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ABSTRACT

Reinforcement learning has been used to learn to solve various routing problems.
however, most of the algorithm is restricted to finding an optimal routing strategy
for only a single vehicle. In addition, the trained policy under a specific target rout-
ing problem is not able to solve different types of routing problems with different
objectives and constraints. This paper proposes an reinforcement learning approach
to solve the min-max capacitated multi vehicle routing problem (mCVRP), the
problem seeks to minimize the total completion time for multiple vehicles whose
one-time traveling distance is constrained by their fuel levels to serve the geograph-
ically distributed customer nodes. The method represents the relationships among
vehicles, customers, and fuel stations using relationship-specific graphs to consider
their topological relationships and employ graph neural network (GNN) to extract
the graph’s embedding to be used to make a routing action. We train the proposed
model using the random mCVRP instance with different numbers of vehicles,
customers, and refueling stations. We then validate that the trained policy solve not
only new mCVRP problems with different complexity (weak transferability but
also different routing problems (CVRP, mTSP, TSP) with different objectives and
constraints (storing transferability).

1 INTRODUCTION

The Vehicle Routing Problem (VRP), a well-known NP-hard problem, has been enormously studied
since it appeared by |Dantzig & Ramser| (1959). There have been numerous attempts to compute
the exact (optimal) or approximate solutions for various types of vehicle routing problems by using
mixed integer linear programming (MILP), which uses mostly a branch-and-price algorithm appeared
in|Desrochers et al.|(1992)) or a column generation method (Chabrier, 2006), or heuristics ((Cordeau
et al.,2002; (Clarke & Wright, [1964; |Gillett & Miller, |1974; |Gendreau et al.| [1994)). However, these
approaches typically require huge computational time to find the near optimum solution. For more
information for VRP, see good survey papers (Cordeau et al., [ 2002; Toth & Vigo, [2002).

There have been attempts to solve such vehicle routing problems using learning based approaches.
These approaches can be categorized into supervised-learning based approaches and reinforcement-
learning based approaches (Bengio et al.,|2020); supervised learning approaches try to map a target
VRP with a solution or try to solve sub-problems appears during optimization procedure, while
reinforcement learning (RL) approaches seek to learn to solve routing problems without supervision
(i.e, solution) but using only repeated trials and the associated reward signal. Furthermore, the
RL approaches can be further categorized into improvement heuristics and construction heuristics
(Mazyavkina et al.||2020); improvement heuristics learn to modify the current solution for a better
solution, while construction heuristics learn to construct a solution in a sequential decision making
framework. The current study focuses on the RL-based construction heuristic for solving various
routing problems.

Various RL-based solution construction approaches have been employed to solve the traveling
salesman problem (TSP) (Bello et al.| 2016; Khalil et al.| 2017} [Nazari et al.l 2018} [Kool et al.,
2018) or the capacitated vehicle routing problem (CVRP) (Nazari et al.| 2018 [Kool et al., [2018)).
(Bello et al.,[2016; |Nazari et al., 2018; |[Kool et al.,|2018) has used the encoder-decoder structure to
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sequentially generate routing schedules, and (Khalil et al.| 2017) uses graph based embedding to
determine the next assignment action. Although these approaches have shown the potential that the
RL based approaches can learn to solve some types of routing problems, these approaches have the
major two limitations: (1) only focus on routing a single vehicle over cities for minimizing the total
traveling distance (i.e., min-sum problem) and (2) the trained policy for a specific routing problem
cannot be used for solving other routing problems with different objective and constraints (they show
that trained policy can be used to solve the same type of the routing problems with different problem
sizes).

In this study, We proposed the Graph-centric RL-based Transferable Scheduler (GRLTS) for various
vehicle routing problems. GRLTS is composed of graph-centric representation learning and RL-
based scheduling policy learning. GRLTS is mainly designed to solve min-max capacititated multi
vehicle routing problems (mCVRP); the problem seeks to minimize the total completion time for
multiple vehicles whose one-time traveling distance is constrained by their fuel levels to serve
the geographically distributed customer nodes. The method represents the relationships among
vehicles, customers, and fuel stations using relationship-specific graphs to consider their topological
relationships and employ graph neural network (GNN) to extract the graph’s embedding to be used to
make a routing action. To effectively train the policy for minimizing the total completion time while
satisfying the fuel constraints, we use the specially designed reward signal in RL framework. The
representation learning for graph and the decision making policy are trained in an end-to-end fashion
in an MARL framework. In addition, to effectively explore the joint combinatorial action space, we
employ curriculum learning while controlling the difficulty (complexity) of a target problem.

The proposed GRLTS resolves the two issues raised in other RL-based routing algorithms:

e GRLTS learns to coordinate multiple vehicles to minimize the total completion time (makespan).
It can resolve the first issue of other RL-based routing algorithms and can be used to solve
practical routing problems of scheduling multiple vehicles simultaneously. (Kang et al.,[2019)
also employed the graph based embedding (random graph embedding) to solve identical parallel
machine scheduling problem, the problem seeking to minimize the makespan by scheduling
multiple machines. However, our approach is more general in that it can consider capacity
constraint and more fast and scalable node embedding strategies.

o GRLTS transfers the trained scheduling policy with random mCVRP instances to be used for
solving not only new mCVRP problems with different complexity but also different routing
problems (CVRP, mTSP, TSP) with different objectives and constraints.

2 FORMULATION

2.1 MIN-MAX SOLUTION FOR MCVRP

We define the set of vehicles Vi, = 1, ..., Ny, the set of customers Vo = 1,..., N, and the set of
refueling stations Vi = 1, ..., Ng, where N 4, N, and Ny are the numbers of vehicles, customers,
and refueling stations, respectively. The objective of min-max mCVRP is minimizing the makespan
that is the longest distance among all vehicle’s traveling distance, i.e., min max;ev,, L; with L; being
the traveling distance of vehicle ¢, while each vehicle’s one-time traveling distance is constrained by
its remaining fuel. The detailed mathematical formulation using mixed integer linear programming
(MILP) is provided in Appendix. Figure (T) (left) shows a snapshot of a mCVRP state and Figure ()
(right) represents a feasible solution of the mCVRP.

2.2 DEC-MDP FORMULATION FOR MCVRP

We seek to sequentially construct an optimum solution. Thus, we frame the solution construction
procedure as a decentralized Markov decision problem (Dec-MDP) as follows.

2.2.1 STATE

We define the vehicle state sy, Vv € Vi, the customer state s§, Ve € Vo, and the refueling station
state s}, Vr € Vg as follows:
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Figure 1: An example of mCVRP. (Left) a snapshot of environment state at time ¢. The circular range
of each vehicle indicates the possible moving range with the current fuel level. (Right) a feasible
solution of the environment example.

e State of vehicle v, sy = (2¥, f¥,q¥). «} is the allocated node that vehicle v to visit; f is the
current fuel level; and ¢ is the number of customers served by the vehicle v so far.

e State of a customer ¢, s§ = (¢, v¢). ¢ is the location of customer node c (static). Visit indicator
v° € {0,1} becomes 1 if the customer c is visited and 0, otherwise.

o State of a refueling station r, s; = x”. 2" is the location of the refueling station r (static).

The global state s, then becomes s, = ({s?}2r, {s¢ e, {7} V).

