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ABSTRACT

Bias in machine learning models can lead to unfair decision making, and while it
has been well-studied in the image and text domains, it remains underexplored in
action recognition. Action recognition models often suffer from background bias
(i.e., inferring actions based on background cues) and foreground bias (i.e., relying
on subject appearance), which can be detrimental to real-life applications such as
autonomous vehicles or assisted living monitoring. While prior approaches have
mainly focused on mitigating background bias using specialized augmentations,
we thoroughly study both biases. We propose ALBAR, a novel adversarial training
method that mitigates foreground and background biases without requiring spe-
cialized knowledge of the bias attributes. Our framework applies an adversarial
cross-entropy loss to the sampled static clip (where all the frames are the same) and
aims to make its class probabilities uniform using a proposed entropy maximization
loss. Additionally, we introduce a gradient penalty loss for regularization against
the debiasing process. We evaluate our method on established background and
foreground bias protocols, setting a new state-of-the-art and strongly improving
combined debiasing performance by over 12% on HMDB51. Furthermore, we
identify an issue of background leakage in the existing UCF101 protocol for bias
evaluation which provides a shortcut to predict actions and does not provide an
accurate measure of the debiasing capability of a model. We address this issue
by proposing more fine-grained segmentation boundaries for the actor, where our
method also outperforms existing approaches.

1 INTRODUCTION

In a wide range of computer vision tasks, models often rely on unintended and seemingly irrelevant
patterns in the data, known as spurious correlations, as shortcuts to make predictions or decisions
Geirhos et al. (2018; 2020). These correlations do not represent the true underlying relationship
between the input features and the target output. As a result, models that exploit these spurious
correlations may achieve high performance on the training and in-distribution test data, but fail to
generalize well to real-world scenarios. A notable example of this is seen in video action recognition,
where a model will choose an action label by only considering the background instead of the subjects
motion Ding et al. (2022a); Zou et al. (2023). For example, if a subject is performing the action
“Throwing Frisbee” while standing on a soccer field, a model will likely predict “Playing Soccer”
instead. Here, the model is not using the motion information, instead using spatial information to
make a biased decision. However, even if this background bias is mitigated, there may still be biases
related to the video foreground Li et al. (2023). In our example, even if the subject is “Throwing
Frisbee” indoors, but wearing a soccer jersey, a model may still erroneously predict “Playing Soccer”.
While the sources of foreground biases may include relatively harmless sources like a held object,
they may also manifest in more harmful sources, such as a person’s physical appearance attributes
like skin color, facial hair etc. Zhao et al. (2017); Stock & Cisse (2017); Buolamwini & Gebru
(2018); Wilson et al. (2019); Prabhu & Birhane (2020); Tong & Kagal (2020); Steed & Caliskan
(2021); Gustafson et al. (2023). Such appearance-based decisions are highly undesirable in real-life
applications of action recognition in security cameras, elderly monitor systems, or autonomous cars
where an unbiased decision is crucial. Despite extensive studies on background biases in action
recognition, the area lacks comprehensive research on biases related to the foreground.
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Adversarial learning has emerged as a promising method for debiasing neural network representations
Beutel et al. (2017); Elazar & Goldberg (2018); Zhang et al. (2018); Wang et al. (2019). These
techniques often require supplementary information, such as scene or object labels, or involve training
a separate critic model to predict the biased attribute. For example, scene/object classifiers Duan
et al. (2022) have been employed for mitigating scene bias in action recognition. The effectiveness of
such methods is contingent upon the accuracy and reliability of the critic model, as they rely on its
negative gradients for optimization. Since annotating video datasets with detailed attributes for biases
requires enormous annotation efforts, it is not scalable. Li et al. Li et al. (2023) recently propose
a method to mitigate bias in action recognition using augmentations based on MixUp Zhang et al.
(2017), where they first detect action-salient frames from videos and add such frames to other videos.
Their idea is to reduce static bias by encouraging the model not to make decisions based on the mixed
frames. Although this method works well in reducing the background bias, it does not significantly
reduce the foreground bias and relies on an off-the-shelf salient frame detector model.

To address these challenges, we propose a novel adversarial learning technique that eliminates
the need for attribute labels or pretrained attribute classifiers and provides an end-to-end training
framework. Like Bahng et al. (2020); Bao et al. (2021), we hypothesize that the bias issues in action
recognition stem from an over-reliance on spatial information by the classifier. Instead of repelling the
representations of a 3-dimensional (spatio-temporal) classifier away from a separate 2-dimensional
(spatial) classifier like previous works, we break away from this formulation and design an adversarial
framework based on a single 3D encoder model. Specifically, we first sample any frame from within a
video clip and repeat it to obtain a static clip. To mitigate the static bias, we introduce an adversarial
loss through negative gradients to penalize the model from making action-class predictions based on
static cues and propose entropy maximization loss to make its class predictions uniform across all
classes. We also introduce a gradient penalty objective to regularize the debiasing process. We term
our method ALBAR (meaning in Arabic: “Guard of All", Adversarial Learning approach to mitigate
Biases in Action Recognition), for which a schematic diagram is shown in Fig. 1.

