Layer as Puzzle Pieces: Compressing Large Language
Models through Layer Concatenation

Fei Wang!-2, Li Shen?, Liang Ding*, Chao Xue?, Ye Liu', Changxing Ding!+>-*
1South China University of Technology ~ 2JD Explore Academy
3Shenzhen Campus of Sun Yat-sen University ~ 4University of Sydney
®Pazhou Lab
ft_feiw @mail.scut.edu.cn, chxding @scut.edu.cn

Abstract

Large Language Models excel at natural language processing tasks, but their mas-
sive size leads to high computational and storage demands. Recent works have
sought to reduce their model size through layer-wise structured pruning. However,
they tend to ignore retaining the capabilities in the pruned part. In this work, we
re-examine structured pruning paradigms and uncover several key limitations: 1)
notable performance degradation due to direct layer removal, 2) incompetent linear
weight layer aggregation, and 3) the lack of effective post-training recovery mech-
anisms. To address these limitations, we propose CoMe, including a progressive
layer pruning framework with a Concatenation-based Merging technology and a
hierarchical distillation post-training process. Specifically, we introduce a channel
sensitivity metric that utilizes activation intensity and weight norms for fine-grained
channel selection. Subsequently, we employ a concatenation-based layer merging
method to fuse the most critical channels across adjacent layers, enabling progres-
sive model size reduction. Finally, we propose a hierarchical distillation protocol
that leverages the correspondences between the original and pruned model layers
established during pruning, thereby enabling efficient knowledge transfer. Experi-
ments on seven benchmarks show that CoMe achieves state-of-the-art performance;
when pruning 30% of LLaMA-2-7b’s parameters, the pruned model retains 83% of
its original average accuracy

1 Introduction

Large Language Models (LLMs) [} (3} 41} 137, 19] have become the cornerstone of modern natural
language processing, enabling start-of-the-art performance in tasks such as text generation [20, |12}
211 132]], machine translation [45]], question answering [35} [13]], and a variety of other challenging
tasks [29} 130, 38]]. Their success is primarily attributed to scaling up model parameters, which
enhances their representational capacity [[15]]. However, the rapid growth of model size comes at a
cost: LLMs’ computational and storage demands have become a significant obstacle for practical
deployment, especially in resource-constrained environments.

Recent works resort to model compression [46} 139]] to reduce the resource footprint of LLMs, with
mainstream approaches encompassing model pruning [24} 34, 27, [16] and knowledge distillation [31}
10, 5]]. Among these, structured layer pruning is desirable for its hardware efficiency, as it removes
entire modules and reduces computational complexity [24} 134,27, [16]]. While direct layer pruning
reduces model size, it often leads to performance degradation. To mitigate this, several studies have
proposed merging adjacent layers through linear aggregation of their weights [27, 42| 22]. These

*Corresponding author.
2Qur code is available at https://github.com/MPI-Lab/CoMe,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/WangFei-2019/CoMe

approaches aim to better preserve model capacity by combining information from multiple layers,
yet important questions remain regarding their effectiveness and the underlying assumptions.

Despite the efficiency of layer pruning, we rethink and identify several critical limitations in existing
approaches. Direct layer pruning assumes that specific layers are redundant and can be removed
without harming model performance. However, our analysis reveals that different methods yield
highly inconsistent rankings of layer importance, and pruning different layers leads to performance
degradation on different benchmarks. This suggests that each layer contributes meaningfully to
the model, and preserving the mapping functions of pruned layers is essential. In addition, linear
weight aggregation methods rely on the assumption of distributional similarity among layer weights,
which does not hold for feed-forward networks; as a result, linear aggregation can further exacerbate
information loss. Finally, most current pruning methods lack integrated post-training recovery
schemes. While some studies combine pruning and knowledge distillation, these stages are typically
handled separately, resulting in suboptimal knowledge transfer and limited performance recovery.

Motivated by these insights, we propose CoMe, a structured compression framework for LLMs that
integrates progressive layer pruning with a Concatenation-based Merging technique and a hierarchical
distillation protocol. Our approach consists of three key components. First, we introduce a channel-
level sensitivity metric that quantifies the importance of each channel according to activation response
intensity and weight norms, providing a principled basis for fine-grained pruning. Second, we
present a progressive merging method that concatenates important channels from adjacent layers,
reconstructing compact fusion layers and minimizing information loss. Iteratively applying this
strategy yields a pruned model with significantly reduced complexity. Third, we propose a hierarchical
distillation protocol that utilizes layer correspondences established during pruning to guide efficient
knowledge transfer via decoupled layer-wise feature alignment. This protocol accelerates post-
training and reduces computational overhead. Fig. [I]depicts the the overall procedure.

We evaluate CoMe on seven LLMs, three sparsity levels (10%, 20%, 30%), seven NLP benchmarks,
and two datasets, comparing against nine competitive baselines. Experimental results show that CoMe
consistently outperforms existing methods: (1) During pruning, it achieves superior performance
across all settings; (2) After post-training, it surpasses state-of-the-art by over 2.4% in average
accuracy; (3) Compared to linear weight aggregation methods, concatenation-based merging improves
average accuracy by more than 2% and reduces perplexity by over 4.7 across benchmarks.

In summary, our main contributions are as follows:

* We introduce CoMe, a novel framework for structured layer pruning and recovery in LLMs,
which preserves critical channels and enables efficient post-training restoration.

* We propose a concatenation-based merging method that reconstructs layers using the most
informative channels, which minimizes performance loss caused by pruning.

* We develop a hierarchical distillation protocol that exploits pruning priors to efficiently
transfer knowledge through decoupled layer-wise feature alignment.

* We conduct extensive experiments, reveal the inherent limitations of linear weight aggre-
gation in layer pruning, and demonstrate the effectiveness of our approach across multiple
LLMs and benchmarks.

2 Related Work

Structured Layer Pruning. LLM:s are typically constructed by stacking multiple transformer layers,
and substantial research has been devoted to compressing these models via layer pruning. Existing
methods can be broadly grouped into three categories. First, heuristic layer pruning approaches, such
as Magnitude [19}[16]] and Taylor [23|[16], evaluate the layer importance based on weight norm or the
error induced by removing specific weights. While straightforward, these methods often fail to capture
the complex, nonlinear dependencies across layers. Second, redundancy-based pruning estimates
block importance based on activation patterns. For example, Men et al. [24]] identify redundant layers
via cosine similarity between output features, and Song et al. [34] select sub-models by evaluating
their performance on a calibration set. Although these methods incorporate global performance
metrics, their discrete search spaces make it challenging to preserve the essential feature encoding
capacities of pruned layers. Third, layer fusion methods aim to improve parameter utilization by

Step 1: Channel Importance & BI/SBI Score

1 1
1 \ 1
i i !
: Layerl Layerl+m : Channel from: Layer [- Layerl+m 1
1 ;l Bf i QY I
L e Lim } 1
1) A) A i New Layer I
LMY AP . .
, Channel Importance Channel Importance : Ratio = Frerge(BIy, ..., Bl1ym) :
| \ 1
I | . BPEYEDESEI R -m--------- 1
1 en .
1 |
! Layer¢l 1 ! *
1 A 1 Layer [— 1
P2 3 R HED " Y
: l Layer [¢ : l’
1 SBIScore «vs LI((D — = NewLayer : perayer
t
: v - f‘ ptimize : l
| T Layer [+m | 1
| e _@ g+rm) — — 1 - H'® 1 Layer [+m+ 1
1 1 v
Layer I +m +1 1
1 ‘L ! man
| H N N L N B f
1 Original Model e i Step 3: Hierarchical Distillation Strategy 1 Lightweight Model

Figure 1: Overview of CoMe. Steps 1 and 2 are iteratively executed until the model achieves the
target size. Following this, Step 3 utilizes efficient post-training through feature-level distillation to
recover the performance. The resulting lightweight model incorporates several newly replaced layers.

reconstructing layers through linear aggregation of weights. Techniques such as MKA [22] use
manifold learning to guide layer fusion, while LaCo [42] quantifies parameter differences for better
information retention. However, these approaches often overlook the position-sensitive properties of
Position-wise Feed-Forward Networks (FFN), leading to suboptimal performance on tasks requiring
fine-grained semantic understanding. Despite these advances, current pruning methods are limited by
the difficulty of accurately quantifying parameter importance and the lack of effective mechanisms
for preserving layer capacity, which restricts further improvements in both compression efficiency
and pruned model performance.

Knowledge Distillation. Knowledge distillation is widely used to transfer the capabilities of large
models to smaller ones, emphasizing efficient and effective knowledge transfer. However, aligning
features between layers and ensuring training efficiency remains a significant challenge. Early works
such as DistilBERT [33]] uses layer-wise sampling to initialize student models, but this approach
disrupts inter-layer knowledge flow and requires additional alignment losses during training. More
recent methods, including MiniLLM [10] and DistiLLM [17]], adopts global feature alignment,
simplifying mapping but increasing computational costs due to the involvement of the entire model.
LLM-Streamline [5] introduces dynamic layer replacement, yet its reliance on single-layer mappings
limits model expressiveness. Overall, current distillation techniques face two main challenges:
Insufficient use of structural priors from pruning, which leads to feature mismatching between the
pruning and distillation stages, and the lack of hierarchical knowledge transfer results in a trade-off
between resource efficiency and performance recovery.

Our Contributions. To overcome these challenges, we introduce a channel sensitivity metric for
fine-grained assessment of parameter importance, reducing discretization issues in existing pruning
strategies. We also propose a progressive channel concatenation strategy as a principled alternative
to linear aggregation, which mitigates over-smoothing in layer fusion. For knowledge distillation,
our hierarchical protocol leverages layer correspondences established during pruning to facilitate
efficient and continuous multi-level feature alignment between the original and pruned models. This
framework enhances the efficiency of knowledge transfer in compressed LLMs.

3 Rethinking the Layer-based Structured Pruning

Based on how parameters are manipulated, layer pruning methods can be divided into two main
paradigms: Direct Layer Pruning (DLP) and Weighted Sum-based Layer Pruning (WSLP). DLP is a
coarse-grained approach that removes entire layers based on predefined importance metrics [34, 24,

16]. In contrast, WSLP reduces the number of layers by linearly combining multiple layers into one
layer [22, 127,,142]]. This section analyzes the limitations of both paradigms from the perspectives of
layer importance, pruning performance, and the effectiveness of linear aggregation and motivates the
design principles behind CoMe.

Core Issue 1: Are any layers in LLMs truly

“redundant’”? DLP methods typically rely on M T er s T come S or B0

importance metrics, such as weight norms or 2 Teylor+ — FuseGPT (M)

cosine distance, to identify and remove suppos- groy M« :

edly redundant layers [24, [16]. They implic- §°'8 \|oa [

itly assume that some layers make negligible g\

contributions to overall model performance. To g . J/
34 o2l

investigate this assumption, we compare layer
importance scores from various DLP methods = ! = e — =
on the LLaMA-2-7b model (Fig.). The dis- Layer Index

tributions of impolrtance scores differ markedly Figure 2: Comparative analysis of normalized
across methods, with only a few shallow ordeep |ayer importance score across different methods.

layers consistently identified as highly impor- The score of SLEB and FuseGPT is derived from
tant. In some cases, layer importance correlates he firgt-round pruning.

with depth, while in others, it does not. This

inconsistency indicates that the notion of “redundant” layers depends highly on the metric. Further,
DLP methods yield varied performance across benchmarks (please refer to Tab. [§]in the appendix.).
For example, pruning 10% of parameters with ShortGPT [24] maintains performance on WinoG and
MMLU, but leads to significant degradation on other tasks. No method consistently outperforms
others across all benchmarks and sparsity levels. These findings suggest that pruning different layers
impairs different capabilities. Removing entire layers risks eliminating intermediate feature mappings
that are critical for downstream tasks, which can result in notable performance loss. Therefore,
preserving the mapping capacity of pruned layers is crucial for mitigating such degradation.