2.2.2 ACTIONS & STATE TRANSITION

Action ay for vehicle v at time ¢ is indicating a node to be visited by vehicle v at time ¢ 4 1, that is,
af =z}, € {Vo U VRg}. Therefore, the next state of vehicle v becomes s}, = (7,1, ffi1, 41 1)
where f,; and g;, ; are determined deterministically by an action a; as follows:

Fv, if a? € Vi

o Fuel capacity update: f | = { fro —d(x¥,a?), otherwise
tv ts%t)s ’

q;, ifa} € Vg

o Customer visit number update: ¢}, ; = .
paate: it {qf +1, otherwise.

2.2.3 REWARDS

The goal of mCVRP is to force all agents to coordinate to finish the distributed tasks quickly while
satisfying the fuel constraints. To achieve this global goal in a distributed manner, we use the specially
designed independent reward for each agent as:

e visiting reward: To encourage vehicles to visit the customer nodes faster, in turn, minimizing
makespan, we define customer visit reward .., = ¢¢. This reward is provided when an agent

visits a customer; the more customer nodes a vehicle agent n visits, the greater reward it can earn.

¢ Refueling reward: To induce a strategic refueling, we introduce refuel reward r7/ ¢,,., = ¢; %

((F"=1)/(Fv-1))®. We define the refuel reward as an opportunity cost. That is, vehicles with
sufficient fuel are not necessary to refuel (small reward). In contrast, refueling vehicles with a
lack of fuel is worth as much as visiting customers. In this study, we set F'¥ = 10 (which is the
equivalent to the total traveling distance that vehicle v can travel with the fuel tank fully loaded)
and o = 2.

2.3 RELATIONSHIPS WITH OTHER CLASS OF VRPS

mCVRP, the target problem of this study, has three key properties: 1) the problem seeks to minimize
the total completion time of vehicles by forcing all vehicles to coordinate (in a distributed manner),
2) the problem employs fuel capacity constraints requiring the vehicles to visit the refueling stations
strategically, 3) the problem considers multiple refueling depots (revisit allowed).
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Figure 2: Sequential decision-making framework with trained GRLTS.

If some of these requirements are relaxed, min-max mCVRP can be degenerated into simpler
conventional routing problems:

o TSP is the problem where a single vehicle is operated to serve every customer while minimizing
the total traveling distance. The agent needs or needs not come back to the depot. This problem
does not have capacity constraints.

o CVRP (capacity-constrained TSP) is the problem where a single vehicle is operated to serve every
customer while minimizing the total traveling distance and satisfying the fuel constraint. The
vehicles need to comeback depot to charge.

o mTSP (multi-agent TSP) is the problem where multiple vehicles should serve all the customers as
quickly as possible. This problem does not have capacity constraints.

o mCVRP (multi-agent, capacity-constrained TSP) is our target problem having the properties of
both mTSP and CVRP. Additionally, we add more than one refueling depot.

The mathematical formulations for these problems are provided in Appendix. We train the policy using
random mCVRP instances with varying numbers of agents and customers and employ the trained
policy without parameter changes to solve TSP, CVRP and mTSP to test its domain transferability.

3 METHOD

This section explains how the proposed model, given a state (a partial solution), assigns an idle
vehicle to next node to visit under the sequential decision-making framework (see Figure[2).

3.1 STATE REPRESENTATION USING RELATIONSHIP-SPECIFIC MULTIPLE GRAPHS

The proposed model represents the global state s; using as a weighted graph G; = G(V, E, w) where
V ={Vy, Ve, Vr}, and E is the set of edges between node 4, j € V and w is weight for edge (3, j)
(here, distance d;;). Each node corresponding to vehicle, customer, and refueling station will be
initialized with its associated states defined earlier.

Although we can assume that all nodes are connected with each other regardless of types and distance,
we restrict the edge connection to its neighboring nodes to reduce the computational cost. Specifically,
each type of node can define its connectivity range and connect an edge if any node is located within
its range as follows (see Figure [2):

evj =1 YweV,, dvj)<Ry=f 1)
ec; =1 YeeV,, dcj)<Rc )
erj =1 VreVg, d(rj) SRRZ%E‘%/XFW (3)
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That is, the vehicle node v € V,, connects the edges with nodes that are located within its traveling
distance (i.e., the current fuel level f). In addition, the customer nodes ¢ € V. connects the edges
with nodes that are located within the constant range Rc. We set Rc = 5 while following a typical
hyperparameter selection procedure. Finally, the refueling node r € Vi connects the edges with
nodes within maximum distance that the vehicle with the largest fuel capacity can travel with the full
loaded fuel (in this study /' = 10 for all vehicles). Note that the target node j that can be connected
to each node can be any types of nodes.

3.2 NODE EMBEDDING USING GNN

The proposed model employs Graph neural network (GNN) (Scarselli et al.,|2008) to compute the
node embeddings for all nodes. The node embedding procedure starts with constructing the graph G;

out of the global state s; = ({sV}V,, {56}, {5} 1Y% ). The method then compute the initial node

embeddings h; and edge embeddings h;; for all the nodes and edges of G; by employing encoder
network. The sequel will explain how the GNN layer update these node and edge embeddings.

3.2.1 EDGE UPDATE

The edge feature hj; at T iteration is updated using the edge updater function ¢ as
hi; = ¢p(hl " h] "L hI7Y), Vie V,Vje N, (4)
where hiT_1 and h;_l are node embedding vectors of node 7 and node j at 7 — 1 iteration.

3.2.2 EDGE FEATURE AGGREGATION

The updated edge feature 1], can be thought of as an message sent from node j to node i. Node ¢
aggregates these messages from its neighboring nodes j € {Ny (i), No (i), Ng(2)}, where Ny (¢) is
the neighboring vehicle nodes of node i, as

(B;—,Vaizcaii,R): Z aijhi;, Z aijhg;, Z aijhi; o)

JENV(4) JENC (i) JENR()

where the attention weight a;; = sofmax, (e;;), where e;; = fe(s;, s;; we), scores the significance
of node j to node <. Note that message aggregation is separately conducted for different types of noes
and the aggregated messages per type are concatenated.

3.2.3 NODE FEATURE UPDATE

The aggregated edge node embeddings (ﬁ{y, B;C, BZ ) per its neighborhood type are then used to
update the node embedding vector h] using node update function ¢y, as

hi = ¢v (b =", (] v h] s hi R)) ©

The node embedding procedure is repeated H (hop) times for all nodes, and the final node embeddings
h# = (R} | is used to determine the next assignment action of an idle vehicle.

3.3 DECISION MAKING USING NODE EMBEDDING

When an vehicle node 7 reaches the assigned customer node, an event occurs and the vehicle node ¢

computes its node embedding hZ’ and selects one of its feasible actions, choosing one of unvisited

customer nodes or refueling nodes around vehicle node 7. The probability for agent i to choose node

Jj» al = j, is computed by the parameterized actor 7(al = j|st; ¢) as:

3 exp(F(hf, 1] )

- H 1 H.
ZkENv(i)UNR(i) exp(F(hi*, h's @)

where F(hH, hJG; @) is the fitness function evaluating the goodness for agent i to choose node j as
the next action (i.e., ai = j).

m(aj = j|s"; ¢)

)
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3.4 TRAINING GRLTS

We train the proposed model using random mCVRP instances with varying numbers of vehicles,
customers. We employ the actor-critic algorithm to train the parameters for the GNN, the critic, and
the actor (GRLTS).