We show state-of-the-art performance on a comprehensive video action recognition bias evaluation
protocol Li et al. (2023) based on popular benchmarks such as Kinetics400 Carreira & Zisserman
(2017), UCF101 Soomro et al. (2012), and HMDB51 Kuehne et al. (2011), namely SCUBA (static
cues in the background) and SCUFO (static cues in the foreground). SCUBA evaluates background
bias by replacing the background of action clips, and SCUFO evaluates foreground bias by stacking
a single frame from SCUBA to create clips with no motion. We also found a shortcut in the prior
UCF101 bias protocol Li et al. (2023), which used bounding boxes to separate the foreground from
the background, allowing background information surrounding the bounded subject to leak into the
protocol. We propose a fix to this version of the evaluation protocol that appropriately separates the
foreground and background via segmentation masks.

The key contributions of this work can be outlined as follows:

• We propose a novel adversarial learning-based method to mitigate biases in action recogni-
tion, which provides simplified end-to-end training and does not require any labels/classifiers
for bias-related attributes.

• Our adversarial learning framework consists of a negative-gradient-based loss paired with
an entropy-maximization loss and a gradient norm penalty, which combine to strongly
discourage the model from making predictions based on static cues.

• Our method achieves strong state-of-the-art performance on established SCUBA/SCUFO
background/foreground debiasing benchmarks: notably a strong ≈12% raw increase in
overall accuracy on the HMDB51 protocol.

• Having identified shortcuts in the prior bias protocols due to background information leakage,
we resolve this by refining the test set with finer actor boundaries.

2 RELATED WORKS

General Bias Mitigation

Many works have exposed various types biases in machine learning models Suresh & Guttag (2019),
finding that not only do they pick up on biases within the training data, but they amplify them as
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well Ntoutsi et al. (2020). This can be exceedingly harmful when the bias is related to demographic
information, breaking fairness constraints Hardt et al. (2016). Additionally, training on a truly
balanced dataset is virtually impossible Wang et al. (2019), and biases existing in a pretrained
model tend to transfer into the downstream task Salman et al. (2022). Therefore, it is desirable to
seek a solution like ours that mitigates biases at the utility task level instead of at the dataset level.
Adversarial training Goodfellow et al. (2014); Xie et al. (2017); Zhang et al. (2018) is a popular
method that has proven effective in debiasing neural network representations Beutel et al. (2017);
Elazar & Goldberg (2018); Zhang et al. (2018); Wang et al. (2019). These techniques often necessitate
the use of supplementary information, such as labels for scenes or objects present. Alternatively,
these methods may involve the training of a separate critic model to predict the biased attribute, such
as a gender classifier for gendered debiasing Beutel et al. (2017); Wang et al. (2019) or scene/object
classifiers Duan et al. (2022); Zhai et al. (2023). They then rely on the negative gradients of the
predictor network, making the effectiveness contingent upon the accuracy and reliability of the critic
model. In contrast, our adversarial method eliminates the need for specialized knowledge of bias
attributes thorough labels or a separate predictor network. We simplify the debiasing process and
reduce the computational overhead by utilizing the same model with a different input.

Background/Foreground Bias in Action Recognition

Most works exploring bias in action recognition are focused on mitigating the effect of the background
representation biases, as models tend to use it over motion information to predict the action Yun et al.
(2020); Choi et al. (2019); Wang et al. (2021); Weinzaepfel & Rogez (2021); Ding et al. (2022a);
Duan et al. (2022); Byvshev et al. (2022). One approach to mitigate this involves emphasizing
learning temporal information over spatial cues. This is often achieved through computationally
expensive techniques such as optical flow Sun et al. (2018); Sevilla-Lara et al. (2019) or by decoupling
spatial and temporal representations Ding et al. (2022b); Zhang & Crandall (2022). However, these
methods suffer from significant computational overhead, complex modeling techniques, or reliance
on careful foreground/background mask annotations, limiting their practicality. One promising
direction for learning quality temporal features is spatio-temporal contrastive learning Tao et al.
(2020); Schiappa et al. (2023); Bahng et al. (2020); Bao et al. (2021), but Wang et al. (2021) notice
that in standard formulations, static information still tends to out-compete motion features. In
contrast, we enforce a hard constraint on the usefulness of static information, resulting in more strict
utilization of temporal motion features. Li et al. (2023) reveals that many existing techniques which
are resistant to background biases are still vulnerable to foreground biases. When the foreground
video subject is a person, the foreground bias may be related to demographic information, which can
cause inappropriate decision making. Taking this into account, our proposed adversarial learning
method accounts for all spatial information in both the video foreground and background.