Core Issue 2: Does linear weight aggregation
preserve hierarchical knowledge and mapping

capability? WSLP methods merge adjacent lay- " D vy
ers by linearly aggregating their weights, under 100 WSLP-MHA
the assumption that channel-wise alignment ex- bl

ists not only in Multi-Head Attention (MHA)
and normalization modules, but also in Feed-
Forward Networks (FFN) [23| 2. However,
while residual connections in Transformers do

Perplexity / Wiki-2
©
3

facilitate channel alignment in MHA and nor- ” /
malization, this property does not extend to FFN 5
modules, which lack explicit feature correspon- I I

dences across layers [23]. As a result, linear L19: L20
aggregation in FFN modules can lead to over-

smoothing weights and disrupt layer-specific Figure 3: Merge adjacent layers with linear weight
knowledge preservation. To empirically exam- aggregation. First, we reduce LLaMA-2-7b’s layer
ine this issue, we conduct fusion experiments by number to 23 with ShortGPT. Second, the compo-
applying linear aggregation to adjacent layers nents in layers 19 and 20 are merged at different
under various fusion ratios (Figs.[3|and[T3). We ratios. When merging MHA or FFN, the other
evaluate the resulting models using perplexity component is retained from layer 20.

on multiple datasets, considering three module

types: FFN, MHA, and the complete Transformer layer. Across all settings, models obtained via
linear aggregation consistently underperform those produced by directly pruning layers (“L20”), as
indicated by higher perplexity scores. These results confirm that weight distributions in adjacent
layers are not sufficiently aligned and that WSLP fails to maintain the original network’s hierarchical
knowledge and mapping capacity.

In summary, DLP and WSLP have fundamental limitations: DLP risks discarding meaningful
intermediate representations, while WSLP introduces over-smoothing and fails to preserve essential
knowledge structures. These observations highlight the need for alternative pruning strategies that
better retain LLMs’ representational and mapping capabilities.

wo WD

W (merge)

0| - a3 -

2
2

concatenate
3|0

olw|s|w

aflr|s]w

4
o-3
0

-1

RN

ala|n|s

[E S

5 2
-1 0 1
-5 4|-2]-3
-1 4 4

AN
RN N e

5| -4 -5 | -

R L)
aler|s]w

alo|o]»

e |db|e

aln|e]ée
[N PN IV PN

ratio - 0.67:0.33 | -;
Channel Importance F F F Channel Importance

rerxYw B B FlEa]c] [=[=[=F]5]

Figure 4: Channel importance calculation pro- ~ Figure 5: Cloncatenatlio?—based v.veight merge
cess. The importance scores reflect the expected ~ Process. W() and W(1) are derived from the
changes of output caused by different channels. ~ same positions in adjacent layers.

4 Methodology

This section details the technical innovations of CoMe. During the iterative layer pruning phase,
motivated by insights discussed in Section [3] we aim to minimize performance degradation by
preserving the most critical parameters from pruned layers. We introduce a Channel Sensitivity
Metric that quantifies the influence of individual weight channels on the module’s output, thereby
facilitating the identification of the most essential channels within layers. Then, we extend the Block
Influence (BI) score [24]] to the cross-layer setting by introducing the Skip-BI (SBI) score, which
enables us to quantify the extent to which a group of adjacent layers alters intermediate features.
Based on SBI score, we identify groups of layers that minimally affect feature transformations
and implement our concatenation-based merging strategy with the channel importance information.
The concatenation-based merging strategy retains the essential channels, thereby mitigating the
propagation of disruptive changes from shallow to deeper layers. By iteratively applying the above
process, multiple layers are fused into a single layer, thereby progressively pruning the model. In the
post-training stage, we further exploit the layer correspondences established during the pruning phase
to fine-tune the merged layers in the pruned model. We employ two distinct knowledge distillation
strategies, enabling the merged layers to recover the mapping capacities of the original layer groups
more effectively. The complete CoMe pipeline is depicted in Fig.[1} and the algorithm framework is
shown in Algs. [T} [B|and 4}

4.1 Channel Sensitivity Metric

To enable concatenation-based layer merging, we first establish a channel importance metric that
quantifies the impact of pruning individual neural pathways. Consider a linear mapping characterized
by a weight matrix W € RY**. The input is a vector X = [z, xo, ..., x,], resulting in an output
O = [01,09,...,0,]. We express the linear transformation as O = W x X. As shown in Fig.
pruning the weights W at the channel level alters the output O. We formulate channel sensitivity
through output perturbation analysis. Pruning the i-th weight channel (achieved by setting x; = 0)
induces perturbation AO) = O — O’ = W[:, I] - ;. As shown in Fig. we compute the expected
£1-norm of this perturbation across the calibration dataset D as the quantizer of channel importance:

si = Ep 1409 |1 | = Epflail Y wisl] (M
k=1

where the expectation over the calibration dataset D decouples input statistics from static weights. A
larger score indicates that the weight channel is more significant, and discarding it would cause more
substantial damage to the block’s functionality.

4.2 Progressive Concatenation-based Layer Merge

In existing work, evaluating the importance of blocks involves analyzing model weights, activations,
gradients, and differences in input and output. Men et al. [24] posit that the cosine distance between
the hidden features of a block’s input and output measures the block’s redundancy. Consequently,
Men et al. [24] define the Block Influence (BI) score for the [-th layer as:

H-DTHO

B[l =1- ED ||H(l71)H2||H(l)H2’

(@)

where H() € R5*4 represents the output hidden features of the I* layer in the model. S is the
sequence length, and d is the hidden dimension. D is the calibration dataset used.

The objective of CoMe is to replace multiple original blocks with fused blocks while minimizing
performance loss. Therefore, we extend the BI concept to layer groups as a novel Skip-Block
Influence (SBI) metric. For the module containing layers [to [+ m, its SBI score is defined as:

HU-DTHI+m)

i P HEED [, [[HEm)][),

3

where m + 1 > 2 indicates the number of layers to be merged. A smaller S BI score indicates that
the block group spanning multiple blocks induces more minor perturbations to the hidden features,
implying that manipulating these groups will have a minor impact on model performance. We factorize
block weights into channel-level components, treating channels as atomic units and concatenating the
parameters sequentially to increase the importance of each channel. The concatenation-based merge
(Fig.[5) implements parameter preservation through:

+m

Ty (merge) @ W(k) Tl %)

where 7T, denotes the top-k channels selected via our sensitivity metric, and & indicates column-wise
concatenation. It ensures the retention of the most impactful parameters in merged layers. For the
parameter preservation ratio, we employ a heuristic approach. The parameter preservation ratio for
layer ¢ in group {, ...,1 + m} follows:

BI?

I+m D’
>imi BI
where p controls the distribution skewness, and a larger p value emphasizes the preservation of layers
with high BI scores. Through constrained concatenation where » . r; = 1, the merge module keeps

the hidden state dimension as the size of the origin module. We provide the calculation details for
channel importance and the merge rules for different structures in Section [C|

re = p>0, &)

4.3 Post-Training via Hierarchical Distillation Strategy

After a progressive merging process, we aim to replace the original layers with the fused ones to
alleviate representational gaps induced by pruning. Thus, each fused layer should maintain equivalent
feature representation capabilities to its original group, enhancing model performance. We align their
feature representations through post-training. Our progressive layer merging process creates a direct
mapping between pruned and original layers, formalized as: P = [{a1,b1},...,{an,bn}], where a
is a layer index from origin model, b is from the pruned model and NV is the number of merged layers.
It provides a priori conditions for efficient feature-based post-training.

We use the original model as the teacher model and the pruned lightweight model as the student
model, transferring knowledge from the teacher model to the student model. We employ feature-level
distillation using symmetric Kullback-Leibler divergence (KL) to mitigate distribution shift:

L1 =Ep,,..,[Dx. (o(HO) || o(HED))], ©)

where H(-:%) denotes the output features of the a-th layer of the teacher model, and H(*:*) denotes
the output features of the b-th layer of the student model. The element pair {a, b} € P. o denotes the
softmax activation function. Dy,;y, is the training dataset. The KL-divergence term expands as:

|Dtrainl
D(P || Q) = Z P, log H PH = oH D), QI =sH®). @)

The optimization process requires iterating through all mapping pairs in P from shallow to deep layers.
This process is named multi-process post-training (CoMe-mp). While CoMe-mp updates one layer
per iteration and uses minimal resources, its sequential nature prevents joint optimization of shallow
and deep layers. To address this, we consolidate multiple training processes into one, iterating over

—k— CoMe (Ours) ----- Dense —®— DLP-Mag+ —®— DLP-Taylor+ —#— DLP-SLEB —e— DLP-ShortGPT —&— DLP-FuseGPT-MI WSLP-MKA WSLP-LaCo WSLP-FuseGPT-MI+F

=10% =20% =30% =10% =20% =30% =10% =20% =30%

Average Score (Avg)

=10% =20% =30%
LLaMA-2-7b

Figure 6: Comparison of different layer-wise pruning, including CoMe (red), DLP (blue series), and
WSLP (series), on various models with 10%, 20%, and 30% sparsity.

all mapping relationships in P simultaneously, and name it single-process post-training (CoMe-sp).
It minimizes the KL divergence across multiple mappings:

1
Lxrsp = iz > Ep,..[Dx (0 HED) | U(H(S’b)))]- ®)
{a,b}eP

CoMe-sp enables the joint optimization of multiple fusion layers using global information, which
helps capture inter-layer dependencies and allows for more coordinated parameter updates. Al-
though CoMe-sp requires more storage for optimization parameters, increasing by a factor of more
than |P|compared to CoMe-mp, it often achieves more effective training and better overall model
performance due to its holistic optimization strategy.

S Experiments

5.1 Experimental Setting

Models, Datasets, and Metrics. We evaluate our method on several widely used open-source models,
including LLaMA-2-7b, LLaMA-2-13b [37]], and LLaMA-3-8b [9] from the LLaMA series, Qwen-
2.5-7b [41]], Qwen-3-4b, Mistral-7b [14]], and Vicuna-7b [44]]. Model performance is assessed using
the Im-evaluation-harness [8]] framework on seven standard benchmarks commonly adopted in model
compression research: ARC-challenge (ARC-c), ARC-easy (ARC-e) [6], HellaSwag (HellaS) [43]],
OpenBookQA (OBQA) [26], PIQA [4], Winoground (WinoG) [36] under the zero-shot setting, and
MMLU [[11]] under the five-shot setting. Accuracy is reported with normalized option lengths to
ensure comparability. We report the average accuracy (Avg) across all datasets and the Retained
Performance (RP), defined as the percentage of the original model’s accuracy preserved after pruning.
Perplexity (PPL) is measured on the C4 [28] and Wikitext-2 (Wiki-2) [25] datasets.

Baselines. Eight state-of-the-art layer pruning methods are selected as baselines. DLP-based
methods include Magnitude+ (Mag+) [19} [16], Taylor+ [23} [16]], ShortGPT [24]], SLEB [34]], and
FuseGPT-MI [27]]. WSLP-based methods include FuseGPT-MI-F [27], MKA [22], and LaCo [42].
For a fair comparison, unless otherwise noted, the post-training phase is excluded from FuseGPT.
FuseGPT-MI refers to pruning with Macro Influence (MI) without fusion, while FuseGPT-MI-F
includes layer fusion. Tables distinguish between DLP and WSLP methods with horizontal lines.
For post-training comparisons, LLM-Streamline [5] and FuseGPT with training are also evaluated.
Detailed descriptions of all baseline methods are provided in Section [A]

Implementation. All methods are evaluated under sparsity levels of 10%, 20%, and 30%. Tab.
summarizes model configurations for each sparsity setting, while Tab. [] lists the pruned layer
sequences for all DLP methods. Unless otherwise specified, CoMe is conducted on LLaMA-2-7b
using the Wiki-2 calibration set (256 samples) with a default sparsity of 30%. During the layer

Table 1: The Post-training Experiment on the LLaMA-2-7b and Qwen3-4b.