We first approximate the action-value function Q™ (s, a) ~ Q™ (s, a; #) using a neural network with
the critic parameter 6. The parameter § for the centralized critic is optimized to minimize the loss L:

L(0) = Eo,awp’ND[(QW(Sv a;0) — 9)2}
= ]Eo,a,r,o’N'D[(Qﬂ(hth; 0) - y)2]

where y = r + yQ™ (hNner; ') is the target value evaluated with the the actor 7/ = n(als; ¢')

and the critic Q™ (s, a; #) using the target parameters ¢ and ¢’. In addition, D is a state transition
memory.

®)

To train the actor network, we use PPO method (Schulman et al | 2017) to maximize J(¢). PPO aims
to maximize the clipped surrogate objective function as follow:

JUP () = By [min(Ry(¢) A*, clip(Re(¢), 1 — €, 1 + ¢) A*)] 9)

where R;(¢) = %. We compute the advantage estimator A, by running the policy for T’
time steps as
At =5t+’75t+1+"'+"'+7T715t+T—1 (10)
0 =1+ AV (hpy7;0) = V(e 75 6)
In addition, equation (9) is added by a value function error and an entropy bonus for sufficient
exploration because critic and actor share parameters as follow:

T () = BT (9) — e1(Va(st) — Viaget)” + c2H (51, 75(-))] (11)
where Vy(s;) ~ V(hiv "or. §) from the centralized critic; H denotes an entropy bonus; and ¢; and co
are hyperparameters.

On updating the centralized critic parameter 6 and the decentralized (but, shared) actor parameter ¢,
we use Monte-Carlo simulation. To sequentially update both parameters, we follow an update rule as
follow:

0L pF 1« argmax  E [Jtcup(qﬁ) —c1(Vo(st) — Viarger)® + c2H (st 76(+))] (12)

0t prot at vy,
k

Algorithm (1)) focus on sequence of the parameter update using above equations.

Algorithm 1 Parameter update in decentralized actors with PPO and Monte-Carlo simulation
1: for Agent:=1,2,..., N do

2: for Update iteration = 1,2,..., K do

3: Evaluate policy 7y,,, in environment for an experienced episode
4 Compute 7¢(¢) in Equation (9)

5: Compute advantage estimates 1211, e AT in Equation

6: Optimize surrogate objective in Equation with batch size T'
7: Oo1q + 0, dora <+ ¢ followed by

8 end for

9: end for

4 EXPERIMENTS

The trained policy is used to solve various types of vehicle routing problems, mCVRP, mTSP, CVRP,
and TSP without changing the parameters. For each type except mCVRP, we use two types of data
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sets: random instances with varying numbers of vehicles and customers whose locations are sampled
randomly, and (2) benchmark problems obtained from the library (mTSP library, CVRP library, and
TSP library).

To validate the proposed GRLTS, we develop mixed integer linear programming (MILP) formulations
and compute the solutions using CPLEX 12.9 (all the optimization formulations are provided in
the Appendix). We also use Google OR-Tools(Perron & Furnon)) as the representative heuristic
solvers. For the problems where other deep RL based approaches tried to solve (TSP and CVRP), we
compare the performance of the proposed approach to those of deep RL baselines. All experiments
are conducted on Windows 10, Intel(R) Core(TM) 19-9900K CPU 3.6 GHz, and 32GB RAM. GPU
acceleration is not used in testing.

4.1 PERFORMANCE COMPARISON OF MCVRPS

Table 1: Performance comparison of mCVRPs on random instances

mCVRP25 mCVRP50 mCVRP100
Method N, =2 Ny,=3 Ny=5 Ny=2 Ny,=3 Ny,=5 Ny,=5 N, =10
ORT 2.51 1.60 1.29 4.31 2.71 1.77 - 1.87
(4.5) 167y @452) (d21) (192) (519 (c0) (489.2)
GRLTS 3.15 2.0 1.20 3.72 2.65 1.71 2.71 1.88
(0.9) (1.0) (1.0) “4.7) 4.1 (3.9) (11.8) (11.7)
Gap (%)  25.5 25.0 -7.0 -13.7 -2.2 -3.4 - 0.5

Table 2: Scalability test of the trained GRLTS with large-scale mCVRPs

mCVRP25-5 mCVRP100-10 mCVRP400-20 mCVRP2500-50
1.2 (0.98) 1.88 (12.1) 4.09 (420.2) 11.71 (3,861.2)

We apply the trained policy (GRLTS) to solve mCVRP with different numbers of vehicles N, € 2,3,5
and the numbers of customers N. € 25,50, 100. The number of refueling stations are set to be 4,
5 and 10 in case of N, = 25, N, = 50 and N, = 100. For every combination of N, and N., we
randomly generate 100 mCVRP instances, each of which has randomly located customer nodes
and refueling nodes. The x and y coordinates of each node is randomly sampled from the uniform
distributions; x ~ U[0, 1] and y ~ U|0, 1], respectively. We employ GRLTS and ORT to solve the
same 100 random mCVRP instances and compute the average makespan and the computational time
required to solve the mCVRP instance with the policies. Table 1 compares the average makespan and
computational times.

ORT (Google OR-tool) produces the best results for the small-sized problems with reasonable
computational time; however, it requires extensive time or even fails to compute any feasible solution
for the large scale problem (oo means that ORT cannot find a feasible solution). Notably, the
GRLTS achieves a better performance than ORT for large-scale problems with a significantly shorter
computational time.

To validate the scalability of the proposed model, we further conduct test experiments with the four
cases: N, = 25 with N, = 5, N, = 100 with N,, = 10, N. = 400 with N, = 20, and N, = 2,500
with N,, = 50. Table[2]shows how the makespan and the computational time increases with the size
of the problem. By comparing the ratio between the number of customers that each vehicle need
to serve, (5: 10: 20: 50), and the makespan , (1.20: 1.88: 4.09: 11.71), we can roughly confirms
that the trained model can perform reasonably well even in large sized problem that have never been
experience during the training.

For all different sizes of the mCVRP problem, we also compare the performance of the proposed
method with the solution computed by CPLEX solver. Because it typically takes a long time to
compute the near-optimum solution by CPLEX, we only compare the single mCVRP case. The result
is provided in the Appendix.
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4.2 PERFORMANCE COMPARISON ON MTSP

We apply the trained network (without parameter changes) to solve mTSP, which seeks to minimize
the total completion time of multiple vehicles (minmax mTSP). This problem is a relaxed version of
mCVRP in that it does not require the capacity constraints (we maintains the fuel level to be maximum
during execution). We solve the randomly generated 100 mTSP instances for every combination
of N. € 50,100,400 and N, € 2,4,6,8 (or N, € 10,20, 30,40). Table[7|compares the average
makespan and computational time. The trained model outperforms ORT in the large-size problems
(see N, = 100 and N, = 400 cases in Table[/]) in terms of both makespan and the computational
time. For large scale problems, GRLTS achieves roughly 28% shorter makespan than ORT on average
with significantly reduced computational time (50% reduction).

