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Abstract
Traditional analyses of gradient descent with learning rate η show that when the largest eigenvalue
of the Hessian of the loss, also known as the sharpness S(θ), is bounded by 2/η, training is "stable"
and the training loss decreases monotonically. However, Cohen et al. [7] recently observed two
important phenomena. The first, progressive sharpening, is that the sharpness steadily increases
throughout training until it reaches the instability cutoff 2/η. The second, edge of stability, is that
the sharpness hovers at 2/η for the remainder of training while the loss non-monotonically de-
creases. We demonstrate that, far from being chaotic, the dynamics of gradient descent at the edge
of stability can be captured by a cubic Taylor expansion: as the iterates diverge in direction of the
top eigenvector of the Hessian due to instability, the cubic term in the local Taylor expansion of
the loss function causes the curvature to decrease until stability is restored. This property, which
we call self-stabilization, is a general property of gradient descent and explains its behavior at the
edge of stability. A key consequence of self-stabilization is that gradient descent at the edge of
stability implicitly follows projected gradient descent (PGD) under the constraint S(θ) ≤ 2/η. Our
analysis provides precise predictions for the loss, sharpness, and deviation from the PGD trajectory
throughout training, which we verify both empirically in a number of standard settings and theoret-
ically under mild conditions. Our analysis uncovers the mechanism for gradient descent’s implicit
bias towards stability.

1. Introduction

1.1. Gradient Descent at the Edge of Stability

Neural networks are often trained using variants of gradient descent such as stochastic gradient de-
scent (SGD) or ADAM [17]. When deciding on an initial learning rate, practitioners draw intuition
from the following classical lemma, known as the "descent lemma."

Definition 1 Given a loss function L(θ), the sharpness at θ is defined to be S(θ) := λmax(∇2L(θ)).
When this eigenvalue is unique, the associated eigenvector is denoted by u(θ).

Lemma 2 (Descent Lemma) Assume that S(θ) ≤ ℓ for all θ. If θt+1 = θt − η∇L(θt),

L(θt+1) ≤ L(θt)− η(2− ηℓ) · ∥∇L(θt)∥2/2.

Here, loss decrease is maximized at η = 1/ℓ, a popular learning rate criterion. For any η < 2/ℓ,
the descent lemma guarantees that the loss will decrease, and hence learning rates below 2/ℓ are
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considered "stable" while those above 2/ℓ are considered "unstable." For quadratic loss functions,
this is tight. Any learning rate above 2/ℓ provably leads to exponentially increasing loss.

However, it has recently been observed that in neural networks, the descent lemma is not predic-
tive of the optimization dynamics. Recently, Cohen et al. [7] observed two interesting phenomena:

Progressive Sharpening Throughout most of the optimization trajectory, the gradient of the loss
is negatively aligned with the gradient of sharpness, i.e. ∇L(θ) · ∇S(θ) < 0. As a result, for any
reasonable learning rate η, the sharpness increases throughout training until it reaches S(θ) = 2/η.

Edge of Stability Once the sharpness reaches 2/η, it ceases to increase and remains around 2/η
for the rest of training. Despite the fact that the descent lemma no longer guarantees the loss
decreases, the loss still continues to rapidly decrease, albeit non-monotonically.

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

L
os

s Progressive
Sharpening

Edge of
Stability

0 1000 2000 3000 4000 5000
Training Steps

0

100

200

Sh
ar

pn
es

s Progressive
Sharpening

Edge of
Stability

1.2. Self-stabilization: The Implicit Bias of Instability

In this work we explain the second stage, "edge of stability." We identify a new implicit bias of
gradient descent which we call self-stabilization. Self-stabilization is the mechanism by which the
sharpness remains bounded around 2/η, despite the continued force of progressive sharpening, and
by which the gradient descent dynamics do not diverge, despite instability.

Traditional non-convex optimization analyses involve Taylor expanding the loss function to
second order around θ to prove loss decrease when η ≤ 2/S(θ). When this is violated, the iterates
diverge exponentially in the top eigenvector direction, u, thus leaving the region in which the loss
is locally quadratic. Understanding the dynamics thus necessitates a cubic Taylor expansion.

