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Abstract001

With the rapid advancement of artificial intelli-002
gence technology, scams have become increas-003
ingly sophisticated and pose a growing threat004
to society, resulting in tremendous monetary005
losses. Detecting scams is a challenging task006
that remains under-explored due to the lack of007
large-scale real-world datasets. While recent008
advances in Large Language Models (LLMs)009
have made it feasible to generate synthetic010
data for model distillation, models trained on011
such data often struggle with real-world at-012
tacks. This limitation stems from synthetic013
data’s insufficient diversity in covering various014
defrauding techniques, outdated knowledge in015
LLMs that may not reflect recent scam patterns,016
and potential biases that cause over-reliance017
on non-robust features rather than generaliz-018
ing effectively to real-world scenarios. We019
propose ALERT (Adversarial LLM-based En-020
hanced Robust Training), a novel approach that021
leverages LLMs to generate diverse, bias-free022
adversarial samples, thereby enhancing the ro-023
bustness of scam detection models. Our ex-024
perimental results demonstrate that our model,025
trained exclusively on synthetic data, achieves026
high F1 scores when generalizing to unseen027
real-world data from Korea and China.028

1 Introduction029

Scam detection has become increasingly critical030

in today’s digital landscape as fraudulent activities031

continue to evolve and proliferate globally. Re-032

cent reports indicate annual losses in the billions033

of dollars due to various forms of scams (Federal034

Trade Commission, 2023), highlighting the urgent035

need for robust detection systems. However, devel-036

oping effective scam detection models faces two037

major challenges: the scarcity of large-scale, real-038

world datasets for training, and the dynamic nature039

of fraudulent schemes that continuously adapt to040

bypass existing security measures.041

Traditional machine learning approaches to scam042

detection, while achieving high performance met- 043

rics on existing datasets, often rely heavily on spe- 044

cific keywords or patterns, making them vulnerable 045

to evasion by adaptive scammers. Recent work by 046

Wood et al. (2023) analyzed scam baiting calls to 047

identify common scam stages and social engineer- 048

ing techniques, demonstrating the scripted nature 049

of many phone scams. Prior work by Bajaj et al. 050

(2019) explored linguistic features for fraud detec- 051

tion in telephone conversations, demonstrating the 052

potential of analyzing syntactic and semantic pat- 053

terns. Recent evaluations of Large Language Mod- 054

els (LLMs) for scam detection by Shen et al. (2024) 055

revealed that while these models show promise in 056

understanding sophisticated scammer tactics, they 057

struggle with consistency and recall, potentially 058

missing up to 28% of fraudulent activities. Ad- 059

ditionally, Chang et al. (2024) demonstrated that 060

LLMs remain particularly vulnerable to adversar- 061

ial examples, where small modifications to scam 062

messages can lead to misclassification. The lim- 063

ited availability of real-world training data further 064

hampers the development of more sophisticated 065

detection systems. 066

To address these limitations, we propose ALERT 067

(Adversarial LLM-based Enhanced Robust Train- 068

ing), a novel approach that leverages LLMs to 069

generate diverse and up-to-date synthetic training 070

data. Our method combines publicly available 071

government scam alerts with a adversarial train- 072

ing technique to create both label-preserving and 073

label-altering adversarial samples. This approach 074

ensures that our synthetic data capture the latest 075

fraudulent tactics while remaining free from the 076

biases presenting in existing datasets. 077

Our experimental results demonstrate that our 078

distilled model (ALERT), trained exclusively on 079

synthetic data, achieves high F1 scores when be- 080

ing evaluated on unseen real-world datasets from 081

Korea and China, showcasing its robustness and 082

generalizability. Our main contributions are: 083
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1. A novel approach for generating diverse and084

