
Layer as Puzzle Pieces: Compressing Large Language
Models through Layer Concatenation

Fei Wang1,2, Li Shen3, Liang Ding4, Chao Xue2, Ye Liu1, Changxing Ding1,5,∗
1South China University of Technology 2JD Explore Academy

3Shenzhen Campus of Sun Yat-sen University 4University of Sydney
5Pazhou Lab

ft_feiw@mail.scut.edu.cn, chxding@scut.edu.cn

Abstract

Large Language Models excel at natural language processing tasks, but their mas-
sive size leads to high computational and storage demands. Recent works have
sought to reduce their model size through layer-wise structured pruning. However,
they tend to ignore retaining the capabilities in the pruned part. In this work, we
re-examine structured pruning paradigms and uncover several key limitations: 1)
notable performance degradation due to direct layer removal, 2) incompetent linear
weight layer aggregation, and 3) the lack of effective post-training recovery mech-
anisms. To address these limitations, we propose CoMe, including a progressive
layer pruning framework with a Concatenation-based Merging technology and a
hierarchical distillation post-training process. Specifically, we introduce a channel
sensitivity metric that utilizes activation intensity and weight norms for fine-grained
channel selection. Subsequently, we employ a concatenation-based layer merging
method to fuse the most critical channels across adjacent layers, enabling progres-
sive model size reduction. Finally, we propose a hierarchical distillation protocol
that leverages the correspondences between the original and pruned model layers
established during pruning, thereby enabling efficient knowledge transfer. Experi-
ments on seven benchmarks show that CoMe achieves state-of-the-art performance;
when pruning 30% of LLaMA-2-7b’s parameters, the pruned model retains 83% of
its original average accuracy.2

1 Introduction

Large Language Models (LLMs) [1, 3, 41, 37, 9] have become the cornerstone of modern natural
language processing, enabling start-of-the-art performance in tasks such as text generation [20, 12,
21, 32], machine translation [45], question answering [35, 13], and a variety of other challenging
tasks [29, 30, 38]. Their success is primarily attributed to scaling up model parameters, which
enhances their representational capacity [15]. However, the rapid growth of model size comes at a
cost: LLMs’ computational and storage demands have become a significant obstacle for practical
deployment, especially in resource-constrained environments.

Recent works resort to model compression [46, 39] to reduce the resource footprint of LLMs, with
mainstream approaches encompassing model pruning [24, 34, 27, 16] and knowledge distillation [31,
10, 5]. Among these, structured layer pruning is desirable for its hardware efficiency, as it removes
entire modules and reduces computational complexity [24, 34, 27, 16]. While direct layer pruning
reduces model size, it often leads to performance degradation. To mitigate this, several studies have
proposed merging adjacent layers through linear aggregation of their weights [27, 42, 22]. These

∗Corresponding author.
2Our code is available at https://github.com/MPI-Lab/CoMe.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/WangFei-2019/CoMe


approaches aim to better preserve model capacity by combining information from multiple layers,
yet important questions remain regarding their effectiveness and the underlying assumptions.

Despite the efficiency of layer pruning, we rethink and identify several critical limitations in existing
approaches. Direct layer pruning assumes that specific layers are redundant and can be removed
without harming model performance. However, our analysis reveals that different methods yield
highly inconsistent rankings of layer importance, and pruning different layers leads to performance
degradation on different benchmarks. This suggests that each layer contributes meaningfully to
the model, and preserving the mapping functions of pruned layers is essential. In addition, linear
weight aggregation methods rely on the assumption of distributional similarity among layer weights,
which does not hold for feed-forward networks; as a result, linear aggregation can further exacerbate
information loss. Finally, most current pruning methods lack integrated post-training recovery
schemes. While some studies combine pruning and knowledge distillation, these stages are typically
handled separately, resulting in suboptimal knowledge transfer and limited performance recovery.

Motivated by these insights, we propose CoMe, a structured compression framework for LLMs that
integrates progressive layer pruning with a Concatenation-based Merging technique and a hierarchical
distillation protocol. Our approach consists of three key components. First, we introduce a channel-
level sensitivity metric that quantifies the importance of each channel according to activation response
intensity and weight norms, providing a principled basis for fine-grained pruning. Second, we
present a progressive merging method that concatenates important channels from adjacent layers,
reconstructing compact fusion layers and minimizing information loss. Iteratively applying this
strategy yields a pruned model with significantly reduced complexity. Third, we propose a hierarchical
distillation protocol that utilizes layer correspondences established during pruning to guide efficient
knowledge transfer via decoupled layer-wise feature alignment. This protocol accelerates post-
training and reduces computational overhead. Fig. 1 depicts the the overall procedure.

We evaluate CoMe on seven LLMs, three sparsity levels (10%, 20%, 30%), seven NLP benchmarks,
and two datasets, comparing against nine competitive baselines. Experimental results show that CoMe
consistently outperforms existing methods: (1) During pruning, it achieves superior performance
across all settings; (2) After post-training, it surpasses state-of-the-art by over 2.4% in average
accuracy; (3) Compared to linear weight aggregation methods, concatenation-based merging improves
average accuracy by more than 2% and reduces perplexity by over 4.7 across benchmarks.

In summary, our main contributions are as follows:

• We introduce CoMe, a novel framework for structured layer pruning and recovery in LLMs,
which preserves critical channels and enables efficient post-training restoration.

• We propose a concatenation-based merging method that reconstructs layers using the most
informative channels, which minimizes performance loss caused by pruning.

• We develop a hierarchical distillation protocol that exploits pruning priors to efficiently
transfer knowledge through decoupled layer-wise feature alignment.

• We conduct extensive experiments, reveal the inherent limitations of linear weight aggre-
gation in layer pruning, and demonstrate the effectiveness of our approach across multiple
LLMs and benchmarks.

2 Related Work

Structured Layer Pruning. LLMs are typically constructed by stacking multiple transformer layers,
and substantial research has been devoted to compressing these models via layer pruning. Existing
methods can be broadly grouped into three categories. First, heuristic layer pruning approaches, such
as Magnitude [19, 16] and Taylor [23, 16], evaluate the layer importance based on weight norm or the
error induced by removing specific weights. While straightforward, these methods often fail to capture
the complex, nonlinear dependencies across layers. Second, redundancy-based pruning estimates
block importance based on activation patterns. For example, Men et al. [24] identify redundant layers
via cosine similarity between output features, and Song et al. [34] select sub-models by evaluating
their performance on a calibration set. Although these methods incorporate global performance
metrics, their discrete search spaces make it challenging to preserve the essential feature encoding
capacities of pruned layers. Third, layer fusion methods aim to improve parameter utilization by

2



…𝑺𝑩𝑰 Score

Layer 𝑙

Layer 𝑙 + 𝑚

𝑩𝑰𝒍

Channel Importance

𝑩𝑰𝒍+𝒎

Channel Importance

Layer 𝑙 + 𝑚

…

Layer 𝑙 Layer 𝑙 + 𝑚…

𝑹𝒂𝒕𝒊𝒐 = 𝓕𝒎𝒆𝒓𝒈𝒆(𝑩𝑰𝒍, … , 𝑩𝑰𝒍+𝒎)

𝑁𝑒𝑤 Layer

Layer 𝑙 + 𝑚 + 1

𝑁𝑒𝑤 Layer

Layer 𝑙 − 1

Channel from:

Step 1: Channel Importance & BI/SBI Score Step 2: Concatenation-Based Layer Merge

Step 3: Hierarchical Distillation Strategy 

Layer 𝑙 − 1

Layer 𝑙 + 𝑚 + 1

Layer 𝑙

𝐻 𝑙+𝑚

𝐻(𝑙−1) 𝐻 𝑙−1

𝐻′ 𝑙

…

… …

…
Lightweight Model

𝑁𝑒𝑤 Layerℒ𝐾𝐿
𝑙

Optimize

Original Model

Figure 1: Overview of CoMe. Steps 1 and 2 are iteratively executed until the model achieves the
target size. Following this, Step 3 utilizes efficient post-training through feature-level distillation to
recover the performance. The resulting lightweight model incorporates several newly replaced layers.

reconstructing layers through linear aggregation of weights. Techniques such as MKA [22] use
manifold learning to guide layer fusion, while LaCo [42] quantifies parameter differences for better
information retention. However, these approaches often overlook the position-sensitive properties of
Position-wise Feed-Forward Networks (FFN), leading to suboptimal performance on tasks requiring
fine-grained semantic understanding. Despite these advances, current pruning methods are limited by
the difficulty of accurately quantifying parameter importance and the lack of effective mechanisms
for preserving layer capacity, which restricts further improvements in both compression efficiency
and pruned model performance.

Knowledge Distillation. Knowledge distillation is widely used to transfer the capabilities of large
models to smaller ones, emphasizing efficient and effective knowledge transfer. However, aligning
features between layers and ensuring training efficiency remains a significant challenge. Early works
such as DistilBERT [33] uses layer-wise sampling to initialize student models, but this approach
disrupts inter-layer knowledge flow and requires additional alignment losses during training. More
recent methods, including MiniLLM [10] and DistiLLM [17], adopts global feature alignment,
simplifying mapping but increasing computational costs due to the involvement of the entire model.
LLM-Streamline [5] introduces dynamic layer replacement, yet its reliance on single-layer mappings
limits model expressiveness. Overall, current distillation techniques face two main challenges:
Insufficient use of structural priors from pruning, which leads to feature mismatching between the
pruning and distillation stages, and the lack of hierarchical knowledge transfer results in a trade-off
between resource efficiency and performance recovery.

Our Contributions. To overcome these challenges, we introduce a channel sensitivity metric for
fine-grained assessment of parameter importance, reducing discretization issues in existing pruning
strategies. We also propose a progressive channel concatenation strategy as a principled alternative
to linear aggregation, which mitigates over-smoothing in layer fusion. For knowledge distillation,
our hierarchical protocol leverages layer correspondences established during pruning to facilitate
efficient and continuous multi-level feature alignment between the original and pruned models. This
framework enhances the efficiency of knowledge transfer in compressed LLMs.

3 Rethinking the Layer-based Structured Pruning

Based on how parameters are manipulated, layer pruning methods can be divided into two main
paradigms: Direct Layer Pruning (DLP) and Weighted Sum-based Layer Pruning (WSLP). DLP is a
coarse-grained approach that removes entire layers based on predefined importance metrics [34, 24,

3



16]. In contrast, WSLP reduces the number of layers by linearly combining multiple layers into one
layer [22, 27, 42]. This section analyzes the limitations of both paradigms from the perspectives of
layer importance, pruning performance, and the effectiveness of linear aggregation and motivates the
design principles behind CoMe.

Figure 2: Comparative analysis of normalized
layer importance score across different methods.
The score of SLEB and FuseGPT is derived from
the first-round pruning.

Core Issue 1: Are any layers in LLMs truly
“redundant”? DLP methods typically rely on
importance metrics, such as weight norms or
cosine distance, to identify and remove suppos-
edly redundant layers [24, 16]. They implic-
itly assume that some layers make negligible
contributions to overall model performance. To
investigate this assumption, we compare layer
importance scores from various DLP methods
on the LLaMA-2-7b model (Fig. 2). The dis-
tributions of importance scores differ markedly
across methods, with only a few shallow or deep
layers consistently identified as highly impor-
tant. In some cases, layer importance correlates
with depth, while in others, it does not. This
inconsistency indicates that the notion of “redundant” layers depends highly on the metric. Further,
DLP methods yield varied performance across benchmarks (please refer to Tab. 8 in the appendix.).
For example, pruning 10% of parameters with ShortGPT [24] maintains performance on WinoG and
MMLU, but leads to significant degradation on other tasks. No method consistently outperforms
others across all benchmarks and sparsity levels. These findings suggest that pruning different layers
impairs different capabilities. Removing entire layers risks eliminating intermediate feature mappings
that are critical for downstream tasks, which can result in notable performance loss. Therefore,
preserving the mapping capacity of pruned layers is crucial for mitigating such degradation.

Figure 3: Merge adjacent layers with linear weight
aggregation. First, we reduce LLaMA-2-7b’s layer
number to 23 with ShortGPT. Second, the compo-
nents in layers 19 and 20 are merged at different
ratios. When merging MHA or FFN, the other
component is retained from layer 20.

Core Issue 2: Does linear weight aggregation
preserve hierarchical knowledge and mapping
capability? WSLP methods merge adjacent lay-
ers by linearly aggregating their weights, under
the assumption that channel-wise alignment ex-
ists not only in Multi-Head Attention (MHA)
and normalization modules, but also in Feed-
Forward Networks (FFN) [23, 2]. However,
while residual connections in Transformers do
facilitate channel alignment in MHA and nor-
malization, this property does not extend to FFN
modules, which lack explicit feature correspon-
dences across layers [23]. As a result, linear
aggregation in FFN modules can lead to over-
smoothing weights and disrupt layer-specific
knowledge preservation. To empirically exam-
ine this issue, we conduct fusion experiments by
applying linear aggregation to adjacent layers
under various fusion ratios (Figs. 3 and 13). We
evaluate the resulting models using perplexity
on multiple datasets, considering three module
types: FFN, MHA, and the complete Transformer layer. Across all settings, models obtained via
linear aggregation consistently underperform those produced by directly pruning layers (“L20”), as
indicated by higher perplexity scores. These results confirm that weight distributions in adjacent
layers are not sufficiently aligned and that WSLP fails to maintain the original network’s hierarchical
knowledge and mapping capacity.