3 METHOD

The core of ALBAR, our proposed debiasing method, is to properly utilize an adversarial objective that
discourages a model from learning to predict action classes based on spatial information alone. The
additional proposed losses support this objective and help balance training for optimal performance.
Each component of our method is shown in Figure 1. First, we notate the problem and baseline in
Section 3.1. Then, we describe the core adversarial loss in Section 3.2. The additional supplementary
entropy maximization and gradient penalty components are described in Section 3.3 and Section 3.4,
respectively, with everything put together in Section 3.4.

3.1 PROBLEM FORMULATION

A standard bias evaluation setup consists of two decoupled test sets: one that is independent and
identically distributed (IID) from the training data, DIID, and another one that is out-of-distribution
(OOD) DOOD. Formally, for video action recognition, we have video dataset D = {(x(i),y(i))}Ni=1,
where x(i) is the ith video instance, y(i) is the associated action label, and N is the number of
samples in the training dataset. A model is trained on D, then evaluated on both unseen test sets
DIID and DOOD. Debiasing methods attempt to learn robust and generalizable features that can
maximize performance on DOOD without sacrificing performance on DIID.

3
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Encoder     :

Clip Clip

Overall 
Loss:

Sample Single Frame

Entropy Maximization:

Gradient Penalty:

Figure 1: Given video clip x
(i)
t , we sample a random frame and stack it to create static clip x̄

(i)
t̄ . Both

clips are passed through encoder F to generate prediction vectors p(i)
t and p̄

(i)
t̄ . The adversarial loss

(Eq. 2) is computed by taking the cross-entropy of the motion clip prediction and subtracting the
cross-entropy of the static clip prediction p̄

(i)
t̄ . This static prediction is encouraged to be uncertain

by the entropy loss (Eq. 3), and the gradients related to the prediction (shown in red, Eq. 4) are
encouraged to be lower for more stable training by the gradient penalty loss.

Baseline The conventional form of supervised video action recognition employs a standard empirical
risk minimization (ERM) cross-entropy loss (Eq. 1) to guide model predictions toward the ground
truth label distribution y. The formulation is as follows:

L(i)
CE = −

NC∑
c=1

y(i)
c logp(i)

c , (1)

where NC is the total number of action classes in DIID and p
(i)
c is the prediction vector. This

objective is typically effective at maximizing performance on DIID, but fails to properly generalize
to a disjoint DOOD Duan et al. (2022). Li et al. (2023) demonstrate that this loss allows for static
information to erroneously correlate with action labels, leading to static-related biases being used in
the final model predictions.

3.2 STATIC ADVERSARIAL LOSS

To solve this static bias problem, the correlation between static information and action label needs
to be broken. Therefore, we propose an adversarial method to break this correlation by directly
discouraging the model’s ability to predict the action given a single frame. Over the course of training,
the model must learn to utilize primarily temporal information to achieve high performance, as it
is discouraged from using spatial information. We hypothesize that reducing reliance on spatial
information leads to more robust usage of temporal action information, allowing for reduced bias
and better generalization to DOOD. Specifically, given input clip x

(i)
t , we sample a single frame at a

random time t̄ within x
(i)
t , stacking it F times to create static clip, x̄(i)

t̄ . This new boring “clip” has
zero motion: it is tiled to align with the model input shape. Both clips are passed through backbone
model F to generate prediction vectors p(i)

t = F(x
(i)
t ) and p̄

(i)
t̄ = F(x̄

(i)
t̄ ). The model is trained in

4
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such a manner that the prediction p
(i)
t is still matched to the ground-truth distribution y(i), but the

similarity between the prediction vector of the static clip p̄
(i)
t̄ and y(i) should be maximized. This is

accomplished by reversing the gradient of the cross-entropy loss of static-clip x̄
(i)
t̄ . Because these

clips have high mutual information, differing only in motion patterns, the model should learn to
utilize only the motion patterns to satisfy the loss conditions.

Formally, our adversarial loss objective can be expressed as follows:

L(i)
adv = LCE(p

(i)
t ,y(i))− ωadvLCE(p̄

(i)
t̄ ,y(i)), (2)

where p
(i)
t and p̄

(i)
t̄ are the prediction vectors of the standard and static clips, respectively, and

ωadv is the weight hyperparameter to control the strength of the adversary with respect to the usual
cross-entropy. The weight is typically set to ωadv = 1 to create a strong negative learning signal. Note
that this method does not require the use of any additional labels to achieve debiased representations.

3.3 ENTROPY MAXIMIZATION

A naive application of the above objective Eq. 2 results in degraded performance (Tab. 3, row b).
We find that the model still learns the spatial correlations, but to satisfy the loss conditions, given
static clip x̄

(i)
t̄ , it will predict an incorrect class with high confidence. In order to combat this, we

propose to directly add an entropy maximization loss to the static-clip prediction vector p̄(i)
t̄ . By

encouraging the model to predict all classes with an equal probability given a clip with no motion, it
prevents the label flipping trivial solution, forcing the model to rely on the clips with motion to make
high-confidence predictions. The entropy loss is formulated as follows:

L(i)
ent =

NC∑
c=1

p̄
(i)
t̄,c log(p̄

(i)
t̄,c), (3)

where p̄
(i)
t̄,c is the softmax prediction probability for class c. The summation computes the entropy of

the predictions over all classes. The general formulation for entropy is negative, but since we want to
maximize it, we negate the sum again, which gives us the loss function that we can minimize during
training. The lower bound of this loss occurs when the prediction distribution is uniform, meaning
that all classes have equal probabilities. This way, the encoder is trained to have higher uncertainty
when not provided temporal motion information, ideally losing the ability to predict actions properly
based on spatial information.