up-to-date synthetic data using LLMs and pub-085

lic government scam alerts; and086

2. A adversarial training technique that produces087

bias-free adversarial samples.088

The outline of this paper details our technical so-089

lutions: Section 2 reviews related work in scam de-090

tection systems and adversarial training. Section 3091

formally describes the problem setting that ALERT092

addresses. Section 4.2 directly addresses the chal-093

lenges of limited diversity and outdated knowledge094

through background-conditioned generation. Sec-095

tion 4.3 introduces our adversarial training frame-096

work for NLP, Section 4.4 presents our LLM-based097

adversarial sample generation approach that helps098

produce bias-free adversarial samples and helps099

improve the robustness of the model. We evaluate100

our approach in Section 5 using real-world scam101

datasets from multiple countries. Section 7 dis-102

cusses the limitations of our approach and potential103

future work. Section 8 concludes the paper with104

discussion of limitations and future work.105

2 Related Work106

2.1 Scam Detection Systems107

Traditional machine learning approaches to scam108

detection have primarily focused on feature engi-109

neering and classification techniques. Wood et al.110

(2023) analyzed scam baiting calls to identify com-111

mon scam stages and social engineering techniques,112

demonstrating the scripted nature of many phone113

scams. Bajaj et al. (2019) demonstrated success114

using linguistic markers and sentiment analysis115

for fraud detection in financial services telephone116

conversations, achieving up to 69% accuracy with117

explainable models. However, these methods typi-118

cally rely on manually crafted features or specific119

keywords to identify fraudulent activities. While120

such approaches have shown high performance121

metrics on the in-domain datasets (Shen et al.,122

2024), they often fail to generalize to new scam123

variants and can be easily circumvented by adap-124

tive attackers who modify their language patterns.125

Recent work has explored the potential of Large126

Language Models (LLMs) for scam detection.127

Shen et al. (2024) evaluated various LLMs includ-128

ing GPT-4, GLM4, and ERNIE-3.5, achieving high129

precision (over 0.98) but relatively low recall (as130

low as 0.72) on real-world data. Chang et al. (2024)131

further investigated LLM vulnerabilities in scam132

detection. Their analysis revealed significant chal- 133

lenges in the form of data scarcity and bias in syn- 134

thetic datasets, limited recall on sophisticated scam 135

variants, and vulnerability to adversarial manipu- 136

lation. Sehwag et al. (2024) conducted a compre- 137

hensive study evaluating LLMs’ vulnerability to 138

various scam tactics, establishing a baseline frame- 139

work using the FINRA taxonomy. Their work re- 140

vealed distinct susceptibility patterns across differ- 141

ent models and scenarios, emphasizing the need 142

for improvements in robustness against scams. 143

2.2 Adversarial Training 144

Adversarial training has emerged as a powerful 145

technique for enhancing model robustness, particu- 146

larly in computer vision applications (Madry et al., 147

2017). Madry’s framework formulated adversarial 148

training as a minimax optimization problem on the 149

cross-entropy loss (see Sec. 4.3 for more details). 150

Under this framework, one-step gradient-based 151

variants like Fast Gradient Sign Method (FGSM) 152

(Goodfellow et al., 2015) assumed an ℓ∞ norm- 153

bounded adversary and generates adversarial ex- 154

amples using gradient sign information. Build- 155

ing on this work, Fast Gradient Method (FGM) 156

(Dong et al., 2018) extended the approach to ℓ2 157

norm-bounded perturbations for improved stabil- 158

ity. More sophisticated iterative approaches like 159

Projected Gradient Descent (PGD) (Madry et al., 160

2017) leveraged local loss function linearity and it- 161

eratively refined perturbations through constrained 162

gradient ascent. Recent efficiency-focused variants 163

such as FreeAT (Shafahi et al., 2019) and YOPO 164

(Zhang et al., 2019) offered different computational 165

trade-offs while maintaining robustness guarantees. 166

However, applying these methods to natural lan- 167

guage processing (NLP) presents unique challenges 168

due to the discrete nature of text data and the re- 169

quirement to maintain semantic coherence in ad- 170

versarial examples (Ribeiro et al., 2018). Unlike 171

continuous domains where small perturbations can 172

preserve semantic meaning, discrete text transfor- 173

mations must carefully balance adversarial strength 174

with linguistic validity. 175

Current approaches to adversarial training in 176

NLP typically operate in the embedding space 177

rather than directly on discrete text inputs (Miy- 178

ato et al., 2017; Zhu et al., 2020). While this serves 179

as an effective regularization strategy, it may not 180

adequately address real-world adversarial scenarios 181

where attackers can directly manipulate the input 182

text. Furthermore, existing methods using neural 183
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machine translation for paraphrasing often intro-184

duce structural biases that models can exploit as185

non-robust features.186

Our work advances the state-of-the-art by:187

• Operating directly in natural language space188

rather than embedding space;189

• Leveraging LLMs to generate semantically190

meaningful adversarial examples;191

• Incorporating both label-preserving and label-192

flipping adversarial samples; and193

• Using model explanations to guide adversarial194

sample generation.195

3 Problem Formulation196

In this section, we formally describe the problem197

setting that ALERT addresses and present our tech-198

nical approach. We formulate scam detection as a199

binary classification problem where the input x is200

a text sequence (e.g., phone call transcript, SMS201

message, or social media post) and the output y is202

a binary label indicating whether the text is fraud-203

ulent or legitimate. Traditional approaches to this204

problem typically rely on Empirical Risk Minimiza-205

tion (ERM):206

min
θ

E(x,y)∼D [L(fθ(x), y)]

where the function fθ denotes our model parame-207

terized by θ, and L is the binary cross entropy loss208

measuring prediction error.209

4 Methodology210

4.1 Challenges in Synthetic Data Generation211

Recent work has explored using LLMs to gener-212

ate synthetic training data for model distillation.213

However, our experiments reveal a significant gen-214

eralization gap: while a simple TF-IDF baseline215

achieves nearly 1.00 F1 score on synthetic data, its216

performance drops dramatically to approximately217

0.34 F1 score when evaluated on real-world sam-218

ples. We attribute this poor generalization to three219

key factors:220

1. Limited diversity and outdated knowledge in221

the synthetic data, which fail to capture the222

full spectrum of defrauding techniques;223

2. Inherent biases in the generated data that lead224

models to rely on superficial features (e.g.,225

customer service clichés in legitimate mes- 226

sages or financial terminology in fraudulent 227

ones) rather than robust semantic indicators; 228

and 229

3. Vulnerability to evasion by attackers who 230

can modify their language patterns or exploit 231

known biases in the synthetic training data 232

(Shen et al., 2024; Sehwag et al., 2024; Chang 233

et al., 2024). 234

As illustrated in Figure 1, models trained on 235

basic synthetic data often learn suboptimal decision 236

boundaries that fail to capture the true distribution 237

of scam patterns. To address these challenges, we 238

propose two complementary approaches: 239

1. Background-conditioned generation to ensure 240

diversity and up-to-date coverage of scam pat- 241

terns; and 242

2. LLM-based adversarial training to generate 243

samples that are free from systematic biases. 244

4.2 Background-Conditioned Generation 245

To address the challenge of limited diversity and 246

outdated knowledge, we condition our data gen- 247

eration on a background distribution B of recent 248

government scam alerts. Using the law of total 249

expectation, we can rewrite our objective as: 250

min
θ

Eb∼B
[
E(x,y)∼D|b [L(fθ(x), y)]