In summary, DLP and WSLP have fundamental limitations: DLP risks discarding meaningful
intermediate representations, while WSLP introduces over-smoothing and fails to preserve essential
knowledge structures. These observations highlight the need for alternative pruning strategies that
better retain LLMs’ representational and mapping capabilities.

4



Figure 4: Channel importance calculation pro-
cess. The importance scores reflect the expected
changes of output caused by different channels.

Figure 5: Concatenation-based weight merge
process. W (l) and W (l+1) are derived from the
same positions in adjacent layers.

4 Methodology

This section details the technical innovations of CoMe. During the iterative layer pruning phase,
motivated by insights discussed in Section 3, we aim to minimize performance degradation by
preserving the most critical parameters from pruned layers. We introduce a Channel Sensitivity
Metric that quantifies the influence of individual weight channels on the module’s output, thereby
facilitating the identification of the most essential channels within layers. Then, we extend the Block
Influence (BI) score [24] to the cross-layer setting by introducing the Skip-BI (SBI) score, which
enables us to quantify the extent to which a group of adjacent layers alters intermediate features.
Based on SBI score, we identify groups of layers that minimally affect feature transformations
and implement our concatenation-based merging strategy with the channel importance information.
The concatenation-based merging strategy retains the essential channels, thereby mitigating the
propagation of disruptive changes from shallow to deeper layers. By iteratively applying the above
process, multiple layers are fused into a single layer, thereby progressively pruning the model. In the
post-training stage, we further exploit the layer correspondences established during the pruning phase
to fine-tune the merged layers in the pruned model. We employ two distinct knowledge distillation
strategies, enabling the merged layers to recover the mapping capacities of the original layer groups
more effectively. The complete CoMe pipeline is depicted in Fig. 1, and the algorithm framework is
shown in Algs. 1, 3 and 4.

4.1 Channel Sensitivity Metric

To enable concatenation-based layer merging, we first establish a channel importance metric that
quantifies the impact of pruning individual neural pathways. Consider a linear mapping characterized
by a weight matrix W ∈ Rv×u. The input is a vector X = [x1, x2, . . . , xu], resulting in an output
O = [o1, o2, . . . , ov]. We express the linear transformation as O = W × X . As shown in Fig. 4,
pruning the weights W at the channel level alters the output O. We formulate channel sensitivity
through output perturbation analysis. Pruning the i-th weight channel (achieved by setting xi = 0)
induces perturbation ∆O(i) = O −O′ = W [:, I] · xi. As shown in Fig. 4, we compute the expected
ℓ1-norm of this perturbation across the calibration dataset D as the quantizer of channel importance:

si = ED

[
∥∆O(i)∥1

]
= ED[|xi|

v∑
k=1

|wi,k|], (1)

where the expectation over the calibration dataset D decouples input statistics from static weights. A
larger score indicates that the weight channel is more significant, and discarding it would cause more
substantial damage to the block’s functionality.

4.2 Progressive Concatenation-based Layer Merge

In existing work, evaluating the importance of blocks involves analyzing model weights, activations,
gradients, and differences in input and output. Men et al. [24] posit that the cosine distance between
the hidden features of a block’s input and output measures the block’s redundancy. Consequently,
Men et al. [24] define the Block Influence (BI) score for the l-th layer as:

BIl = 1− ED
H(l−1)TH(l)

∥H(l−1)∥2∥H(l)∥2
, (2)

5



where H(l) ∈ RS×d represents the output hidden features of the lth layer in the model. S is the
sequence length, and d is the hidden dimension. D is the calibration dataset used.

The objective of CoMe is to replace multiple original blocks with fused blocks while minimizing
performance loss. Therefore, we extend the BI concept to layer groups as a novel Skip-Block
Influence (SBI) metric. For the module containing layers l to l +m, its SBI score is defined as:

SBIl:l+m = 1− ED
H(l−1)TH(l+m)

∥H(l−1)∥2∥H(l+m)∥2
, (3)

where m+ 1 ≥ 2 indicates the number of layers to be merged. A smaller SBI score indicates that
the block group spanning multiple blocks induces more minor perturbations to the hidden features,
implying that manipulating these groups will have a minor impact on model performance. We factorize
block weights into channel-level components, treating channels as atomic units and concatenating the
parameters sequentially to increase the importance of each channel. The concatenation-based merge
(Fig. 5) implements parameter preservation through:

W (merge) =

l+m⊕
k=l

W (k)[:, Tk], (4)

where Tk denotes the top-k channels selected via our sensitivity metric, and ⊕ indicates column-wise
concatenation. It ensures the retention of the most impactful parameters in merged layers. For the
parameter preservation ratio, we employ a heuristic approach. The parameter preservation ratio for
layer t in group {l, ..., l +m} follows:

rt =
BIpt∑l+m

i=l BIpi
, p > 0, (5)

where p controls the distribution skewness, and a larger p value emphasizes the preservation of layers
with high BI scores. Through constrained concatenation where

∑
rt = 1, the merge module keeps

the hidden state dimension as the size of the origin module. We provide the calculation details for
channel importance and the merge rules for different structures in Section C.

4.3 Post-Training via Hierarchical Distillation Strategy

After a progressive merging process, we aim to replace the original layers with the fused ones to
alleviate representational gaps induced by pruning. Thus, each fused layer should maintain equivalent
feature representation capabilities to its original group, enhancing model performance. We align their
feature representations through post-training. Our progressive layer merging process creates a direct
mapping between pruned and original layers, formalized as: P = [{a1, b1}, . . . , {aN , bN}], where a
is a layer index from origin model, b is from the pruned model and N is the number of merged layers.
It provides a priori conditions for efficient feature-based post-training.

We use the original model as the teacher model and the pruned lightweight model as the student
model, transferring knowledge from the teacher model to the student model. We employ feature-level
distillation using symmetric Kullback-Leibler divergence (KL) to mitigate distribution shift:

LKL = EDtrain
[DKL

(
σ(H(t,a)) ∥ σ(H(s,b))

)
], (6)

where H(t,a) denotes the output features of the a-th layer of the teacher model, and H(s,b) denotes
the output features of the b-th layer of the student model. The element pair {a, b} ∈ P . σ denotes the
softmax activation function. Dtrain is the training dataset. The KL-divergence term expands as:

DKL(P ∥ Q) =

|Dtrain|∑
i=1

Pi log
Pi

Qi
, P

(k)
i = σ(H(t)), Q

(k)
i = σ(H(s)). (7)

The optimization process requires iterating through all mapping pairs inP from shallow to deep layers.
This process is named multi-process post-training (CoMe-mp). While CoMe-mp updates one layer
per iteration and uses minimal resources, its sequential nature prevents joint optimization of shallow
and deep layers. To address this, we consolidate multiple training processes into one, iterating over

6



Figure 6: Comparison of different layer-wise pruning, including CoMe (red), DLP (blue series), and
WSLP (orange series), on various models with 10%, 20%, and 30% sparsity.

all mapping relationships in P simultaneously, and name it single-process post-training (CoMe-sp).
It minimizes the KL divergence across multiple mappings:

LKL-sp =
1

|P|
∑

{a,b}∈P

EDtrain
[DKL

(
σ(H(t,a)) ∥ σ(H(s,b))

)
]. (8)

CoMe-sp enables the joint optimization of multiple fusion layers using global information, which
helps capture inter-layer dependencies and allows for more coordinated parameter updates. Al-
though CoMe-sp requires more storage for optimization parameters, increasing by a factor of more
than |P|compared to CoMe-mp, it often achieves more effective training and better overall model
performance due to its holistic optimization strategy.

5 Experiments

5.1 Experimental Setting

Models, Datasets, and Metrics. We evaluate our method on several widely used open-source models,
including LLaMA-2-7b, LLaMA-2-13b [37], and LLaMA-3-8b [9] from the LLaMA series, Qwen-
2.5-7b [41], Qwen-3-4b, Mistral-7b [14], and Vicuna-7b [44]. Model performance is assessed using
the lm-evaluation-harness [8] framework on seven standard benchmarks commonly adopted in model
compression research: ARC-challenge (ARC-c), ARC-easy (ARC-e) [6], HellaSwag (HellaS) [43],
OpenBookQA (OBQA) [26], PIQA [4], Winoground (WinoG) [36] under the zero-shot setting, and
MMLU [11] under the five-shot setting. Accuracy is reported with normalized option lengths to
ensure comparability. We report the average accuracy (Avg) across all datasets and the Retained
Performance (RP), defined as the percentage of the original model’s accuracy preserved after pruning.
Perplexity (PPL) is measured on the C4 [28] and Wikitext-2 (Wiki-2) [25] datasets.

Baselines. Eight state-of-the-art layer pruning methods are selected as baselines. DLP-based
methods include Magnitude+ (Mag+) [19, 16], Taylor+ [23, 16], ShortGPT [24], SLEB [34], and
FuseGPT-MI [27]. WSLP-based methods include FuseGPT-MI-F [27], MKA [22], and LaCo [42].
For a fair comparison, unless otherwise noted, the post-training phase is excluded from FuseGPT.
FuseGPT-MI refers to pruning with Macro Influence (MI) without fusion, while FuseGPT-MI-F
includes layer fusion. Tables distinguish between DLP and WSLP methods with horizontal lines.
For post-training comparisons, LLM-Streamline [5] and FuseGPT with training are also evaluated.
Detailed descriptions of all baseline methods are provided in Section A.

Implementation. All methods are evaluated under sparsity levels of 10%, 20%, and 30%. Tab. 3
summarizes model configurations for each sparsity setting, while Tab. 4 lists the pruned layer
sequences for all DLP methods. Unless otherwise specified, CoMe is conducted on LLaMA-2-7b
using the Wiki-2 calibration set (256 samples) with a default sparsity of 30%. During the layer

7



Table 1: The Post-training Experiment on the LLaMA-2-7b and Qwen3-4b.
Method Benchmark↑ PPL↓

ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

LLaMA-2-7b Dense 46.33 74.54 75.99 44.20 79.05 69.06 45.60 62.11 100.00 7.27 5.47

Prune
(30.0%)

FuseGPT-MI 30.20 50.59 52.98 33.60 69.37 54.54 25.17 45.21 71.53 17.60 14.94
FuseGPT-MI+F 30.20 50.13 55.08 34.80 68.50 55.41 27.01 45.88 72.82 17.80 14.34
LLM-streamline 33.79 45.33 50.94 31.60 63.49 63.14 41.82 47.16 76.53 70.10 65.84
CoMe 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53

w/ Post-training

FuseGPT-MI 30.55 56.52 55.42 36.6 71.11 54.46 24.95 47.09(↑1.88) 74.43 13.31 9.74
FuseGPT-MI+F 31.23 57.41 56.26 35.6 71.22 55.8 26.72 47.75(↑1.87) 75.50 12.96 8.85
LM-streamline 36.35 51.43 56.40 33.60 66.00 66.61 40.50 50.13(↑2.97) 80.92 18.60 19.75
CoMe-mp 35.24 60.65 61.14 37.80 70.57 64.56 25.35 50.76(↑2.61) 80.25 13.01 9.72
CoMe-sp 35.58 63.51 65.83 39.20 74.05 63.38 26.48 52.58(↑4.41) 82.98 11.45 8.54

Qwen3-4b Dense 51.54 76.43 73.70 41.20 77.80 71.03 73.01 66.39 100.00 13.31 7.90

Prune
(30.1%)

LLM-streamline 26.71 40.57 38.31 28.20 61.81 53.91 23.54 39.01 58.99 200.93 228.89
CoMe 28.67 47.10 43.95 29.60 63.00 51.46 32.67 42.35 63.84 56.13 37.14

w/ post training
LLM-streamline 27.22 45.37 44.20 30.40 66.59 56.99 22.96 41.96(↑2.95) 63.32 34.80 35.77
CoMe-mp 30.97 51.98 47.02 30.80 65.23 54.54 36.44 45.28(↑2.93) 68.17 32.02 22.09
CoMe-sp 31.40 53.91 48.33 33.80 65.23 56.75 41.10 47.22(↑4.87) 71.30 29.28 20.25

pruning process, we set the number of layers merged per iteration to 2 (i.e., m = 1). Comprehensive
experimental settings and implementation details are available in Section B.