Our key insight is that the missing term in the Taylor expansion of the gradient after diverging
in the u direction is ∇3L(θ)(u, u), which is exactly equal to the gradient of the sharpness at θ:

Lemma 3 (Self-Stabilization Property) If the top eigenvalue of ∇2L(θ) is unique, then the sharp-
ness S(θ) is differentiable at θ and ∇S(θ) = ∇3L(θ)(u(θ), u(θ)).

As the iterates move in the negative gradient direction, this term decreases the sharpness. So long
as the iterates are unstable, the strength of this term grows until the sharpness goes below 2/η, at
which point the iterates in the u direction shrink and the dynamics re-enter the quadratic regime.

This negative feedback loop prevents both the sharpness S(θ) and the movement in the top
eigenvector direction, u, from growing out of control. As a consequence, we show that gradient
descent implicitly solves the constrained minimization problem: minθ L(θ) such that S(θ) ≤ 2/η.

Specifically, if the stable set M is defined by M := {θ : S(θ) ≤ 2/η and ∇L(θ) · u(θ) = 0}
then the gradient descent trajectory {θt} tracks the following projected gradient descent trajectory
{θ†t} which solves the constrained problem [3]:

θ†t+1 = projM

(
θ†t − η∇L(θ†t )

)
where projM(θ) := argmin

θ′∈M

∥∥θ − θ′
∥∥. (1)
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Figure 1: The four stages of edge of stability, demonstrated on a toy loss function (Appendix C).

Our main contribution is that we explain self-stabilization as a generic property of gradient descent
for a large class of loss functions, and provide precise predictions for the loss, sharpness, and devia-
tion from the constrained trajectory {θ†t} throughout training (Section 3). We verify our predictions
by replicating the experiments in Cohen et al. [7] and show that they model the true gradient de-
scent dynamics (Section 4). In Appendix D, we prove that under mild conditions (which we verify
empirically), our predictions track the true gradient descent dynamics up to higher order error terms.

2. Setup

We denote the loss function by L ∈ C3(Rd). Let θ ∈ Rd follow gradient descent with learning rate
η, i.e. θt+1 := θt − η∇L(θt). Recall that M := {θ : S(θ) ≤ 2/η and ∇L(θ) · u(θ) = 0} is the
set of stable points and projM := argminθ′∈M ∥θ − θ′∥ is the orthogonal projection onto M. For
notational simplicity, we will shift time so that θ0 is the first point such that S(projM(θ)) = 2/η.
The constrained trajectory θ† is initialized with θ†0 := projM(θ0) after which it follows (1).

Our key assumption is the existence of progressive sharpening along the constrained trajectory,
which is captured by α(θ). We also assume that there is a single unstable eigenvalue.

Assumption 1 (Progressive Sharpening) Let α(θ) := −∇L(θ) · ∇S(θ). Then α(θ†t ) > 0.
Assumption 2 (Eigengap) For some absolute constant c < 2 we have λ2(∇2L(θ†t )) < c/η.

3. The Self-stabilization Property of Gradient Descent

3.1. The Four Stages of Edge of Stability: A Heuristic Derivation

In this section we present a heuristic derivation of the self-stabilization property (see Appendix D
for the more general analysis). The derivation proceeds by a cubic Taylor expansion around a fixed
reference point θ⋆ := θ†0. For notational simplicity, we will define the following quantities at θ⋆:

∇L := ∇L(θ⋆), ∇2L := ∇2L(θ⋆), u := u(θ⋆), ∇S := ∇S(θ⋆), α := α(θ⋆), β := ∥∇S∥2,
where α = −∇L · ∇S > 0 is the progressive sharpening. Our heuristic analysis assumes that
∇S ⊥ u and ∇L,∇S ∈ ker(∇2L), and ignores higher order error terms.1

We track the movement in the unstable direction u and the direction of changing sharpness ∇S,
and thus define xt := u · (θt − θ⋆) and yt := ∇S · (θt − θ⋆). Note that yt is approximately
to the change in sharpness from θ⋆ to θt, since Taylor expanding the sharpness yields S(θt) ≈
S(θ⋆) + ∇S · (θt − θ⋆) = 2/η + yt. At a high level, the mechanism for edge of stability can be
described in 4 stages (see Figure 1):