3.4 GRADIENT PENALTY

Even though the entropy loss helps prevent a trivial solution training collapse, we find that training
is still unstable, experiencing major fluctuations in performance on intermittent validation steps
(see Appendix Fig. 5). The objective is for the encoder to learn better temporal representations,
not directly react to static inputs and drastically update weights. As such, we need to design a loss
that penalizes significant changes in the encoder’s output when presented with static inputs. Taking
inspiration from stabilizing GAN training Gulrajani et al. (2017), we add a gradient penalty loss.
Instead of interpolating between samples and pushing the mean gradient norm towards 1, we simplify
the formulation by directly minimizing the gradient norm with respect to the static clip x̄

(i)
t̄ . This

effectively acts as a regularizer to stabilize the encoder by reducing sensitivity to static input, thereby
causing the learning of more robust and generalizable motion features. The proposed gradient penalty
loss is defined as follows:

L(i)
gp = ||∇

x̄
(i)

t̄

F(x̄
(i)
t̄ )||2, (4)

where || · ||2 represents the ℓ2 norm and ∇
x̄
(i)

t̂

F(x̄
(i)
t̄ ) represents the gradients of model F w.r.t. static

clip input x̄(i)
t̄ . In practice, this objective promotes smoothness and consistency in the adversarial

gradients, leading to more stable model convergence (Appendix Fig. 5).
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Combined Training Objective Putting everything together, our overall training objective is described
by taking the average of all samples (i) ∈ DIID computed using the following equation:

L(i) = L(i)
adv + ωent ∗ L(i)

ent + ωgp ∗ L(i)
gp , (5)

where ωent and ωgp are the relative weightage of the entropy maximization loss and and the gradient
penalty loss, respectively. Note that ωadv , the weight for the adversarial loss, is previously defined in
Eq. 2 and only applied to the negative loss component of Ladv .

4 EXPERIMENTS

4.1 DATASETS

Kinetics400 Carreira & Zisserman (2017) is a large-scale action dataset that is commonly used
to pretrain models for a better initialization on various downstream tasks. However, the dataset has
been shown to exhibit bias towards the background information. This can lead models to rely on
background cues rather than focusing on the actual human actions.

UCF101 Soomro et al. (2012) is a popular mid-sized action recognition dataset. Similar to Kinetics,
it displays a high degree of background bias, i.e., the actions can be identified using the background.

HMDB51 Kuehne et al. (2011) is a smaller action recognition dataset. Unlike Kinetics400 and
UCF101, HMDB51 has a large intra-class background variance, resulting in less reliance on static
background information. Conversely, HMDB51 exhibits a relatively high degree of foreground bias,
i.e., the actions can be identified using static foreground information.

ARAS Duan et al. (2022) is a real-world test set based on Kinetics400. It is designed to be OOD for
scene-debiasing evaluation by consisting of only examples of rare background scenes for each action.

SCUBA and SCUFO Li et al. (2023) are background and foreground bias evaluation benchmarks
for action recognition based on common benchmarks Kinetics400, UCF101, and HMDB51. SCUBA
replaces the background of action clips with alternate images from the following sources: the test set
of Places365 Zhou et al. (2017), generated by VQGAN-CLIP Crowson et al. (2022), or randomly
generated stripes following sinusoidal functions. SCUFO takes a frame from a SCUBA video and
stacks it into a motionless clip to evaluate potential foreground bias.

4.2 IMPROVED UCF101 SCUBA/SCUFO PROTOCOL

Li et al. (2023) proposed SCUBA and SCUFO datasets and metrics to evaluate both background
and foreground bias in video action recognition models. These protocols require masks to extract
the foreground from the original clips. However, the masks used for the UCF101 variation are
bounding boxes from the THUMOS-14 challenge Jiang et al. (2014). Thus, surrounding background
information is carried into the bias evaluation videos, as seen in Figure 2. This is not sufficient to
evaluate performance on this dataset, as a classifier reliant on the background can still take advantage
of this information to score high on the protocol. To mitigate this effect, we utilize a flexible video
object segmentation model, SAMTrack Cheng et al. (2023); Yang et al. (2021); Yang & Yang (2022);
Kirillov et al. (2023); Liu et al. (2023) to segment the actors (subjects) in each video. The actors are
initially grounded using the same THUMOS-14 bounding boxes. Each testing video is manually
checked for accurate segmentation. The same dataset creation protocol proposed by Li et al. (2023)
is used to create SCUBA and SCUFO variations with these new masks. The improved benchmark
no longer includes background information, such as in Figure 2 (a), tightly bounding the human
subject as seen in Figure 2 (b). Results in Table 2 show results on our newly created benchmark. See
Appendix Sec. C for results on the existing benchmark.