Benchmarkf PPL|
Method ARC-c ARC-e HelllS OBQA PIQA WinoG MMLU () A&l IR} ‘ C4 Wiki-2
LLaMA-2-7b Dense 4633 7454 7599 4420 7905 6906 4560 62.11 10000 | 727 547
FuseGPT-MI 3020 5059 5298 3360 69.37 5454 2517 4521 7153 | 17.60 14.94
Prune FuseGPT-MI+F 3020 50.13 5508 3480 6850 5541 2701 4588 7282 | 1780 14.34
G00% LLM-streamline 3379 4533 5094 3160 6349 63.14 4182 47.16 7653 | 7010 65.84
CoMe 3524 5446 5656 3540 6888 6117 2550 48.17 7647 | 1993 1653
FuseGPT-MI 3055 5652 5542 366 7111 5446 2495 47.090is 7443 | 1331 9.74
FuseGPT-MI+F 3123 5741 5626 356 7122 558 2672 477518y 7550 | 1296 885
w/Post-training LM-streamline 3635 5143 5640 33.60 6600 66.61 4050 50.13¢297) 8092 | 18.60 19.75
CoMe-mp 3524 60.65 6114 3780 7057 6456 2535 50.76c26n 8025 | 1301 9.72
CoMe-sp 3558 63.51 6583 3020 7405 6338 2648 52.5844n 8298 | 1145 8.54
Qwen3-4b Dense 5154 7643 7370 4120 7780 7103 730l 66.39 10000 | 1331 790
Prune LLM-streamline 2671 40.57 3831 2820 6181 5391 2354 39.01 58.99 | 200.93 22889
30.1%) CoMe 2867 4710 4395 2960 6300 5146 32.67 4235 6384 | 5613 3714
LLM-streamline 27.22 4537 4420 3040 6659 5699 2296 4196295 6332 | 3480 3577
w/ post training CoMe-mp 3097 5198 47.02 3080 6523 5454 3644 452820 68.17 | 32.02 22.09
CoMe-sp 3140 5391 4833 3380 6523 5675 410 47.22qusn 7130 | 2928 2025

pruning process, we set the number of layers merged per iteration to 2 (i.e., m = 1). Comprehensive
experimental settings and implementation details are available in Section

5.2 Main Result

CoMe Outperforms DLP and WSLP Across Benchmarks. Fig.[6|summarizes the average accuracy
of various layer pruning methods. In most settings, CoMe consistently ranks first. When pruning 30%
of the parameters from LLaMA-3-8b, CoMe achieves the second-highest average accuracy. When
pruning Qwen-3-4b, CoMe achieves a comparable performance compared to the best method. These
results indicate that CoMe effectively preserves model capability and enhances the performance
of pruned models. Notably, the performance of CoMe declines approximately linearly as sparsity
increases, suggesting that important parameters are selectively retained even at high sparsity levels.
On the larger LLaMA-2-13b model with 30% sparsity, CoMe surpasses all other methods by at least
4% in average accuracy, highlighting its particular advantage for large-scale models.

CoMe-sp Surpasses Existing Post-Training Layer-Based Methods. Tab.|l|presents the effective-
ness of various post-training strategies in restoring performance after layer pruning. CoMe achieves
the highest average accuracy after pruning, outperforming LLM-Streamline by 1% on LLaMA-2-7b
and by 2.3% on Qwen-3-4b, and exceeding FuseGPT-MI+F by 2%. Its PPL is also comparable to
the best-performing method. After post-training, the relative ranking of methods remains consistent,
with CoMe-sp achieving the top performance, surpassing LLM-Streamline by 2.4% on LLaMA-
2-7b, and by 5.2% on Qwen-3-4b, while also achieving lower PPL. These results indicate that the
hierarchical distillation strategy in CoMe-sp accelerates performance recovery, even with limited
training data (Tab. [7). In contrast, CoMe-mp, which relies only on local layer feature alignment,
performs similarly to LLM-Streamline, indicating that relying solely on local layer feature alignment
is insufficient for restoring model performance effectively.

5.3 Ablation Study

Ablation on Concatenated Structure. The results shown
in Figs.[TT|and[T4]indicate that using the CoMe to merge . \ o e
the MHA module, FFN module, or entire layer structure of BT)
adjacent layers can achieve better PPL metrics at specific

fusion ratios compared to simply retaining layer 20. It
demonstrates that the concatenation-based layer merging

Perplexity / Wiki-2
e 9 g
.

strategy effectively preserves the model’s language model- =0
ing capability. Notably, merging the entire layer structure s
outperforms merging the MHA or FFN modules individu- N P P P Tl T T

ally. It indicates that the collaborative fusion of MHA and T R T
FFN modules can produce a complementary effect on the
parameters. The results validate the effectiveness of the

fusion ratio allocation strategy.

Figure 11: Merge layers with CoMe.
The setting is the same as Fig.

150 TNl —— AVG. —— Wiki2 c4 1.4 48 AVG. Wiki2 s
=) 47 255
142 \’\/ g
54715 2 ;46 223
B o 2 &
= 45 5o
Sa10 13Y s 2
Z 47. ~ T 44 1.8%
z =
= 43 1 5;

46.5 13 -
7 1.2
3 2 9 10 11

N

1 2 4 8 16 32 64 128 256 512 inf
Hyperparameter p

Figure 7: Effect of p in heuristic merge ratio. ~ Figure 8: Impact of merge step granularity.

As p grows, more parameters from layers with Merging more .lay.ers Qegrqdes performance due
higher BI scores are merged. to parameter distribution differences.

Layers per Merge

48.5

=
o

. AVG. . Wiki-2

3.5
3.0~ G 475 iki
o [}
o <
25= S
T
203 z 470
o
15§ 46.5
105
0.5 46.0
0.0 w/o 2 4 8 16 32 64 128 256 512

Wiki-2 PG19 MMLU Alpaca : concat . .
Calibration Dataset Calibration Dataset Scale

50

[
5]

4

S

=
IS

w
o
Wiki2 / C4 PPL (log)

AVG. Acc.
N
o
=
W

-
o

[al

o

Figure 9: Impact of the calibration dataset. We Figure 10: Effect of calibration data scale.
use two samples in PG19 and 256 in the others. =~ CoMe achieves optimal performance with sam-
ples more than 128.

Effectiveness of Concatenation-Based Merge. As shown in Figs.[TT]and[T4] merging adjacent layers
using the concatenation-based strategy in CoMe yields lower PPL than simply retaining layer 20,
demonstrating superior language modeling capability. Merging the entire layer structure consistently
outperforms merging only the MHA or FFN modules, suggesting that the joint fusion of MHA and
FFN produces a complementary effect. However, the optimal fusion ratio varies across the three
types of structures, suggesting that the heuristic fusion ratio allocation strategy has limitations and
may not fully unlock the potential of CoMe.

Impact of p in Heuristic Merge Ratio. Fig.[J]illustrates the impact of p on the performance of
models pruned using CoMe. For p < 2, the model maintains optimal performance after pruning, with
average accuracy exceeding 48%. As p increases, retention becomes more skewed toward layers
with higher BI scores, leading to performance degradation. When p — inf (i.e., without merging),
performance drops sharply (PPL rises to 25.50/ 21.21). These findings confirm that: (1) the channel
sensitivity-based selection mechanism effectively identifies key parameters; (2) progressive layer
merging is essential for maintaining performance; and (3) BI scores are positively correlated with the
number of essential parameters, validating the skewness control strategy.

Effect of Merge Step Granularity. The analysis in Fig. [§|reveals that merging more than two layers
at a time leads to a drop in average accuracy of over 3% and a substantial increase in PPL. This
suggests that merging multiple disparate layers increases parameter distribution discrepancies. The
progressive merging of fewer layers helps mitigate this issue and preserves model performance better.

Robustness to Calibration Dataset. Cross-dataset experiments in Fig. 0] demonstrate that CoMe
is robust to the choice of calibration dataset. When using pre-training style data, such as Wiki-2,
C4, the model achieves low PPL and strong language modeling performance. In contrast, using QA
datasets such as MMLU, which differ significantly from the pre-training dataset, increases PPL by
over 25%. However, the impact on downstream task average accuracy remains limited (fluctuation <
1.5%), indicating that the channel importance measurement mechanism effectively decouples input
distribution from static weight features. These suggest that calibration data similar to the training
distribution is preferable.

Table 2: Comparison of CoMe and WSLP, w/ and w/o the merge process. For the methods w/o Add,
we retain the layers deemed most important by the method (LaCo w/o Add retains shallow layers).
PPLL()

Benchmark? ()

Method ARC-c ARC-e HellaS OBQA PIQA WinoG ~ MMLU (5) AV&I® RP1() ca Wiki-2
MKA 34.04 49.58 48.12 35.00 63.00 59.12 35.64 46.36 75.14 810.04 455.34
w/o Add 33.96(0.08) 49.45¢0.13) 48.02¢0.100 34.80¢020) 62.79¢021) 59.04¢008) 35.64¢) 46.24¢0.11) 74.95¢0.19) | 809.74¢030) 454.70¢-0.64)
LaCo 30.97 49.79 50.14 35.00 68.34 5391 24.84 4471 71.11 39.18 42.67
w/o Add 30.80¢0.17) 50.38¢:059) 50.90¢:070) 34.60¢040) 69.21¢057) 55.01¢110) 24.71c0a3) 45.09¢057) 71.53¢040) | 25.51¢1367) 21.18(¢21.49)
FuseGPT 30.20 50.13 55.08 34.80 68.50 5541 27.01 45.88 72.82 17.80 14.34
w/o Add 30.20¢) 50.59¢) 52982100 33.60¢1200 69.37¢) 54.54¢087) 25.17¢184) 4521¢067) T1.53¢-129) | 17.60¢-0.20) 14.94¢)
CoMe 3524 54.46 56.56 35.40 68.88 61.17 25.50 48.17 76.47 19.93 16.53
w/o Concat 30.97(-427) 48.40¢-606) 55.81¢075) 33.00240) 68.12¢076) 59.35¢182) 2671121 46.05¢212) T2.94¢353) | 25.48(:554) 21.26(:4.73)

Calibration Data Scale. As shown in Fig. channel importance stabilizes when calibration
samples exceed 128 (PPL fluctuation on WikiText-2 is less than 1.3). When fewer than eight samples
are used, parameter merging degenerates into random selection, with PPL exceeding that of the
no-fusion strategy (p = inf in Fig.[7). This highlights the necessity of accurate channel importance
evaluation, as incorrect estimates can impair pruning performance.

5.4 Weight Sum-Based Merge vs. Concatenation-Based Merge

Both WSLP and CoMe aim to mitigate the loss of layer mapping functionality caused by DLP.
Tab. [2] compares these approaches without the merging process. For WSLP, removing the merge
step changes average accuracy by less than 0.7% and RP by less than 1.3%, indicating a negligible
effect. In contrast, removing the concatenation-based merge in CoMe leads to a significant drop in
average accuracy and RP (both decrease by more than 2%) and an increase in PPL (by more than
4.7), demonstrating that the concatenation-based merge plays a critical role in preserving model
performance during pruning. Further analysis is provided in Section[F]

6 Conclusion

This paper addresses the challenge of layer pruning in LLMs, focusing on preserving model per-
formance while reducing computational complexity. Our proposed framework, CoMe, introduces
three key innovations: a channel sensitivity metric to quantify the importance according to acti-
vation and weight, a concatenation-based merging strategy to retain critical information during
pruning effectively, and a hierarchical distillation protocol for efficient post-training recovery. Exten-
sive experiments across multiple models, sparsity levels, and benchmarks demonstrate that CoMe
achieves superior performance compared to existing pruning approaches in maintaining accuracy
after compression.

Limitations

CoMe adopts a heuristic and uniform parameter preservation ratio for merging all Transformer
components, which limits its adaptability to different architectures. In Section [D| we present a
posterior-based solution for adaptively merging two adjacent layers to alleviate the limitations of
CoMe. In future work, we will explore adaptive methods for merging multiple layers at once and
extend CoMe to expert merge.

Acknowledgements

This work was supported by the Guangdong Provincial Key Field R&D Program Project
(2024B0101040004), the National Natural Science Foundation of China under Grants 62476099,
62076101, and 62576364, the Guangdong Basic and Applied Basic Research Foundation under
Grants 2024B 1515020082 and 2023A1515010007, the Guangdong Provincial Key Laboratory of
Human Digital Twin under Grant 2022B1212010004, and the TCL Young Scholars Program.

10

References

(1]

2

—

[3

—

[4

—

[5

—

[6

—

[7

—

(8]

(9]

[10]

[11]

[12]

(13]

[14]

(15]

(16]

(171

(18]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical common-
sense in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 7432-7439, 2020.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models. In The Thirteenth International Conference on
Learning Representations, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457,2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation,
07 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH,

Zhiwei Huang, Juan Li, Long Jin, Junjie Wang, Mingchen Tu, Yin Hua, Zhiqgiang Liu, Jiawei Meng, and
Wen Zhang. Reliable academic conference question answering: A study based on large language model.
In China Conference on Knowledge Graph and Semantic Computing, pages 181-193. Springer, 2024.

Fengqing Jiang, Zhangchen Xu, Luyao Niu, Boxin Wang, Jinyuan Jia, Bo Li, and Radha Poovendran.
Identifying and mitigating vulnerabilities in llm-integrated applications. In NeurIPS 2023 Workshop on
Instruction Tuning and Instruction Following, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. Shortened LLaMA: A simple depth pruning for large language models. In ICLR 2024 Workshop
on Mathematical and Empirical Understanding of Foundation Models, 2024.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. DistiLLM: Towards streamlined distillation
for large language models. In Forty-first International Conference on Machine Learning, 2024.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the
magnitude-based pruning. In International Conference on Learning Representations, 2021.