Table 3: Performance comparison on mTSP for random instances

mTSP50 mTSP100 mTSP400
N, 2 4 6 8 2 4 6 8 10 20 30 40
ORT 320 221 160 LI 5.13 2.69 225 1.71 3.02 2.0 1.91 1.61
13) (12) (12 (12 (254 @LD) (215 (21) (13588) (9659) (1115.6) (1025.7)
GRITS 394 283 147 098 513 234 2.16 1.71 2.64 2.06 1.34 L15
@G 32 (G0 (G0 (163) (112) (109 (1L1)  (432.6) (452.1)  (442.1)  (465.7)
Gap (%) 231 281 81 -117 00 -130 40 0.0 126 3.0 298 286

Similarly, for all the sizes of mTSP case, we compare the performance of GRLTS to the solution
computed by CPLEX in the Appendix. We also employed the trained model to solve mTSP benchmark
problems in MTSPLib E] solving MinMax mTSP. The performance results on 124 instances (four
different number of vehicles per 31 different maps) are provided in Table[9]in Appendix.

4.3 PERFORMANCE COMPARISON ON CVRP (PAYLOAD CAPACITY)

Table 4: Performance comparison on CVRP for random instances

CVRP20 CVRP50 CVRP100
Methods Ob;. Gap Time  Obj. Gap Time  Ob;. Gap Time
(%) (%) (%)
L2I (Lu et al.,|2019) 6.12 - 12m  10.35 - 17m  15.57 - 24m
LKH3 (Helsgaun,|[2017) 6.14  0.33 2h 10.38  0.29 7h 1564 045 13h
OR-Tools 6.46 5.56 2m 11.27  8.89 13m  17.12  9.96 46m
AM (Kool et al.| [2018)) greedy 6.4 4.58 1s 10.61 2.51 3s 16.17 3.85 8s
AM Sampling 6.25 212 6m 10.59 232 28m 16.12  3.53 2h
Nazari et al.| (2018) 6.4 4.58 11.15 7.73 1696 8.93
Chen & Tian| (2019) 6.16  0.65 10.51 1.55 16.1 3.40
Random Sweep 7.08 15.69 1296 25.22 20.33  30.57
Random CW 6.81 11.27 12.25 18.36 18.96 21.77
GRLTS (Ours) 6.97 13.89 2s 1291 24.73 Ss 19.74  26.78 15s

We employ the trained model to solve randomly generated 100 CVRP instances with N, = 20, 50, 100
with a single capacitated vehicle. All nodes are randomly scattered in the unit square of [0, 1] x [0, 1].
To make the trained policy compatible with the CVRP settings, we fix the number of vehicles to
be one and use a single refueling node as if it were the depot in CVRP environment. As a result,
the single vehicle needs to revisit the depot due to payload capacity (which is equivalent to fuel
constraint). The payload capacity is set to be 30, 40 and 50 for CVRP20, CVRP50 and CVRP100,
respectively. Demand are uniformly sampled from {1,...,9}. These test cases have been widely
used by the studies seeking to develop RL-based solvers for CVRP problems.

Table [l summaries results for the random CVRP environment. L21 and LKH3 are well-known best
performing heuristic algorithms developed from the OR community, thus can serve as an oracle
for comparing the performance. We also consider other RL-based approaches (Kool et al., 2018}

'www.infoiasi.ro/ mtsplib
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Nazari et al., 2018} |Chen & Tian, [2019). In general, our model is not outperforming other RL-based
approaches and OR-tool. However, all RL-based approaches, except our model, are trained under
the same environment of CVRP cases (the training and test instances are sampled from distribution).
However, our model is trained with the complete different mCVRP environment and tested with the
CVRP environment (strong transferability).

We also employed the trained policy to solve the CVRP benchmark problem instances from CVRPLib
(Uchoa et al., 2017). Table [I0]in Appendix provides all the performance results compared with
other RL-baseline models. The results show that our model has better performance than one of the
state-of-art RL-based approach (Kool et al.|[2018).

4.4 PERFORMANCE COMPARISON OF TSP

Table 5: Performance comparison on TSP for random instances

CVRP20 CVRP50 CVRP100
Methods Obj. Gap Time Obj. Gap Time Obj. Gap Time
(%) (%) (%)
Concorde 3.84 0.00 Im 570 0.00 2m  7.76 0 3m
LKH3 384 0.00 18 570  0.00 Sm  7.76 0 21m
OR-Tools 385 0.26 0Os 5.80 1.75 1s 7.99 296 3s

AM (greedy) 3.85 0.26 0s 5.80 1.75 2s 8.12 4.64 6s
AM (sampling) 3.84 0.00 Sm 573 0.53 24m 794 232 1h
Nearest Insertion 433  12.76 1s 6.78 18.95 2s 946 21091 6s
Random Insertion 4.00 4.17 Os 6.13 7.54 Is 8.52 9.79 3s
Farthest Insertion 3.93 2.34 1s 6.01 5.44 2s 8.35 7.60 Ts
Bello et al.| (2016)  3.89  1.30 595 439 8.3 6.96
Khalil et al.[{(2017) 3.89 1.30 599 5.09 8.31 7.09
GRLTS (Ours) 392 2.08 1s 6.32  10.88 3s 8.79 13.27 9s

Lastly, we employ the trained model to solve 100 randomly generated TSP with different number of
customers N, = 20, 50, 100 and a single vehicle. Table[5]|shows summarized the results. Although
GRLTS is not outperforming other RL-based scheduling methods, it shows the reasonably perfor-
mance that is comparable to some of well known heuristic algorithms. Given that the GRLTS is
trained with mCVRP environment and have never seen TSP instances, this result can validate that
GRLTS can be transferred to TSP as well.

We also employed the trained policy to solve the TSP benchmark problem instances fromTSPLib
(Reinhelt, [2014). Table [§]in Appendix provides all the performance results compared with other
RL-baseline models. The results show that our model has comparable performance with the-state-of-
art RL-based approaches (GPN (Ma et al.,2019) and S2V-DQN (Khalil et al.,|2017)) and heuristic
algorithms, especially for large-scale TSP problems.

5 CONCLUSION

We proposed the Graph-centric RL-based Transferable Scheduler for various vehicle routing prob-
lems using graph-centric state presentation (GRLTS) that can solve any types of vehicle routing
problems such as mCVRP, mTSP, CVRP, and TSP. The transferability is achieved by graph-centric
representation learning that can generalize well over various relationships among vehicles, customers,
and refuel stations (depot). GRLTR is computationally efficient for solving very large-scale vehicle
routing problems with complex constraints, which provides potential that such RL-based scheduler
can be used for large-scale realistic applications in logistics, transportation, and manufacturing.
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A APPENDIX

A.1 MILP FORMULATIONS FOR ROUTING PROBLEMS

The MILP formulations for mCVRP, mTSP, and TSP are provided in this section. All problems are
formulated to find the optimum routes of vehicles to minimize the makespan. For TSP formulation,
the makespan minimization is equal to total distance minimization due to single-vehicle operation.
Although mTSP here is same as multi-VRP by its definition, we denote the problem as mTSP because
we focus on the makespan minimization problem with multi-vehicle operation.