5.2 Main Result

CoMe Outperforms DLP and WSLP Across Benchmarks. Fig. 6 summarizes the average accuracy
of various layer pruning methods. In most settings, CoMe consistently ranks first. When pruning 30%
of the parameters from LLaMA-3-8b, CoMe achieves the second-highest average accuracy. When
pruning Qwen-3-4b, CoMe achieves a comparable performance compared to the best method. These
results indicate that CoMe effectively preserves model capability and enhances the performance
of pruned models. Notably, the performance of CoMe declines approximately linearly as sparsity
increases, suggesting that important parameters are selectively retained even at high sparsity levels.
On the larger LLaMA-2-13b model with 30% sparsity, CoMe surpasses all other methods by at least
4% in average accuracy, highlighting its particular advantage for large-scale models.

CoMe-sp Surpasses Existing Post-Training Layer-Based Methods. Tab. 1 presents the effective-
ness of various post-training strategies in restoring performance after layer pruning. CoMe achieves
the highest average accuracy after pruning, outperforming LLM-Streamline by 1% on LLaMA-2-7b
and by 2.3% on Qwen-3-4b, and exceeding FuseGPT-MI+F by 2%. Its PPL is also comparable to
the best-performing method. After post-training, the relative ranking of methods remains consistent,
with CoMe-sp achieving the top performance, surpassing LLM-Streamline by 2.4% on LLaMA-
2-7b, and by 5.2% on Qwen-3-4b, while also achieving lower PPL. These results indicate that the
hierarchical distillation strategy in CoMe-sp accelerates performance recovery, even with limited
training data (Tab. 7). In contrast, CoMe-mp, which relies only on local layer feature alignment,
performs similarly to LLM-Streamline, indicating that relying solely on local layer feature alignment
is insufficient for restoring model performance effectively.

5.3 Ablation Study

Figure 11: Merge layers with CoMe.
The setting is the same as Fig. 3.

Ablation on Concatenated Structure. The results shown
in Figs. 11 and 14 indicate that using the CoMe to merge
the MHA module, FFN module, or entire layer structure of
adjacent layers can achieve better PPL metrics at specific
fusion ratios compared to simply retaining layer 20. It
demonstrates that the concatenation-based layer merging
strategy effectively preserves the model’s language model-
ing capability. Notably, merging the entire layer structure
outperforms merging the MHA or FFN modules individu-
ally. It indicates that the collaborative fusion of MHA and
FFN modules can produce a complementary effect on the
parameters. The results validate the effectiveness of the
fusion ratio allocation strategy.

8



Figure 7: Effect of p in heuristic merge ratio.
As p grows, more parameters from layers with
higher BI scores are merged.

Figure 8: Impact of merge step granularity.
Merging more layers degrades performance due
to parameter distribution differences.

Figure 9: Impact of the calibration dataset. We
use two samples in PG19 and 256 in the others.

Figure 10: Effect of calibration data scale.
CoMe achieves optimal performance with sam-
ples more than 128.

Effectiveness of Concatenation-Based Merge. As shown in Figs. 11 and 14, merging adjacent layers
using the concatenation-based strategy in CoMe yields lower PPL than simply retaining layer 20,
demonstrating superior language modeling capability. Merging the entire layer structure consistently
outperforms merging only the MHA or FFN modules, suggesting that the joint fusion of MHA and
FFN produces a complementary effect. However, the optimal fusion ratio varies across the three
types of structures, suggesting that the heuristic fusion ratio allocation strategy has limitations and
may not fully unlock the potential of CoMe.

Impact of p in Heuristic Merge Ratio. Fig. 7 illustrates the impact of p on the performance of
models pruned using CoMe. For p ≤ 2, the model maintains optimal performance after pruning, with
average accuracy exceeding 48%. As p increases, retention becomes more skewed toward layers
with higher BI scores, leading to performance degradation. When p→ inf (i.e., without merging),
performance drops sharply (PPL rises to 25.50/ 21.21). These findings confirm that: (1) the channel
sensitivity-based selection mechanism effectively identifies key parameters; (2) progressive layer
merging is essential for maintaining performance; and (3) BI scores are positively correlated with the
number of essential parameters, validating the skewness control strategy.

Effect of Merge Step Granularity. The analysis in Fig. 8 reveals that merging more than two layers
at a time leads to a drop in average accuracy of over 3% and a substantial increase in PPL. This
suggests that merging multiple disparate layers increases parameter distribution discrepancies. The
progressive merging of fewer layers helps mitigate this issue and preserves model performance better.

Robustness to Calibration Dataset. Cross-dataset experiments in Fig. 9 demonstrate that CoMe
is robust to the choice of calibration dataset. When using pre-training style data, such as Wiki-2,
C4, the model achieves low PPL and strong language modeling performance. In contrast, using QA
datasets such as MMLU, which differ significantly from the pre-training dataset, increases PPL by
over 25%. However, the impact on downstream task average accuracy remains limited (fluctuation <
1.5%), indicating that the channel importance measurement mechanism effectively decouples input
distribution from static weight features. These suggest that calibration data similar to the training
distribution is preferable.

9



Table 2: Comparison of CoMe and WSLP, w/ and w/o the merge process. For the methods w/o Add,
we retain the layers deemed most important by the method (LaCo w/o Add retains shallow layers).

Method Benchmark↑ (↓) PPL↓(↑)

ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑(↓) RP↑(↓) C4 Wiki-2

MKA 34.04 49.58 48.12 35.00 63.00 59.12 35.64 46.36 75.14 810.04 455.34
w/o Add 33.96(-0.08) 49.45(-0.13) 48.02(-0.10) 34.80(-0.20) 62.79(-0.21) 59.04(-0.08) 35.64(-) 46.24(-0.11) 74.95(-0.19) 809.74(-0.30) 454.70(-0.64)

LaCo 30.97 49.79 50.14 35.00 68.34 53.91 24.84 44.71 71.11 39.18 42.67
w/o Add 30.80(-0.17) 50.38(+0.59) 50.90(+0.76) 34.60(-0.40) 69.21(+0.87) 55.01(+1.10) 24.71(-0.13) 45.09(+0.37) 71.53(+0.42) 25.51(-13.67) 21.18(-21.49)

FuseGPT 30.20 50.13 55.08 34.80 68.50 55.41 27.01 45.88 72.82 17.80 14.34
w/o Add 30.20(-) 50.59(+0.46) 52.98(-2.10) 33.60(-1.20) 69.37(+0.87) 54.54(-0.87) 25.17(-1.84) 45.21(-0.67) 71.53(-1.29) 17.60(-0.20) 14.94(+0.59)

CoMe 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
w/o Concat 30.97(-4.27) 48.40(-6.06) 55.81(-0.75) 33.00(-2.40) 68.12(-0.76) 59.35(-1.82) 26.71(+1.21) 46.05(-2.12) 72.94(-3.53) 25.48(+5.54) 21.26(+4.73)

Calibration Data Scale. As shown in Fig. 10, channel importance stabilizes when calibration
samples exceed 128 (PPL fluctuation on WikiText-2 is less than 1.3). When fewer than eight samples
are used, parameter merging degenerates into random selection, with PPL exceeding that of the
no-fusion strategy (p = inf in Fig. 7). This highlights the necessity of accurate channel importance
evaluation, as incorrect estimates can impair pruning performance.

5.4 Weight Sum-Based Merge vs. Concatenation-Based Merge

Both WSLP and CoMe aim to mitigate the loss of layer mapping functionality caused by DLP.
Tab. 2 compares these approaches without the merging process. For WSLP, removing the merge
step changes average accuracy by less than 0.7% and RP by less than 1.3%, indicating a negligible
effect. In contrast, removing the concatenation-based merge in CoMe leads to a significant drop in
average accuracy and RP (both decrease by more than 2%) and an increase in PPL (by more than
4.7), demonstrating that the concatenation-based merge plays a critical role in preserving model
performance during pruning. Further analysis is provided in Section F.

6 Conclusion

This paper addresses the challenge of layer pruning in LLMs, focusing on preserving model per-
formance while reducing computational complexity. Our proposed framework, CoMe, introduces
three key innovations: a channel sensitivity metric to quantify the importance according to acti-
vation and weight, a concatenation-based merging strategy to retain critical information during
pruning effectively, and a hierarchical distillation protocol for efficient post-training recovery. Exten-
sive experiments across multiple models, sparsity levels, and benchmarks demonstrate that CoMe
achieves superior performance compared to existing pruning approaches in maintaining accuracy
after compression.

Limitations

CoMe adopts a heuristic and uniform parameter preservation ratio for merging all Transformer
components, which limits its adaptability to different architectures. In Section D, we present a
posterior-based solution for adaptively merging two adjacent layers to alleviate the limitations of
CoMe. In future work, we will explore adaptive methods for merging multiple layers at once and
extend CoMe to expert merge.

Acknowledgements

This work was supported by the Guangdong Provincial Key Field R&D Program Project
(2024B0101040004), the National Natural Science Foundation of China under Grants 62476099,
62076101, and 62576364, the Guangdong Basic and Applied Basic Research Foundation under
Grants 2024B1515020082 and 2023A1515010007, the Guangdong Provincial Key Laboratory of
Human Digital Twin under Grant 2022B1212010004, and the TCL Young Scholars Program.

10



References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations, 2023.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical common-
sense in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 7432–7439, 2020.

[5] Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models. In The Thirteenth International Conference on
Learning Representations, 2025.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[7] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[8] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation,
07 2024.

[9] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

[10] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

[11] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

[12] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

[13] Zhiwei Huang, Juan Li, Long Jin, Junjie Wang, Mingchen Tu, Yin Hua, Zhiqiang Liu, Jiawei Meng, and
Wen Zhang. Reliable academic conference question answering: A study based on large language model.
In China Conference on Knowledge Graph and Semantic Computing, pages 181–193. Springer, 2024.

[14] Fengqing Jiang, Zhangchen Xu, Luyao Niu, Boxin Wang, Jinyuan Jia, Bo Li, and Radha Poovendran.
Identifying and mitigating vulnerabilities in llm-integrated applications. In NeurIPS 2023 Workshop on
Instruction Tuning and Instruction Following, 2023.

[15] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[16] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. Shortened LLaMA: A simple depth pruning for large language models. In ICLR 2024 Workshop
on Mathematical and Empirical Understanding of Foundation Models, 2024.

[17] Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. DistiLLM: Towards streamlined distillation
for large language models. In Forty-first International Conference on Machine Learning, 2024.

[18] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the
magnitude-based pruning. In International Conference on Learning Representations, 2021.

11

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH


[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In International Conference on Learning Representations, 2017.

[20] Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language models for
text generation: A survey. ACM Computing Surveys, 56(9):1–39, 2024.

[21] Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, et al. Controllable text generation for large language models: A survey. arXiv
preprint arXiv:2408.12599, 2024.

[22] Deyuan Liu, Zhanyue Qin, Hairu Wang, Zhao Yang, Zecheng Wang, Fangying Rong, Qingbin Liu, Yanchao
Hao, Bo Li, Xi Chen, Cunhang Fan, Zhao Lv, Dianhui Chu, Zhiying Tu, and Dianbo Sui. Pruning via
merging: Compressing LLMs via manifold alignment based layer merging. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 17817–17829. Association for
Computational Linguistics, 2024.

[23] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702–21720, 2023.

[24] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

[25] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=Byj72udxe.

[26] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2381–2391, 2018.

[27] Zehua Pei, Hui-Ling Zhen, Xianzhi Yu, Sinno Jialin Pan, Mingxuan Yuan, and Bei Yu. Fusegpt: Learnable
layers fusion of generative pre-trained transformers. arXiv preprint arXiv:2411.14507, 2024.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

[29] Jun Rao, Fei Wang, Liang Ding, Shuhan Qi, Yibing Zhan, Weifeng Liu, and Dacheng Tao. Where does
the performance improvement come from? -a reproducibility concern about image-text retrieval. In
Proceedings of the 45th international ACM SIGIR conference on research and development in information
retrieval, pages 2727–2737, 2022.

[30] Jun Rao, Liang Ding, Shuhan Qi, Meng Fang, Yang Liu, Li Shen, and Dacheng Tao. Dynamic contrastive
distillation for image-text retrieval. IEEE Transactions on Multimedia, pages 1–13, 2023. doi: 10.1109/
TMM.2023.3236837.

[31] Jun Rao, Xv Meng, Liang Ding, Shuhan Qi, Xuebo Liu, Min Zhang, and Dacheng Tao. Parameter-efficient
and student-friendly knowledge distillation. IEEE Transactions on Multimedia, 26:4230–4241, 2023.

[32] Jun Rao, Xuebo Liu, Lian Lian, Shengjun Cheng, Yunjie Liao, and Min Zhang. CommonIT: Commonality-
aware instruction tuning for large language models via data partitions. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen, editors, EMNLP, pages 10064–10083, Miami, Florida, USA, 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.561. URL https://aclanthology.
org/2024.emnlp-main.561/.

[33] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[34] Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb: streamlin-
ing llms through redundancy verification and elimination of transformer blocks. In Proceedings of the 41st
International Conference on Machine Learning, pages 46136–46155, 2024.