]
where b represents specific scam alert backgrounds 251

sampled from B, and (x, y) ∼ D|b denotes syn- 252

thetic samples generated conditioned on back- 253

ground b. This formulation ensures generated sam- 254

ples reflect current fraud tactics by conditioning 255

on recent government alerts, while the hierarchical 256

sampling process promotes diversity in the syn- 257

thetic data. For notational simplicity in the fol- 258

lowing adversarial training formulations, we will 259

use E(x,y)∼D with the understanding that D rep- 260

resents our synthetic distribution via background- 261

conditioned generation. 262

4.3 Adversarial Training Framework 263

Traditional approaches to this problem typically 264

rely on Empirical Risk Minimization (ERM), but 265

models trained using this approach often lack ro- 266

bustness against adversarially crafted examples 267

(Biggio et al., 2013). We present our framework in 268

three progressive steps: 269
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Suboptimal Boundary
(Biased Synthetic Data)

LLM-guided Generation
(With Adversarial Samples)

Optimal Boundary
(All Real-world Data)

Real Legitimate
Real Scam

Synthetic Legitimate
Synthetic Scam

Adversarial Legitimate
Adversarial Scam

Optimal Boundary
Learned Boundary

Figure 1: Comparison of decision boundaries in scam detection: (Left) Models trained on biased synthetic data
learn suboptimal decision boundaries (dotted line) that rely on superficial features, leading to poor generalization.
(Middle) Background-conditioned generation ensures diverse and up-to-date synthetic data, while LLM-guided
adversarial samples help create more robust decision boundaries by challenging the model with difficult edge
cases. (Right) Optimal boundary learned from real-world data, demonstrating how our adversarial approach better
approximates true scam detection patterns.

To address the remaining challenge of systematic270

biases, we propose an adversarial training approach271

that generates samples that are: (1) diverse in their272

presentation of scam tactics, (2) aligned with latest273

fraud patterns, and (3) free from systematic biases274

that could be exploited by attackers.275

4.3.1 Adversarial Training in Continuous276

Domains277

The theoretical foundation of adversarial training278

was formalized by Madry et al. (2017) as a saddle-279

point optimization problem:280

min
θ

E(x,y)∼D

[
max
δ∈S

L(fθ(x+ δ), y)

]
, x ∈ Rd,

(1)281

where θ represents model parameters, (x, y) are282

input-label pairs from distribution D, δ denotes283

adversarial perturbations within set S, and L is the284

loss function. The perturbation set S is typically285

defined as:286

S = {δ ∈ Rd : ∥δ∥ ≤ ϵ}, (2)287

where ϵ constrains perturbation norm to preserve288

semantic meaning. However, this formulation as-289

sumes that x is continuous (common in image do-290

mains), and cannot be directly applied to textual291

data.292

4.3.2 Adversarial Training in Embedding293

Space for Text Classification294

For text classification, the input X =295

[x1, x2, . . . , xn] is typically represented as a296

sequence of one-hot vectors, making it impossible 297

to apply small continuous perturbations directly. 298

A common alternative is to perform adversarial 299

training in the embedding space: 300

min
θ

E(X,y)∼D

[
max
δ∈S

L(fθ(Z+ δ), y)

]
(3) 301

where Z = WX is the embedding of X given an 302

embedding matrix W. While this method mimics 303

the effect of adversarial training (Zhu et al., 2020), 304

it does not provide explicit adversarial examples 305

in the text space—examples that are crucial for 306

reflecting real-world defrauding tactics. 307

4.3.3 Adversarial Training in Discrete Text 308

Space 309

Instead of relying on the embedding space, we pro- 310

pose generating adversarial samples directly in the 311

discrete text domain. This approach better reflects 312

real-world scenarios where attackers manipulate 313

actual text rather than abstract embeddings. 314

min
θ

E(X,y)∼D

[
max

(X′,y′)∈V∗
L(fθ(X

′), y′)

]
315

subject to (X′, y′) ∈ C(X) (4) 316

where V∗ denotes the set of all possible text se- 317

quences drawn from vocabulary V , and C(X) rep- 318

resents the set of valid text-label pairs that are se- 319

mantically related to X. Note that we relax the con- 320

straint to allow the adversarial sample to be label- 321

preserving (y′ = y) or label-flipping (y′ = ¬y): 322
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4.4 LLM-based Adversarial Sample323

Generation324

While the discrete text formulation better captures325

the nature of real-world attacks, the inner maxi-326

mization of Eq.(4) presents a significant challenge327

due to the combinatorial nature of discrete text328

modifications. To address this, we propose lever-329

aging an LLM-based generator G that produces330

adversarial examples through a guided generation331

process. Our modified objective becomes:332

min
θ

E(X,y)∼D

[
E(X′,y′)∼G(Φ)L(fθ(X

′), y′)
]

