction. The visualized explanation again demonstrates the effectiveness
of π-GNN: (1) the pre-trained π-GNN interpretor can faithfully extract the most vital subgraph that
contains the label-relevant information; and (2) the pre-trained π-GNN interpretor is able to cooperate
with specific downstream predictor for both accuracy and interpretability. See Figure 7 for more
visualized results of the explanations.

E Supplement Experiment

To further investigate the impact of the pre-training dataset on the final results, we conduct emprical
studies on the size and the imbalance degree of the pre-training dataset.
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(a) Node assortativity distribution of Mutag (b) Node assortativity distribution of MNIST-75sp

(c) Node assortativity distribution of Ogbg-Molhiv (d) Node assortativity distribution of Graph-SST2

(e) Node assortativity distribution of PT-Motifs

Figure 6: The node assortativity distribution of four real-world graph datasets (Mutag, MNIST-75sp,
Ogbg-Molhiv, and Graph-SST2) and our synthetic dataset PT-Motifs.

Table 9: Predictor architecture and fine-tuning details of node classification datasets.

BA-Shapes BA-Community Tree-Cycles Tree-Grid

Backbone GCN GCN GCN GCN
Layers 3 3 3 3
Learning rate 1× 10−1 1× 10−1 1× 10−2 5× 10−2

Epochs 20 20 20 20

First, compared with PT-Motfis (80,000 graphs) in the main experiment, we generate another two
datasets with different sizes. In detail, PT-Motifs-M with 50,000 graphs and PT-Motifs-S with 10,000
graphs represent the middle-level and the small-level pre-training datasets, respectively. The split
ratio of the training, validation, and testing set is {0.7, 0.1, 0.2} in PT-Motifs-M and PT-Motifs-S.
As shown in Table 10, the results show that even the PT-Motifs-S is able to outperform the model
without pre-training. Moreover, we can notice that a large pre-training dataset can indeed improve
the performance more significantly than that with small size.

Furthermore, it is possible that if the synthetic pre-training dataset is imbalanced, the performance
improvement on downstream tasks will degrade, in terms of both the interpretation and prediction.
To further investigate this issue, we have added supplement experiments on imbalanced pre-training
dataset. Following existing works [13, 11], to generate the imbalanced datasets, we sample the
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(a) Explanation subgraph: positive sentiment (b) Explanation subgraph: negative sentiment

(c) Explanation subgraph: positive sentiment (d) Explanation subgraph: negative sentiment

(e) Explanation subgraph: positive sentiment (f) Explanation subgraph: negative sentiment

(g) Explanation subgraph: positive sentiment (h) Explanation subgraph: negative sentiment

(i) Explanation subgraph: positive sentiment (j) Explanation subgraph: negative sentiment

(k) Explanation subgraph: positive sentiment (l) Explanation subgraph: negative sentiment

Figure 7: Visualization of π-GNN explanation on the Graph-SST2 dataset. Each graph represents a
comment, where the explanations are highlighted by bule boxes and bolder lines.

Table 10: The impact of pre-training datasets with different sizes.

Task Dataset PT-Motifs W/O Pre-train PT-Motifs-M PT-Motifs-S

Interpretation BA-2Motifs 99.33 93.19 98.91 97.07
Mutag 99.81 95.29 99.06 96.28

Prediction Ogbg-Molhiv 80.86 79.71 80.77 79.82
Graph-SST2 88.05 83.48 87.59 85.23

explanatory Ge from uniform distribution, while the base Gb is determined by the following formula,

P (Gb) = b× I(Gb = Ge) +
1− b

4
× I(Gb ̸= Ge). (17)

Therefore, we can manipulate b to control the imbalance degree and the imbalance degree is defined
as i = 4b/(1 − b). The corresponding result is reported in Table 11. The results demonstrate that
when pretraining on an imbalanced dataset, the performance improvement is less significant than that
on the balanced one, but still better than that without pretraining. Moreover, an overly imbalanced
pre-training dataset (b = 0.7, i ≈ 9.3) may cause negative transfer issue (on Muatg, Molhiv, and
Graph-SST2). Therefore, the pre-training dataset ought to be balanced and thus can mitigate the
negative transfer issue to some extents.