[35] Mingxu Tao, Dongyan Zhao, and Yansong Feng. Chain-of-discussion: A multi-model framework for
complex evidence-based question answering. In Proceedings of the 31st International Conference on
Computational Linguistics, pages 11070–11085, 2025.

12

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/2024.emnlp-main.561/
https://aclanthology.org/2024.emnlp-main.561/


[36] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5238–5248,
2022.

[37] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[38] Fei Wang, Liang Ding, Jun Rao, Ye Liu, Li Shen, and Changxing Ding. Can linguistic knowledge improve
multimodal alignment in vision-language pretraining? ACM Transactions on Multimedia Computing,
Communications and Applications, 20(12):1–22, 2024.

[39] Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. Model compression and efficient inference for large language models: A survey. arXiv
preprint arXiv:2402.09748, 2024.

[40] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
conference on machine learning, pages 10524–10533. PMLR, 2020.

[41] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[42] Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6401–6417, 2024.

[43] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4791–4800, 2019.

[44] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

[45] Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. Multilingual machine translation with large language models: Empirical results and analysis. In
Findings of the Association for Computational Linguistics: NAACL 2024, pages 2765–2781, 2024.

[46] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556–1577, 2024.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we clearly demonstrate the contribution and
scope of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14



Justification: Our paper is empirical and does not include new theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive implementation and experimental details in Sec-
stion B and 4 and Subsection 5.1, sufficient for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]
Justification: Our code is included in the supplementary materials for this submission, and
we will release it publicly after publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training and evaluation details, including hyperparameters and data splits,
are specified in Secstion B and 4 and Subsection 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to computational constraints, we did not report error bars or statistical
significance; results are based on single runs with a fixed random seed for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We provide the type of GPU used (NVIDIA A100), but did not report the
runtime or memory usage for different methods. This is because the code implementations
of the compared methods differ significantly, and we made modifications to the model
files, making it difficult to provide fair and accurate comparisons of runtime and memory
consumption.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We did not include a broader impacts section because our research is method-
ological and does not have immediate or direct societal applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not introduce or release models or datasets with high risk of
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: We properly cited all external code, datasets, and models used in our work
and ensured our usage complies with their terms. However, we did not explicitly state the
licenses or terms of use in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will make our code publicly available after publication. The license and
terms of use will be clearly stated in the ReadMe file accompanying the code
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: Our research does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: No human subjects were involved in our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our method is primarily implemented on large language models (LLMs), and
we conduct extensive experiments comparing different LLMs throughout the paper. All
LLM usage is clearly described in the main text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


Table 3: Model Parameters and Sparsity Settings Across Different Models.
Model Size # Blocks ≈10% Sparisity # Removed # Parameters ≈20% Sparisity # Removed # Parameters ≈30% Sparisity # Removed # Parameters

LLaMA-2-7B 6.7b 32 9.01% 3 6.1b 21.02% 7 5.3b 30.03% 10 4.7b
LLaMA-2-13B 13b 40 9.75% 4 11.7b 19.49% 8 10.5b 29.24% 12 9.2b
LLaMA-3-8b 8b 32 10.86% 4 7.2b 19.01% 7 6.5b 29.88% 11 5.6b
Vicuna-7b 6.7b 32 9.18% 3 6.1b 21.02% 7 5.3b 30.03% 10 4.7b
Mistral-7B 7.2b 32 9.04% 3 6.6b 21.08% 7 5.7b 30.12% 10 5.1b
Qwen-2.5-7b 7.6b 28 9.18% 3 6.9b 21.42% 7 6.0b 30.60% 10 5.3b
Qwen-3-4b 4.0b 36 10.04% 4 3.6b 20.07% 8 3.22b 30.11% 12 2.8b

A The Details of Comparison Methods

This paper compares three types of structured pruning paradigms: (1) DLP, which includes Mag+ [16],
Taylor+ [16], ShortGPT [24], and SLEB [34]; (2) WSLP, which includes LaCo [42] and MKA [22];
and (3) methods combining layer pruning with post-training, such as LLM-streamline [5] and
FuseGPT [27]. We implemented each method using publicly available code.

Magnitude+ (Mag+). 3 Kim et al. [16] use this method as a baseline in the pruning method
comparison conducted. Initially proposed by Li et al. [19], it assumes that weights with smaller
norms contain less information. For block-level analysis, the importance of the l-th layer is calculated
as the sum of the first-order norms of all weight parameters: IMag+,l =

∑
W∈W(l)

∑
w∈W |w|,

whereW(l) represents the set of all weight matrices in the l-th layer. We follow popular heuristic
algorithms [7, 18]. Kim et al. [16] further mitigated performance degradation by retaining the first
four and last two layers [23].

Taylor+. 3 This method is also a baseline in the pruning method comparison by Kim et al. [16].
It assumes that the error introduced by removing weight parameters indicates their importance.
Given a calibration dataset D, this error can be expressed as a change in the training loss L:
|L(W ;D) − L(W = 0;D)| ≈ ∂L(D)

∂W W . Following Kim et al. [16] and Ma et al. [23], we de-
fine the layer importance parameter as ITaylor+,l =

∑
W∈W(l)

∑
w∈W |

∂L(D)
∂w w|. We use similar

heuristic optimization methods to retain the first four and last two layers.

ShortGPT. 4 Proposed by Men et al. [24], this method assumes redundancy in the model layers and
defines redundancy as layers that minimally alter the hidden embeddings. To measure change, they
use the cosine distance as a metric, as shown in Eq. (2). Men et al. [24] use the PG19 long-document
dataset for calibration, and we control the size of the calibration dataset to 256 samples. The results
are consistent with those reported by Men et al. [24]. Men et al. [24] compute the importance scores
for models in the LLaMA family, and we directly use the layer importance order provided in the
paper. When the number of pruned layers exceeds the required number, we append the least important
layers from our calculated importance scores. For models where Men et al. [24] do not provide layer
importance sorting, we estimate it using the settings in this paper.

SLEB. 5 Song et al. [34] propose using a posterior method to verify the redundancy of specific layers.
SLEB uses the exponential part of the PPL score of the pruned model on a specified dataset as the
redundancy score: ISLEB,l =

∑
X∈D −

1
K

∑n
i=0 log pM ′

l
(xi|x<i, xi ∈ X), where M

′
denotes the

smaller model obtained from previous pruning steps, M
′

l denotes the model obtained after pruning
the l-th layer, and X = x1, ..., xi, ..., xn represents a sample. ISLEB,l is the exponential part of the
PPL score, which positively correlates with the PPL score; hence, ISLEB positively correlates with
the PPL score. The SLEB method is a progressive structural search optimized for the PPL on the
specified dataset.

LaCo. 6 Proposed by Yang et al. [42], this method uses the weight differences between layers
as important information for layer retention. LaCo groups several adjacent layers and performs a
Reserving-Differences-while-Seeking-Common layer merge. For weight fusion from layer l to l+m,
the fused weight is represented as W ∗ = W (l) + (W (l+1) −W (l)) + ... + (W (l+m) −W (l)) =
W (l) +

∑m
i (W (l+i) −W (l)). It fuses the differences between deeper and shallow layers into the

shallow layers. LaCo assesses the redundancy of pruned groups using the cosine similarity of output

3https://github.com/Nota-NetsPresso/shortened-llm
4https://github.com/sramshetty/ShortGPT
5https://github.com/jiwonsong-dev/SLEB
6https://github.com/yangyifei729/LaCo

21

https://github.com/Nota-NetsPresso/shortened-llm
https://github.com/sramshetty/ShortGPT
https://github.com/jiwonsong-dev/SLEB
https://github.com/yangyifei729/LaCo


Table 4: The layer importance ranking of different DLP methods.
Model LLaMA-2-7B LLaMA-2-13B LLaMA-3-8b
Sparisity 9.0% / 21.0% / 30.0% 9.8% / 19.5% / 29.2% 10.9% / 19.0% / 29.9%

Mag+ 07, 06, 11 / 08, 04, 10, 09 / 12, 14, 13 04, 05, 06, 07 / 10, 08, 09, 13 / 12, 11, 14, 16 05, 08, 07, 11 / 04, 06, 10 / 09, 13, 12, 14
Taylor+ 29, 28, 27 / 26, 21, 25, 23 / 24, 19, 20 37, 35, 34, 36 / 33, 28, 26, 29 / 32, 27, 31, 25 29, 28, 26, 25 / 19, 27, 23 / 24, 20, 18, 22
ShortGPT 27, 26, 25 / 28, 24, 29, 23 / 21, 22, 30 33, 31, 32, 30 / 29, 34, 28, 35 / 27, 26, 36, 37 25, 27, 26, 24 / 28, 23, 22 / 29, 21, 20, 19
SLEB 14, 23, 11 / 24, 10, 27, 15 / 21, 25, 08 33, 29, 12, 13 / 26, 31, 14, 32 / 11, 10, 25, 35 10, 26, 11, 12 / 09, 23, 19 / 22, 25, 08, 07
FuseGPT-MI 11, 08, 27 / 24, 22, 14, 21 / 10, 13, 23 33, 29, 12, 10 / 27, 35, 31, 30 / 15, 28, 16, 25 10, 26, 25, 11 / 09, 08, 19 / 22, 07, 23, 20

Model Vicuna-7b Mistral-7B Qwen-2.5-7b Qwen-3-4b
Sparisity 9.0% / 21.0% / 30.0% 9.0% / 21.1% / 30.1% 9.2% / 21.4% / 30.6% 10.0% / 20.1% / 30.1%

Mag+ 07, 06, 11 / 08, 09, 10, 04 / 12, 14, 13 04, 06, 05 / 12, 07, 09, 10 / 11, 08, 13 09, 14, 17 / 16, 15, 13, 07 / 12, 06, 10 21, 19, 20, 18 / 22, 17, 15, 16 / 14, 23, 09, 13
Taylor+ 29, 26, 21 / 27, 24, 25, 23 / 22, 19, 20 16, 28, 15 / 17, 29, 14, 13 / 22, 18, 12 04, 05, 21 / 22, 20, 23, 18 / 19, 17, 16 26, 25, 27, 29 / 28, 24, 23, 22 / 21, 30, 20, 31
ShortGPT 27, 25, 28 / 29, 24, 26, 23 / 22, 21, 30 25, 26, 24 / 27, 22, 23, 28 / 21, 29, 30 16, 17, 15 / 14, 12, 13, 18 / 11, 25, 24 29, 26, 27, 31 / 32, 33, 28, 25 / 20, 16, 18, 30
SLEB 10, 27, 14 / 23, 11, 12, 24 / 13, 09, 26 14, 13, 15 / 27, 22, 08, 24 / 23, 11, 21 16, 15, 17 / 14, 13, 18, 12 / 11, 10, 09 16, 15, 14, 17 / 18, 02, 19, 32 / 21, 26, 11, 30
FuseGPT-MI 12, 27, 11 / 23, 10, 25, 24 / 21, 09, 08 13, 10, 14 / 11, 08, 27, 23 / 22, 26, 25 16, 19, 17 / 18, 21, 14, 15 / 22, 10, 13 16, 17, 15, 02 / 14, 20, 21, 18 / 10, 26, 32, 11

features between the pruned and unpruned models: ILaCo = 1
N

∑
X∈D

H
(L)T
M H

(L
′
)

M
′

∥HT
M∥2∥HM

′ ∥2
, where H

(L)
M

and H
(L

′
)

M ′ represent the output features of the last layer of the model. Due to the threshold adjustment
for cosine similarity in LaCo and the need to adjust the starting and ending layers for pruning, as
well as the number of layers in each group, the excessive parameter settings made it challenging to
optimize performance for each model. Therefore, we implement this method only on models in the
LLaMA-2 family.

MKA. 7 Proposed by [22], this method uses manifold learning and the Normalized Pairwise In-
formation Bottleneck (NPIB) measures to assess layer similarity and fusion. MKA progressively
fuses deeper into shallower layers, merging the last two adjacent layers each time. In the code
implementation, we find that MKA calculates the NPIB scores for two layers as approximately equal:
INPIB,l : INPIB,l+1 ≈ 0.5 : 0.5. An exponential mapping increases the fusion proportion of the
shallower l-th layer: IMKA,l =

eInorm

1−eInorm
, where Inorm =

INPIB,l

INPIB,l+INPIB,l+1
is the normalized

NPIB score: IMKA,l+1 = 1− IMKA,l. After mapping, the similarity ratio between the two layers
approaches IMKA,l : IMKA,l+1 ≈ 0.6 : 0.4.