11

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In International Conference on Learning Representations, 2017.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language models for
text generation: A survey. ACM Computing Surveys, 56(9):1-39, 2024.

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, et al. Controllable text generation for large language models: A survey. arXiv
preprint arXiv:2408.12599, 2024.

Deyuan Liu, Zhanyue Qin, Hairu Wang, Zhao Yang, Zecheng Wang, Fangying Rong, Qingbin Liu, Yanchao
Hao, Bo Li, Xi Chen, Cunhang Fan, Zhao Lv, Dianhui Chu, Zhiying Tu, and Dianbo Sui. Pruning via
merging: Compressing LLMs via manifold alignment based layer merging. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 17817-17829. Association for
Computational Linguistics, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702-21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?
i1d=Byj72udxe,

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2381-2391, 2018.

Zehua Pei, Hui-Ling Zhen, Xianzhi Yu, Sinno Jialin Pan, Mingxuan Yuan, and Bei Yu. Fusegpt: Learnable
layers fusion of generative pre-trained transformers. arXiv preprint arXiv:2411.14507, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1-67, 2020.

Jun Rao, Fei Wang, Liang Ding, Shuhan Qi, Yibing Zhan, Weifeng Liu, and Dacheng Tao. Where does
the performance improvement come from? -a reproducibility concern about image-text retrieval. In
Proceedings of the 45th international ACM SIGIR conference on research and development in information
retrieval, pages 2727-2737, 2022.

Jun Rao, Liang Ding, Shuhan Qi, Meng Fang, Yang Liu, Li Shen, and Dacheng Tao. Dynamic contrastive
distillation for image-text retrieval. IEEE Transactions on Multimedia, pages 1-13, 2023. doi: 10.1109/
TMM.2023.3236837.

Jun Rao, Xv Meng, Liang Ding, Shuhan Qi, Xuebo Liu, Min Zhang, and Dacheng Tao. Parameter-efficient
and student-friendly knowledge distillation. /[EEE Transactions on Multimedia, 26:4230-4241, 2023.

Jun Rao, Xuebo Liu, Lian Lian, Shengjun Cheng, Yunjie Liao, and Min Zhang. CommonIT: Commonality-
aware instruction tuning for large language models via data partitions. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen, editors, EMNLP, pages 10064—-10083, Miami, Florida, USA, 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.561. URL https://aclanthology,
org/2024.emnlp-main.561/.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb: streamlin-
ing llms through redundancy verification and elimination of transformer blocks. In Proceedings of the 41st
International Conference on Machine Learning, pages 46136-46155, 2024.

Mingxu Tao, Dongyan Zhao, and Yansong Feng. Chain-of-discussion: A multi-model framework for

complex evidence-based question answering. In Proceedings of the 31st International Conference on
Computational Linguistics, pages 11070-11085, 2025.

12

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/2024.emnlp-main.561/
https://aclanthology.org/2024.emnlp-main.561/

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5238-5248,
2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Fei Wang, Liang Ding, Jun Rao, Ye Liu, Li Shen, and Changxing Ding. Can linguistic knowledge improve
multimodal alignment in vision-language pretraining? ACM Transactions on Multimedia Computing,
Communications and Applications, 20(12):1-22, 2024.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. Model compression and efficient inference for large language models: A survey. arXiv
preprint arXiv:2402.09748, 2024.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
conference on machine learning, pages 10524-10533. PMLR, 2020.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6401-6417, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4791-4800, 2019.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. Multilingual machine translation with large language models: Empirical results and analysis. In
Findings of the Association for Computational Linguistics: NAACL 2024, pages 2765-2781, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556-1577, 2024.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly demonstrate the contribution and
scope of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: Our paper is empirical and does not include new theoretical results or proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive implementation and experimental details in Sec-
stion [B]and [4] and Subsection sufficient for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: Our code is included in the supplementary materials for this submission, and
we will release it publicly after publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and evaluation details, including hyperparameters and data splits,
are specified in Secstion [B]and] and Subsection[5.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to computational constraints, we did not report error bars or statistical
significance; results are based on single runs with a fixed random seed for all experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We provide the type of GPU used (NVIDIA A100), but did not report the
runtime or memory usage for different methods. This is because the code implementations
of the compared methods differ significantly, and we made modifications to the model
files, making it difficult to provide fair and accurate comparisons of runtime and memory
consumption.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics in all respects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: We did not include a broader impacts section because our research is method-
ological and does not have immediate or direct societal applications.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not introduce or release models or datasets with high risk of
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:
Justification: We properly cited all external code, datasets, and models used in our work

and ensured our usage complies with their terms. However, we did not explicitly state the
licenses or terms of use in the paper.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

18

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will make our code publicly available after publication. The license and
terms of use will be clearly stated in the ReadMe file accompanying the code

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:
Justification: Our research does not involve crowdsourcing or human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: No human subjects were involved in our research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our method is primarily implemented on large language models (LLMs), and
we conduct extensive experiments comparing different LLMs throughout the paper. All
LLM usage is clearly described in the main text.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Table 3: Model Parameters and Sparsity Settings Across Different Models.

Model Size # Blocks \ ~10% Sparisity # Removed # Parameters \ ~20% Sparisity ~# Removed # Parameters \ ~30% Sparisity # Removed # Parameters
LLaMA-2-7B 6.7b 32 9.01% 3 6.1b 21.02% 7 5.3b 30.03% 10 4.7b
LLaMA-2-13B 13b 40 9.75% 4 11.7b 19.49% 8 10.5b 29.24% 12 9.2b
LLaMA-3-8b 8b 32 10.86% 4 7.2b 19.01% 7 6.5b 29.88% 11 5.6b
Vicuna-7b 6.7b 32 9.18% 3 6.1b 21.02% 7 5.3b 30.03% 10 4.7b
Mistral-7B 7.2b 32 9.04% 3 6.6b 21.08% 7 5.7b 30.12% 10 5.1b
Qwen-2.5-7b 7.6b 28 9.18% 3 6.9b 21.42% 7 6.0b 30.60% 10 5.3b
Qwen-3-4b 4.0b 36 10.04% 4 3.6b 20.07% 8 3.22b 30.11% 12 2.8b

A The Details of Comparison Methods

This paper compares three types of structured pruning paradigms: (1) DLP, which includes Mag+ [16]],
Taylor+ [16]], ShortGPT [24]], and SLEB [34]; (2) WSLP, which includes LaCo [42]] and MKA [22]];
and (3) methods combining layer pruning with post-training, such as LLM-streamline [S] and
FuseGPT [27]]. We implemented each method using publicly available code.

Magnitude+ (Mag+). Kim et al. [16] use this method as a baseline in the pruning method
comparison conducted. Initially proposed by Li et al. [[19], it assumes that weights with smaller
norms contain less information. For block-level analysis, the importance of the /-th layer is calculated
as the sum of the first-order norms of all weight parameters: Inrag11 = D pwewm Dwew (W5

where W) represents the set of all weight matrices in the I-th layer. We follow popular heuristic
algorithms [7, [18]]. Kim et al. [[16] further mitigated performance degradation by retaining the first
four and last two layers [23]].

Taylor+. 3 This method is also a baseline in the pruning method comparison by Kim et al. [16].
It assumes that the error introduced by removing weight parameters indicates their importance.
Given a calibration dataset D, this error can be expressed as a change in the training loss L:
IL(W;D) — LW = 0;D)| ~ 252l Following Kim et al. [16] and Ma et al. [23], we de-

oW
. D
fine the layer importance parameter as I7qyior4,1 = Zwewm ZweW |8L35,J)

heuristic optimization methods to retain the first four and last two layers.

w]|. We use similar

ShortGPT.E]Proposed by Men et al. [24]], this method assumes redundancy in the model layers and
defines redundancy as layers that minimally alter the hidden embeddings. To measure change, they
use the cosine distance as a metric, as shown in Eq. ([21) Men et al. [24] use the PG19 long-document
dataset for calibration, and we control the size of the calibration dataset to 256 samples. The results
are consistent with those reported by Men et al. [24]. Men et al. [24] compute the importance scores
for models in the LLaMA family, and we directly use the layer importance order provided in the
paper. When the number of pruned layers exceeds the required number, we append the least important
layers from our calculated importance scores. For models where Men et al. [24]] do not provide layer
importance sorting, we estimate it using the settings in this paper.

SLEB. E] Song et al. [34] propose using a posterior method to verify the redundancy of specific layers.
SLEB uses the exponential part of the PPL score of the pruned model on a specified dataset as the

. _ 1 n /
redundancy score: IsLEBI = Y xep — % Doico logle/ (zi]x<i,z; € X), where M denotes the

smaller model obtained from previous pruning steps, M, l/ denotes the model obtained after pruning
the I-th layer, and X = z1, ..., 24, ..., x,, represents a sample. Is; pp ; is the exponential part of the
PPL score, which positively correlates with the PPL score; hence, sy pp positively correlates with
the PPL score. The SLEB method is a progressive structural search optimized for the PPL on the
specified dataset.

LaCo.E] Proposed by Yang et al. [42], this method uses the weight differences between layers
as important information for layer retention. LaCo groups several adjacent layers and performs a
Reserving-Differences-while-Seeking-Common layer merge. For weight fusion from layer [to [+ m,
the fused weight is represented as W* = WO + (WD —w®) 4 4 (Wwltm) — b)) =
WO 5 (WD) — W O), Tt fuses the differences between deeper and shallow layers into the
shallow layers. LaCo assesses the redundancy of pruned groups using the cosine similarity of output

*https://github.com/Nota-NetsPresso/shortened-11m
*https://github. com/sramshetty/ShortGPT
Shttps://github.com/jiwonsong-dev/SLEB
Shttps://github.com/yangyifei729/LaCo

21

https://github.com/Nota-NetsPresso/shortened-llm
https://github.com/sramshetty/ShortGPT
https://github.com/jiwonsong-dev/SLEB
https://github.com/yangyifei729/LaCo

Table 4: The layer importance ranking of different DLP methods.

Model LLaMA-2-7B LLaMA-2-13B LLaMA-3-8b

Sparisity 9.0% /21.0% / 30.0% 9.8% 1 19.5% /29.2% 10.9% /1 19.0% / 29.9%

Mag+ 7, 6,11/ 8, 4,10, 9/12,14,13 4, 5, 6, 7/10, 8, 9,13/12,11, 14,16 5,8 7,11/ 4, 6,10/ 9,13,12,14
Taylor+ 29,28,27/26,21,25,23/24,19,20 37, 35,34,36/33,28,26,29/32,27,31,25 29, 28,26,25/19,27,23/24,20, 18,22
ShortGPT 27,26,25/28,24,29,23/21,22,30 33,31,32,30/29, 34, 28,35/27,26,36,37 25,27,26,24/28,23,22/29,21,20, 19
SLEB 14,23,11/24,10,27,15/21,25, 8 33,29,12,13/26,31,14,32/11,10,25,35 10,26,11,12/ 9,23,19/22,25, 8, 7
FuseGPT-MI 11, 8,27/24,22,14,21/10,13,23 33,29,12,10/27,35,31,30/15,28,16,25 10,26,25,11/ 9, 8,19/22, 7,23,20
Model Vicuna-7b Mistral-7B Qwen-2.5-7b Qwen-3-4b

Sparisity 9.0% 121.0% / 30.0% 9.0% /21.1% / 30.1% 9.2% 121.4% / 30.6% 10.0% /20.1% / 30.1%

Mag+ 7, 6,11/ 8, 9,10, 4/12,14,13 4, 6, 5/12, 7, 9,10/11, 8,13 9,14,17/16,15,13, 7/12, 6,10 21,19,20,18/22,17,15,16/14,23, 9,13
Taylor+ 29,26,21/27,24,25,23/22,19,20 16,28,15/17,29,14,13/22,18,12 4, 5,21/22,20,23,18/19,17,16 26,25,27,29/28, 24,23,22/21, 30, 20, 31
ShortGPT 27,25,28/29,24,26,23/22,21,30 25,26,24/27,22,23,28/21,29,30 16,17,15/14,12,13,18/11,25,24 29,26,27,31/32,33,28,25/20, 16, 18, 30
SLEB 10,27, 14/23,11,12,24/13, 9,26 14,13,15/27,22, 8,24/23,11,21 16,15,17/14,13,18,12/11,10, 9 16,15,14,17/18, 2,19,32/21,26, 11, 30

FuseGPT-MI 12,27, 11/23,10,25,24/21, 9, 8 13,10,14/11, 8,27,23/22,26,25 16,19,17/18,21,14,15/22,10,13 16,17,15, 2/14,20,21,18/10, 26,32, 11

(LT (L)
features between the pruned and unpruned models: I .00 = % > XeD %, where H](é)
and H I(\/II") represent the output features of the last layer of the model. Due to the threshold adjustment
for cosine similarity in LaCo and the need to adjust the starting and ending layers for pruning, as
well as the number of layers in each group, the excessive parameter settings made it challenging to
optimize performance for each model. Therefore, we implement this method only on models in the
LLaMA-2 family.