(5)333

where Φ = (X, sg(fθ(X)), sg(h(X, θ)), y) and334

sg(·) indicates that no gradients flow through these335

terms during optimization, as they are only used to336

guide the LLM’s generation process.337

Figure 2 provides an overview of our LLM-based338

adversarial training framework. The generator G339

uses a natural language prompt that incorporates340

multiple guidance signals: the original text se-341

quence X, the model’s current prediction fθ(X),342

token-level explanations h(X, θ) derived via Inte-343

grated Gradients (Sundararajan et al., 2017), and344

the desired target label y. These explanations serve345

as a proxy for the model parameters θ, providing in-346

terpretable feedback about which parts of the input347

most influenced the model’s decision.348

Our generator is designed to produce adversar-349

ial samples that satisfy three key criteria: main-350

taining semantic relevance to the original sample,351

effectively challenging the current model’s deci-352

sion boundaries, and either preserving or flipping353

the original label as specified. As shown in Algo-354

rithm 1 in the Appendix, for each training sample,355

we generate multiple adversarial examples repre-356

senting both scam and legitimate variations. This357

diverse set of adversarial samples helps ensure ro-358

bust model training. Please refer to Section 5.1.2359

for more details on the adversarial sample genera-360

tion process. The complete prompt template and361

examples of generated adversarial samples can be362

found in Appendix D.363

5 Experiments364

We train our scam detector model exclusively on365

synthetic data and synthetic adversarial samples,366

without using any real-world data during training.367

This allows us to evaluate how well our approach368

generalizes to completely unseen scenarios. We369

test the model’s performance on three distinct test 370

sets: The held-out synthetic test set associated with 371

the latest scam alerts, the unseen China Telecom 372

Fraud dataset, and the unseen KorCCVi dataset. 373

All BERT-based experiments are conducted on 374

an NVIDIA GeForce RTX 3090 GPU with 24GB 375

of RAM, while TF-IDF experiments are run on a 376

single core of an Intel Xeon Gold 6138 CPU @ 377

2.00GHz with 8GB RAM allocation. For repro- 378

ducibility, we use a fixed random seed of 42 across 379

all experiments. 380

5.1 Datasets and Setup 381

5.1.1 Synthetic Data Generation 382

We collected 224 scam alerts (2017-2025) from the 383

Hong Kong Anti-Deception Coordination Centre 384

website1. Using these alerts as background context, 385

we employed GPT-4o (OpenAI, 2024) to generate 386

40 synthetic samples per alert (20 scam, 20 legiti- 387

mate), resulting in 8,960 total samples. Within each 388

category, half were user-initiated and half opposite 389

party-initiated conversations. We split the synthetic 390

dataset chronologically based on the scam alerts - 391

the first 136 alerts (5,440 samples) form the train- 392

ing set, the next 44 alerts (1,760 samples) form 393

the validation set, and the final 44 alerts (1,760 394

samples) form the test set. This time-based split 395

ensures that the model is evaluated on scamming 396

tricks and scenarios that were unseen during train- 397

ing. 398

The synthetic data span multiple communication 399

channels, including phone calls, SMS, email, social 400

media, and instant messaging. To ensure structured 401

and consistent output, we implemented a Pydantic- 402

based template for GPT-4o (see Appendix C for 403

the complete prompt template). 404

5.1.2 Adversarial Sample Generation 405

For adversarial sample generation, we developed a 406

prompting strategy incorporating the original text, 407

model prediction, token-level explanations via in- 408

tegrated gradients (Kokhlikyan et al., 2020), and 409

desired target label. Using Captum, we identified 410

the top five tokens with highest positive attribution 411

as scam indicators and top five with lowest negative 412

attribution as legitimate indicators. 413

When generating adversarial samples for a tar- 414

get label, we prompted the LLM (GPT-4o (Ope- 415

nAI, 2024) or Gemini Flash 2.0 (Google Deep- 416

Mind, 2024)) to strategically incorporate tokens 417

1https://www.adcc.gov.hk/en-hk/alerts.html
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Input Sample
(X, y) ∈ D

Scam Detector
fθ

Token-level
Explanations h

LLM Generator
G(Φ)

Label-Preserving/
Label-Flipping

Adversarial Samples

Model Update
minθ L

fθ(X)

h(X, θ)

(X, y)

X

(X, y)

(X′, y′)

Figure 2: Overview of our LLM-based adversarial training framework. The scam detector generates token-level
explanations via integrated gradients, which guide the LLM in creating adversarial samples. For adversarial
legitimate samples, the LLM emphasizes scam-indicating words while minimizing legitimate indicators, and vice
versa for adversarial scam samples. The model parameters are updated using both original and generated adversarial
samples that challenge the decision boundary.