FuseGPT. 8 Proposed by Pei et al. [27], FuseGPT hypothesizes that layer pruning causes performance
loss and uses FFN parameter fusion to integrate layer capabilities into adjacent blocks, as Pei et al.
[27] hypothesizes that FFN layers concentrate the main capabilities. Low-rank learnable weight
matrices disperse the capabilities of pruned layers, optimizing multiple layers at once to reduce
the gap caused by pruning. To better study the effectiveness of fusion, we remove the parameter
adjustment part of FuseGPT in pure pruning experiments, using randomly initialized low-rank matrix
products to fuse weights. In post-training comparison experiments, we use the complete FuseGPT
method. Pei et al. [27] propose a Macro Influence (MI) score to measure the global-level impact of

removing a model layer: IMI = 1− 1
N

∑
X∈D

H
(L)T
M H

(L
′
)

M
′

∥HT
M∥2∥HM

′ ∥2
= 1− ILaCo.

LLM-streamline. 9 Proposed by Chen et al. [5], LLM-streamline uses SBI (Eq. (3)) to measure
redundancy of multiple consecutive layers, replacing these layers with the shallowest layer among
them, and fine-tuning this shallowest layer post-training to restore model performance.

B The Details of Experiment Setting

The settings for the experiment methods follow mainly those in the original papers. All experiments
are conducted using an A100-40G GPU. We conducted pruning experiments on LLaMA-2-7b 10,

7https://github.com/SempraETY/Pruning-via-Merging
8https://github.com/jarvispei/fusegpt
9https://github.com/RUCKBReasoning/LLM-Streamline

10https://huggingface.co/meta-llama/Llama-2-7b-hf

22

https://github.com/SempraETY/Pruning-via-Merging
https://github.com/jarvispei/fusegpt
https://github.com/RUCKBReasoning/LLM-Streamline
https://huggingface.co/meta-llama/Llama-2-7b-hf


Table 5: Experimental setting for pruning methods. † idenote methods whose hyperparameters were
adjusted to satisfy the sparsity ratio constraints in our implementation. Complete implementation
details are documented in Subsection B.1.

Methods Calibration # data seed

Mag+ Wiki2 128 10
Taylor+ Wiki2 128 10
ShortGPT† PG19 256 10
SLEB Wiki2 128 10
FuseGPT Wiki2 32 10
MKA† MMLU 50 subtask * 5 10

LaCo†

Mouron () is a commune in the Arde
Torreorgaz is a municipality in the
The 81st Mechanised Brigade () is a mechanised brigade of the Romanian Land Force
There are 18 National Natural Landmarks in the U.S. state of Washington, out of nearly
Copa Libertadores 1973 was won by defending champions Independiente of A

CoMe Wiki2 256 10

Table 6: The Hyper-parameter used in LaCo [42]. C is the number of layers to be merged during
each merging optimization. I is the minimum interval of layers between two merging operations. L
andH are the minimum and maximum indices of the range of layers for merging. T is a similarity
threshold.

Sparisity C L H I T

LLaMA-2-7b
9.01% 4 1 32 2 0.85

21.02% 8 1 32 2 0.65
30.03% 6 1 32 2 0.55

LLaMA-2-13b
9.75% 5 1 40 2 0.85

19.49% 5 1 40 2 0.70
29.24% 5 1 40 2 0.55

LLaMA-2-13b 11, LLaMA-3-8b 12, Vicuna-7b 13, Mistral-7b 14, Qwen-2.5-7b 15, and Qwen-3-4b 16

and performed post-training experiments on LLaMA-2-7b and Qwen-3-4b.

We modify some settings based on the original implementations and develop an open-source project
with multiple pruning methods. Our project code can be found at https://github.com/MPI-Lab/CoMe.

B.1 Implementation of Pruning Methods

Tab. 5 shows the calibration datasets, the dataset number, and the random seeds used in the pruning
methods. Tab. 4 presents the pruned layers’ index order for the pruning method. We implement the
Mag+, Taylor+, and SLEB using our reproduced code.

For the ShortGPT method, we follow the layer BI score for LLaMA-2-7B provided in the original
article. For the LLaMA-2-13b model, the original paper provides only the pruning order for the first
10 layers. We use the open-source project reproduction code to calculate the remaining layers’ BI
scores and place the two with the smallest BI scores at the end of the given pruning order. For other
models, we obtain the BI scores for each layer entirely through the reproduction method. PG19 is a
long-document dataset, and the training set contains 28,602 training samples. Using all samples to
get the model’s BI scores would consume significant training resources, so we randomly selected 256
training samples from PG19 for calibration. Even with a small amount of data, the ShortGPT method
takes much longer to calculate BI scores than other methods.

11https://huggingface.co/meta-llama/Llama-2-13b-hf
12https://huggingface.co/meta-llama/Meta-Llama-3-8B
13https://huggingface.co/lmsys/vicuna-7b-v1.5
14https://huggingface.co/mistralai/Mistral-7B-v0.1
15https://huggingface.co/Qwen/Qwen2.5-7B
16https://huggingface.co/Qwen/Qwen3-4B-Base

23

https://github.com/WangFei-2019/CoMe
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/Qwen/Qwen3-4B-Base


When selecting MMLU data, MKA randomly samples five samples from 50 sub-tasks. In our imple-
mentation, we uniformly sample 250 samples from each sub-task. We reproduce the experimental
results for the LLaMA family using the original MKA code, while we obtain the sparse results
for other models using our reproduced code. The Qwen-2.5-7b model contains bias weights, and
fusing these weights would degrade the performance of the pruned model, so we do not fuse the bias
weights.

The calibration samples for the LaCo method are sourced from the open-source project code, and
we fully reproduce the process using the original code. To achieve the number of pruned layers
consistent with the settings in this paper, we make simple parameter adjustments to the LaCo method,
with the detailed parameter settings shown in Tab. 6. For other models, adjusting the LaCo code is
too complex, so we do not reproduce it.

The FuseGPT method is implemented using the original code. To compare different categories of
methods, we comment on the post-training code of FuseGPT for the pruning method comparison
experiment. In the pure pruning method comparison experiment, FuseGPT-MI+F means that we
mask the post-training code, while FuseGPT-MI implies that we additionally mask the fusion code.
Implementing this method on the LLaMA-2-13b model with an NVIDIA A100-40G GPU resulted in
a memory overflow, so we do not implement it.

In the layer pruning process of CoMe, we fuse two layers of the model per iteration, meaning that
we reduce one layer per iteration. When pruning models from the LLaMA family, Vicuna-7b and
Mistral-7b, the hyperparameter p is set to 1. For the Qwen2.5-7b model, p is set to 32. The Mistral-
7b, Qwen2.5-7b, and LLaMA-3-8b models have high knowledge density and less redundancy in
parameters, making them very sensitive to hyperparameter settings. To further mitigate performance
degradation caused by merging channels with different distributions, we set a minimum parameter
retention ratio ρ, meaning the proportion of parameters from the more critical layer cannot be less than
ρ during the fusion of two layers. The values of ρ for the Mistral-7b, Qwen2.5-7b, and LLaMA-3-8b
models are set to 0.97, 0.85, and 0.97, respectively.

Table 7: Experimental setting for post-training methods.
Method # Iterations # Epochs # Steps Batch size Token length

FuseGPT 10 20 128 8 2048
LLM-Streamline 1 5 938 32 2048
CoMe-mp 7 1 2000 32 512
CoMe-sp 1 1 10000 32 512

B.2 Implementation of Post-Training

Tab. 7 summarizes the post-training settings for all methods. Based on these settings, we quantify the
resource consumption of each method by calculating the total number of tokens required to train a
single layer, which we denote as Tlayer. This metric is computed as follows:

Tlayer = # Iterations× # Layers× # Epochs× # Steps× Batch size× Token length, (9)

where “# Layers” indicates the number of layers updated in each iteration.

The post-training process for the FuseGPT method is synchronized with the pruning process, utilizing
1,024 samples from the Wiki-2 dataset, in accordance with the settings of Pei et al. [27]. In each
iteration, the parameters of one layer are merged into seven adjacent layers. Pruning ten layers
requires ten iterations, with seven layers updated in each iteration. For FuseGPT, Tlayer ≈ 2.93B.

The LLM-Streamline trains a merged layer using 30,000 samples and employs five epochs, following
the settings of Chen et al. [5]. For LLM-Streamline, Tlayer ≈ 0.31B.

We carry out the post-training process of CoMe after completing the pruning process. After pruning
10 layers, the pruned model has seven layers corresponding to multiple layers of the original model.
Therefore, in CoMe-mp, there are seven training iterations requiring minimal training resources.
CoMe-sp trains seven layers in one training round, requiring more training resources. For optimization,
we utilize the AdamW optimizer with a weight decay coefficient of 1e − 2 and implement cosine
decay for learning rate scheduling. The CoMe-sp employs a fixed learning rate of 1e − 5. The

24



CoMe-mp adopts layer-specific decaying rates during multi-layer distillation, with learning rates
progressively decreasing from the shallow to the deep layers as follows: 5e− 4, 2.5e− 4, 1e− 4,
7.5e− 5, 5e− 5, 2.5e− 5, and 1e− 5 for LLaMA-2-7b; 5e− 4, 2.5e− 4, 5e− 5, 2.5e− 5, 1e− 5,
and 7.5e− 6 for Qwen-3-4b. For CoMe-mp, Tlayer ≈ 0.23B. For CoMe-sp, Tlayer ≈ 1.15B.

C Channel importance and Concatenation-based Merge

We use the channel importance for parameter division in the concatenation-based merge strategy;
thus, we need to analyze the channel importance calculation for different transformer parts. Ma et al.
[23] highlight that in transformer-based models, a certain correspondence exists in feature dimensions
during forward propagation due to residual connections. For instance, the positional correspondence
of output features from Norm, MHA, and FFN is fixed.

In the Norm part, we use the weights to scale the feature inputs. Xiong et al. [40] note that the
parameters of deep layer Norms need significant enlargement to stabilize training, which is closely
related to the distribution of input features. Our objective is to minimize changes in the output
features of each module; therefore, we average the Norm parts of adjacent layers to maintain stability,
as γ̄ = 1

m+1

∑l+m
l γ(i), where m+ 1 denotes the number of merge layers.

The MHA module generates three feature vectors: Query, Key, and Value. These vectors are
concatenated and undergo matrix multiplication for cross-information fusion. Consequently, the
weights within the heads used to generate Query, Key, and Value are tightly coupled, making it
difficult to make finer divisions. Thus, we consider each head in MHA the basic unit for concatenation.
We ignore the coupling between heads to further simplify the calculation of channel importance.
Pruning a single head structure reduces the input dimension of the o_project weight (using the
transformer structure in LLaMA as an example), leading to changes in the MHA output. We take the
average channel importance of the reduced dimensions as the importance corresponding to each head
structure.

The FFN module usually contains three weight matrices: up_project, gat_project, and down_project.
By neglecting the coupling caused by activation functions, the information loss from channel weight
pruning in up_project and gat_project maps to a reduction in intermediate feature dimensions.
Therefore, we use the intermediate features and down_project to calculate channel importance.

D Posterior-based CoMe

When applying CoMe to different model architectures, it is often necessary to adjust the hyperparam-
eter p to control the parameter preservation ratio. However, the optimal ratio can vary significantly
across models, which reduces the convenience and usability of CoMe. Inspired by SLEB [34]
and LaCo [42], we propose an adaptive, posterior-based strategy for determining the parameter
preservation ratio within CoMe, referred to as Posterior-based CoMe (CoMe-P).

CoMe-P replaces the parameter preservation ratio calculation in the layer merging process of
CoMe (Eq. (5)) with a posterior-driven approach. Specifically, consider the case of merging two
adjacent layers in an iteration. Let the parameter preservation ratio of the lower-indexed layer be r,
and that of the other layer be 1− r. We define a candidate set for r as Γ = { i

n | i = 0, 1, 2, . . . , n},
where n determines the granularity of the search. CoMe-P iteratively applies different preservation
ratios from Γ to generate compressed models, evaluating each candidate model on a calibration
dataset using the PPL metric. The compressed model yielding the lowest PPL is selected for the final
merging. The detailed algorithm of CoMe-P is presented in Alg. 2.

We set n = 20, with all other parameters kept consistent with the default settings of CoMe. Tabs. 8
to 10 present comparisons between CoMe-P and other methods across different models. CoMe-P
achieves performance comparable to CoMe, and yields higher average accuracy and lower PPL
on Qwen3-4b, Vicuna-7b, and Mistral-7B, demonstrating the effectiveness of the posterior-based
approach. However, since CoMe-P is a posterior search method, the search space grows exponentially
when merging more than two layers in each iteration, resulting in exponentially increased resource
consumption.

25



E Analysis of CoMe-mp and CoMe-sp

Figure 12: Cross Entropy loss curves for using
CoMe-mp and CoMe-sp during post-training. The
loss curves for multiple subprocesses of CoMe-mp
are concatenated in the order of training.