1. We give an explicit example of a loss function satisfying these assumptions in Appendix C.
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Stage 1: Progressive Sharpening While x, y are small, ∇L(θt) ≈ ∇L. In addition, because
∇L · ∇S < 0, gradient descent naturally increases the sharpness at every step. In particular,

yt+1 − yt = ∇S · (θt+1 − θt) ≈ −η∇L · ∇S = ηα.

The sharpness therefore increases linearly with rate ηα.

Stage 2: Blowup As xt measures the deviation from θ⋆ in the u direction, the dynamics of xt can
be modeled by gradient descent on a quadratic with sharpness S(θt) ≈ 2/η + yt. In particular, the
rule for gradient descent on a quadratic gives

xt+1 = xt − ηu · ∇L(θt) ≈ xt − ηS(θt)xt ≈ xt − η[2/η + yt]xt = −(1 + ηyt)xt.

When the sharpness exceeds 2/η, i.e. when yt > 0, |xt| begins to grow exponentially.

Stage 3: Self-Stabilization Once the movement in the u direction is sufficiently large, the loss
is no longer locally quadratic. Understanding the dynamics necessitates a third order Taylor ex-
pansion. The missing cubic term in the Taylor expansion of ∇L(θt) is ∇3L(u, u)

x2
t
2 = ∇S

x2
t
2 by

Lemma 3. This biases the optimization trajectory in the −∇S direction, which decreases sharpness.
Recalling β = ∥∇S∥2, the new update for y becomes:

yt+1 − yt = ηα+∇S · (−η∇3L(u, u)x2t /2) = η
(
α− βx2t /2

)
Therefore once xt >

√
2α/β, the sharpness begins to decrease and continues to do so until the

sharpness goes below 2/η and the dynamics return to stability.

Stage 4: Return to Stability At this point |xt| is still large from stages 1 and 2. However, the self-
stabilization of stage 3 eventually drives the sharpness below 2/η so that yt < 0. Because the rule
for gradient descent on a quadratic with sharpness S(θt) = 2/η+yt < 2/η is xt+1 ≈ −(1+ηyt)xt,
|xt| begins to shrink exponentially and the process returns to stage 1.

Combining the update for xt, yt in all four stages, we obtain the following simplified dynamics:

xt+1 ≈ −(1 + ηyt)xt and yt+1 ≈ yt + η(α− βx2t /2) (2)

3.2. Analyzing the simplified dynamics

We now analyze the dynamics in (2). First, note that xt changes sign at every iteration, and that
xt+1 ≈ −xt. While (2) cannot be modeled by an ODE due to these oscillations, we can instead
model |xt|, yt. We couple the dynamics of |xt|, yt to the following ODE X(t), Y (t):

X ′(t) = X(t)Y (t) and Y ′(t) = α− βX(t)2/2. (3)

This system has the unique fixed point (X,Y ) = (δ, 0) where δ :=
√
2α/β. Furthermore, we can

prove conservation of a quantity g,which allows us to explicitly bound the size of the trajectory:

Lemma 4 Let h(z) := z − log z − 1. Then g(X(t), Y (t)) := h
(
βX(t)2

2α

)
+ Y (t)2

α is conserved.

Proof d
dtg(X(t), Y (t)) = βX(t)2Y (t)

α − 2Y (t) + 2
αY (t)

[
α− βX(t)2

2

]
= 0.

Corollary 5 For all t, X(0) ≤ X(t) ≲ δ
√
log(δ/X(0)) and |Y (t)| ≲

√
α log(δ/X(0)).