A.1.1 TSP

A fundamental formulation in the context of routing problems is based on TSP formulation by
Miller-Tucker-Zemlin (MTZ) formulation (Miller et al., |{1960):

minimize E g di;j i

i€V JEV,i#j
subject to. inj =1, VjeV i#j, (1)

iev

> wi=1, VieV:ij, (2)

jev

w —uj + |V0z; <|V| -1, Vi,j eV \vStart, (3)

0<wu; <|V|-1, Vi € V \ vStart, (4)

x;; € {0,1}, Vi, j €V, (5)

u; € Z, Vi € V \ vStart. (6)

The routing problem is defined in a graph G(V, F,w) where V, E and w are nodes, edges, and
weight (distance d or cost ¢). x;; is 1 if the edge between node ¢ and node j exists, otherwise, 0. Here,
corresponding distance of the edge is d;;. Constraint (3,4) with dummy variable u; is for subtour
elimination. As setting d;; = 0,Vj € vStart, the problem can be arbitrary end assumption.

A.1.2 MTSP

The goal of mTSP is to find the sub-routes of multiple vehicles to minimize the makespan. Thus,
decision variables are expanded to multi-vehicle settings, and the objective function is modified from
to consider the makespan minimization setting (MinMax problem).

minimize @

subject to. Z Z dijrai; < Q, Va € A:i# j, (1)
iV jev
Z Taij = 1, Va € A,i € vStart, : i # 7, (2)
jev

SN waiy =1, Vj e vTask : i # j, (3)

a€Ai€qG jeG

Zmaij—Zxajizo, VGEA,jEVZi#j, (4)
i€G i€G

Ugi — Ugj + |V]za; <|V]—1, VYaec A, jeV\vStarty, :i#34, ()
0 <ug <|V| -1, Va € A,i € V \ vStart,, (6)
Taij € {0,1}, Va € A, Vi,j €V, (7)
Ugi € Z, Va € A,i € V\ vStart,. (8)

Here, we denoted () as the makespan, which is the longest traveling distance among multiple vehicles.
By minimizing this maximum traveling distance, the above formulation can minimize the makespan.
Therefore, the above formulation is to minimize the makespan. We also allow a vehicle to start a tour
at any staring node vStart, (constraint (2)).

12
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A.1.3 MCVRP

We extend the above mTSP formulation in to include the fuel constraint (i.e., allowable traveling
distance per sub-tour). In this formulation, vehicles can start their tour at an arbitrary location.

minimize @

subject to. Z Z dijmm-j < Q, Va € A:i 7& 7, (1)
i€V jev
Z Taij =1, Ya € A,i € vStart, : 1 # 7, (2)
jev

SN wa =1, Vj € vTask : i # j, (3)

a€Ai€qG jeG

> Taij = Y waji =0, Va€ A, jeV  i#j, (4)
icG i€G

Ugi — Ugj + |V]zai; < V] -1, VYa € A,j € V\vStart, :i#j, (5)
0 <ug <|V]-1, Va € A,i € V\ vStart,, (6)
Taij € {0,1}, VYa € A,Vi,j €V, (7)
Ugi € 2, Va € A,i € V \ vStart, (8)
fai = Fa, Va € A,i € vRefuel, (9)
fai — dijxaij > 0, Ya € A,Vi,j € vRefuel, (10)
faj = fai + dijZaij > Fo(l — 2455), Va € A,Vi,j € vTask. (11)

Constraint (9) indicates that a vehicle can charge fuel as much as the vehicle’s maximum fuel capacity
F,. In addition, constraint (10) requires that a vehicle must have enough remaining fuel to visit a
refueling node. Constraint (11) indicates that a vehicle cannot consume (travel) more than its fuel
capacity. We allow vehicles to visit refueling nodes as many times as possible by introducing a
sufficient number of dummy variables.

A.1.4 CVRP

Similar to the above mCVRP with fuel constraint, we also solve CVRP constrained by payload
capacity (not fuel constraint) and with single vehicle (m = 1 so that | A| = 1). We consider a single
depot to start a mission and unload some burdens. Therefore, v Re fuel in the MILP of mCVRP
becomes same as vStart,. Fuel consumption as much as distance d;; between node ¢ and node j is
equivalent to payload capacity consumption as much as demand d; at node j. As a result, constraint
(9-11) of the mCVRP model becomes:

Cai = C4, VYa € A,i € vStart, (9)
Caj — Cai + AjTaij > Co(l — x4ij), Va € A, Vi, j€vTask. (10)

The constraint (10) in the mCVRP model is dropped because payload capacity is independent in
returning to the starting depot.

A.2 COMPARISON WITH CPLEX SOLUTIONS

For a single mCVRP and mTSP instances, we compare the performance of the proposed approach
with the exact solution computed by CPLEX. This experiment shows how the solution computed
from the proposed method is comparable to the near-optimum solution calculated by the powerful
optimization solver. Note that the mCVRP instance for this experiment was generated from the grid
environment. The distance between customer nodes are different from the experiments for Table 1.

13
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A.2.1 MCVRP
Table 6: Performance comparison of mCVRPs on random instances
N. =25 N. =50 N. =100
N, CPX ORT RL N, CPX ORT RL N, CPX ORT RL
2 20(c0) 15(3.9) 20(0.96) 2 - 34(383) 3048 5 - 27(5103) 29(11.9)
3 14(00) 10(36.6) 16(1.01) 3 - 22(222) 2241 10 - - 20 (12.1)
5 12(c0) - 8(098) 5 - 14(1.7) 14(3.8)

We apply the already trained model to solve mCVRP with different numbers of vehicles N,, € 2,3,5
and the numbers of customers N. € 25, 50, 100. The number of refueling stations are set to be 4, 5
and 10 in case of N, = 25, N. = 50 and N, = 100. For all cases, we compute the total completion
time and the computational time (the number in the parenthesis) required to construct a scheduling.
We set the limit of the computational time to be 18,000 (sec) for all cases. The symbol oo indicate the
case where the computational time is reached and the solution at that moment is used in the table. The
blanks with the hyphen (-) indicate the case where the algorithm could not find any feasible solution.

First, CPX (CPLEX) can only solve for mCVRPs with N, = 25; for large scale problems, it
cannot compute any feasible solution. ORT (Google OR-tool) produces the best results for the small
sized problem with reasonable computational time; however, for the large scale problem it requires
extensive amount of time or even fail to compute any feasible solution. Notably, the proposed GRLTS
achieves the good performance with the least amount of computational time.

A.2.2 MTSP

For the grid environment, a single mTSP instance was generated and used for comparing the
performances of GRLTS to CPLEX and ORT.

Table 7: Performance comparison on mTSP for random instances

N, = 49 N. =100 N. = 400

N, CPX ORT RL N, CPX ORT RL N, CPX ORT RL

5 24% 26 32, sl 57 57 1o 63 55
79 @1 (3.0 (c0) (322) (15.9) (1619.8)  (361.2)

A 13 1823, 4 31 26 41 43
() (I.1) (32) (c0)  (169) (10.7) (782.8)  (415.9)

6 13 13 2 46 25 24 44 28
(c0) (1) (33) (c0)  (15.4)  (10.5) (1192.1)  (452.3)

g 7+ 9 8 g Sl 19 v 39 24
6467.3)  (1.6) (3.4) (c0)  (13.8)  (10.8) (627.0)  (485.1)

A.3 EXPERIMENT RESULTS ON BENCHMARK PROBLEMS

We apply the trained network to solve benchmark problems for TSP, mTSP and CVRP.