To evaluate the effectiveness of CoMe-mp and
CoMe-sp during the post-training process, we
examine the cross-entropy loss between the stu-
dent and teacher models, as shown in Fig. 12.
When using CoMe-sp, the cross-entropy loss
converges rapidly and stabilizes within the first
4000 steps. This phenomenon indicates an effec-
tive alignment of feature representations, as the
hierarchical distillation strategy facilitates rapid
convergence. In contrast, CoMe-mp shows a
more linear convergence pattern, suggesting that
aligning features layer by layer significantly en-
hances the student model’s performance. How-
ever, because shallow features require process-
ing by deeper layers, training one layer at a time
results in slower convergence.

Subsection B.2 details the number of tokens
used during the post-training phase. Although
CoMe-sp uses fewer tokens, it requires updating
seven times more parameters per step than CoMe-mp, necessitating greater memory resources. The
overhead of memory resources is due to CoMe-sp’s simultaneous optimization of multiple layers,
which, while resource-intensive, allows for more efficient global information updates compared to
the sequential approach of CoMe-mp.

F Sum-based Merge vs. Concatenation-based Merge?

The role of Weight Sum-based Merge in both pruning and post-training processes is LESS.
Tab. 8 and Tab. 1 provide the effects of using parameter fusion (Fusion-MI+F) and only layer pruning
without parameter fusion (Fusion-MI) in the FuseGPT method when pruning the LLaMA-2-7b
model. In both pruning and post-training, the average accuracy score differences do not exceed
1.2 points, and PPL score differences do not exceed 0.5 points. Moreover, in pruning experiments,
the performance of parameter fusion methods is worse when 20% of the parameters are pruned. It
indicates that additive inter-layer parameter fusion is ineffective. In all experiments, Fusion-MI+F
does not significantly improve pruning performance compared to Fusion-MI.

The Weight Sum-based Merge does not exhibit significant differences from the DLP methods,
but the Concatenation-based Merge can improve the performance of DLP methods. In Tab. 2,
after removing parameter fusion, the MKA method exhibits only a slight decrease in average accuracy
scores and a slight increase in PPL, which is almost negligible. With the removal of parameter fusion,
LaCo shows a slight rise in average scores and a significant decrease in PPL, indicating that the
parameter fusion has a negative impact. For FuseGPT, removing parameter fusion results in a notable
reduction on some datasets, such as HellaS and MMLU, a slight decrease in PPL on the C4 dataset,
and a slight increase on the Wiki-2 dataset. It is difficult to conclude that parameter fusion further
enhances model performance beyond layer pruning, but previous analyses suggest that FuseGPT has
a minimal effect. The Weight Sum-based Merge method does not significantly differ from Direct
layer pruning methods. However, when CoMe removes parameter fusion, it shows a noticeable
performance decline across all test benchmarks, except for the MMLU dataset, with significant
increases in PPL on the Wiki-2 and C4 datasets. It strongly indicates that Concatenation-based Merge
can further enhance model performance based on DLP.

Concatenated-based Merge is Effective, but Weight Sum-based Merge is NOT. In Figs. 3, 11, 13
and 14, we apply both αA+ (1− α)B (WSLP) and Concatenation-based Merge to blend parameters
of two layers in varying proportions. The α-Add method, whether merging the Self-Attention
structure, the FFN structure, or the entire model layer, consistently results in a significantly increased
PPL on the Wiki-2 and C4 datasets. It shows that the Weight Sum-based Merge method harms
model performance, degrading performance as the fusion ratio approaches equality. Conversely, the

26



Figure 13: Merge adjacent layers with linear
weight aggregation at different ratios, using the
C4 calibration dataset.

Figure 14: Merge adjacent layers with CoMe at
different ratios, using the C4 calibration dataset.

Concatenation-based Merge method can reduce PPL at specific fusion ratios, preserving the model’s
language modeling ability.

G Detailed Experimental Results

In this section, we present comprehensive experimental data. The specific outcomes corresponding
to Fig. 6 are detailed in Tabs. 8 to 10. Additionally, the results associated with Figs. 7 to 10 are
thoroughly documented in Tabs. 11 to 14, respectively.

27



Table 8: The Layer Pruning Experiment on the LLaMA Family.
Model Sparsity Methods Benchmark↑ PPL↓

ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

L
L

aM
A

-2
-7

b

Dense 46.33 74.54 75.99 44.20 79.05 69.06 45.60 62.11 100.00 7.27 5.47

9.0%

Mag+ 37.97 66.20 67.65 39.80 76.44 59.83 26.79 53.53 84.56 9.21 7.01
Taylor+ 42.06 69.07 73.00 42.00 75.68 68.19 42.22 58.89 94.51 10.21 7.74
ShortGPT 43.00 68.77 71.61 40.40 76.44 68.67 45.56 59.21 95.25 9.33 7.43
SLEB 38.57 65.82 70.69 39.80 77.26 63.46 33.83 55.63 88.35 8.71 6.47
FuseGPT-MI 39.68 68.86 70.11 40.40 77.48 61.88 31.98 55.77 88.49 8.73 6.55

FuseGPT-MI+F 39.51 65.57 71.03 40.80 77.37 62.90 32.13 55.62 88.35 8.73 6.47
MKA 44.54 64.98 67.09 37.80 72.80 62.43 45.64 56.47 91.39 44.50 25.41
LaCo 43.43 68.60 71.78 40.60 76.39 68.51 45.39 59.24 95.35 9.38 7.46

CoMe 44.11 70.96 73.85 42.00 77.04 68.19 46.04 60.31 97.11 8.58 6.23

21.0%

Mag+ 24.32 44.11 40.23 31.00 65.72 53.12 24.58 40.44 64.10 37.36 49.17
Taylor+ 36.09 56.52 61.15 37.80 69.04 65.11 41.58 52.47 84.65 23.91 18.77
ShortGPT 36.26 55.85 62.62 37.20 70.40 66.30 39.85 52.64 84.60 23.31 18.45
SLEB 33.02 56.52 62.51 36.80 73.07 58.96 26.26 49.59 78.29 12.33 9.15
FuseGPT-MI 34.64 58.25 64.10 37.00 73.67 57.14 26.08 50.13 79.16 12.22 9.46

FuseGPT-MI+F 33.96 56.69 61.28 35.80 73.78 56.27 24.76 48.93 77.16 12.12 9.14
MKA 37.46 54.92 53.61 37.40 66.27 58.88 42.96 50.21 81.86 388.57 247.36
LaCo 26.79 49.87 52.69 33.80 71.55 55.88 24.77 45.05 70.90 18.62 15.85

CoMe 39.59 64.10 68.68 39.80 72.42 67.25 32.82 54.95 87.55 13.02 9.55

30.0%

Mag+ 23.98 39.31 35.77 27.20 61.75 51.70 22.96 37.52 59.49 52.39 59.73
Taylor+ 32.68 46.04 51.58 31.60 63.87 62.67 42.89 47.33 76.75 63.08 50.96
ShortGPT 31.91 47.39 45.96 34.80 63.28 61.48 38.66 46.21 75.07 54.92 49.56
SLEB 30.80 51.81 54.07 32.80 68.44 54.14 25.10 45.31 71.62 17.43 13.84
FuseGPT-MI 30.20 50.59 52.98 33.60 69.37 54.54 25.17 45.21 71.53 17.60 14.94

FuseGPT-MI+F 30.20 50.13 55.08 34.80 68.50 55.41 27.01 45.88 72.82 17.80 14.34
MKA 34.04 49.58 48.12 35.00 63.00 59.12 35.64 46.36 75.14 810.04 455.34
LaCo 30.97 49.79 50.14 35.00 68.34 53.91 24.84 44.71 71.11 39.18 42.67

CoMe 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
CoMe-P 34.64 54.55 58.35 35.40 67.95 61.09 26.89 48.41 76.89 18.87 14.74

L
L

aM
A

-2
-1

3b

Dense 49.15 77.53 79.39 45.20 80.52 72.14 55.16 65.58 100.00 6.73 4.89

9.8%

Mag+ 35.58 62.84 59.88 36.20 73.34 59.35 25.76 50.42 75.57 17.47 15.38
Taylor+ 45.90 70.71 76.52 42.20 78.62 72.30 43.16 61.34 92.92 9.57 7.47
ShortGPT 47.61 72.85 76.62 45.00 79.54 71.74 54.54 63.99 97.71 8.05 5.78
SLEB 42.49 72.31 74.11 44.00 79.27 65.51 42.64 60.05 91.00 7.81 5.64
FuseGPT-MI 40.96 69.02 74.48 44.00 79.11 68.82 42.52 59.84 90.61 7.83 5.65

MKA 47.01 69.07 69.42 45.00 74.81 65.35 54.02 60.67 93.31 34.44 29.88
LaCo 46.50 74.07 76.86 44.20 78.94 72.45 54.81 63.98 97.51 8.37 6.05

CoMe 47.53 75.25 78.23 43.20 79.49 71.98 55.34 64.43 98.10 7.61 5.36

19.5%

Mag+ 23.12 46.42 37.81 29.80 65.83 50.91 23.65 39.65 59.38 125.08 228.40
Taylor+ 43.26 65.66 72.09 40.80 75.30 70.48 47.24 59.26 90.09 13.37 12.12
ShortGPT 43.94 67.34 72.39 41.00 75.24 69.69 53.83 60.49 92.25 11.36 8.30
SLEB 37.88 64.65 70.59 42.40 76.82 64.64 32.32 55.61 83.83 9.47 6.85
FuseGPT-MI 38.91 63.72 70.97 40.60 76.93 67.32 42.57 57.29 86.66 9.69 7.04

MKA 40.61 59.60 57.18 41.40 68.93 62.90 53.04 54.81 84.58 219.41 206.12
LaCo 34.81 54.97 64.67 39.20 74.32 63.61 23.51 50.73 76.14 13.04 10.86

CoMe 45.14 72.52 75.87 42.80 76.50 70.80 50.35 62.00 94.30 9.17 6.29

29.2%

Mag+ 23.12 33.16 30.27 25.60 56.15 52.17 25.37 35.12 53.23 317.35 593.77
Taylor+ 38.91 54.97 62.24 37.20 70.73 69.61 48.20 54.55 83.21 23.96 28.38
ShortGPT 35.75 52.82 57.94 38.20 69.91 69.06 47.78 53.07 81.08 29.37 39.61
SLEB 34.04 58.59 63.38 38.60 75.35 62.35 26.75 51.29 76.94 11.64 8.69
FuseGPT-MI 37.29 56.90 64.80 36.60 74.43 65.04 30.78 52.26 78.61 12.65 9.46

MKA 36.95 53.07 48.67 36.00 65.56 60.46 50.72 50.20 77.39 759.76 632.28
LaCo 33.19 51.43 54.88 39.00 68.39 60.77 24.55 47.46 71.85 27.43 23.81

CoMe 42.49 67.05 69.87 42.60 73.34 68.98 51.17 59.36 90.67 12.64 8.85
CoMe-P 43.43 66.96 69.38 40.20 73.50 69.77 51.81 59.29 90.43 12.32 8.56

L
L

aM
A

-3
-8

b

Dense 53.33 77.74 79.17 45.00 80.79 72.93 65.29 67.75 100.00 9.45 6.14

9.2%

Mag+ 34.73 64.02 49.37 36.00 74.16 54.78 25.35 48.34 70.80 25.93 20.44
Taylor+ 47.70 70.92 66.81 40.20 76.01 72.69 30.57 57.84 85.00 20.58 14.88
ShortGPT 47.44 69.99 73.63 39.80 76.28 71.43 63.67 63.18 92.90 20.08 15.07
SLEB 41.30 67.47 69.05 39.00 77.53 64.33 30.03 55.53 81.18 13.68 8.85
FuseGPT-MI 42.83 70.29 70.79 38.80 77.80 69.14 65.20 62.12 91.05 13.65 8.93

FuseGPT-MI+F 40.10 67.26 68.47 38.20 76.66 62.43 29.97 54.73 79.93 13.72 8.95
MKA 44.71 63.43 62.75 41.20 72.96 64.09 63.68 58.97 87.42 307.03 191.80

CoMe 47.70 72.81 72.28 40.60 76.50 74.19 63.65 63.96 94.08 14.84 9.52

21.4%

Mag+ 25.77 46.04 43.40 30.40 65.29 53.20 25.16 41.32 60.32 43.24 40.83
Taylor+ 31.91 43.60 35.50 32.20 60.17 58.80 33.08 42.18 62.58 1549.77 1294.94
ShortGPT 42.41 56.52 64.65 33.40 70.89 71.11 61.73 57.24 83.99 63.81 57.84
SLEB 35.75 58.42 62.29 34.80 73.83 57.85 27.43 50.05 72.99 18.67 13.38
FuseGPT-MI 34.56 59.81 59.03 34.00 74.37 56.67 50.43 52.70 76.98 19.38 13.44

FuseGPT-MI+F 33.70 53.91 61.17 35.80 72.74 57.93 26.42 48.81 71.33 19.03 13.42
MKA 42.58 60.10 55.90 40.40 68.88 62.04 59.27 55.60 82.66 1168.37 1004.27

CoMe 40.44 64.23 65.52 35.60 73.50 70.96 56.96 58.17 85.12 23.10 17.15

30.6%

Mag+ 22.18 34.22 33.28 27.00 57.73 52.49 24.19 35.87 52.59 242.47 254.76
Taylor+ 27.99 33.71 30.44 27.60 57.73 52.17 47.06 39.53 58.67 44214.20 50035.02
ShortGPT 30.20 38.13 32.89 30.20 59.09 56.75 41.88 41.31 61.35 7021.78 15660.69
SLEB 27.73 49.12 48.38 27.80 66.97 51.46 25.82 42.47 61.58 30.80 28.27
FuseGPT-MI 29.01 48.23 47.46 29.20 66.65 54.14 40.95 45.09 65.82 37.93 30.70

FuseGPT-MI+F 29.01 42.51 49.36 30.00 66.65 56.12 26.06 42.82 62.49 41.82 33.34
MKA 38.14 49.75 47.19 34.40 62.84 62.27 59.03 50.52 75.02 7447.81 5460.38

CoMe 33.70 50.67 50.42 31.20 67.08 60.62 30.99 46.38 67.86 48.85 43.56

28



Table 9: The Layer Pruning Experiment on the Vicuna-7b and Mistral-7b.