The fluctuations are Õ(
√
α) in the sharpness and Õ(δ) in the unstable direction. Moreover, the

normalized displacement in the ∇S direction, is also bounded by Õ(δ), so the entire process remains
bounded by Õ(δ). Note that the fluctuations increase as α grows, and decrease as β grows.
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3.3. Relationship with the constrained trajectory θ†t

(2) determines the displacement θt − θ⋆ in the u,∇S directions. However, θt still evolves in the
orthogonal directions by −ηP⊥

u,∇S∇L at every step. This can be interpreted as taking a gradient
step of −η∇L and then projecting out the ∇S direction to ensure the sharpness does not change.
Lemma 16, shows that this is precisely the update for θ†t ((1)) up to higher order terms. Therefore
∥θt− θ†t∥ ≤ Õ(δ) and that this Õ(δ) error term is controlled by the self-stabilizing dynamics in (2).

4. Experiments

Appendix D introduces a generalization of eq. (2). In Figure 2, we replicate the experiments in
[7]. We show that these dynamics accurately model gradient descent at the edge of stability and can
predict the loss, sharpness, and distance from constrained trajectory. In addition, while gradient flow
diverges linearly from gradient descent, the gradient descent and constrained trajectories remain
close throughout training. See Appendix F for details and Appendix I for more experiments.

5. Discussion

Non-Monotonic Loss Decrease Cohen et al. [7] observed that, despite non-monotonic fluctua-
tions of the loss, the loss still decreases over long time scales. Our analysis explains this decrease
by showing that gradient descent remains close to the constrained trajectory. Since this trajectory
is stable, it satisfies a descent lemma (Lemma 17), and has monotonically decreasing loss. Over
short time periods, the loss is dominated by the rapid fluctuations of xt described in Section 3. Over
longer time periods, the loss decrease of the constrained trajectory overpowers the bounded fluctu-
ations of xt, leading to an overall loss decrease. This is reflected in our experiments in Section 4.

Generalization & the Role of Large Learning Rates Prior work shows that decreasing sharp-
ness of the learned solution [9, 15, 16, 24] and increasing the learning rate [18, 19, 26] are corre-
lated with better generalization. Our analysis shows that gradient descent implicitly constrains the
sharpness to stay near 2/η, which suggests larger learning improves generalization by reducing the
sharpness. In Figure 3 we confirm that gradient descent generalizes better with large learning rates.

Training Speed [7] also shows that larger learning rates lead to faster convergence despite insta-
bility. This phenomenon is explained by our analysis. Gradient descent is coupled to the constrained
trajectory which minimizes the loss while constraining movement in the ut,∇S⊥

t directions. How-
ever, the constrained trajectory can still move quickly in the orthogonal directions, using the large
learning rate to accelerate convergence. We demonstrate this empirically in Figure 3.

We defer additional discussion of our work, including a generalization of the predicted dynamics
in Appendix H, and the effect of multiple unstable eigenvalues and connections to Sharpness Aware
Minimization [10], warm-up [11], and scale-invariant loss functions [22] to Appendix J.

Future Work An important question is to understand the dynamics when there are multiple un-
stable eigenvalues, which we address in Appendix J. Another direction is to understand the global
convergence properties at the edge of stability, including convergence to a KKT point of the con-
strained update (1). Next, our analysis focused on the edge of stability dynamics but left open the
question of why progressive sharpening occurs. Finally, we would like to understand how self-
stabilization interacts with the implicit biases of stochastic-gradient descent [4, 8, 20].
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Gradient Descent Predicted Dynamics Constrained Trajectory
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Figure 2: We empirically demonstrate that the predicted dynamics given by (4) track the true dy-
namics of gradient descent at the edge of stability. For each learning rate, the top row
is a zoomed in version of the bottom row which isolates one cycle and is reflected by
the dashed rectangle in the bottom row. Reported sharpnesses are two-step averages for
visual clarity. For additional experimental details, see Section 4 and Appendix F.
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Appendix A. Related Work

Cohen et al. [7] conducted an extensive empirical study showing progressive sharpening and edge
of stability in a wide range of models. Prior work [28, 29] had also observed that for neural net-
works full-batch gradient descent reaches instability and the loss is not monotonically decreasing.
Lewkowycz et al. [18] observed that when the initial sharpness is larger than 2/η, gradient descent
"catapults" into a stable region and converges.