20



Table 11: The impact of pre-training datasets with different sizes.

Task Dataset PT-Motifs W/O Pre-train PT-Motifs-M PT-Motifs-S

Interpretation BA-2Motifs 99.33 93.19 98.91 97.07
Mutag 99.81 95.29 99.06 96.28

Prediction Ogbg-Molhiv 80.86 79.71 80.77 79.82
Graph-SST2 88.05 83.48 87.59 85.23

F Hyper-parameter Analysis

In Figure 8, we conduct analysis on the number of basic pattern-learners, to evaluate the tendency of
π-GNN performance with the increase of the pattern-learner number. Additionally, we report the
performance of the variant without pre-training phase, which is marked by the subscript "DFT". One
can observe that as the number of basic learners increasing, both the interpretation and prediction
performance generally improves, which demonstrates the co-existence of multiple structural patterns.
For the Mutag dataset, when we increase the number to 2, the performance improvement (5.76%)
is the most significant. But when the number increases to 16 and 32, the performance is inferior to
that of 8 basic pattern-learners. We ascribe this degradation to the difficulty of integrating more and
more patterns when the basic learner number increasing. For the Graph-SST2 dataset, the prediction
performance consistently improves along with the number of basic learners. This may indicate that
the structural patterns in Graph-SST2 are more intricate than those in Mutag dataset. Moreover, the
induced variant without the pre-training phase is superior to the π-GNN model consistently, which
again verifies the effectiveness of the explainer pre-training phase, by 3.32% ROC-AUC score on
Mutag dataset and 4.08% accuracy on Graph-STT2 dataset on average.

G Derivation

First, we restate and prove Theorem 1 [44].

Theorem 1. Let Σn be the set of all adjacency matrix A with n nodes. Given a graph G = (V, E) ∈
Σn, n ≥ 2, let Γ∗(S,A) be a most-expressive structural representation of nodes set S ⊆ V in G.
∀A ∈ Σn, there exists a most-expressive node representation Z∗|A satisfies the relationship as
follows,

Γ∗(S,A) = EZ∗ [f (|S|)((Z∗
v)v∈S)|A],∀S ⊆ V, (18)

for an appropriate k-variable function f (k)(·).
Proof. Given graph G = (V, E) with n nodes, we construct an equivalent set of the most-expressive
structural representation Γ∗(S,A), with permutations on node indices:

Π(A) =
{
Γ∗

(
v,A, π(1, 2, · · · , n)

)
∀v∈V

∣∣∣π ∈ Πn

}
(19)

Define Z∗|A as the random variable with a uniform measure over Π(A). Assume the node subset S
has no other joint isomorphic set S′. Then, for any such S and any element γπ ∈ Π(A) as follow,

γπ = Γ∗
(
v,A, π(1, 2, · · · , n)

)
∀v∈V

, (20)

there exists a bijective measurable map between the nodes in S and their positions in the representation
vector γπ . Next, we consider the representation set OS(A) restricted to the node subset S as follows,

OS(A) :=
{
Γ∗

(
v,A, π(1, 2, · · · , n)

)
∀v∈S

∣∣∣π ∈ Πn

}
=

{(
(Z∗

v)v∈S |A
)}

, (21)

and prove that there exists an surjection between OS(A) and Γ∗(S,A). The surjection exists if, ∀
non-isomorphic node subset S1, S2, it implies OS1(A) ̸= OS2(A). This condition naturally holds if
|S1| ≠ |S2|. When |S1| = |S2|, we prove by contradiction and assume OS1(A) = OS2(A). Since
the node indices is unique and Γ∗ is most-expressive, the representation Γ∗(v,A, π(1, 2, · · · , n)) of
node v and permutation π is unique too. As S1 is non-isomorphic to S2, there must exist at least
one node u ∈ S1 that has no isomorphic equivalent element in S2. Hence, ∃π ∈ Πn that provides a
representation Γ∗(u,A, π′(1, 2, · · · , n)) and ∄π′ ∈ Πn, v ∈ S2 that the coresponding representation
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(a) Interpretation performance on Mutag (b) Interpretation performance on Spurious-Motif

(c) Prediction performance on Graph-SST2 (d) Prediction performance on Spurious-Motif

Figure 8: The hyper-parameter analysis on the number of the basic pattern-learners.