MKA. E] Proposed by [22], this method uses manifold learning and the Normalized Pairwise In-
formation Bottleneck (NPIB) measures to assess layer similarity and fusion. MKA progressively
fuses deeper into shallower layers, merging the last two adjacent layers each time. In the code
implementation, we find that MKA calculates the NPIB scores for two layers as approximately equal:
InprB, i INPrB,i+1 = 0.5 : 0.5. An exponential mapping increases the fusion proportion of the

elnorm INPIB,

shallower [-th layer: Iprga,; = where I, orm = TP e—

NPIB score: Ipria,+1 = 1 — Ipk a,- After mapping, the similarity ratio between the two layers
approaches Ipnrxa, : Inrxa 41 ~ 0.6 : 0.4,

is the normalized

T—elnorm *

FuseGPT.[ﬂProposed by Pei et al. [27]], FuseGPT hypothesizes that layer pruning causes performance
loss and uses FFN parameter fusion to integrate layer capabilities into adjacent blocks, as Pei et al.
[27] hypothesizes that FEN layers concentrate the main capabilities. Low-rank learnable weight
matrices disperse the capabilities of pruned layers, optimizing multiple layers at once to reduce
the gap caused by pruning. To better study the effectiveness of fusion, we remove the parameter
adjustment part of FuseGPT in pure pruning experiments, using randomly initialized low-rank matrix
products to fuse weights. In post-training comparison experiments, we use the complete FuseGPT
method. Pei et al. [27] propose a Macro Influence (MI) score to measure the global-level impact of
H{ETH)

removing a model layer: In;;r =1 — % > yvep THT

4”2HH _l_ILaCO'

w2

LLM-streamlineﬂ Proposed by Chen et al. [5], LLM-streamline uses SBI (Eq.) to measure
redundancy of multiple consecutive layers, replacing these layers with the shallowest layer among
them, and fine-tuning this shallowest layer post-training to restore model performance.

B The Details of Experiment Setting

The settings for the experiment methods follow mainly those in the original papers. All experiments
are conducted using an A100-40G GPU. We conducted pruning experiments on LLaMA-2-7b [ﬂ

"https://github.com/SempraETY/Pruning-via-Merging
Shttps://github.com/jarvispei/fusegpt
‘https://github.com/RUCKBReasoning/LLM-Streamline
""https://huggingface.co/meta-1lama/Llama-2-7b-hf

22

https://github.com/SempraETY/Pruning-via-Merging
https://github.com/jarvispei/fusegpt
https://github.com/RUCKBReasoning/LLM-Streamline
https://huggingface.co/meta-llama/Llama-2-7b-hf

Table 5: Experimental setting for pruning methods. { idenote methods whose hyperparameters were
adjusted to satisfy the sparsity ratio constraints in our implementation. Complete implementation
details are documented in Subsection [B.1}

Methods Calibration # data seed
Mag+ Wiki2 128 10
Taylor+ Wiki2 128 10
ShortGPTY PGI19 256 10
SLEB Wiki2 128 10
FuseGPT Wiki2 32 10
MKAf} MMLU 50 subtask * 5 10

Mouron () is a commune in the Arde
Torreorgaz is a municipality in the

LaCof The 81st Mechanised Brigade () is a mechanised brigade of the Romanian Land Force
There are 18 National Natural Landmarks in the U.S. state of Washington, out of nearly
Copa Libertadores 1973 was won by defending champions Independiente of A

CoMe Wiki2 256 10

Table 6: The Hyper-parameter used in LaCo [42]. C is the number of layers to be merged during
each merging optimization. Z is the minimum interval of layers between two merging operations. £
and ‘H are the minimum and maximum indices of the range of layers for merging. 7 is a similarity
threshold.

Sparisity C L H I T
9.01% 4 1 32 2 085
LLaMA-2-7b 21.02% 8 1 32 2 0.65
3003% 6 1 32 2 055
9.75% 5 40 2 085
LLaMA-2-13b 1949% 5 1 40 2 0.70
2924% 5 1 40 2 055

LLaMA-2-13b["T] LLaMA-3-8b[?] Vicuna-7b["*] Mistral-7b [¥] Qwen-2.5-7b[] and Qwen-3-4b[']
and performed post-training experiments on LLaMA-2-7b and Qwen-3-4b.

We modify some settings based on the original implementations and develop an open-source project
with multiple pruning methods. Our project code can be found at https://github.com/MPI-Lab/CoMe.

B.1 Implementation of Pruning Methods

Tab. E] shows the calibration datasets, the dataset number, and the random seeds used in the pruning
methods. Tab. {] presents the pruned layers’ index order for the pruning method. We implement the
Mag+, Taylor+, and SLEB using our reproduced code.

For the ShortGPT method, we follow the layer BI score for LLaMA-2-7B provided in the original
article. For the LLaMA-2-13b model, the original paper provides only the pruning order for the first
10 layers. We use the open-source project reproduction code to calculate the remaining layers’ BI
scores and place the two with the smallest BI scores at the end of the given pruning order. For other
models, we obtain the BI scores for each layer entirely through the reproduction method. PG19 is a
long-document dataset, and the training set contains 28,602 training samples. Using all samples to
get the model’s BI scores would consume significant training resources, so we randomly selected 256
training samples from PG19 for calibration. Even with a small amount of data, the ShortGPT method
takes much longer to calculate BI scores than other methods.

"https://huggingface.co/meta-1lama/Llama-2-13b-hf
“https://huggingface.co/meta-1lama/Meta-Llama-3-8B
Phttps://huggingface.co/lmsys/vicuna-7b-v1.5
“https://huggingface.co/mistralai/Mistral-7B-v0.1
Phttps://huggingface.co/Qwen/Qwen2.5-7B
"®https://huggingface.co/Qwen/Quen3-4B-Base

23

https://github.com/WangFei-2019/CoMe
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/Qwen/Qwen3-4B-Base

When selecting MMLU data, MKA randomly samples five samples from 50 sub-tasks. In our imple-
mentation, we uniformly sample 250 samples from each sub-task. We reproduce the experimental
results for the LLaMA family using the original MKA code, while we obtain the sparse results
for other models using our reproduced code. The Qwen-2.5-7b model contains bias weights, and
fusing these weights would degrade the performance of the pruned model, so we do not fuse the bias
weights.

The calibration samples for the LaCo method are sourced from the open-source project code, and
we fully reproduce the process using the original code. To achieve the number of pruned layers
consistent with the settings in this paper, we make simple parameter adjustments to the LaCo method,
with the detailed parameter settings shown in Tab.[6} For other models, adjusting the LaCo code is
too complex, so we do not reproduce it.

The FuseGPT method is implemented using the original code. To compare different categories of
methods, we comment on the post-training code of FuseGPT for the pruning method comparison
experiment. In the pure pruning method comparison experiment, FuseGPT-MI+F means that we
mask the post-training code, while FuseGPT-MI implies that we additionally mask the fusion code.
Implementing this method on the LLaMA-2-13b model with an NVIDIA A100-40G GPU resulted in
a memory overflow, so we do not implement it.

In the layer pruning process of CoMe, we fuse two layers of the model per iteration, meaning that
we reduce one layer per iteration. When pruning models from the LLaMA family, Vicuna-7b and
Mistral-7b, the hyperparameter p is set to 1. For the Qwen2.5-7b model, p is set to 32. The Mistral-
7b, Qwen2.5-7b, and LLaMA-3-8b models have high knowledge density and less redundancy in
parameters, making them very sensitive to hyperparameter settings. To further mitigate performance
degradation caused by merging channels with different distributions, we set a minimum parameter
retention ratio p, meaning the proportion of parameters from the more critical layer cannot be less than
p during the fusion of two layers. The values of p for the Mistral-7b, Qwen2.5-7b, and LLaMA-3-8b
models are set to 0.97, 0.85, and 0.97, respectively.

Table 7: Experimental setting for post-training methods.

Method # Iterations # Epochs # Steps Batch size Token length
FuseGPT 10 20 128 8 2048
LLM-Streamline 1 5 938 32 2048
CoMe-mp 7 1 2000 32 512
CoMe-sp 1 1 10000 32 512

B.2 Implementation of Post-Training

Tab. [7]summarizes the post-training settings for all methods. Based on these settings, we quantify the
resource consumption of each method by calculating the total number of tokens required to train a
single layer, which we denote as Tj4y.,. This metric is computed as follows:

Tiayer = # Iterations x # Layers x # Epochs x # Steps x Batch size x Token length,)
where “# Layers” indicates the number of layers updated in each iteration.

The post-training process for the FuseGPT method is synchronized with the pruning process, utilizing
1,024 samples from the Wiki-2 dataset, in accordance with the settings of Pei et al. [27]. In each
iteration, the parameters of one layer are merged into seven adjacent layers. Pruning ten layers
requires ten iterations, with seven layers updated in each iteration. For FuseGPT, Tjqyer ~ 2.93B.

The LLM-Streamline trains a merged layer using 30,000 samples and employs five epochs, following
the settings of Chen et al. [5]]. For LLM-Streamline, Tjqyer ~ 0.315.

We carry out the post-training process of CoMe after completing the pruning process. After pruning
10 layers, the pruned model has seven layers corresponding to multiple layers of the original model.
Therefore, in CoMe-mp, there are seven training iterations requiring minimal training resources.
CoMe-sp trains seven layers in one training round, requiring more training resources. For optimization,
we utilize the AdamW optimizer with a weight decay coefficient of 1le — 2 and implement cosine
decay for learning rate scheduling. The CoMe-sp employs a fixed learning rate of 1le — 5. The

24

CoMe-mp adopts layer-specific decaying rates during multi-layer distillation, with learning rates
progressively decreasing from the shallow to the deep layers as follows: be — 4, 2.5e — 4, 1le — 4,
7.5e — b, be — 5, 2.5e — b, and le — 5 for LLaMA-2-7b; 5e — 4, 2.5e — 4, 5e — 5, 2.5be — 5, le — 5,
and 7.5e — 6 for Qwen-3-4b. For CoMe-mp, Tjgyer ~ 0.23B. For CoMe-sp, Tiqyer ~ 1.1585.

C Channel importance and Concatenation-based Merge

We use the channel importance for parameter division in the concatenation-based merge strategy;
thus, we need to analyze the channel importance calculation for different transformer parts. Ma et al.
[23] highlight that in transformer-based models, a certain correspondence exists in feature dimensions
during forward propagation due to residual connections. For instance, the positional correspondence
of output features from Norm, MHA, and FFN is fixed.

In the Norm part, we use the weights to scale the feature inputs. Xiong et al. [40] note that the
parameters of deep layer Norms need significant enlargement to stabilize training, which is closely
related to the distribution of input features. Our objective is to minimize changes in the output
features of each module; therefore, we average the Norm parts of adjacent layers to maintain stability,

}H Z§+m 7, where m + 1 denotes the number of merge layers.

asy =

m

The MHA module generates three feature vectors: Query, Key, and Value. These vectors are
concatenated and undergo matrix multiplication for cross-information fusion. Consequently, the
weights within the heads used to generate Query, Key, and Value are tightly coupled, making it
difficult to make finer divisions. Thus, we consider each head in MHA the basic unit for concatenation.
We ignore the coupling between heads to further simplify the calculation of channel importance.
Pruning a single head structure reduces the input dimension of the o_project weight (using the
transformer structure in LLaMA as an example), leading to changes in the MHA output. We take the
average channel importance of the reduced dimensions as the importance corresponding to each head
structure.

The FFN module usually contains three weight matrices: up_project, gat_project, and down_project.
By neglecting the coupling caused by activation functions, the information loss from channel weight
pruning in up_project and gat_project maps to a reduction in intermediate feature dimensions.
Therefore, we use the intermediate features and down_project to calculate channel importance.