Recent works have sought to provide a theoretical analysis for the edge of stability phenomenon.
Ma et al. [23] analyzes edge of stability when the loss satisfies a "subquadratic growth" assumption.
Ahn et al. [1] argues that unstable convergence is possible when there exists a "forward invariant
subset" near the set of minimizers. Arora et al. [2] analyzes progressive sharpening and the edge of
stability phenomenon for normalized gradient descent close to the manifold of global minimizers.
Lyu et al. [22] uses the edge of stability phenomenon to analyze the effect of normalization layers on
sharpness for scale-invariant loss functions. Chen and Bruna [6] show global convergence despite
instability for certain 2D toy problems and in a 1-neuron student-teacher setting. The concurrent
work Li et al. [21] proves progressive sharpening for a two-layer network and analyzes the edge of
stability dynamics through four stages similar to ours using the norm of the output layer as a proxy
for sharpness.

Beyond the edge of stability phenomenon itself, prior work has also shown that SGD with large
step size or small batch size will lead to a decrease in sharpness [12–14, 16]. Gilmer et al. [11] also
describes connections between edge of stability, learning rate warm-up, and gradient clipping.

At a high level, our proof relies on the idea that oscillations in an unstable direction prescribed
by the quadratic approximation of the loss cause a longer term effect arising from the third-order
Taylor expansion of the dynamics. This overall idea has also been used to analyze the implicit
regularization of SGD [4, 8, 20]. In those settings, oscillations come from the stochasticity, while
in our setting the oscillations stem from instability.

Appendix B. Notation

We denote by ∇kL(θ) the k-th order derivative of the loss L at θ. Note that ∇kL(θ) is a symmetric
k-tensor in (Rd)⊗k when θ ∈ Rd.

For a symmetric k-tensor T , and vectors u1, . . . , uj ∈ Rd we will use T (u1, . . . , uj) to denote
the tensor contraction of T with u1, . . . , uj , i.e.

[T (u1, . . . , uk)]i1,...,ik−j
:= Ti1,...,ik(u1)ik−j+1

· · · (uj)ik .
We use Pu1,...,uk

to denote the orthogonal projection onto span(u1, . . . , uk) and P⊥
u1,...,uk

is the
projection onto the corresponding orthogonal complement.
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For matrices A1, . . . , Ak, we define
t∏

k=1

Ak := A1 . . . At and
1∏

k=t

Ak := At . . . A1.

Appendix C. A Toy Model for Self-Stabilization

For α, β > 0, consider the function

L(x, y, z) :=

(
2

η
+
√
βy

)
x2

2
− α√

β
y − z

initialized at the point (x0, 0, 0). Note that the constrained trajectory will follow x†t = 0, y†t = 0,
z†t = −ηt as it cannot decrease y without increasing the sharpness past 2/η. We therefore have:

∇Lt =

[
0,− α√

β
, 1

]
, ut = [1, 0, 0], St = 2/η +

√
βy, ∇2Lt = Stutu

t
t, ∇St =

[
0,
√
β, 0
]
.

Note that this satisfies all of the assumptions in Section 3 and it satisfies α = −∇Lt · ∇St = 0 and
β = ∥∇St∥2. This process will then follow (3) in the x, y directions while it tracks the constrained
trajectory θ†t moving linearly in the −P⊥

u,∇S∇L = [0, 0,−1] direction.

Appendix D. The Predicted Dynamics and Theoretical Results

We now present the equations governing edge of stability for general loss functions.

D.1. Notation

Our general approach Taylor expands the gradient of each iterate θt around the corresponding iterate
θ†t of the constrained trajectory. We define the following Taylor expansion quantities at θ†t :

Definition 6 (Taylor Expansion Quantities at θ†t )

∇Lt := ∇L(θ†t ), ∇2Lt := ∇2L(θ†t ), ∇3Lt := ∇3L(θ†t ), ∇St := ∇S(θ†t ), ut := u(θ†t ).

Furthermore, for any vector-valued function v(θ), we define v⊥t := P⊥
ut
v(θ†t ) where P⊥

ut
is the

projection onto the orthogonal complement of ut.

We also define the following quantities which govern the dynamics near θ⋆t .