Γ∗(u,A, π′(1, 2, · · · , n)) matches. Finally, we conclude a contradiction from the original assumption
OS1(A) = OS2(A) and we know the surjection between OS(A) and Γ∗(S,A) does exist.

Furthermore, it has been proved that for finite multisets with real number elements, a most-expressive
multiset function can be defined as the expectation of a function f (|S|) over the multiset. Therefore,
there exists some subjective function f (|S|) whose expectation over OS(A) gives Γ∗(S,A).

Next, we restate and prove Theorem 2.

Theorem 2. The structural representation of edge e = (vi, vj) can be learnt by simply approaching
a function f (2) which satisfies Γ(e,A) = f (2)(E[(Zv)v∈{i,j}|A]).

Proof. According to Theorem 1, (Zv)v∈{i.j}|A can be represented as follows,

(Zv)v∈{i.j}|A = φ
(
Γ(v,A)v∈{i,j}, ϵ{i,j}

)
, (22)

where the noise ϵ{i,j} is marginalized from an independent noise distribution. With an assumption of
f (2) that is able to capture the structural dependencies within the adjacent matrix A, we can compute
the expectation of (Zv)v∈{i.j}|A and eliminate the noise.
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H Algorithm

We present the algorithm of graph-hypergraph transformation as following.

Algorithm 1 Graph-Hypergraph Transformation

Input: Edge index Ω ∈ R2×|E| of raw graph G
Output: Hyperedge index Ωh of hypergraph Gh

1: initialize hyperedge set Eh ⇐ ∅
2: initialize hyperedge index Ωh ⇐ ∅
3: for edge ei = (u, v) in Ω do
4: Eu

h ⇐ Eu
h ∪ {i}, Ev

h ⇐ Ev
h ∪ {i} // Record the endpoints of each edge

5: end for
6: for the p-th hyperedge Ep

h in Eh do
7: for item q in Ep

h do
8: Ωh ⇐ Ωh ∪ {(p, q)} // Allocate the same index p for each individual hypernode q
9: end for

10: end for
11: return Ωh

We also provide an illustrative example of the transformation process in Figure 2 of Section 3.1.

I Limitations

At last, we provide open discussion about the limitations of the π-GNN model.

Efficiency. If the number of basic pattern-learners need to be increased to a large amount for some
intricate graph datasets, the computational efficiency of π-GNN will become the bottleneck. Although
the efficiency can be improved by introducing multi-thread computation, the time complexity of
π-GNN with multiple basic pattern-learners is higher than the current interpretable GNNs.

Feature Dimension. The feature dimensions of the downstream graph datasets are usually different
from that of the PT-Motifs dataset in pre-training phase. Therefore, we have to additionally introduce
a linear layer to align the dimension differences between PT-Motifs and the downstream datasets.
Though this linear layer can be merged into the hypergraph refining module, it indeed increases the
optimization difficulty when fine-tuning.

Node Feature. π-GNN focuses on identifying the influential subgraphs by computing the edge
contribution score, but it is unable to select the important fraction of the node features that leads
to the model prediction. As a future direction, we consider to systematically extend π-GNN to the
interpretation problem in node classification and link prediction task, where the node features are
more informative and influential than those in the graph classification task.

Unseen Structural Patterns. As shown in Appendix B.2, several structural patterns are universal and
generalize to the synthetic PT-Motifs dataset and the real-world datasets (e.g., Mutag, MNIST-75sp,
Molhiv, Graph-SST2). During the pre-training phase over PT-Motifs dataset, π-GNN extracts these
universal structural patterns and combines them with the local structural interactions to achieve
generalizable interpretation. But for some unseen structural patterns that does not exist in PT-Motifs,
π-GNN is unable to capture and then employ them to identify explanations.
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