D Posterior-based CoMe

When applying CoMe to different model architectures, it is often necessary to adjust the hyperparam-
eter p to control the parameter preservation ratio. However, the optimal ratio can vary significantly
across models, which reduces the convenience and usability of CoMe. Inspired by SLEB [34]
and LaCo [42], we propose an adaptive, posterior-based strategy for determining the parameter
preservation ratio within CoMe, referred to as Posterior-based CoMe (CoMe-P).

CoMe-P replaces the parameter preservation ratio calculation in the layer merging process of
CoMe (Eq. (3))) with a posterior-driven approach. Specifically, consider the case of merging two
adjacent layers in an iteration. Let the parameter preservation ratio of the lower-indexed layer be 7,
and that of the other layer be 1 — r. We define a candidate setforrasI' = {* | i = 0,1,2,...,n},
where n determines the granularity of the search. CoMe-P iteratively applies different preservation
ratios from I' to generate compressed models, evaluating each candidate model on a calibration
dataset using the PPL metric. The compressed model yielding the lowest PPL is selected for the final
merging. The detailed algorithm of CoMe-P is presented in Alg.[2]

We set n = 20, with all other parameters kept consistent with the default settings of CoMe. Tabs. [§]
to [I0] present comparisons between CoMe-P and other methods across different models. CoMe-P
achieves performance comparable to CoMe, and yields higher average accuracy and lower PPL
on Qwen3-4b, Vicuna-7b, and Mistral-7B, demonstrating the effectiveness of the posterior-based
approach. However, since CoMe-P is a posterior search method, the search space grows exponentially
when merging more than two layers in each iteration, resulting in exponentially increased resource
consumption.

25

E Analysis of CoMe-mp and CoMe-sp

To evaluate the effectiveness of CoMe-mp and
CoMe-sp during the post-training process, we
examine the cross-entropy loss between the stu-
dent and teacher models, as shown in Fig. @ '

When using CoMe-sp, the cross-entropy loss L\K
converges rapidly and stabilizes within the first

4000 steps. This phenomenon indicates an effec- 2o
tive alignment of feature representations, as the ¢ N\NM
hierarchical distillation strategy facilitates rapid =~ °=
convergence. In contrast, CoMe-mp shows a
more linear convergence pattern, suggesting that
aligning features layer by layer significantly en-

hances the student model’s performance. How- e T T
ever, because shallow features require process-
ing by deeper layers, training one layer at a time
results in slower convergence.

Figure 12: Cross Entropy loss curves for using
CoMe-mp and CoMe-sp during post-training. The
loss curves for multiple subprocesses of CoMe-mp
Subsection details the number of tokens are concatenated in the order of training.

used during the post-training phase. Although

CoMe-sp uses fewer tokens, it requires updating

seven times more parameters per step than CoMe-mp, necessitating greater memory resources. The
overhead of memory resources is due to CoMe-sp’s simultaneous optimization of multiple layers,
which, while resource-intensive, allows for more efficient global information updates compared to
the sequential approach of CoMe-mp.

F Sum-based Merge vs. Concatenation-based Merge?

The role of Weight Sum-based Merge in both pruning and post-training processes is LESS.
Tab. [§]and Tab. [T|provide the effects of using parameter fusion (Fusion-MI+F) and only layer pruning
without parameter fusion (Fusion-MI) in the FuseGPT method when pruning the LLaMA-2-7b
model. In both pruning and post-training, the average accuracy score differences do not exceed
1.2 points, and PPL score differences do not exceed 0.5 points. Moreover, in pruning experiments,
the performance of parameter fusion methods is worse when 20% of the parameters are pruned. It
indicates that additive inter-layer parameter fusion is ineffective. In all experiments, Fusion-MI+F
does not significantly improve pruning performance compared to Fusion-MI.

The Weight Sum-based Merge does not exhibit significant differences from the DLP methods,
but the Concatenation-based Merge can improve the performance of DLP methods. In Tab.
after removing parameter fusion, the MKA method exhibits only a slight decrease in average accuracy
scores and a slight increase in PPL, which is almost negligible. With the removal of parameter fusion,
LaCo shows a slight rise in average scores and a significant decrease in PPL, indicating that the
parameter fusion has a negative impact. For FuseGPT, removing parameter fusion results in a notable
reduction on some datasets, such as HellaS and MMLU, a slight decrease in PPL on the C4 dataset,
and a slight increase on the Wiki-2 dataset. It is difficult to conclude that parameter fusion further
enhances model performance beyond layer pruning, but previous analyses suggest that FuseGPT has
a minimal effect. The Weight Sum-based Merge method does not significantly differ from Direct
layer pruning methods. However, when CoMe removes parameter fusion, it shows a noticeable
performance decline across all test benchmarks, except for the MMLU dataset, with significant
increases in PPL on the Wiki-2 and C4 datasets. It strongly indicates that Concatenation-based Merge
can further enhance model performance based on DLP.

Concatenated-based Merge is Effective, but Weight Sum-based Merge is NOT. In Figs. [3] [[T} [[3]
and we apply both a4 + (1 — a)) B (WSLP) and Concatenation-based Merge to blend parameters
of two layers in varying proportions. The a-Add method, whether merging the Self-Attention
structure, the FEN structure, or the entire model layer, consistently results in a significantly increased
PPL on the Wiki-2 and C4 datasets. It shows that the Weight Sum-based Merge method harms
model performance, degrading performance as the fusion ratio approaches equality. Conversely, the

26

—e— WSLP 70
100 —e— WSLP-FFN —+— CoMe
WSLP-MHA 68 —e— CoMe-FFN
=-— 120 . CoMe-MHA
3 20 3 1520
= S o4
> ©
3 ® _.;'62
E. ()
5 K
o %50
70 o
56
60
54
ST P R S P I
3 RN
[SAEEN AN SR N RN RN AR RN PN SN SN PN P PN PN
L19: L20 (SN NN SN RN R

L19: L20
fvlegi;ilet ;;;ré\;[;tri%i zgﬁif;';rll?;zasogﬁgigfﬁé Figure 14: Merge adjacent layers with CoMe at
. o0, ’ different ratios, using the C4 calibration dataset.
C4 calibration dataset.

Concatenation-based Merge method can reduce PPL at specific fusion ratios, preserving the model’s
language modeling ability.

G Detailed Experimental Results

In this section, we present comprehensive experimental data. The specific outcomes corresponding

to Fig. [| are detailed in Tabs. [§]to[T0] Additionally, the results associated with Figs. [7] to [T0] are
thoroughly documented in Tabs. [T1]to[I4] respectively.

27

Table 8: The Layer Pruning Experiment on the LLaMA Family.

- . Benchmarkt PPL|
Model Sparsity Methods oo ARC-e HelllS OBQA PIQA WinoG MMLU(5) AV&T RPT c4 Wiki-2
Dense 4633 7454 7599 4420 7905 6906 4560 6211 10000 | 727 547
Mag+ 3797 6620 6765 3980 7644 5983 2679 5353 8456 921 7.01
Taylor+ 4206 6907 7300 4200 7568 6819 4222 5880 94.51 1021 7.74
ShortGPT 4300 6877 7161 4040 7644 68.67 4556 5921 9525 9.33 743
SLEB 3857 6582 7069 3980 7726 6346 3383 5563 8835 871 6.47
9.0% FuseGPT-MI 39.68 6886 70.11 4040 7748 6188 3198 5577 88.49 8.73 6.55
FuseGPT-MI4F 3951 6557 7103 4080 7737 6290 3213 5562 8835 8.73 647
MKA 4454 6498 6709 3780 7280 6243 4564 5647 9139 4450 2541
LaCo 4343 6860 7178 4060 7639 6851 4539 5924 9535 9.38 7.46
CoMe 4411 7096 7385 4200 7704 68.19 4604 6031 97.11 | 858 6.23
o
& Mag+ 2432 4411 4023 3100 6572 5312 2458 4044 64.10 3736 49.17
g Taylor+ 3600 5652 6115 3780 6904 6511 4158 5247 8465 2391 18.77
< ShortGPT 3626 5585 6262 3720 7040 6630 39.85 52.64 84.60 2331 18.45
= SLEB 3302 5652 6251 3680 7307 5896 2626 49.59 7829 1233 9.15
S 210% FuseGPTMI 3464 5825 6410 3700 73.67 5714 2608 50.13 79.16 1222 9.46
FuseGPTMI:E 3396 5669 6128 3580 7378 5627 2476 4893 77.16 1212 9.14
MKA 3746 5492 5361 3740 6627 5888 4296 5021 8186 | 38857 24736
LaCo 2679 4987 5269 3380 7155 5588 2477 4505 7090 1862 1585
CoMe 3959 6410 6868 3980 7242 6725 3282 5495 8755 | 1302 9.55
Mag+ 2398 3931 3577 2720 6175 5170 2296 3752 59.49 5239 5973
Taylor+ 3268 4604 5158 3160 6387 6267 4289 4733 1765 6308 5096
ShortGPT 3191 4739 4596 3480 6328 6148 3866 4621 75.07 5492 4956
SLEB 3080 5181 5407 3280 6844 5404 2510 4531 7162 1743 1384
300% FuseGPT-MI 3020 5059 5298 33.60 6937 5454 2517 4521 7153 17.60 14.94
FuseGPT-MI4F 3020 50.13 5508 3480 6850 5541 2701 4588 7282 1780 14.34
MKA 3404 4958 4812 3500 6300 5912 3564 4636 7514 | 81004 45534
LaCo 3097 4979 5014 3500 6834 5391 2484 4471 7111 3918 42.67
CoMe 3524 5446 5656 3540 6888 6117 2550 4817 7647 19.93 16.53
CoMe-P 3464 5455 5835 3540 6795 6109 2689 4841 76.89 1887 1474
Dense 4915 7753 7939 4520 8052 7214 5516 6558 10000 | 673 489
Mag+ 3558 6284 5988 3620 7334 5935 2576 5042 7557 1747 1538
Taylor+ 4590 7071 7652 4220 7862 7230 4316 6134 9292 9.57 747
ShortGPT 4761 7285 7662 4500 7954 7174 5454 6399 9771 8.05 5.78
SLEB 4249 7231 7411 4400 7927 6551 4264 6005 91.00 7.81 5.64
9.8% FuseGPT-MI 4096 69.02 7448 4400 79.11 6882 4252 5984 90.61 783 5.65
MKA 4701 69.07 6942 4500 7481 6535 5402 6067 9331 3444 2988
LaCo 4650 7407 7686 4420 7894 7245 5481 6398 97.51 8.37 6.05
CoMe 4753 7525 7823 4320 7949 7198 5534 6443 9810 | 761 5.36
2 Mag+ 2312 4642 3781 2980 6583 5091 2365 3965 5938 | 12508 22840
il Taylor+ 4326 6566 7209 4080 7530 7048 4724 5926 90.09 1337 1212
a9 ShortGPT 4394 6734 7239 4100 7524 6969 5383 6049 9225 11.36 8.30
g SLEB 3788 6465 7059 4240 7682 6464 3232 5561 8383 9.47 6.85
% 195% FuseGPTMI 3801 6372 7097 4060 7693 6132 4257 5729 8666 9.69 7.04
= MKA 4061 5960 5718 4140 6893 6290 53.04 5481 8458 | 21941 206.12
LaCo 3481 5497 6467 3920 7432 6361 2351 5073 76.14 1304 1086
CoMe 4514 7252 7587 4280 7650 7080 5035 6200 9430 | 917 6.29
Mag+ 2312 3316 3027 2560 5615 5217 2537 3512 5323 | 31735 593.77
Taylor+ 3891 5497 6224 3720 7073 6961 4820 5455 8321 2396 2838
ShortGPT 3575 5282 5794 3820 6991 6906 4778 5307 81.08 2937 3961
SLEB 3404 5859 6338 3860 7535 6235 2675 5129 7694 11.64 8.69
202% FuseGPTMI 3729 5690 6480 3660 7443 6504 3078 5226 7861 12.65 9.46
MKA 3695 5307 4867 3600 6556 6046 5072 5020 7739 | 75976 6328
LaCo 3319 5143 5488 3900 6839 6077 2455 4746 7185 2743 2381
CoMe 4249 6705 6987 4260 7334 6898 SL17 5936 90.67 12.64 8.85
CoMe-P 4343 6696 6938 4020 7350 6977 5181 5929 90.43 12.32 8.56
Dense 5333 7774 7907 4500 8079 7293 6529 6775 10000 | 945 6.14
Mag+ 3473 6402 4937 3600 7416 5478 2535 4834 70.80 2593 2044
Taylor+ 4770 7092 6681 4020 7601 72690 3057 57.84 85.00 2058 14.88
ShortGPT 4744 6999 7363 3980 7628 7143 63.67 6318 92.90 2008 1507
029, SLEB 4130 6747 6905 3900 7753 6433 3003 5553 8LI8 13.68 8.85
2% FuseGPTMI 4283 7029 7079 3880 77.80 69.14 6520 6212 9105 13.65 8.93
FuseGPT-MI4F 40.10 6726 6847 3820 7666 6243 2997 5473 7993 1372 8.95
MKA 471 6343 6275 4120 7296 6409 6368 5897 8742 | 30703 191.80
- CoMe 4770 7281 7228 4060 7650 7419 6365 6396 9408 | 1484 9.52
8
e Mag+ 2577 4604 4340 3040 6529 5320 25.16 4132 60.32 324 4083
< Taylor+ 3191 4360 3550 3220 60.17 58.80 3308 4218 62.58 | 154977 129494
E ShortGPT 441 5652 6465 3340 7089 7L11 6173 5724 83.99 6381 57.84
3 L4 SLEB 3575 5842 6229 3480 7383 5785 2743 5005 72.99 1867 1338
4% FuseGPTMI 3456 5981 5903 3400 7437 5667 5043 5270 7698 1938 13.44
FuseGPTMI4F 3370 5391 6117 3580 7274 5793 2642 4881 7133 19.03 13.42
MKA 4258 6010 5590 4040 6888 6204 5927 5560 82.66 | 116837 1004.27
CoMe 4044 6423 6552 3560 7350 7096 5696 5817 8512 | 2310 17.15
Mag+ 2218 3422 3328 2700 5773 5249 2419 3587 5250 | 24247 25476
Taylor+ 2799 3371 3044 2760 5773 5217 4706 3953 58.67 | 4421420 50035.02
ShortGPT 3020 3813 3289 3020 5909 5675 4188 4131 6135 | 702178 15660.69
2069 SLEB 2773 49.12 4838 2780 6697 5146 2582 4247 61.58 3080 2827
6% FuseGPTMI 2901 4823 4746 2920 6665 S414 4095 4509 65.82 3793 3070
FuseGPT-MI4F 2901 4251 4936 3000 6665 5612 2606 4282 6249 4182 3334
MKA 3814 4975 4719 3440 6284 6227 5903 5052 7502 | 744781 5460.38
CoMe 3370 50.67 5042 3120 67.08 6062 3099 4638 6786 | 4885 4356