Definition 7 Let αt := −∇Lt · ∇St, βt :=
∥∥∇S⊥

t

∥∥2, and δt :=
√

2αt
βt

. Furthermore, we define

βs→t := ∇S⊥
t+1

[∏s+1
k=t(I − η∇2Lk)P

⊥
uk

]
∇S⊥

s and δ := supt δt.

Recall that αt is the progressive sharpening force, βt is the strength of the stabilization force, and δt
controls the size of the deviations from θ†t and was the fixed point in the x direction in Section 3.2.
The scalars βs→t capture the effect of the interactions between ∇S and the Hessian.

D.2. The equations governing edge of stability

We now introduce the equations governing edge of stability. We track the following quantities:

Definition 8 Define vt := θt − θ†t , xt := ut · vt, yt := ∇S⊥
t · vt.

12
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Our predicted dynamics directly predict the displacement vt and the full definition is deferred to
Appendix E. However, they have a relatively simple form in the ut,∇S⊥

t directions:

Lemma 9 (Predicted Dynamics for x, y) Let ⋆
vt denote our predicted dynamics (defined in Ap-

pendix E). Letting ⋆
xt = ut · ⋆

vt and ⋆
yt = ∇S⊥

t · ⋆
vt, we have

⋆
xt+1 = −(1 + η

⋆
yt)

⋆
xt and ⋆

yt+1 = η
t∑

s=0

βs→t

[
δ2s −

⋆
xs

2

2

]
. (4)

Note that when βs→t are constant, our update reduces to the simple case discussed in Section 3,
which we analyze fully. When xt is large, (4) demonstrates that there is a self-stabilization force
which acts to decrease yt; however, unlike in Section 3, the strength of this force changes with t.

D.3. Coupling Theorem

We now show that, under a mild set of assumptions which we verify to hold empirically in Ap-
pendix G, the true dynamics are accurately governed by the predicted dynamics. This lets us use
the predicted dynamics to predict the loss, sharpness, and the distance to the constrained trajectory
θ†t .

Our errors depend on the unitless quantity ϵ, which we verify is small in Appendix G.

Definition 10 Let ϵt := η
√
αt and ϵ := supt ϵt.

To control Taylor expansion errors, we require upper bounds on ∇3L and its Lipschitz constant:2

Assumption 3 Let ρ3, ρ4 to be the minimum constants such that for all θ,
∥∥∇3L(θ)

∥∥
op

≤ ρ3 and
∇3L is ρ4-Lipschitz with respect to ∥·∥op. Then we assume that ρ4 = O(ηρ23).

Next, we require the following generalization of Assumption 1:

Assumption 4 For all t, −∇Lt·∇St

∥∇Lt∥∥∇S⊥
t ∥ = Θ(1) and

∥∥∇S⊥
t

∥∥ = Θ(ρ3).

Finally, we require a set of “non-worst-case" assumptions, which are that the quantities ∇2L,∇3L,
and λmin(∇2L) are nicely behaved in the directions orthogonal to ut, which generalizes the eigen-
gap assumption. We verify the assumptions on ∇2L and ∇3L empirically in Appendix G.

Assumption 5 For all t and v, w ⊥ ut,
∥∇3Lt(v,w)∥

∥∇3Lt∥op∥v∥∥w∥ ,
|∇2Lt(

⋆
v⊥t ,

⋆
v⊥t )|

∥∇2Lt∥∥⋆
v⊥t ∥2 ,

|λmin(∇2Lt)|
∥∇2Lt∥2 ≤ O(ϵ).

With these assumptions in place, we can state our main theorem which guarantees ⋆
x,

⋆
y,

⋆
v predict

the loss, sharpness, and deviation from the constrained trajectory up to higher order terms:

Theorem 11 Let T := O(ϵ−1) and assume that mint≤T | ⋆xt| ≥ c1δ. Then for any t ≤ T , we
have

L(θt) = L(θ†t ) +
⋆
x2t /η +O

(
ϵδ2/η

)
(Loss)

S(θt) = 2/η +
⋆
yt + (St · ut) ⋆

xt +O
(
ϵ2/η

)
(Sharpness)

θt = θ†t +
⋆
vt +O(ϵδ) (Deviation from θ†)

2. For simplicity of exposition, we make these bounds on ∇3L globally, however our proof only requires them in a
small neighborhood of the constrained trajectory θ†.
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The sharpness is controlled by the slowly evolving quantity ⋆
yt and the period-2 oscillations of

(∇S ·U)
⋆
xt. This combination of gradual and rapid periodic behavior was observed by Cohen et al.