associated with the opposite label while minimiz-418

ing tokens associated with the target label. For419

example, when generating adversarial legitimate420

samples, we incorporate tokens that indicate scam421

content while avoiding tokens that indicate legiti-422

mate content. This creates challenging but seman-423

tically coherent adversarial examples to improve424

model robustness. Example prompts and responses425

are in Appendix D.426

5.1.3 China Telecom Fraud Dataset427

We utilize the CCL2023 telecom network fraud428

dataset (Li et al., 2024) soley for testing purposes.429

The original dataset comprises 12,506 Chinese text430

samples across five categories: normal messages431

(8,412), public security fraud (987), loans (1,001),432

impersonating customer service (1,106), and im-433

personating leadership acquaintances (1,000).434

The dataset underwent several preprocessing435

steps as described by Li et al. (2024), includ-436

ing text segmentation, removal of stop words,437

and anonymization of sensitive information (e.g.,438

names, ID numbers, phone numbers) using regular439

expressions. Software names were replaced with440

the generic term "software" and URLs were stan-441

dardized to "URL". The dataset was also processed442

to correct common Chinese misspellings and stan-443

dardize text length.444

For consistency with our English-focused ap-445

proach, we translated all samples to English using446

GPT-4o while preserving the original formatting447

and structure (see Appendix B for translation de-448

tails). We then consolidated the four fraud cat-449

egories (public security, loans, customer service450

impersonation, and leadership acquaintances im-451

personation) into a single "scam" class. After re- 452

moving empty translations and duplicates, our final 453

dataset contains 11,636 samples, with 3,992 scam 454

samples and 7,644 legitimate messages. 455

5.1.4 KorCCVi Dataset 456

For testing purposes, we use the KorCCVi v2.1 457

dataset (Moussavou Boussougou and Park, 2023), 458

which contains transcripts of Korean phone con- 459

versations. The dataset comprises 2,927 samples 460

across two classes: voice phishing (686 samples, 461

23.7%) and non-voice phishing (2,231 samples, 462

76.3%). The voice phishing samples were collected 463

from the Financial Supervisory Service of Korea 464

(FSS), while the non-voice phishing samples were 465

sourced from the National Institute of Korean Lan- 466

guage (NIKL). 467

Following Moussavou Boussougou and Park 468

(2023), the dataset underwent several preprocess- 469

ing steps: audio transcription using Google’s Cloud 470

Speech-to-Text API, data cleaning to remove per- 471

sonal information and irrelevant content, and tok- 472

enization using the MeCab-ko morphological ana- 473

lyzer with a customized dictionary. The transcribed 474

text was also normalized by removing special char- 475

acters and standardizing spacing. For our testing 476

purposes, we used GPT-4o to translate the Korean 477

transcripts to English (see Appendix B for trans- 478

lation details), enabling broader accessibility and 479

evaluation of our approach. 480

5.2 Model and Baselines 481

We evaluate our approach against several baseline 482

models, including both traditional machine learn- 483

ing and transformer-based approaches: 484
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TF-IDF As a traditional baseline, we implement485

a TF-IDF vectorizer coupled with a linear logistic486

regression classifier. The TF-IDF vectorizer is con-487

figured with the following parameters: maximum488

of 50,000 features, n-gram range of 1-3, English489

stop words removal, document frequency thresh-490

olds (max_df=0.95, min_df=5), and sublinear term491

frequency scaling. While we explored incorporat-492

ing TF-IDF into our adversarial training framework493

through an iterative training approach (see Sec-494

tion 6.1.1 for detailed analysis), its fundamental495

limitations with fixed statistical features and lack496

of expressiveness make it incompatible with our497

methodology.498

BERT-based Models We experiment with BERT-499

based models as our transformer backbone. We500

use the Hugging Face Transformers library (Wolf,501

2019) to load the BERT model (BERT-base-502

uncased, 110M parameters) and fine-tune it for503

our task. The transformer models are fine-tuned504

using a maximum sequence length of 512 tokens505

(larger than all samples in the synthetic dataset D),506

batch size of 64, learning rate of 3e-5, and trained507

for 10 epochs.508

To handle the text length mismatch between syn-509

thetic and real-world data, particularly for the Ko-510

rCCVi dataset which contains dialogues exceed-511

ing 15,000 words (far beyond BERT’s maximum512

sequence length of 512 tokens), we implement a513

sliding window approach. The text is processed in514

chunks of 200 words to match the training data dis-515

tribution, with an overlap of 20 words between con-516

secutive chunks. The final prediction is determined517

by taking the mean of all chunk-level predictions.518

For adversarial training, for each original sample519

in a mini-batch, we generate 1 label-preserving and520

1 label-flipping sample. The LLM-based generator521

uses a temperature of 0.7 and top-p of 0.9 for con-522

trolled diversity in generated samples. We included523

a warmup period of 3 epochs before introducing524

adversarial samples.525

6 Results526

Table 1 reports the test performance comparison be-527

tween ALERT and different baseline models across528

datasets, showing results associated with the model529

checkpoint that achieved the best validation per-530

formance. Our experimental results demonstrate531

several key findings:532

Strong Generalization to Unseen Real-World 533

Data Our proposed approach (BERT + SW + 534

Adv.) consistently outperforms baselines across 535

datasets, achieving 86.37% macro-F1score and 536

81.60% macro-F1 score on the China Telecom and 537

KorCCVi datasets respectively, demonstrating ef- 538

fective cross-domain and cross-lingual generaliza- 539

tion. This further supports the findings of Wood 540

et al. (2023), which suggests that scam techniques 541

follow consistent patterns (e.g., from establishing 542

authority to requesting payment) across countries. 543

Strong Temporal Generalization on Unseen 544

Scam Techniques While all models perform well 545

on synthetic data (0.97+ F1-score), TF-IDF’s dra- 546

matic performance drop on real-world KorCCVi 547

data (0.34 F1-score) reveals it only learns surface- 548

level patterns. TF-IDF’s reliance on keyword 549

matching makes it vulnerable to natural language 550

variations, causing it to be unsuitable for deploy- 551

ment. 552

Interesting Dataset-Specific Patterns On the 553

China Telecom dataset, we observe that the base- 554

line TF-IDF (0.79 F1-score) initially outperforms 555

the basic BERT model (0.77 F1-score) without 556

adversarial training. This performance gap likely 557

stems from BERT’s tendency to overfit due to its 558

large number of parameters, while the simpler TF- 559

IDF model maintains better generalization on this 560

dataset’s straightforward patterns. However, our 561

complete BERT + SW + Adv. model ultimately 562

achieves the best performance, suggesting that ad- 563

versarial training helps regularize the model and 564

prevent overfitting while capturing semantic fea- 565

tures beyond simple keyword matching. 566

The consistent performance gains across unseen 567

real-world datasets demonstrate the effectiveness 568

of our adversarial training framework. However, 569

the persistent gap between synthetic and real-world 570

performance suggests opportunities for further re- 571

finement of our synthetic data generation process. 572

6.1 Ablation Studies 573

6.1.1 TF-IDF with Iterative Training 574

To better understand the limitations of shallow 575

keyword-based methods with our adversarial train- 576

ing framework, we evaluated TF-IDF with iterative 577

adversarial training and sliding window by generat- 578

ing new adversarial samples each epoch and adding 579

them to a cumulative dataset for retraining. The 580

TF-IDF vectorizer and logistic regression classifier 581

were refit on this growing dataset. 582
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Dataset Model Acc. Macro-F1 Precision Recall N Pos. Neg.