28

Table 9: The Layer Pruning Experiment on the Vicuna-7b and Mistral-7b.

. Benchmark? PPL|
Model - Sparsity Methods ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU () AVl RPT c4 Wiki-2
Dense 4590 7130 7378 4500 78.02 69.46 4989 6191 100.00 | 9.19 6.78
Mag+ 3840 6435 6604 4000 7421 59.27 3311 5363 8559 11.59 8.54
Taylor+ 4283 67.17 7053 4120 7497 68.11 4685 5881 94.67 11.96 9.58
ShortGPT 4334 6768 7086 4200 75.14 69.85 4999 59.84 96.54 NaN 9.13
00% SLEB 4061 6591 6806 3940 7595 6204 4104 5614 89.95 10.48 7.65
P% " FuseGPT-MI 4130 7020 6976 39.60 7715 64.40 4141 5769 9223 10.48 7.69
FuseGPT-MI+F 4096 66.33 68.84 3940 7579 6346 4498 57.11 9168 10.74 7.83
MKA 4198 6494 6655 3840 7144 6551 5044 5704 9215 7233 43.02
CoMe 4386 6953 7277 4280 7546 69.06 4957 6044 9747 | 1048 7.52
g Mag+ 2534 4491 4064 3120 6458 5233 27.17 4088 6503 5221 68.98
g Taylor+ 3865 5838 6071 3580 69.10 6590 4558 5345 86.10 21.09 2045
3 ShortGPT 3874 5909 6238 3740 6834 66.06 4533 5391 8693 27.14 21.87
” ,ion SLEB 3626 6183 61.66 3580 7372 59.59 2831 5102 80.84 13.88 10.52
O% FuseGPT-MI 3857 6258 63.03 3740 7323 59.75 3237 5242 83.59 13.71 10.55
FuseGPT-MI+F 36.69 5972 6128 3500 7307 5935 29.19 5061 8031 14.78 10.73
MKA 3985 5417 5334 3800 6697 6101 50.61 5199 84.95 54072 335.40
CoMe 4096 6452 6649 4240 7247 68.11 3543 5577 8943 | 1666 11.73
Mag+ 2415 4078 3613 2760 6230 5083 2506 38.12 6048 72.72 9279
Taylor+ 3396 4655 49.17 3160 60.88 6212 3213 4520 7257 6201 18382
ShortGPT 3301 4840 4895 3460 6425 62.90 41.04 4761 7692 61.91 59.84
300% SLEB 3200 5610 5301 3300 7024 56.20 2438 4642 7334 NaN NaN
O% " FuseGPT-MI 3362 5745 5356 3660 68.88 53.75 2525 47.02 7486 18.61 15.68
FuseGPT-MI+F 3336 53.11 5302 3400 6828 55.09 2507 4599 73.09 NaN 19.85
MKA 3404 4815 47.02 3580 6197 6117 4799 4802 7838 986.16 660.93
CoMe 3635 58.84 5648 4240 68.66 6298 2533 50.15 80.28 29.55 18.69
CoMe-P 3456 5737 5642 3680 6953 6251 2846 4938 7859 22.32 15.97
Dense 5401 7950 8106 4400 8205 74.03 62.52 6817 100.00 | 8.38 5.25
Mag+ 3268 6082 5567 3620 7252 5888 2715 49.13 7133 20.33 13.59
Taylor+ 4488 7083 7594 4060 7971 69.69 5297 6209 90.59 10.13 6.52
ShortGPT 4838 7340 7675 4100 7998 7277 6226 6493 95.02 1025 7.14
00% SLEB 4309 7109 7453 4140 79.16 64.64 4181 5939 8656 9.76 6.21
D% PuseGPT-MI 4539 7210 7488 4160 8041 64.80 4141 6008 87.63 9.80 6.25
FuseGPT-MI+F 4249 7075 7349 4100 79.76 66.46 3962 59.08 8598 9.86 6.31
MKA 4343 6103 5331 4120 6741 6275 58.10 5532 8235 27434 20348
CoMe 4855 7437 7693 4100 79.60 72.61 6152 6494 9500 | 10.04 6.52
g Mag+ 2312 3847 3344 2560 5985 5209 2353 3659 53.08 876.24 1409.19
E Taylor+ 3524 5446 6430 3380 7372 6164 2505 4974 7187 19.68 1534
Z ShortGPT 4044 5766 6453 3280 7214 67.88 59.98 5649 8244 3321 24.01
= 115 SLEB 3695 6136 6481 39.00 7524 61.48 2883 5252 7644 13.55 9.25
1% FuseGPT-MI 3507 5888 6571 3700 75.68 5596 2498 5047 73.13 14.16 10.00
FuseGPT-MI4+F 3456 57.20 6594 3660 7476 5730 2568 5029 7287 2173 1529
MKA 3584 4247 4042 3380 5849 57.14 5398 4602 6875 | 36779.48 30245.43
CoMe 40.61 6380 67.54 3620 7421 67.64 5350 57.64 8406 | 1433 10.01
Mag+ 2526 3207 3074 2820 5408 5028 2503 3509 5186 | 25379 288.66
Taylor+ 2901 3573 4464 3220 60.94 5462 2470 4026 59.21 11223 121.24
ShortGPT 3200 2971 3356 3160 57.51 5691 2272 3772 5616 | 76027 881.51
3019 SLEB 3080 47.69 57.00 3420 6844 57.22 2510 4578 66.56 21.19 16.46
% FuseGPT-MI 3225 5168 5623 3380 7078 5296 2592 4623 67.17 8231 4795
FuseGPT-MI+F 28.58 46.68 5600 3200 69.04 5320 2375 4418 6392 20.62 1571
MKA 3234 3590 3246 3080 5495 5470 2570 3812 5672 | 33065.64 37735.00
CoMe 3148 5185 5581 3100 6877 5856 2747 4642 67.10 2293 1832
CoMe-P 3345 59.05 5832 3100 7035 59.69 28.14 4857 70.00 19.19 14.53

29

Table 10: The Layer Pruning Experiment on the Qwen-2.5-7b and Qwen-3-4b.

— Benchmark PPL|

Model = Sparsity Methods ,\po o ARC-e HellaS OBQA PIQA WinoG MMLU(5) V&I RPT ‘ c4 Wiki-2
Dense SL11 7736 7895 4720 7965 7301 7416 6878 10000 | 1188 6.85
Mag+ 4300 6848 6244 3840 7514 6054 4964 5681 8247 1573 9.23
Taylor+ 4770 7184 6762 3700 7301 6701 6590 6144 88.93 1696 1116
ShortGPT 4650 7243 7227 4400 7900 6488 5588 6215 90.42 13.64 8.13
0a SLEB 4659 7243 7227 4400 7900 6488 5588 6215 90.42 13.64 8.13
2% FuseGPTMI 4369 6726 7290 4400 7889 6290 6365 6190 89.86 14.42 878
MKA 3464 4739 5155 3540 6415 5833 4805 4863 7082 | 2538947 5612631
CoMe 4787 7180 7212 4420 7922 6212 5485 6174 90.00 | 1377 8.17
o Mag+ 2035 5152 5035 3340 6790 5185 2819 4465 64.69 29.12 1690
- Taylor+ 3302 4512 4530 3200 6273 5588 4873 4611 67.02 7243 102.48
o ShortGPT 3498 6250 6041 3740 7394 5438 2787 5021 7284 17.98 1137
5 4 SLEB 3498 6250 6041 3740 7394 5438 2787 5021 7284 17.98 1137
& 4% FuseGPTMI 3387 5800 6079 3940 7345 5596 2648 4971 7233 2385 17.16
MKA 2782 2520 2734 2820 5082 5201 2785 3419 5058 | 209523400 2573306.50
CoMe 3882 6557 6038 4000 7361 5507 3300 5238 7636 | 24.04 1381
Mag+ 2551 4752 3940 3120 6257 4854 2601 4011 5821 58.89 36.02
Taylor+ 2585 3590 3157 2860 5876 5130 2599 3685 538l 32933 4297
ShortGPT 3055 5253 4796 3200 6676 5367 2532 441l 63.96 3287 2751
2065 SLEB 2730 5257 4826 3200 6844 5178 2666 4386 6330 2633 17.18
6% FuseGPTMI 2602 4381 4321 2880 6610 5343 2594 4104 5921 5532 51.92
MKA 2491 2525 2629 2920 5071 4964 2421 3289 48.69 | 14455309.00 17641898.00
CoMe 3387 5354 4953 3400 6872 5091 2678 4534 6605 | 3437 31.09
Dense 5154 7643 7370 4120 7780 7105 730l 6639 10000 | 1331 7.90
Mag+ 4309 6801 6431 3880 7579 5959 5340 5757 8692 1640 1029
Taylor+ 4317 6317 6515 3440 7165 6811 7055 5946 88.99 21.55 14.88
ShortGPT 4258 5060 6492 3380 7Ll 6693 7020 5845 87.50 23.08 15.88
SLEB 4343 6709 6337 3900 7530 6038 4883 5677 8591 15.83 9.69
loos FuseGPTMI 4863 7357 6554 3960 7579 6235 5563 606 9101 1603 9.43
FuseGPTMI{F 4838 7353 6559 3880 7552 6196 5555 5990 9052 1603 944
MKA 4411 6313 5344 3620 6719 5967 7LD 5642 8520 49726 525.95
CoMe $17 6987 648 3500 7416 6425 6134 5895 8828 | 1727 1056
Mag+ 3549 6170 5605 3700 7242 5454 2498 4888 7422 2416 1660
Taylor+ 3055 4200 4763 2040 6382 5927 2360 4234 64.02 81.53 77.02
ShortGPT 3635 4512 5210 3100 6503 5975 38A1 4679 7079 96.83 130,50
SLEB 3865 6448 5604 37.80 7084 5785 3082 5093 7741 21.69 1391
o s01q FuseGPEMI 3669 5985 5641 3780 7231 5438 3170 4988 7581 2077 1327
J FuseGPTMIAF 3677 5989 5640 3760 7231 5485 3165 4992 7586 2077 13.27
< MKA 3780 5295 4690 3340 6523 6125 7143 5271 79.32 588.13 813.38
g CoMe 3319 5602 5529 3040 6855 5967 5510 5117 7630 | 30.03 2075
Mag+ 2756 4545 4260 3360 6518 5099 2523 4152 6320 56.14 47.50
Taylor+ 2858 3123 3273 3060 5490 5020 2324 3593 5544 386142 778182
ShortGPT 3217 3981 4573 3140 6246 5328 2775 4180 63.72 41705 51382
SLEB 3097 5332 4642 3100 6567 5383 2716 4405 6650 39.60 2811
FuseGPTMI 30.63 5547 4590 3000 6561 5280 2733 4396 66.17 33.53 2349
30.1% FuseGPTMIAF 3029 5564 4599 3040 6583 5225 2738 4397 6620 352 2348
MKA 3208 3847 4095 30.60 6153 60.14 2343 4103 6261 212339 3208.73
CoMe W67 4710 4395 2060 6300 5146 3267 4235 6384 56.13 37.14
CoMe-P 2756 4773 4341 3200 6398 5406 2935 4258 6443 40,83 2818

Table 11: The detail experiment result of Fig. m Effect of p in heuristic merge ratio.