4.3 IMPLEMENTATION DETAILS

For all experiments, we use a clip resolution of 224 × 224. We follow Li et al. (2023) and use
Kinetics400 Carreira & Zisserman (2017) pretrained Swin-T Liu et al. (2022) with 32 frame clips at
a skip rate of 2. We adopt the same common augmentations used in Li et al. (2023): random resized
cropping and random horizontal flipping. Our chosen optimizer is AdamW Kingma & Ba (2014);
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(a)

(b)

Figure 2: Example clip from UCF101-SCUBA-Sinusoid protocol clip, corresponding to a video
from the class “Skiing”. (a) shows the frames from previous protocol, where snow is visible in the
background. Our improved protocol (b) uses tight segmentation masks to eliminate the background.

Table 1: Results on IID and OOD test sets of various debiasing methods on HMDB51. All experiments
use Swin-T pretrained using Kinetics-400. The light blue column highlights the contrasted accuracy.

Augmentation
or Debiasing IID

OOD

Avg
SCUBA

x Avg
SCUFO

y Confl-
FG

x Contra.
Acc.

x
None 73.92 43.93 20.46 36.58 27.84
MixupICLR’18 74.58 43.10 21.17 36.62 26.09
VideoMixarXiv’20 73.31 39.39 20.44 32.68 23.13
SDNNeurIPS’19 74.66 40.02 20.22 34.87 22.88
BECVPR’21 74.31 43.56 19.96 35.99 27.84
ActorCutMixCVIU’23 74.05 46.79 22.07 36.97 28.12
FAMECVPR’22 73.79 51.40 26.92 39.61 29.66
StillMixICCV’23 74.82 51.81 13.39 47.38 40.28

Ours 73.20 53.20↑21.1% 0.42 ↓98.0% 49.84 ↑36.3% 53.02 ↑90.5%
Ours w/ StillMix aug. 74.31 54.24 1.35 47.07 53.68

Loshchilov & Hutter (2017) with default parameters β1 = 0.9, β2 = 0.999, and weight decay of 0.01.
We follow the linear scaling rule Goyal et al. (2017) with a base learning rate of 1e-4 corresponding
to a batch size of 64. For training, we utilize a linear warmup of 5 epochs and a cosine learning rate
scheduler. Further details may be found in Appendix Sec. B.

4.4 BACKGROUND/FOREGROUND BIAS EVALUATION

On existing background/foreground bias benchmarks, we follow the usual protocol of reporting the
average Top-1 accuracy across 3 runs. We first perform IID evaluation using the original test sets,
then evaluate OOD performance using the SCUBA and SCUFO datasets. On the SCUBA protocol, a
higher accuracy shows a lower static background bias, yet on the SCUFA protocol, a lower accuracy
shows a lower static foreground bias. There is also an additional conflicting foreground version
(Confl-FG) that adds a random foreground from one SCUBA video to another in the sinusoidal
set. We also report contrasted accuracy Li et al. (2023) (Contra. Acc.), where a video prediction
is counted correct if and only if the model is correct on a SCUBA video and is incorrect on the
corresponding SCUFO video. This single score is representative of overall bias reduction performance
in both the foreground and the background, and is highlighted in light blue in each table due to its
importance. We compare against previous debiasing action recognition techniques and augmentations
Mixup Zhang et al. (2017), VideoMix Yun et al. (2020), SDN Choi et al. (2019), BE Wang et al.
(2021), ActorCutMix Ding et al. (2022a), and StillMix Li et al. (2023).
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Table 2: Results on IID and OOD test sets of various debiasing methods on UCF101 using our
proposed updated protocol. The light blue column highlights the contrasted accuracy. All experiments
use Swin-T pretrained using Kinetics-400.

Augmentation
or Debiasing IID

OOD

Avg
SCUBA

x Avg
SCUFO

y Confl-
FG

x Contra.
Acc.

x
None 95.51 18.78 1.50 49.36 17.53
StillMix ICCV’23 96.14 24.68 0.36 55.03 24.40

Ours 94.98 26.25 ↑39.8% 0.14 ↓90.7% 54.02 ↑9.4% 26.23 ↑49.6%
Ours w/ StillMix aug. 94.71 31.17 0.16 58.84 31.14

The results on the HMDB51 variant are shown in Table 1. Results for the updated UCF101 version
can be found in Table 2, with results on the old protocol in Appendix Sec. C. Remarkably, AL-
BAR improves upon the previous contrasted accuracy by over 12% for a total of 53.02% on the
HMDB51 protocol. We see that our static adversarial method strongly reduces harmful biases by
properly learning robust motion features for video action recognition, without requiring bias attribute
specific knowledge. Additionally, as ALBAR employs a combination of training loss objectives and
no major augmentations, we can easily combine the StillMix Li et al. (2023) augmentation with our
method during training. This pushes the performance further beyond what either method can achieve
alone, achieving a contrasted accuracy of 53.68%.