Synthetic
Test

TF-IDF 0.9716 0.9716 0.9717 0.9716

1,760 896 896
TF-IDF + SW 0.9758 0.9758 0.9758 0.9758
BERT 0.9722 0.9722 0.9723 0.9722
BERT + SW 0.9770 0.9770 0.9770 0.9770
BERT + SW + Adv (Gemini Flash 2.0) 0.9675 0.9675 0.9680 0.9675
BERT + SW + Adv (GPT-4o) 0.9734 0.9734 0.9738 0.9734

China
Telecom

TF-IDF 0.7960 0.7865 0.7823 0.8095

11,636 3,992 7,644
TF-IDF + SW 0.7876 0.7793 0.7776 0.8062
BERT 0.7730 0.7686 0.7793 0.8094
BERT + SW 0.7578 0.7525 0.7611 0.7895
BERT + SW + Adv. (Gemini Flash 2.0) 0.8263 0.8185 0.8135 0.8442
BERT + SW + Adv. (GPT-4o) 0.8719 0.8637 0.8553 0.8821

KorCCVi

TF-IDF 0.3452 0.3391 0.5763 0.5507

2,927 686 2,231
TF-IDF + SW 0.7876 0.7793 0.7776 0.8062
BERT (Exceeds 512 token limit) - - - -
BERT + SW 0.7449 0.7184 0.7243 0.8095
BERT + SW + Adv. (Gemini Flash 2.0) 0.8550 0.8160 0.7968 0.8492
BERT + SW + Adv. (GPT-4o) 0.7960 0.7865 0.7823 0.8095

Table 1: Test performance comparison across different models and datasets, reporting results at the best validation
performance. SW denotes Sliding Window approach. N represents total number of samples, while Pos. and Neg.
show the number of scam and legitimate samples respectively. All metrics (Precision, Recall) are macro-averaged.
Best results are shown in bold.

Dataset Acc. Macro-F1 Precision Recall

Synthetic Test 0.92 0.92 0.92 0.92
China Telecom 0.79 0.78 0.78 0.80
KorCCVi 0.32 0.31 0.56 0.54

Table 2: Performance of TF-IDF with iterative adversar-
ial training and sliding window across datasets

Results in Table 2 show significant performance583

degradation, with KorCCVi’s F1 score dropping584

from 0.72 to 0.31 after adversarial training. This585

decline occurs because TF-IDF cannot capture se-586

mantic nuances in adversarial samples, leading to587

overfitting and signal dilution as adversarial exam-588

ples accumulate. These findings confirm that shal-589

low keyword-based methods are incompatible with590

our adversarial training approach, which requires591

models capable of processing complex semantic592

relationships.593

7 Limitations594

Our work has several limitations and opportunities595

for future research:596

Computational Efficiency API rate limits when597

calling Gemini-Flash 2.0 create significant over-598

head, with training taking 2.5 hours per epoch,599

which limits rapid experimentation and model it-600

eration. Future work could explore caching and601

reusing adversarial samples to improve efficiency.602

Fixed Generator Architecture Our formulation 603

(Equation 5) uses a fixed generator G during adver- 604

sarial training, unlike traditional frameworks with 605

jointly optimized generator-discriminator pairs. 606

Making the generator trainable through reinforce- 607

ment learning while preserving LLM benefits is a 608

promising direction. 609

Language Limitations The current English- 610

focused implementation requires translating Ko- 611

rCCVi v2 and Chinese telecom fraud datasets, po- 612

tentially losing language-specific nuances. Direct 613

multi-lingual adversarial training should be ex- 614

plored. 615

8 Conclusion 616

We presented a novel adversarial training frame- 617

work for scam detection that leverages LLM- 618

generated synthetic data and adversarial exam- 619

ples. Our approach uses model explanations to 620

guide LLM generation of targeted adversarial ex- 621

amples, improving model robustness without re- 622

lying on real-world training data. Experimental 623

results demonstrate strong cross-domain general- 624

ization to unseen datasets, while ablation studies 625

highlight the importance of deep learning models 626

over simpler approaches. While opportunities re- 627

main for improving efficiency and multilingual ca- 628

pabilities, our work provides a promising direction 629

for robust scam detection systems. 630
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9 Ethical Considerations631

Dual-Use Concerns While improving model ro-632

bustness, our adversarial example generation tech-633

niques could be misused to craft detection-evading634

scams. Future work should explore restricting ac-635

cess while maintaining security research benefits.636

Robustness Trade-offs Defending against637

known attacks may introduce vulnerabilities to638

novel ones. Comprehensive evaluation frameworks639

are needed to ensure balanced robustness across640

different scam tactics.641
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Algorithm 1 Adversarial Training (Detailed)

1: Input: Dataset D = {(Xi, yi)}Ni=1, generator G, discriminator fθ, number of adversarial samples k
2: Initialize: Model parameters θ
3: for each training iteration do
4: for each mini-batch B ⊂ D do
5: for each sample (X, y) in B do
6: Compute model explanation h for X
7: Generate scam samples: {(X(j)

scam, yscam)}kj=1 ∼ G(· | X, h, y=scam)

8: Generate legitimate samples: {(X(j)
legit, ylegit)}

k
j=1 ∼ G(· | X, h, y= legitimate)

9: Form augmented set: Baug ← {(X, y)} ∪ {(X(j)
scam, yscam)}kj=1 ∪ {(X

(j)
legit, ylegit)}

k
j=1

10: end for
11: Compute loss: L = 1

|B|(1+2k)

∑
(X∗,y∗)∈Baug

Ladv(fθ(X∗), y∗)