A3.1 TSP

TableB] shows results of TSPLib (Reinhelt, 2014) with some RL-based approaches (GPN (Ma et al.,
2019) and S2V-DQN (Khalil et al.,|2017) and heuristics. The average performance of the proposed
model is not outperforming the state of the art RL approaches. However, we observed that the
proposed method is scalable in that the performance on the large-scale problem does not degrade
compared to other approaches. We compare the performance by problem instance size (eil51 ~
tsp225 Vs. pr226 ~ pch442). Our model showed 1.1% reduction in the optimality gap (15.4% —
14.3%). However, the other RL-based approaches show much higher increases in the optimality gap
(Drori et al.|(2020): 3.1% — 10.0%, GPN: 14.1% — 33.1%, Drori et al.|(2020): 4.7% — 10.6%).
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Table 8: Performance comparison on TSP library

RL Approx.
City Opt. Ours Drori et al.| (2020) GPN S2V-DQN  Farthest  2-opt  Nearest
eil51 426 471 439 485 439 448 452 514
berlin52 7542 8269 7681 8795 7734 8121 7778 8981
st70 675 770 684 701 685 729 701 806
eil76 538 648 555 591 558 583 597 712
pr76 108159 135145 112699 118032 111141 119649 125276 153462
rat99 1211 1368 1268 1472 1250 1319 1351 1565
kroA100 21282 25282 21452 24806 22335 23374 23306 26856
kroB100 22141 25939 22488 24369 22548 24035 23129 29155
kroC100 20749 23644 21427 24780 21468 21818 22313 26327
kroD100 21294 23397 21555 23494 21886 22361 22754 26950
kroE100 22068 26326 22267 23467 22820 23604 25325 27587
rd100 7910 9237 8243 8844 8305 8652 8832 9941
eill01 629 753 650 704 667 687 694 825
lin105 14379 17173 14571 15795 14895 15196 16184 20363
pri24 59030 66554 59729 67901 61101 61645 61595 69299
bier127 118282 125233 120672 134089 123371 127795 136058 129346
ch130 6110 6987 6208 6457 6361 6655 6667 7575
pr136 96772 111563 98957 110790 100185 104687 103731 120778
prl44 58537 59197 60492 67211 59836 62059 62385 61651
ch150 6528 7264 6729 7074 6913 6866 7439 8195
kroA150 26528 32492 27419 30260 28076 28789 28313 33610
kroB150 26130 32438 27165 29141 26963 28156 28603 32825
ul59 42080 51542 43687 52642 45620 46842 42976 53637
rat195 2323 2774 2384 2686 2567 2620 2569 2762
d198 15780 16217 17754 19249 16855 16161 16705 18830
kroA200 29368 34160 30553 34315 30732 31450 32378 35798
kroB200 29437 35848 30381 33854 31910 31656 32853 36982
ts225 126643 141754 130493 147092 140088 140625 143197 152494
tsp225 3916 4536 4091 4988 4219 4233 4046 4746
pr226 80369 83861 86438 85186 82869 84133 85306 94390
gil262 2378 2889 2523 5554 2539 2638 2630 3218
pr264 49135 51836 52838 67588 53790 54954 58115 58634
a280 2579 3059 2742 3019 3007 3011 2775 3311
pr299 48191 59257 53371 68011 55413 52110 52058 61252
1lin318 42029 49167 45115 47854 45420 45930 45945 54034
rd400 15281 16631 16730 17564 16850 16864 16685 19168
1417 11861 12768 13300 14684 12535 12589 12879 15288
pr439 107217 124333 126849 137341 122468 122899 111819 131258
pch442 50778 61757 55750 58352 59241 57149 57684 60242
Gap 0 15.1 4.9 19.0 6.2 8.4 9.1 24.7

A.3.2 MTSP

Table E] shows results from mTSPLib E] solving MinMax TSP. Our model shows 3% longer results
than ORT. However, computational time is, on average, about 30 seconds faster, which is about 45%.
In addition, we calculate difference of the optimality gap by N,, = 2, 3,5, 7. Our model shows better
performance as N, increases (N, = 2 case: 9.8%, N,, = 3 case: 8.9%, N,, = 5 case: 2.8%, N, =7
case: -7.5%)

2www.infoiasi.ro/ mtsplib
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Table 9: Performance comparison on mTSP library