ARAS Rare Scene Evaluation Performance on ARAS is evaluated by computing top-1 accuracy
using a Kinetics400 trained classifier (the same used in SCUBA/SCUFO protocol). Table 4 in
Appendix Sec. C includes results on both benchmarks. ALBAR is able to properly mitigate real-
world scene-related biases, not getting fooled by even extreme cases of rare backgrounds.

(a) Ground Truth Action: “throw” (b) Ground Truth Action: “kick”

(c) Baseline Prediction: “swing_baseball” (d) Baseline Prediction: “fencing”

(e) ALBAR Prediction: “throw” (f) ALBAR Prediction: “kick”

Figure 3: Qualitative examples from the HMDB51 test set showing the baseline model choosing an
incorrect action label due to spatial context. Our method correctly chooses the action label in each.
These pixel-level attributions are plotted using integrated gradients Sundararajan et al. (2017)

Qualitative Results Figure 3 shows two examples of misclassifications of the baseline model that
were correctly interpreted by our debiased model. We plot the pixel-level attributions for the predicted
class using integrated gradients Sundararajan et al. (2017) in Figure 3. Interestingly, looking at the
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baseball_throw example, we see that both the baseline (Fig 3c) and our method (Fig 3e) have similar
attribution maps, appropriately looking at the video foreground. The baseline model still chooses
the incorrect action class, indicating potential foreground bias, likely using the baseball uniform.
In Figure 3b, the camera angle appears similar to instances of fencing, but the correct action is
actually “kick”. In each of these examples, the biased baseline likely utilizes spurious features in the
classification, but ALBAR easily overcomes them.

4.5 ABLATIONS AND ANALYSIS

Training loss components: Table 3 ablates each individual loss component during debiasing training.
Each piece is crucial for achieving maximum performance. The adversarial loss strongly contributes
to the foreground debiasing performance by imposing a strong penalty for identifying the correct
action utilizing static information. Alone (row b), it causes the model to degenerate into a trivial
solution where the model learns the inappropriate static correlations, then intentionally chooses the
incorrect class. The entropy maximization objective is useful by itself (row c) in reducing reliance
on static information, but is not as strong of an objective as Ladv. It combines with the adversarial
loss (row e) to prevent the trivial solution and further improve debiasing performance, but training
remains unstable (see Appendix Figure 5). The gradient penalty does not have a large effect on its
own (row d), but has a positive effect when combined with the other losses, likely because the penalty
prevents the static clip gradients from offsetting proper learning from the motion clip gradients. Once
all three objectives are utilized simultaneously (row h), we see a strong gain in performance. Each
component complements each other well, leading our method to achieve SOTA contrasted accuracy
on the SCUBA/SCUFO benchmarks. Additional ablations can be found in Appendix Section C.

Table 3: Ablation to determine the effectiveness of each component loss objective.

Ladv Lent Lgp IID
OOD

Avg
SCUBA

x Avg
SCUFO

y Confl-
FG

x Contra.
Acc.

x
(a) ✗ ✗ ✗ 73.92 43.93 20.46 36.58 27.84

(b) ✓ ✗ ✗ 72.61 42.29 0.00 32.77 42.29
(c) ✗ ✓ ✗ 71.57 46.02 2.97 38.40 44.30
(d) ✗ ✗ ✓ 72.09 41.13 14.69 35.16 29.24

(e) ✓ ✓ ✗ 72.22 46.81 0.49 41.13 46.72
(f) ✓ ✗ ✓ 71.70 45.92 0.00 38.52 45.92
(g) ✗ ✓ ✓ 73.86 49.14 9.74 42.89 41.11

(h) ✓ ✓ ✓ 73.20 53.20 0.42 49.84 53.02

Limitations Our evaluation focuses on established background and foreground bias protocols, which
may not capture all possible real-world scenarios and biases. Expanding the evaluation to include
more diverse and realistic settings, including those with harmful demographic biases, would provide
a more comprehensive assessment of the practical effectiveness of our method.

5 CONCLUSION

We propose ALBAR, a novel adversarial training framework for efficient background and fore-
ground debiasing of video action recognition models. The framework eliminates the need for direct
knowledge of biased attributes such as an additional critic model, instead leveraging the negative
cross-entropy loss of a clip without motion passed through the same model as the adversarial com-
ponent. To ensure optimal training, we incorporate static clip entropy maximization and gradient
penalty objectives. We thoroughly validate the performance of our approach across a comprehensive
suite of bias evaluation protocols, demonstrating its effectiveness and generalization across multiple
datasets. Moreover, ALBAR can be seamlessly combined with existing debiasing augmentations to
achieve performance that significantly surpasses the current state-of-the-art. It is our hope that our
work contributes to the development of fair, unbiased, and trustworthy video understanding models.
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APPENDIX OVERVIEW

Section A: Dataset details

Section B: Implementation/compute details

Section C: Additional experiment details

A DATASET DETAILS

Kinetics400 Carreira & Zisserman (2017) contains approximately 300,000 video clips sourced
from YouTube, covering 400 human action classes. It has a single dedicated train/val/test split. In
this work, we train on the train split and evaluate IID on the test split.