12: Update parameters θ via gradient descent
13: end for
14: end for

A Detailed Algorithm 749

Algorithm 1 provides a detailed view of our adversarial training procedure. For each training sample, we 750

generate k adversarial examples each for both scam and legitimate classes based on model explanations. 751

In our experiments, we set k = 1 to balance computational costs while still achieving effective adversarial 752

training. 753

B Dataset Translation Details 754

For translating the Chinese telecom fraud dataset and Korean KorCCVi v2 dataset to English, we used 755

GPT-4o with the following prompt for each text sample: 756

Translate the following [Chinese/Korean] text to English. Please preserve the original 757

formatting, line breaks, and structure as this will be used for machine learning training: 758

759

{text} 760

This prompt was chosen to ensure consistent translation while maintaining the structural integrity of the 761

data for machine learning purposes. The translation was applied to all 12,506 original Chinese samples 762

and 2,927 Korean samples before further preprocessing steps. 763

C Synthetic Data Generation Prompt Template 764

For generating synthetic dialogue data, we use a structured prompt template implemented as Pydantic 765

models. The template consists of two main classes: SimulateDialogue for individual dialogues and 766

SimulateDialogues for generating sets of dialogues. Below is the complete prompt template structure: 767

The complete implementation includes detailed field descriptions and validation: 768
769

1 class SimulateDialogue(BaseModel): 770
2 role: str = Field( 771
3 description="The role of the opposite side perceived by the user in the dialogue. e.g. 772

Insurance Customer Service Staff, Bank Customer Service Staff, Immigration Department 773
Staff, High speed rail staff, government official, etc. Don’t directly mention whether it 774
is a scammer or legitimate here." 775

4 ) 776
5 channel: Literal[ 777
6 "SMS", "Email", "Phone", "Instant Messaging", 778
7 "Social Media", "Other" 779
8 ] = Field( 780
9 description="The channel through which the dialogue is conducted. It should be one of the 781

following: SMS, Email, Phone, Instant Messaging, Social Media, Other." 782

11



10 )783
11 dialogue: str = Field(784
12 description=’The dialogue between the opposite party and the user, dialogues should be785

designed to mimic the defrauding trick, making it plausible for a normal citizen to fall786
into the trap. Ensure that the dialogues are not too short. Avoid directly mentioning "787
scammer" or "fraudster" in the dialogue.’788

13 )789
14790
15 class SimulateDialogues(BaseModel):791
16 malicious_dialogues_initiated_by_opposite_side: list[SimulateDialogue] = Field(792
17 description="""793
18 - Simulate Malicious Dialogues Generate 10 diverse and realistic dialogues that simulate794

conversations between the scammer (represented as "opposite party") and a user (795
represented as "user") using the user’s provided defrauding trick as the background in796
different communication channels.797

19 - These dialogues should be initiated by the opposite party.798
20 """799
21 )800
22 malicious_dialogues_initiated_by_user: list[SimulateDialogue] = Field(801
23 description="""802
24 - Simulate Malicious Dialogues Generate 10 diverse and realistic dialogues that simulate803

conversations between the scammer (represented as "opposite party") and a user (804
represented as "user") using the user’s provided defrauding trick as the background in805
different communication channels.806

25 - These dialogues should be initiated by the user.807
26 """808
27 )809
28 benign_dialogues_initiated_by_opposite_side: list[SimulateDialogue] = Field(810
29 description="""811
30 - Simulate Benign Dialogues Generate 10 diverse and realistic dialogues that simulate812

conversations between the "opposite party" and the "user" related to the user’s provided813
background in different communication channels.814

31 - These dialogues should be initiated by the opposite party.815
32 """816
33 )817
34 benign_dialogues_initiated_by_user: list[SimulateDialogue] = Field(818
35 description="""819
36 - Simulate Benign Dialogues Generate 10 diverse and realistic dialogues that simulate820

conversations between the "opposite party" and the "user" related to the user’s provided821
background in different communication channels.822

37 - These dialogues should be initiated by the user.823
38 """824
39 )825826

The template is used with a system prompt that sets the context for dialogue generation:827

System Prompt: Simulate Dialogues for Defrauding Tricks Detection using the user’s provided de-828

frauding trick as the background. You don’t need to strictly follow the defrauding trick, but the dialogues829

should be designed to mimic the defrauding trick, making it plausible for a normal citizen to fall into the830

trap. You will also need to simulate benign dialogues that resemble legitimate conversations, making it831

challenging (but not impossible) for a machine learning model to distinguish them from the malicious832

dialogues. It will be used for training a machine learning model to detect defrauding tricks.833

D LLM Prompt Template for Adversarial Sample Generation834

Fig. 3 and Fig. 4 are two examples of how our framework constructs prompts for the LLM to generate835

adversarial samples. The different components are color-coded for clarity:836
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You are a professional red teamer trying to improve the robustness of a scam detection model. Your goal is to
produce realistic yet challenging adversarial samples of given text messages.

Here is the context information:

Defrauding Techniques: Recently, the Police have received public enquires about incoming calls prefixed with
“+852”. Putonghua-speaking callers, purporting to be police officers of the Financial Intelligence and Investigation
Bureau, claim that the victims have committed the offence of money laundering and ask the victims to meet up at
designated places. During the call, fraudsters can tell the victims’ names.