ORT Ours ORT Ours
Maps Ny MS Time MS Time gap Maps Ny MS Time MS Time gap
2 223 1.14 281 2.95 26.2 2 12214 15.06 13721 9.41 12.3
cils1 3 159 0.67 244 2.92 53.7 KroB100 3 8957 14.81 10197 9.52 13.8
5 120 1.48 165 2.93 37.5 5 7108 10.31 6271 9.19 -13.3
7 109 1.03 86 2.67 -26.5 7 7108 10.24 6119 9.49 -16.2
2 4634 1.27 4247 3.01 -9.1 2 11440 8.90 12453 9.39 8.9
berlin52 3 3195 1.35 3452 3.03 8.0 KroC100 3 8725 12.58 7985 9.48 -9.3
5 2606 1.18 2179 3.03 -19.6 5 6616 15.66 6291 9.50 -5.2
7 2440 1.42 2182 2.87 -11.8 7 6154 12.83 5740 9.30 <12
2 288 4.46 361 5.81 25.4 2 13130 11.27 12815 9.32 -2.5
cil76 3 212 3.26 227 5.75 72 KkroD100 3 8889 9.36 9359 9.40 53
5 179 4.79 170 5.61 -5.1 5 6976 9.67 6660 9.34 -4.7
7 179 4.78 121 5.41 -47.4 7 6485 12.00 7246 9.25 11.7
2 388 3.77 451 4.87 16.2 2 13424 9.02 13611 9.53 1.4
st70 3 285 2.04 282 4.98 -1.2 KkroE100 3 9334 14.61 8929 10.76 -4.5
5 251 2.26 249 4.69 0.8 5 7599 20.27 6992 10.05 -8.6
7 251 222 253 4.78 0.9 7 8727 17.14 5868 9.42 -18.7
2 60679 4.99 80789 5.69 33.1 2 345 11.23 386 9.70 11.8
pr76 3 51074 6.25 65567 5.67 28.4 eill01 3 237 10.32 264 9.64 11.3
5 39167 3.55 48143 5.48 22.9 5 163 11.15 167 9.67 23
7 38116 5.85 33082 5.50 -15.2 7 123 15.29 141 9.63 14.6
2 709 16.47 756 9.11 6.6 2 8846 18.50 10220 10.20 15.5
£at99 3 549 13.86 565 9.28 2.9 lin105 3 7112 16.20 8168 10.30 14.8
5 463 11.12 373 9.14 -24.0 5 7060 18.79 5487 1034 287
7 440 12.01 367 9.24 -19.8 7 6444 18.84 4802 1035 -342
2 4406 17.94 4520 9.54 2.6 2 31692 14.29 26369 10.96 20.2
100 3 3224 20.31 3136 9.61 -2.8 prl07 3 24904 12.82 23283 10.90 -1.0
5 2435 20.78 2629 9.32 8.0 5 21455 16.70 20985 10.80 =22
7 2803 17.38 2375 9.38 -18.0 7 21365 17.45 20620 10.81 -3.6
2 12647 12.19 13560 9.49 72 2 35094 18.82 36472 15.02 39
KroA 100 3 9116 14.37 9635 9.49 5.7 pri24 3 27257 16.70 27598 14.75 1.3
5 8229 13.11 7462 9.42 -10.0 5 23231 21.44 23651 14.75 1.8
7 8229 13.31 7147 9.24 -15.1 7 22725 25.29 21526 14.75 -5.6
2 62458 22.72 67706  15.83 8.4 2 26171 47.80 27864 2635 6.5
bier127 3 47347 22.61 52749 15.68 11.4 w159 3 19014 56.26 19519  25.87 2.7
5 29560 38.21 30946  15.76 4.7 5 14308 72.44 16719  26.34 16.9
7 24891 47.49 25074 15.48 0.7 7 14776 67.59 16077  26.03 8.8
2 3393 31.44 3755 16.85 10.7 2 1285 205.86 1524 43.66 18.6
ch130 3 2550 23.90 3425 16.65 343 [at195 3 975 101.40 937 43.82 -4.0
5 1575 39.03 2307 16.69 46.5 5 708 152.43 638 4357  -10.9
7 1338 32.88 2077 16.30 55.2 7 631 130.31 495 4385 275
2 59999 34.54 59113 18.18 -1.5 2 10416 170.17 9226 4520  -129
pri36 3 40643 14.45 45017 18.25 10.8 4198 3 9663 71.48 7813 4536  -23.7
5 29958 29.59 32858 18.14 9.7 5 8571 113.45 6086 45.21 -40.9
7 30138 20.66 30222 17.98 0.2 7 8577 115.69 5892 45.64  -45.6
2 38104 23.11 52344 20.72 37.4 2 17148 154.68 20696  46.46 20.7
prids 3 31305 36.20 42179 20.72 34.7 KroA200 3 12253 161.74 13778  46.44 12.4
5 25262 46.69 28153  20.55 1.4 5 8185 190.01 10770 46.33 31.6
7 24361 42.25 27168  20.52 11.5 7 6675 186.54 7142 46.36 7.0
2 3914 43.40 3637 22.75 -1.6 2 16127 92.48 18758  47.00 16.3
3 2663 42.67 2870 22.78 7.7 3 11814 103.17 13199  46.13 11.7
ch150 5 1915 75.00 1994 22.66 4.1 kroB200 5 8525 126.04 10618  46.83 24.6
7 1661 66.54 1603 23.10 -3.6 7 7720 120.19 8678 46.41 12.4
2 15326 40.34 16578  22.77 8.2 2 70660  230.60 71594  64.01 1.3
KroA150 3 10810 47.01 12600  22.83 16.6 (225 3 55237 24530 52330  63.12 -5.6
5 7323 54.11 8567 23.05 17.0 5 38748 189.31 31318 64.13  -23.7
7 6290 42.09 7901 22.66 25.6 7 35460  213.09 27921 63.53  -27.0
2 14633 54.68 18342  22.84 25.3 2 2145 277.23 2481 62.39 15.7
KroB150 3 10565 36.80 11512 22091 8.9 (sp225 3 1612 145.43 1743 63.56 8.1
5 7257 35.87 7539 22.82 39 5 1183 184.62 1308 63.83 10.6
7 8221 31.13 6057 2292 -357 7 1044 209.54 1016 63.89 -2.7
2 43922 52.08 51982 2371 18.3
152 3 38752 50.79 48238  23.35 24.5
P 5 33006 91.95 43940  23.27 33.1
7 32245 102.58 41624  23.57 29.1
A.3.3 CVRP

Table @ shows results from CVRPLIib (Uchoa et al.,[2017). Those values are the total traveling
distance. Although our model is trained to minimize makespan (MinMax), our model shows better
performance than AM in the total distance (MinSum).
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Table 10: Performance comparison on CVRP library

Instance Opt OR-Tools AM (N=1280) AM (N=5000) Ours

X-n101-k25 27591 29405 39437 37702 39133
X-n106-k14 26362 27343 28320 28473 27940
X-n110-k13 14971 16149 15627 15443 17388
X-n115-k10 12747 13320 13917 13745 19292
X-n120-k6 13332 14242 14056 13937 16589
X-n125-k30 55539 58665 75681 75067 69919
X-n129-k18 28940 31361 30399 30176 36649
X-n134-k13 10916 13275 13795 13619 14800
X-n139-k10 13590 15223 14293 14215 16368
X-n143-k7 15700 17470 17414 17397 23548
X-n148-k46 43448 46836 79611 79514 62240
X-n153-k22 21220 22919 38423 37938 33079
X-n157-k13 16876 17309 21702 21330 19702
X-n162-k11 14138 15030 15108 15085 19491
X-n167-k10 20557 22477 22365 22285 25676
X-n172-k51 45607 50505 86186 87809 63191
X-n176-k26 47812 52111 58107 58178 66997
X-n181-k23 25569 26321 27828 27520 27220
X-n186-k15 24145 26017 25917 25757 30086
X-n190-k8 16980 18088 37820 36383 18651
X-n195-k51 44225 50311 79594 79276 66957
X-n200-k36 58578 61009 78679 76477 68502

Gap - 8.06 32.97 31.62 30.22

A.4 GRAPHICAL SOLUTIONS EXAMPLE

This section provides the visual results for several vehicle routing problems solved by the trained
policy.

A.4.1 TRAINING RESULTS ON MCVRP

_F R

(b) Final state using train epoch (c) Final state using train epoch
(a) Initial state #2 model #420 model

Figure 3: N, = 100, N,, = 5 case of mCVRP

Figure 3] depicts the evaluation case (N, = 100, N,, = 5 case of mCVRP) during training process.
This test environment is designed to mimic the search and rescue problems, operating multiple drones
to search victims distributed over a map.

Green grids are for refueling nodes, blue circles are for vehicles (color becomes black as fuel capacity
diminishes), and grey grids are for unvisited customers. If a customer is visited by a vehicle, the color
becomes red or white; the red girds indicate the victims, while the white indicates no victim in that
cell. These red grids do not have any effect on performance measure, because visiting all customers
(grey grids) is top-priority.
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Figure 4: N. = 20, N,, = 2 case of mTSP
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Figure 5: TSP with a single vehicle

At the very beginning of the training process (figure[3| (b)), the trained model cannot have vehicles
search over the cells and make them die due to lack of fuel. At the end of the training process (figure
|§| (c)), however, all customers are visited by the vehicles.

A.4.2 MVRP (MTSP)

Figure 4] depicts an example solutions of mTSP using CPLEX, OR-Tools, and RL. The RL-based
solver is trained under mCVRP environment but we solve mTSP with the trained model.

A.43 TSP

Figure 5] depicts an example solutions of TSP using CPLEX, OR-Tools, and RL. The RL-based solver
is trained under mCVRP environment but we solve TSP with the trained model.

A.5 NETWORK ARCHITECTURE AND HYPERPARAMETERS

Table[T1]is summary of hyperparameters used in training process.