Model Sparsity Methods Benchmark↑ PPL↓
ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

V
ic

un
a-

7b

Dense 45.90 71.30 73.78 45.00 78.02 69.46 49.89 61.91 100.00 9.19 6.78

9.0%

Mag+ 38.40 64.35 66.04 40.00 74.21 59.27 33.11 53.63 85.59 11.59 8.54
Taylor+ 42.83 67.17 70.53 41.20 74.97 68.11 46.85 58.81 94.67 11.96 9.58
ShortGPT 43.34 67.68 70.86 42.00 75.14 69.85 49.99 59.84 96.54 NaN 9.13
SLEB 40.61 65.91 68.06 39.40 75.95 62.04 41.04 56.14 89.95 10.48 7.65
FuseGPT-MI 41.30 70.20 69.76 39.60 77.15 64.40 41.41 57.69 92.23 10.48 7.69

FuseGPT-MI+F 40.96 66.33 68.84 39.40 75.79 63.46 44.98 57.11 91.68 10.74 7.83
MKA 41.98 64.94 66.55 38.40 71.44 65.51 50.44 57.04 92.15 72.33 43.02

CoMe 43.86 69.53 72.77 42.80 75.46 69.06 49.57 60.44 97.47 10.48 7.52

21.0%

Mag+ 25.34 44.91 40.64 31.20 64.58 52.33 27.17 40.88 65.03 52.21 68.98
Taylor+ 38.65 58.38 60.71 35.80 69.10 65.90 45.58 53.45 86.10 21.09 20.45
ShortGPT 38.74 59.09 62.38 37.40 68.34 66.06 45.33 53.91 86.93 27.14 21.87
SLEB 36.26 61.83 61.66 35.80 73.72 59.59 28.31 51.02 80.84 13.88 10.52
FuseGPT-MI 38.57 62.58 63.03 37.40 73.23 59.75 32.37 52.42 83.59 13.71 10.55

FuseGPT-MI+F 36.69 59.72 61.28 35.00 73.07 59.35 29.19 50.61 80.31 14.78 10.73
MKA 39.85 54.17 53.34 38.00 66.97 61.01 50.61 51.99 84.95 540.72 335.40

CoMe 40.96 64.52 66.49 42.40 72.47 68.11 35.43 55.77 89.43 16.66 11.73

30.0%

Mag+ 24.15 40.78 36.13 27.60 62.30 50.83 25.06 38.12 60.48 72.72 92.79
Taylor+ 33.96 46.55 49.17 31.60 60.88 62.12 32.13 45.20 72.57 62.01 183.82
ShortGPT 33.11 48.40 48.95 34.60 64.25 62.90 41.04 47.61 76.92 61.91 59.84
SLEB 32.00 56.10 53.01 33.00 70.24 56.20 24.38 46.42 73.34 NaN NaN
FuseGPT-MI 33.62 57.45 53.56 36.60 68.88 53.75 25.25 47.02 74.86 18.61 15.68

FuseGPT-MI+F 33.36 53.11 53.02 34.00 68.28 55.09 25.07 45.99 73.09 NaN 19.85
MKA 34.04 48.15 47.02 35.80 61.97 61.17 47.99 48.02 78.38 986.16 660.93

CoMe 36.35 58.84 56.48 42.40 68.66 62.98 25.33 50.15 80.28 29.55 18.69
CoMe-P 34.56 57.37 56.42 36.80 69.53 62.51 28.46 49.38 78.59 22.32 15.97

M
is

tr
al

-7
b

Dense 54.01 79.50 81.06 44.00 82.05 74.03 62.52 68.17 100.00 8.38 5.25

9.0%

Mag+ 32.68 60.82 55.67 36.20 72.52 58.88 27.15 49.13 71.33 20.33 13.59
Taylor+ 44.88 70.83 75.94 40.60 79.71 69.69 52.97 62.09 90.59 10.13 6.52
ShortGPT 48.38 73.40 76.75 41.00 79.98 72.77 62.26 64.93 95.02 10.25 7.14
SLEB 43.09 71.09 74.53 41.40 79.16 64.64 41.81 59.39 86.56 9.76 6.21
FuseGPT-MI 45.39 72.10 74.88 41.60 80.41 64.80 41.41 60.08 87.63 9.80 6.25

FuseGPT-MI+F 42.49 70.75 73.49 41.00 79.76 66.46 39.62 59.08 85.98 9.86 6.31
MKA 43.43 61.03 53.31 41.20 67.41 62.75 58.10 55.32 82.35 274.34 203.48

CoMe 48.55 74.37 76.93 41.00 79.60 72.61 61.52 64.94 95.00 10.04 6.52

21.1%

Mag+ 23.12 38.47 33.44 25.60 59.85 52.09 23.53 36.59 53.08 876.24 1409.19
Taylor+ 35.24 54.46 64.30 33.80 73.72 61.64 25.05 49.74 71.87 19.68 15.34
ShortGPT 40.44 57.66 64.53 32.80 72.14 67.88 59.98 56.49 82.44 33.21 24.01
SLEB 36.95 61.36 64.81 39.00 75.24 61.48 28.83 52.52 76.44 13.55 9.25
FuseGPT-MI 35.07 58.88 65.71 37.00 75.68 55.96 24.98 50.47 73.13 14.16 10.00

FuseGPT-MI+F 34.56 57.20 65.94 36.60 74.76 57.30 25.68 50.29 72.87 21.73 15.29
MKA 35.84 42.47 40.42 33.80 58.49 57.14 53.98 46.02 68.75 36779.48 30245.43

CoMe 40.61 63.80 67.54 36.20 74.21 67.64 53.50 57.64 84.06 14.33 10.01

30.1%

Mag+ 25.26 32.07 30.74 28.20 54.08 50.28 25.03 35.09 51.86 253.79 288.66
Taylor+ 29.01 35.73 44.64 32.20 60.94 54.62 24.70 40.26 59.21 112.23 121.24
ShortGPT 32.00 29.71 33.56 31.60 57.51 56.91 22.72 37.72 56.16 760.27 881.51
SLEB 30.80 47.69 57.00 34.20 68.44 57.22 25.10 45.78 66.56 21.19 16.46
FuseGPT-MI 32.25 51.68 56.23 33.80 70.78 52.96 25.92 46.23 67.17 82.31 47.95

FuseGPT-MI+F 28.58 46.68 56.00 32.00 69.04 53.20 23.75 44.18 63.92 20.62 15.71
MKA 32.34 35.90 32.46 30.80 54.95 54.70 25.70 38.12 56.72 33065.64 37735.00

CoMe 31.48 51.85 55.81 31.00 68.77 58.56 27.47 46.42 67.10 22.93 18.32
CoMe-P 33.45 59.05 58.32 31.00 70.35 59.69 28.14 48.57 70.00 19.19 14.53

29



Table 10: The Layer Pruning Experiment on the Qwen-2.5-7b and Qwen-3-4b.

Model Sparsity Methods Benchmark↑ PPL↓
ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

Q
w

en
-2

.5
-7

b
Dense 51.11 77.36 78.95 47.20 79.65 73.01 74.16 68.78 100.00 11.88 6.85

9.2%

Mag+ 43.00 68.48 62.44 38.40 75.14 60.54 49.64 56.81 82.47 15.73 9.23
Taylor+ 47.70 71.84 67.62 37.00 73.01 67.01 65.90 61.44 88.93 16.96 11.16
ShortGPT 46.59 72.43 72.27 44.00 79.00 64.88 55.88 62.15 90.42 13.64 8.13
SLEB 46.59 72.43 72.27 44.00 79.00 64.88 55.88 62.15 90.42 13.64 8.13
FuseGPT-MI 43.69 67.26 72.90 44.00 78.89 62.90 63.65 61.90 89.86 14.42 8.78

MKA 34.64 47.39 51.55 35.40 64.15 58.33 48.95 48.63 70.82 25389.47 56126.31

CoMe 47.87 71.80 72.12 44.20 79.22 62.12 54.85 61.74 90.00 13.77 8.17

21.4%

Mag+ 29.35 51.52 50.35 33.40 67.90 51.85 28.19 44.65 64.69 29.12 16.90
Taylor+ 33.02 45.12 45.30 32.00 62.73 55.88 48.73 46.11 67.02 72.43 102.48
ShortGPT 34.98 62.50 60.41 37.40 73.94 54.38 27.87 50.21 72.84 17.98 11.37
SLEB 34.98 62.50 60.41 37.40 73.94 54.38 27.87 50.21 72.84 17.98 11.37
FuseGPT-MI 33.87 58.00 60.79 39.40 73.45 55.96 26.48 49.71 72.33 23.85 17.16

MKA 27.82 25.29 27.34 28.20 50.82 52.01 27.85 34.19 50.58 2095234.00 2573306.50

CoMe 38.82 65.57 60.38 40.00 73.61 55.17 33.10 52.38 76.36 24.04 13.81

30.6%

Mag+ 25.51 47.52 39.40 31.20 62.57 48.54 26.01 40.11 58.21 58.89 36.02
Taylor+ 25.85 35.90 31.57 28.60 58.76 51.30 25.99 36.85 53.81 329.33 422.97
ShortGPT 30.55 52.53 47.96 32.00 66.76 53.67 25.32 44.11 63.96 32.87 27.51
SLEB 27.30 52.57 48.26 32.00 68.44 51.78 26.66 43.86 63.30 26.33 17.18
FuseGPT-MI 26.02 43.81 43.21 28.80 66.10 53.43 25.94 41.04 59.21 55.32 51.92

MKA 24.91 25.25 26.29 29.20 50.71 49.64 24.21 32.89 48.69 14455309.00 17641898.00

CoMe 33.87 53.54 49.53 34.00 68.72 50.91 26.78 45.34 66.05 34.37 31.09

Dense 51.54 76.43 73.70 41.20 77.80 71.03 73.01 66.39 100.00 13.31 7.90

Mag+ 43.09 68.01 64.31 38.80 75.79 59.59 53.40 57.57 86.92 16.40 10.29
Taylor+ 43.17 63.17 65.15 34.40 71.65 68.11 70.55 59.46 88.99 21.55 14.88
ShortGPT 42.58 59.60 64.92 33.80 71.11 66.93 70.20 58.45 87.50 23.08 15.88
SLEB 43.43 67.09 63.37 39.00 75.30 60.38 48.83 56.77 85.91 15.83 9.69
FuseGPT-MI 48.63 73.57 65.54 39.60 75.79 62.35 55.63 60.16 91.01 16.03 9.43
FuseGPT-MI+F 48.38 73.53 65.59 38.80 75.52 61.96 55.55 59.90 90.52 16.03 9.44
MKA 44.11 63.13 53.44 36.20 67.19 59.67 71.19 56.42 85.20 497.26 525.95

10.0%

CoMe 43.17 69.87 64.86 35.00 74.16 64.25 61.34 58.95 88.28 17.27 10.56

Mag+ 35.49 61.70 56.05 37.00 72.42 54.54 24.98 48.88 74.22 24.16 16.60
Taylor+ 30.55 42.00 47.63 29.40 63.82 59.27 23.69 42.34 64.02 81.53 77.02
ShortGPT 36.35 45.12 52.10 31.00 65.13 59.75 38.11 46.79 70.79 96.83 130.50
SLEB 38.65 64.48 56.04 37.80 70.84 57.85 30.82 50.93 77.41 21.69 13.91
FuseGPT-MI 36.69 59.85 56.41 37.80 72.31 54.38 31.70 49.88 75.81 20.77 13.27
FuseGPT-MI+F 36.77 59.89 56.40 37.60 72.31 54.85 31.65 49.92 75.86 20.77 13.27
MKA 37.80 52.95 46.90 33.40 65.23 61.25 71.43 52.71 79.32 588.13 813.38