Benchmark? PPL|

P ARC-c ARC-e HellaS OBQA PIQA WinoG MMLU(5) V& RPT 1 0™ Wikio
| 3524 5446 5656 3540 6888 6117 2550 48.17 7647 | 1993 16.53
2 3575 5484 5627 3540 6893 6077 2530 4818 7651 | 2070 16.57
4 3498 5476 5786 3640 6779 5975 2422 4797 7612 | 1987 17.40
8 3422 5417 5641 3660 68.12 5848 2647 4778 7607 | 2094 19.19
16 3208 5362 5607 3360 6834 6062 2681 4731 7486 | 2030 17.82
3 3089 5278 5587 3340 6877 5943 2693 4687 7410 | 2143 1864
64 3234 5328 5631 3460 6795 5991 2691 4733 7506 | 21.69 1801
128 3225 5248 5651 3320 6931 5738 2747 4694 7436 | 2329 18.64
256 3200 5080 5599 3480 6774 6022 2716 4696 7458 | 23.97 19.72
512 3166 4933 5579 3320 6779 5904 2682 4623 7330 | 25.03 2097
inf 3131 4907 5569 3280 6801 6030 2663 4626 7324 | 2550 21.21

30

Table 12: The detail experiment result of Fig. m Effect of calibration data scale.

Benchmark? PPL|
NUm ARC-c ARC-e HelllS OBQA PIQA WinoG MMLU) A& RPT |y wikio
2 33.87 52.40 56.42 36.60 66.97 59.19 25.27 47.25 75.19 | 2935 43.70
4 35.58 54.25 56.45 37.00 68.23 59.59 27.05 48.31 77.07 | 23.45 3142
8 33.28 53.16 54.85 37.00 67.63 59.98 26.95 47.55 75.79 | 21.08 21.01
16 35.41 55.93 56.83 36.20 6697 60.14 26.30 48.25 76.80 | 20.26 16.99
32 33.36 53.49 55.64 36.00 66.54 61.33 27.38 47.68 75.92 | 22.67 17.26
64 33.19 53.03 56.58 35.80 6746 60.46 26.87 47.63 75.72 | 20.61 16.11
128 34.56 53.96 56.37 36.80 6844 61.56 25.22 48.13 76.49 | 20.88 17.03
256 35.24 54.46 56.56 3540 68.88 61.17 25.50 48.17 76.47 | 19.93 16.53
512 33.79 54.04 56.79 36.60 67.52 60.14 27.23 48.02 7645 | 19.60 16.18
Table 13: The detail experiment result of Fig. [gl Impact of merge step granularity.
Benchmark PPL|
™ ARCc ARC-c HellaS OBQA PIQA WinoG MMLU(5) V&I RPT 1 i “wikio
2 35.24 54.46 56.56 3540 68.88 61.17 25.50 48.17 76.47 19.93 16.53
3 34.30 48.48 54.74 33.60 65.07 63.69 37.69 48.22 77.76 29.56 45.18
4 32.59 48.19 46.94 34.80 65.29 63.22 24.78 45.12 72.00 53.32 109.74
5 32.34 42.21 38.03 3400 5930 57.70 28.12 41.67 67.66 91.96 668.17
6 30.63 43.10 40.36 35.00 60.39 58.64 22.57 41.53 66.72 | 128.37 551.57
7 32.00 41.25 37.14 3340 5822 59.51 29.73 41.61 67.70 97.65 268.47
8 33.11 47.22 40.69 35.40 63.49 58.41 28.76 43.87 70.92 96.44 276.09
9 29.69 43.39 41.67 33.80 63.60 57.46 25.56 42.17 67.62 65.33 193.89
10 30.29 43.18 41.13 33.60 62.89 57.06 28.38 4236 68.27 78.85 303.17
11 30.46 41.58 40.24 3420 61.37 59.91 24.71 41.78 67.20 | 104.82 470.91
Table 14: The detail experiment result of Fig. [§l Impact of calibration datasets.
Benchmark? PPL]
Dataset \pcc ARC-e HellaS OBQA PIQA WinoG MMLU(5) V& RPT 1 oy Wikia
wiki2 35.24 54.46 56.56 3540 68.88 61.17 25.50 48.17 7647 | 1993 16.53
C4 34.30 52.95 57.25 35.60 69.80 62.04 26.39 48.33 76.71 | 19.32 21.05
PG19 (2) 34.39 50.21 53.74 34.00 67.25 60.69 27.90 46.88 74.77 | 21.28 21.15
MMLU 33.70 50.80 54.13 33.20 66.00 63.77 27.20 46.97 74.67 | 28.12 35.79
Aplaca 34.39 51.77 53.54 35.00 67.25 63.77 29.87 4794 76.61 | 25.65 30.57

31

Algorithm 1 Progressive Concatenation-based Layer Merging Strategy (CoMe)

Input: calibration dataset D, original model M, the number of layers skipped in SBI m, skewness
exponent p, target layer number L, minimum retention ratio p € (0, 1)
Output: Pruned model M’, layer mapping P = [{a1,b1}, ..., {an,bn}]
1: Initialize P < 0, M’ < M
2: while NUMLAYERS(M') > L do
3: m’ < min(m, NUMLAYERS(M') — L)

4: {S®} < COMPUTECHANNELSENSITIVITY(M’, D)

5. {BI;} + CoMPUTEBISCORES({H("})

6: {SBIim'} < COMPUTESBISCORES({HW} m/)

7: (I*,1* +m') + argmin SBI.; 4 m

8: {r+} <~ ADJUSTRETENTIONRATIOS({ BI; i;{"’ Dy P)

9: W) . CONCATENATIONBASEDLAYERMERGE({W®), S(®) r }l4m)

10: Replace layers [I*, ..., 1* + m/] with W(mere®) in pf’
11: P« PU[{l* +m/, new layer index in M'}]

12: end while

13: return M’, P

14:

15: function COMPUTECHANNELSENSITIVITY(M', D)
16: for each layer [€ M’ do

17: H® < FORWARDPASS(M’, D, 1)
8 SO (Eplll X, o} > Ea.)
19: end for

20: return {SW}F

21: end function

22: function COMPUTEBISCORES({H(")})
23: for [= 1 to NUMLAYERS(M') do

1—1)T l
24: BI, «1—FEp [% > Eq. 1;
25: end for

26: return { BI;}

27: end function

28: function COMPUTESBISCORES({H(D}, m/)
29: for [= 1 to NUMLAYERS(M') —m’ do

1—1)Tgp(l4+m/
30: SBlij4m < 1—Ep HHI(_E(*U\;2\|I:I(<l+7”'))|\2 > Eq. 1'
31: end for
32: return {SBI;.; , }
33: end function L,
34: function ADJUSTRETENTIONRATIOS({ BI; f&:*l',f” , D, P)
35 < BIP)S, BIV fort € [I*,1* +m/] > Eq.
36: if maxr; < p then
37: Targ max BI; < P
38: t* < argmax BI;
39: PO D
40: < (1= p)ry/ S fort # t*
41: end if
42: return {r,} normalizedto > 7, =1

43: end function L,
44: function CONCATENATIONBASEDLAYERMERGE({W (), () }17Hmy
45: for each layer ¢t € [I*,1* +m/] do

46: /Ct — 1 X |S(t)|

47: 7T: + Top-k; indices sorted by S*)

48: end for et

49: Wmee o @@l o 7] > Eq. ()
50: return WV (meree)

51: end function

32

Algorithm 2 Progressive Posterior-based CoMe (CoMe-P)

Input: Calibration dataset D, original model M, target layers number L, search granularity n
Output: Pruned model M’, layer mapping P = [{a1,b1}, ..., {an,bn}]

1: Initialize P < 0, M’ < M, ‘

2: Generate parameter preservation ratio candidate set I' = { [i = 0,1,2,...,n}

3: while NUMLAYERS(M') > L do

A A

9:
10:
11:
12:
13:

{S®} < COMPUTECHANNELSENSITIVITY (M, D)

{SBI;.;;1} + CoMPUTESBISCORES({H(}, 1)

(I*,1* + 1) + argmin SBI};;+1

for each rin I" do
W (meree) « CONCATENATIONBASEDLAYERMERGE({W(®), S®) 1} +1)
M" « Replace layers [I*, [* + 1] with W™ere®) jn)/’
ppl — PPL(M")

end for .

M <+ The M has the lower ppl

P < P U[{l* + 1,new layer index in M'}]

14: end while
15: return M’, P

Algorithm 3 CoMe Single-Process Post-training (CoMe-sp)

Input: training data Dy, layer mapping P = [{a1, b1}, ..., {an, by }], teacher model M, student

model M’, learning rate 7, optimizer {2, batch size B

Output: Optimized student model M’
1: Initialize ©Q + ADAM({0y,|{ai, b;} € P},n) > Optimize merged layers only
2: for epoch = 1 to Egopa do

3: for B < BATCHLOADER (Dyyin, B) do

4: {H®@WN « GETACTIVATIONS(M, z, {a;|{a;, b;} € P})

5 {HEPIN -« GETACTIVATIONS (M, , {b;|{ai, b;} € P})

6: return {H(®e) H0)N

7. Etotal ~—0

8: fori =1to N do

9 L) + £ Dx(o(HEw) || o(H))) > Eq. (6)
10: Liotal < Liotal + ‘C]((Z]z > Eq. ‘a'
11: end for

12: Q.zero_grad()

13: Liotal BACKWARD()

14: Q.step()

15: end for

16: end for

33

Algorithm 4 CoME Multi-Process Post-training (CoMe-mp)

Input: training data Dy, layer mapping P = [{a1, b1}, ..., {an, by }], teacher model M, student

model M, learning rate {7y, ..., 7p| }, optimizer £, batch size B
1: for k =1to |P|do > Layerwise progression
2 {ak,bk} %'P[k‘]
3 Qp < ADAM(0b,,, i = M)
4 for epoch = 1 to Ejy, do
5: for B <~ BATCHLOADER (Diin, B) do
6: H®:%) GETSINGLEACTIVATION(M, z, ay,)
7 H(:%) + FORWARDTOLAYER(M', z, by,)
8 Ly1 + Dxp(o(HE®)) || o (Hbk)Y) > Eq. (6)

9:

Qp.zero_grad()
10: Lx1..BACKWARD()
11: Qp..step()
12: end for

13: end for

14: end for
15: return M’

34

	Introduction
	Related Work
	Rethinking the Layer-based Structured Pruning
	Methodology
	Channel Sensitivity Metric
	Progressive Concatenation-based Layer Merge
	Post-Training via Hierarchical Distillation Strategy

	Experiments
	Experimental Setting
	Main Result
	Ablation Study
	Weight Sum-Based Merge vs. Concatenation-Based Merge

	Conclusion
	The Details of Comparison Methods
	The Details of Experiment Setting
	Implementation of Pruning Methods
	Implementation of Post-Training

	Channel importance and Concatenation-based Merge
	Posterior-based CoMe
	Analysis of CoMe-mp and CoMe-sp
	Sum-based Merge vs. Concatenation-based Merge?
	Detailed Experimental Results