Table 11: Hyperparameters

Parameters (for PPO update) Value Parameters (for GRLTS) Value
Optimizer Adam MLP units (32,32)
betas (51, B2) (0.9,0.999) Neuron initialization Kaiming normal
Learning rate (1policy) 2x 107" Activation fn. ReLU
Learning rate (Q—network) 2 X 107 Node umbedding epoch (N"°P) 5
gamma () 0.99 Node feature dim. 5
clip ratio (¢) 0.2 Edge feature dim. 10
value function coeffi. 0.5 Max. decision epoch 3 X N,
entropy coeffi. 0.01
PPO update epoch (K) 10
Training epoch 1
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A.6 TRAINING PERFORMANCE

Figure (6) shows how the trained policy perform on the thee set of validation problems while the
policy is being trained by the random mCVRP inc stances. The three validation problems are 1) 100
customers covered by 5 vehicles, 2) 100 customers by 10 vehicles and 3) 400 customers covered by
20 vehicles. The first row show the performance on the random training instances while the second,
third, and fourth row show the performances on the three validation problems.

As training processes progress, the trained model gradually becomes more efficient, that is, a fleet of
vehicles visits more customers faster. After about 200 training epochs, the trained model converges,
but there are some randomness due to the nature of policy gradient structure. Although the makespan
curves in the second column of training case seems relatively constant (the first row row), the level of
difficulty is increasing as curriculum becomes harder (The number of refueling is also increasing as
curriculum becomes harder).

Comparison of case #1 and case #2 give us two interpretations: 1) case #1 shows the model is
trained to visit all customers and 2) in case #2, the model achieves consistent performance as training
iterations progress in spite of same visit ratio as 1 around 100 epoch and 350 epoch. Besides, the
makespans of both training epochs are very close. Case #2 is relatively easier environment than case
#1 in that more vehicles are deployed to serve same number of customers.

08 10
— Difficulty

Train
N,=[3,20] o )
Nc=(25,400] o4 ! 00

0.0 0.0

Test #1 o B o
Ny=5 :
Ne=100 0] 7" ™ w0

Test #2 0.98 30
Ny, =10
N =100

Test #3
Nv =20 0.8 80 . 06

Ne=400 o7 w o VY

0 100 200 300 400 0 100 200 300 400

(a) Reward & Cover (b) Makespan (c) Death ratio (D) Number of refueling

Figure 6: Performance curves of training (1st row) and testing (2nd, 3rd and 4th rows). Note that we
plot a reward curve and cover ratio curves in 1st column for training and tesing, respectively.

A.7 PSEUDO CODE

Simulation: Problem Instance generation We generate random mCVRP instances and use these
training instances to train the proposed model. For training, we randomly select the number of
vehicles, customers, and refueling stations. We randomly assign these entities over the grid world
with the distance between each grid cell being 1. When transforming the snapshot of the mCVRP
to a graph, we use the Manhattan distance between the two cells as the edge weight. In addition,
the speed of each vehicle is set to be 1; thus, each vehicle moves over one cell during a single
time-tic. Although the world is represented as discrete gird, the mCVRP problem’s state transition is
event-based. Whenever the agent reaches the assigned customer, the event occurs, and all the edge
distance is updated.

Initially, this grid world is developed to use the trained policy for search and rescue problems, seeking
distributed victims over the grid-world. Because each vehicle (drone) can search a specific zone
within a certain amount of time, using a cell-based grid world is a reasonable choice.
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Once the policy is trained, it can be used for both a discrete world or a continuous world because these
environments can be transformed into a graph without any difference. We validated the proposed
method using CVRP and TSP instances defined over the continuous state to compare the performance
of the proposed model to other deep baseline line models. Other deep baseline line models all use the
continuous state.

To boost training, we vary the difficulty level of random mCVRP instances during training process
(see Algorithm @)). For the curriculum instance generation in line 9, we compute N, the number
of customers which are assumed to be visited already, as N = N. X (1 — 2 x currLevel /10).
Then, we choose N, tasks randomly and mark as visited and distribute N, for all agents’ visit
number ¢°.

Algorithm 2 Training instance generation

1: Generate random problem instances N,,, N, N, 22, 20,
2: currLevel < 0

3: for itraining =1..., Ntraining do

4: for each 100 training iterations do

5: currLevel < currLevel + 1

6: end for

7: Generate a random number p..,,-- ~ UJ[0, 1]

8: if peyrr > 0.5 then

9: Curriculum instance generation
10: else
11: Non-curriculum instance generation (followed by line 1)
12: end if
13: end for

Simulation: Episode generation As a medium for the interaction of the two components such as
environment and the GRLTS, simulation conducts the agents’ actions and stores the state transitions
which are used to update the GRLTS. Starting from the problem instance generation (Algorithm (2)),
simulation assigns the agents’ assignment as azgt using the action probability 7 (- \ozgt) computed

from the proposed GRLTS. Simulation computes the agent agt’s transition time A,y as follow:
Aqggr = Dist(@ig,atg) fag = Dist(x}, ., alg;) (13)

where velocity of agents are constant as 1 and distance between ¢ and j Dist(i,j) can be the
Manhattan distance or Euclidean distance.
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Algorithm 3 Episode generation

1: Initialize problem instances (based on Algorithm 2)
2: termination, done < False,t + 0, memory + ()
3: idleAgts < {1,2,...,N,}, actingAgts < ()
4: while termination do
5: for agt € idleAgts do
6: Send an obervation IT,4;0,,, to a GRLTS
7: Choose an action a, gt ™ 7(-|ot 4¢) Where an action probability is from GRLTS
8: Assign the action aflgt to the agent
9: end for
10: Compute and update transition time A,y for agt € idle Agts (Equation )
11: actingAgts < {agt|Aygr = mingg: Agge } for all agents
12: t < t+mingg Agge
13: for agt € actingAgts do
14: Perform the recently assigned action af,,,, assigned by 7(-|of,,;)
15: Observe the observation o, ;, reward 7/, ,, and done
16: Append a state transition tuple < ¢/, ofllgt, aggt, Thgts Obge > to memory

17: end for
18: if done then

19: termination < True
20: else

21: idleAgts + actingAgts
22: end if

23: end while

RL networks: GRLTS Most of algorithms in the RL model is explained the paper so that we focus
on the interaction between simulation and GRLTS networks and internal message exchanges.

Algorithm 4 GRLTS

: Receive an observation Hagtof1 gt at time ¢ from simulation (line 6 of Algorithm

1

2: Generate G*(°) with an input of observations IT;0’
3: for node embedding iteration 7 = 1, ..., Nj,, do
4 Compute connectivity Cj; for all nodes 4, j:

"o VYieVruV,
For agent nodes n, C,,; = {f ’ vj. E VT R’
o0, J A-

For refueling nodes r, Cy; = F,Vj € V
For task nodes ¢, Cy; = 5,Vj € V

5: Store the node embedding vector h#* at memeory;

6: Update the connected edges following Equation (3)

7: Aggregate the incoming edge featured at each nodes following Equation (4)
8: Update the node feature with the node updator function ¢,

9: end for

10: Compute Q(h{', a) for agent i where a € A(o;) = {v € {VR UVy}|Cyp = 1}
)

Saca(o;) xp(Q(h#.a))

12: Send the action probability 7 (a|o;) to simulation

11: Compute 7 (alo;) =
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