Original Sample:
User: Hello, I received a call from this number earlier. May I know who this is?
Opposite Side: Yes, hello. This is Officer Zhang from the Financial Intelligence Bureau. I see that your number was
flagged in a money laundering investigation.
User: Money laundering? That sounds serious. What should I do?
Opposite Side: Yes, it is quite serious. We need to verify some details with you. Can you confirm your full name and
the last four digits of your ID for our records?
User: My name is Alex Wong, and the last four digits are 6789. Is there anything else?
Opposite Side: Thank you, Alex. We might need you to come down to our office for further verification. Could you
meet us tomorrow?
User: Where exactly?
Opposite Side: At our Kowloon branch. I’ll send you the details shortly. Please keep this confidential.
User: Okay, I’ll wait for the details. Thanks

Ground Truth: scam

Model’s Current Prediction: scam

The model’s key influential tokens (from integrated gradients):
Scam indicators:
- ’flagged’: 0.500 importance
- ’money laundering’: 0.300 importance
- ’verify’: 0.200 importance

Legitimate indicators:
- ’Thank’: 0.400 importance
- ’Thanks’: 0.300 importance

Instructions for generating a legitimate sample that will fool the model:

1. Create a new sample that is genuinely legitimate but will likely be misclassified.
2. Strategically use these scam-indicating words/phrases to confuse the model: flagged, money laundering, verify
3. Avoid using these legitimate-indicating words/phrases: Thank you, Thanks.
4. Ensure the generated sample is:

• Actually legitimate in nature (not scam)
• Coherent and realistic
• Similar in style to real-world messages
• Contains natural usage of scam-indicating words in a legitimate context

5. The message should represent a genuine legitimate communication that happens to use language that might
trigger the target scam detector into believing it is a scam sample.

LLM Response 1:
Hi, I’m Alex from the Financial News Network. We’re doing a story on the recent money laundering investigations
and I saw that your company was flagged for a routine audit. Can you verify the details of your CEO’s statement
regarding the new compliance regulations? We’d love to get your side of the story.

LLM Response 2:
Hello, this is Emily from the Financial Intelligence Bureau. We’ve flagged your account for a money laundering
seminar we’re hosting, and we’d like to verify your attendance. As a respected member of the community, we believe
your insight would be valuable. Could you meet us at our Kowloon branch tomorrow to discuss further? Please find
the seminar details in the email we sent you earlier. Best, Emily

LLM Response 3:
I received a call from a number claiming to be from the Financial Intelligence Bureau, saying my account was
flagged for a money laundering investigation. They asked me to verify some details, but I’m not sure what to do.
Can you help me figure out if this is legitimate?

Figure 3: Example of LLM prompt generation for adversarial sample creation. The prompt includes context
information, original message, model predictions, and instructions for generating legitimate messages that might be
misclassified.
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You are a professional red teamer trying to improve the robustness of a scam detection model. Your goal is to
produce realistic yet challenging adversarial samples of given text messages.

Here is the context information:

Defrauding Techniques: Recently, the Police have received public enquires about incoming calls prefixed with
“+852”. English-speaking callers, purporting to be staff of Amazon (an online retailer), claim that the Amazon
accounts of the victims’ have been compromised for fraudulent transactions. Victims are asked to provide personal
information, credit card numbers and the 3-digit card security codes for cancellation of the transactions.

Original Sample:
Opposite: Hello, this is Mary from Amazon Customer Service. We’re reaching out to ensure your recent order was
delivered successfully. Did everything arrive as expected?
User: Hi Mary, yes, everything arrived perfectly. Thank you for checking in.
Opposite: Glad to hear it! If you have any other questions or need further assistance, feel free to reach out.
User: Will do, thanks.
Opposite: Have a wonderful day!
User: You too, goodbye.

Ground Truth: legitimate

Model’s Current Prediction: legitimate

The model’s key influential tokens (from integrated gradients):
Scam indicators:
- ’Amazon’: 0.500 importance
- ’delivery’: 0.300 importance
- ’order’: 0.200 importance

Legitimate indicators:
- ’Thank’: 0.400 importance
- ’Thanks’: 0.300 importance

Instructions for generating a scam sample that will fool the model:

1. Create a new sample that is genuinely scam but will likely be misclassified.
2. Strategically use these legitimate-indicating words/phrases to confuse the model: Thank you, Thanks
3. Avoid using these scam-indicating words/phrases: Amazon, delivery, order
4. Ensure the generated sample is:

• Actually scam in nature (not legitimate)
• Coherent and realistic
• Similar in style to real-world messages
• Contains natural usage of legitimate-indicating words in a scam context

5. The message should represent a genuine scam communication that happens to use language that might trigger
the target scam detector into believing it is a legitimate sample.

LLM Response 1:
Hi, this is Emily from our team. We’re calling to inform you that your account has been flagged for suspicious
activity. Thank you for your prompt attention to this matter. We need you to verify some information to secure your
account. Thanks in advance for your cooperation. Please respond with your account details so we can assist you
further.

LLM Response 2:
Hi, this is Sarah from Customer Care. Thanks for being a valued customer! We’ve noticed some unusual activity on
your account and we’re calling to help you secure it. Thank you for your prompt attention to this matter. Can you
please confirm your credit card details so we can proceed with the verification process?

LLM Response 3:
Opposite: Hello, this is Mark from Customer Support. We’re calling about a recent transaction on your account. Can
you confirm if you authorized a purchase for $500?
User: Hi Mark, no, I don’t recall making a purchase for that amount.
Opposite: Okay, Thanks for confirming. To secure your account, we need to verify some information. Could you
please provide the last four digits of the card used for that transaction?
User: Sure, it’s XXXX.
Opposite: Thank you. And to complete the verification, could you also provide the security code on the back of the
card? This is just to ensure no unauthorized access.
User: Is that really necessary?
Opposite: It is standard procedure for these types of cases. Thank you for your cooperation in resolving this matter
quickly.

Figure 4: Example of LLM prompt generation for adversarial sample creation. The prompt includes context
information about Amazon-related scams and instructions for generating scam messages that might be misclassified
as legitimate. 14
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