20.1%

CoMe 33.19 56.02 55.29 30.40 68.55 59.67 55.10 51.17 76.30 30.03 20.75

Mag+ 27.56 45.45 42.60 33.60 65.18 50.99 25.23 41.52 63.20 56.14 47.50
Taylor+ 28.58 31.23 32.73 30.60 54.90 50.20 23.24 35.93 55.44 3861.42 7781.82
ShortGPT 32.17 39.81 45.73 31.40 62.46 53.28 27.75 41.80 63.72 417.05 513.82
SLEB 30.97 53.32 46.42 31.00 65.67 53.83 27.16 44.05 66.50 39.60 28.11
FuseGPT-MI 30.63 55.47 45.90 30.00 65.61 52.80 27.33 43.96 66.17 33.53 23.49

FuseGPT-MI+F 30.29 55.64 45.99 30.40 65.83 52.25 27.38 43.97 66.20 33.52 23.48
MKA 32.08 38.47 40.95 30.60 61.53 60.14 23.43 41.03 62.61 2123.39 3208.73

CoMe 28.67 47.10 43.95 29.60 63.00 51.46 32.67 42.35 63.84 56.13 37.14

Q
w

en
-3

-4
b

30.1%

CoMe-P 27.56 47.73 43.41 32.00 63.98 54.06 29.35 42.58 64.43 40.83 28.18

Table 11: The detail experiment result of Fig. 7. Effect of p in heuristic merge ratio.
Benchmark↑ PPL↓

p ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

1 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
2 35.75 54.84 56.27 35.40 68.93 60.77 25.30 48.18 76.51 20.70 16.57
4 34.98 54.76 57.86 36.40 67.79 59.75 24.22 47.97 76.12 19.87 17.40
8 34.22 54.17 56.41 36.60 68.12 58.48 26.47 47.78 76.07 20.94 19.19
16 32.08 53.62 56.07 33.60 68.34 60.62 26.81 47.31 74.86 20.30 17.82
32 30.89 52.78 55.87 33.40 68.77 59.43 26.93 46.87 74.10 21.43 18.64
64 32.34 53.28 56.31 34.60 67.95 59.91 26.91 47.33 75.06 21.69 18.01
128 32.25 52.48 56.51 33.20 69.31 57.38 27.47 46.94 74.36 23.29 18.64
256 32.00 50.80 55.99 34.80 67.74 60.22 27.16 46.96 74.58 23.97 19.72
512 31.66 49.33 55.79 33.20 67.79 59.04 26.82 46.23 73.30 25.03 20.97
inf 31.31 49.07 55.69 32.80 68.01 60.30 26.63 46.26 73.24 25.50 21.21

30



Table 12: The detail experiment result of Fig. 10. Effect of calibration data scale.
Benchmark↑ PPL↓Num ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

2 33.87 52.40 56.42 36.60 66.97 59.19 25.27 47.25 75.19 29.35 43.70
4 35.58 54.25 56.45 37.00 68.23 59.59 27.05 48.31 77.07 23.45 31.42
8 33.28 53.16 54.85 37.00 67.63 59.98 26.95 47.55 75.79 21.08 21.01
16 35.41 55.93 56.83 36.20 66.97 60.14 26.30 48.25 76.80 20.26 16.99
32 33.36 53.49 55.64 36.00 66.54 61.33 27.38 47.68 75.92 22.67 17.26
64 33.19 53.03 56.58 35.80 67.46 60.46 26.87 47.63 75.72 20.61 16.11
128 34.56 53.96 56.37 36.80 68.44 61.56 25.22 48.13 76.49 20.88 17.03
256 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
512 33.79 54.04 56.79 36.60 67.52 60.14 27.23 48.02 76.45 19.60 16.18

Table 13: The detail experiment result of Fig. 8. Impact of merge step granularity.

m
Benchmark↑ PPL↓

ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

2 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
3 34.30 48.48 54.74 33.60 65.07 63.69 37.69 48.22 77.76 29.56 45.18
4 32.59 48.19 46.94 34.80 65.29 63.22 24.78 45.12 72.00 53.32 109.74
5 32.34 42.21 38.03 34.00 59.30 57.70 28.12 41.67 67.66 91.96 668.17
6 30.63 43.10 40.36 35.00 60.39 58.64 22.57 41.53 66.72 128.37 551.57
7 32.00 41.25 37.14 33.40 58.22 59.51 29.73 41.61 67.70 97.65 268.47
8 33.11 47.22 40.69 35.40 63.49 58.41 28.76 43.87 70.92 96.44 276.09
9 29.69 43.39 41.67 33.80 63.60 57.46 25.56 42.17 67.62 65.33 193.89
10 30.29 43.18 41.13 33.60 62.89 57.06 28.38 42.36 68.27 78.85 303.17
11 30.46 41.58 40.24 34.20 61.37 59.91 24.71 41.78 67.20 104.82 470.91

Table 14: The detail experiment result of Fig. 9. Impact of calibration datasets.
Benchmark↑ PPL↓Dataset ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU (5) Avg↑ RP↑ C4 Wiki-2

wiki2 35.24 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
C4 34.30 52.95 57.25 35.60 69.80 62.04 26.39 48.33 76.71 19.32 21.05
PG19 (2) 34.39 50.21 53.74 34.00 67.25 60.69 27.90 46.88 74.77 21.28 21.15
MMLU 33.70 50.80 54.13 33.20 66.00 63.77 27.20 46.97 74.67 28.12 35.79
Aplaca 34.39 51.77 53.54 35.00 67.25 63.77 29.87 47.94 76.61 25.65 30.57

31



Algorithm 1 Progressive Concatenation-based Layer Merging Strategy (CoMe)

Input: calibration dataset D, original model M , the number of layers skipped in SBI m, skewness
exponent p, target layer number L, minimum retention ratio ρ ∈ (0, 1)

Output: Pruned model M ′, layer mapping P = [{a1, b1}, ..., {aN , bN}]
1: Initialize P ← ∅, M ′ ←M
2: while NUMLAYERS(M ′) > L do
3: m′ ← min(m, NUMLAYERS(M ′)− L)
4: {S(l)} ← COMPUTECHANNELSENSITIVITY(M ′,D)
5: {BIl} ← COMPUTEBISCORES({H(l)})
6: {SBIl:l+m′} ← COMPUTESBISCORES({H(l)},m′)
7: (l∗, l∗ +m′)← argminSBIl:l+m

8: {rt} ← ADJUSTRETENTIONRATIOS({BIt}l
∗+m

′

t=l∗ , p, ρ)

9: W (merge) ← CONCATENATIONBASEDLAYERMERGE({W (t), S(t), rt}l
∗+m

′

t=l∗ )
10: Replace layers [l∗, ..., l∗ +m′] with W (merge) in M ′

11: P ← P ∪ [{l∗ +m′, new layer index in M ′}]
12: end while
13: return M ′, P
14:
15: function COMPUTECHANNELSENSITIVITY(M ′,D)
16: for each layer l ∈M ′ do
17: H(l) ← FORWARDPASS(M ′,D, l)
18: S(l) ← {ED[|xi|

∑
k |wi,k|]}ul

i=1 ▷ Eq. (1)
19: end for
20: return {S(l)}Ll=1
21: end function
22: function COMPUTEBISCORES({H(l)})
23: for l = 1 to NUMLAYERS(M ′) do
24: BIl ← 1− ED

[
H(l−1)⊤H(l)

∥H(l−1)∥2∥H(l)∥2

]
▷ Eq. (2)

25: end for
26: return {BIl}
27: end function
28: function COMPUTESBISCORES({H(l)},m′)
29: for l = 1 to NUMLAYERS(M ′)−m′ do
30: SBIl:l+m′ ← 1− ED

[
H(l−1)⊤H(l+m′)

∥H(l−1)∥2∥H(l+m′)∥2

]
▷ Eq. (3)

31: end for
32: return {SBIl:l+m′}
33: end function
34: function ADJUSTRETENTIONRATIOS({BIt}l

∗+m′

t=l∗ , p, ρ)
35: rt ← BIpt /

∑
i BIpi for t ∈ [l∗, l∗ +m′] ▷ Eq. (5)

36: if max rt < ρ then
37: rargmaxBIt ← ρ
38: t∗ ← argmaxBIt
39:

∑′ ←
∑

t̸=t∗ rt

40: rt ← (1− ρ)rt/
∑′ for t ̸= t∗

41: end if
42: return {rt} normalized to

∑
rt = 1

43: end function
44: function CONCATENATIONBASEDLAYERMERGE({W (t), S(t), rt}l

∗+m′

t=l∗ )
45: for each layer t ∈ [l∗, l∗ +m′] do
46: kt ← rt × |S(t)|
47: Tt ← Top-kt indices sorted by S(t)

48: end for
49: W (merge) ←

⊕l∗+m′

t=l∗ W (t)[:, Tt] ▷ Eq. (4)
50: return W (merge)

51: end function

32



Algorithm 2 Progressive Posterior-based CoMe (CoMe-P)

Input: Calibration dataset D, original model M , target layers number L, search granularity n
Output: Pruned model M ′, layer mapping P = [{a1, b1}, ..., {aN , bN}]

1: Initialize P ← ∅, M ′ ←M ,
2: Generate parameter preservation ratio candidate set Γ = { i

n | i = 0, 1, 2, . . . , n}
3: while NUMLAYERS(M ′) > L do
4: {S(l)} ← COMPUTECHANNELSENSITIVITY(M ′,D)
5: {SBIl:l+1} ← COMPUTESBISCORES({H(l)}, 1)
6: (l∗, l∗ + 1)← argminSBIl:l+1

7: for each r in Γ do
8: W (merge) ← CONCATENATIONBASEDLAYERMERGE({W (t), S(t), rt}l

∗+1
t=l∗ )

9: M
′′ ← Replace layers [l∗, l∗ + 1] with W (merge) in M ′

10: ppl← PPL(M
′′
)

11: end for
12: M

′ ← The M
′′

has the lower ppl
13: P ← P ∪ [{l∗ + 1, new layer index in M ′}]
14: end while
15: return M ′, P

Algorithm 3 CoMe Single-Process Post-training (CoMe-sp)

Input: training data Dtrain, layer mapping P = [{a1, b1}, ..., {aN , bN}], teacher model M , student
model M ′, learning rate η, optimizer Ω, batch size B

Output: Optimized student model M ′

1: Initialize Ω← ADAM({θbi |{ai, bi} ∈ P}, η) ▷ Optimize merged layers only
2: for epoch = 1 to Eglobal do
3: for B ← BATCHLOADER(Dtrain, B) do
4: {H(t,ai)}Ni=1 ← GETACTIVATIONS(M,x, {ai|{ai, bi} ∈ P})
5: {H(s,bi)}Ni=1 ← GETACTIVATIONS(M ′, x, {bi|{ai, bi} ∈ P})
6: return {H(t,ai),H(s,bi)}Ni=1
7: Ltotal ← 0
8: for i = 1 to N do
9: L(i)

KL ← 1
NDKL(σ(H

(t,ai)) ∥ σ(H(s,bi))) ▷ Eq. (6)
10: Ltotal ← Ltotal + L(i)

KL ▷ Eq. (8)
11: end for
12: Ω.zero_grad()
13: Ltotal.BACKWARD()
14: Ω.step()
15: end for
16: end for

33



Algorithm 4 CoME Multi-Process Post-training (CoMe-mp)

Input: training data Dtrain, layer mapping P = [{a1, b1}, ..., {aN , bN}], teacher model M , student
model M ′, learning rate {η1, ..., η|P|}, optimizer Ω, batch size B

1: for k = 1 to |P| do ▷ Layerwise progression
2: {ak, bk} ← P[k]
3: Ωk ← ADAM(θbk , ηk = ηk)
4: for epoch = 1 to Elocal do
5: for B ← BATCHLOADER(Dtrain, B) do
6: H(t,ak) ← GETSINGLEACTIVATION(M,x, ak)
7: H(s,bk) ← FORWARDTOLAYER(M ′, x, bk)
8: LKL ← DKL(σ(H

(t,ak)) ∥ σ(H(s,bk))) ▷ Eq. (6)
9: Ωk.zero_grad()

10: LKL.BACKWARD()
11: Ωk.step()
12: end for
13: end for
14: end for
15: return M ′

34


	Introduction
	Related Work
	Rethinking the Layer-based Structured Pruning
	Methodology
	Channel Sensitivity Metric
	Progressive Concatenation-based Layer Merge
	Post-Training via Hierarchical Distillation Strategy

	Experiments
	Experimental Setting
	Main Result
	Ablation Study
	Weight Sum-Based Merge vs. Concatenation-Based Merge

	Conclusion
	The Details of Comparison Methods
	The Details of Experiment Setting
	Implementation of Pruning Methods
	Implementation of Post-Training

	Channel importance and Concatenation-based Merge
	Posterior-based CoMe
	Analysis of CoMe-mp and CoMe-sp
	Sum-based Merge vs. Concatenation-based Merge?
	Detailed Experimental Results