UCF101 Soomro et al. (2012) comprises of 13,320 video clips across 101 action classes and has
three train/test splits available. Following Li et al. (2023), we utilize only the first (split 1) train/test
split for all training and evaluation in this work.

HMDB51 Kuehne et al. (2011) consists of 6,849 video clips covering 51 human activity classes and
has three potential train/test splits, much like UCF101. Again, we only use the first (split 1) train/test
split for all training and evaluation in this work.

ARAS Duan et al. (2022) is only a test set, so all of the 1,038 rare-scene action videos are utilized to
compute Top-1 accuracy.

SCUBA and SCUFO Li et al. (2023) are also test sets. Each dataset variation contains three
variations of different background types to ensure solid generalization to OOD data. All of the data
is used to compute Top-1 accuracy, and performance on the related SCUBA and SCUFO splits is
combined as described in Main Paper Section 4.4 to compute the contrasted accuracy. Our proposed
fix to the UCF101 protocol is applied across all three background types, namely Places365 images,
VQGAN-Clip images, and random sinusoidal images.

Further visual examples of the improved protocol are included in Figure 4. Note that in the “Fencing”
example, we additionally segment the opposing fencer for a more complete video.

B IMPLEMENTATION DETAILS

This section is an addition to the details listed in Main Paper Section 4.3. A standard validation set
does not exist for HDMB51 and UCF101. We randomly sample 20% of the respective training sets
to use for validation, labelling them with an identical process as in 4.2. The PyTorch Paszke et al.
(2019) library is utilized for all experiments. All experiments are performed on a local computing
cluster with access to V100 and A100 GPUs of various memory configurations up to 80GB. On an
80GB GPU, a batch size of 8 clips is used, and we train for up to 50 epochs. On HMDB51, this may
take ≈8 hours with validation every epoch. We follow Li et al. (2023) and evaluate Top-1 accuracy
using a single clip sampled from the center of each video. The only augmentations at test time are a
resize to short side 256 and a center crop to 224 × 224.

C ADDITIONAL EXPERIMENT DETAILS

Table 5 shows expanded SCUBA/SCUFO results for HMDB51, and Table 6 shows them for the
original UCF101 protocol. In the original UCF101 protocol, the test set contains a significant amount
of extra background information, leading to skewed results, especially on the SCUBA background
bias protocol. The background is mostly replaced, but a good portion of the actual video background
remains, inflating scores. Our method does not utilize this well, seemingly performing worse as a
result.

As referenced in Main Paper Section 4.4, results on the Kinetics400 and ARAS versions can be found
here, in Table 4. Similar outcomes to the other experiments are seen here.
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(a)

(b)

(c)

(d)

Figure 4: Example clips from UCF101-SCUBA-Places365 and UCF101-SCUBA-VQGAN protocols.
(a) shows an example video from the class “Fencing” from the previous protocol. Our improved
protocol (b) uses tight segmentation masks to eliminate background information. Likewise, (c) shows
an example clip from the class “Golf Swing”, and (d) shows the improved segmented version.

Table 4: Results on IID and OOD test sets of various debiasing methods on Kinetics400. All
experiments use Swin-T pretrained using Kinetics-400.

Augmentation
or Debiasing IID

OOD

Avg
SCUBA

x Avg
SCUFO

y ARAS
x Contra.

Acc.
x

None 68.13 42.97 20.26 57.57 25.78
StillMix ICCV’23 67.27 45.83 10.72 59.21 36.60

Ours 67.58 44.75 ↑4.1% 0.11 ↓99.5% 59.79 ↑3.9% 44.74 ↑73.6%
Ours w/ StillMix aug. 68.10 46.52 0.77 60.17 46.07

Effect of Gradient Penalty

Strength of adversarial component ωadv: The adversarial loss weight (ωadv) has the most significant
impact on training efficacy. Our empirical findings suggest that the optimal value for ωadv is 1, which
equates to the cross-entropy weight of the motion clip. Suboptimal values lead to two contrasting
issues: (1) ωadv < 1 insufficiently mitigates static biases, while (2) ωadv > 1 dominates the learning
process, overshadowing the crucial information contained within the motion clips. Striking the perfect
balance is key to achieving effective training and ensuring the model learns from both the adversarial
loss and the motion clips in a complementary manner.

Strength of entropy maximization ωent: The entropy objective coefficient plays a critical role
in model stability. Inadequate values lead to two distinct failure modes: (1) an insufficiently low
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Table 5: Qualitative results of various debiasing methods on the HMDB51 Kuehne et al. (2011)
dataset. The light blue column highlights the contrasted accuracy. Bold and underline indicate best
and second best results, respectively.

Augmentation
or Debiasing HMDB51 HMDB51-SCUBA (↑) HMDB51-SCUFO (↓) Contra.

Acc. (
x)

Places365 VQGAN-CLIP Sinusoid Places365 VQGAN-CLIP Sinusoid

None 73.92 47.61 42.77 41.41 20.68 17.90 22.80 27.84
Mixup 74.58 46.70 42.49 40.12 21.25 18.47 23.78 26.09
VideoMix 73.31 41.33 38.18 38.67 19.64 18.82 22.85 23.13
SDN 74.66 41.96 40.82 37.29 19.99 19.62 21.06 22.88
BE 74.31 47.36 42.94 40.39 20.91 17.55 21.41 21.41
ActorCutMix 74.05 50.13 46.51 43.73 22.16 20.26 23.80 28.12
FAME 73.79 54.71 53.67 45.81 27.10 27.26 26.40 29.66
StillMix 74.82 53.27 52.43 49.73 13.39 12.66 14.13 40.28

Ours 73.20 54.73 54.80 50.12 0.04 1.17 0.04 53.02
Ours w/ StillMix aug. 74.31 55.59 56.95 50.20 1.45 1.52 1.09 56.68

Table 6: Qualitative results of various debiasing methods on the UCF101 Soomro et al. (2012) dataset,
using the existing protocol from Li et al. (2023), which contains background information. The light
blue column highlights the contrasted accuracy. Bold and underline indicate best and second best
results, respectively.

Augmentation
or Debiasing UCF101 UCF101-SCUBA (↑) UCF101-SCUFO (↓) Contra.

Acc. (
x)

Places365 VQGAN-CLIP Sinusoid Places365 VQGAN-CLIP Sinusoid

No 96.21 37.63 34.37 54.94 3.48 3.02 10.82 36.82
Mixup 96.17 39.82 40.89 57.79 2.88 3.28 11.62 40.46
VideoMix 96.00 28.59 37.36 58.26 7.81 11.40 20.60 29.37
SDN 95.76 34.78 32.56 50.40 2.21 1.42 5.30 36.42
BE 96.06 39.76 36.16 56.01 3.55 2.93 10.15 38.62
ActorCutMix 95.87 51.02 55.28 69.53 8.00 8.43 19.32 46.87
FAME 95.81 40.62 44.56 37.54 5.74 6.50 6.84 35.14
StillMix 96.02 55.22 53.68 65.75 2.40 2.16 5.76 54.90

Ours 94.98 46.04 42.36 55.70 0.68 0.59 0.34 47.88
Ours w/ StillMix aug. 94.79 57.19 54.78 60.91 0.13 0.31 0.22 57.58

weight allows the classifier to misclassify static inputs by assigning incorrect predictions, while
(2) an excessively high coefficient impairs the classifier’s capacity to capture and learn temporal
dependencies effectively. Much like the adversarial loss, balancing the entropy maximization
objective’s strength is essential for the model to achieve stable and accurate performance.

Table 8: Ablation with entropy loss Lent weight.

ωent IID
OOD

Avg
SCUBA

x Avg
SCUFO

y Confl-
FG

x Contra.
Acc.

x
0 73.92 43.93 20.46 36.58 27.84

2 72.61 51.71 0.00 44.57 51.71
4 73.20 53.20 0.42 49.84 53.02
8 74.12 49.87 1.86 43.01 49.26

Table 9: Ablation with gradient loss Lgp weight.

ωgp IID
OOD

Avg
SCUBA

x Avg
SCUFO

y Confl-
FG

x Contra.
Acc.

x
0 73.92 43.93 20.46 36.58 27.84

5 73.59 49.77 0.03 44.53 49.77
10 73.20 53.20 0.42 49.84 53.02
20 71.76 50.55 3.03 43.55 48.84

Strength of gradient penalty ωgp: Similar to the other objectives, stable training relies on finding
an optimal loss weight ωgp. Ineffective weights lead to two failure cases: (1) a low ωgp renders the
penalty insufficient for acting as a proper regularizer, while (2) a higher coefficient can overshadow
the primary training objective and cause the gradients to become oversmoothed, resulting in reduced
performance on DIID.
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Figure 5: Stability of performance during training with and without the proposed gradient penalty
objective.

Table 7: Ablation with adversarial loss Ladv weightage.

ωadv IID
OOD

Avg
SCUBA

x Avg
SCUFO

y Confl-
FG

x Contra.
Acc.

x
0 73.92 43.93 20.46 36.58 27.84

0.5 73.79 48.65 3.31 43.28 46.56
1 73.20 53.20 0.42 49.84 53.02
2 67.84 44.52 0.99 40.86 44.45
4 51.50 27.76 5.86 24.02 27.76
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