[7] and appears in our experiments. Theorem 11 also shows that the loss at θt spikes whenever ⋆
xt is

large. On the other hand, when ⋆
xt is small, L(θt) approaches the loss of the constrained trajectory.

Appendix E. Definition of the Predicted Dynamics

Below, we present the full definition of the predicted dynamics:

Definition 12 (Predicted Dynamics, full) Define ⋆
v0 = v0, and let ⋆

xt =
⋆
vt · ut, ⋆

yt = ∇S⊥ · ⋆
vt.

Then

v∗t+1 = P⊥
ut+1

(I − η∇2Lt)P
⊥
ut
v∗t + ηP⊥

ut+1
∇S⊥

t

[
δ2t − x∗t

2

2

]
− (1 + ηy∗t )x

∗
t · ut+1 (5)

For convenience, we will define the map stept : Rd → Rd as follows:

Definition 13 Given a vector v and a timestep t, define stept(v) by

P⊥
ut+1

stept(v) = P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
v + η∇S⊥

t

[
δ2t − x2

2

]]
(6)

ut+1 · stept(v) = −(1 + ηy)x. (7)

where x = ut · v and y = ∇S⊥
t · v.

It is easy to see that ⋆
vt+1 = stept(

⋆
vt).

Proof [Proof of Theorem 9] Defining At = (I − η∇2Lt)P
⊥
ut

, we can unfold the recursion in (5) to
obtain the following formula for ⋆

vt.

v∗t+1 = η
t∑

s=0

P⊥
ut+1

[
s+1∏
k=t

Ak

]
∇S⊥

s

[
δ2s − x∗s

2

2

]
− (1 + ηy∗t )x

∗
t · ut+1. (8)

It is then immediate to see that ⋆
xt =

⋆
vt · ut, ⋆

yt = ∇S⊥
t · ⋆

vt have the following simple update:

x∗t+1 = −(1 + ηy∗t )x
∗
t and y∗t+1 = η

t∑
s=0

βs→t

[
δ2s − x∗s

2

2

]
,

where we recall that we have defined

βs→t := ∇S⊥
t+1

[
s+1∏
k=t

Ak

]
∇S⊥

s . (9)

Appendix F. Experimental Details

F.1. Architectures

We evaluated our theory on four different architectures. The 3-layer MLP and CNN are exact
copies of the MLP and CNN used in [7]. The MLP has width 200, the CNN has width 32, and
both are using the swish activation [25]. We also evaluate on a ResNet18 with progressive widths
16, 32, 64, 128 and on a 2-layer Transformer with hidden dimension 64 and two attention heads.
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F.2. Data

We evaluated our theory on three primary tasks: CIFAR10 multi-class classification with both cate-
gorical MSE loss and cross-entropy loss, CIFAR10 binary classification (cats vs dogs) with binary
MSE loss and logistic loss, and SST2 [27] with binary MSE loss and logistic loss.

F.3. Experimental Setup

For every experiment, we tracked the gradient descent dynamics until they reached instability and
then began tracking the constrained trajectory, gradient descent, gradient flow, and both our pre-
dicted dynamics (Appendix D) and our generalized predicted dynamics (Appendix H). In addition,
we tracked the various quantities on which we made assumptions for Appendix D in order to val-
idate these assumptions. We also tracked the second eigenvalue of the Hessian at the constrained
trajectory throughout training and stopped training once it reached 1.9/η, to ensure the existence of
a single unstable eigenvalue. Finally, as the edge of stability dynamics are very sensitive to small
perturbation when |x| is small (see ??), we switched to computing gradients with 64-bit precision
after first reaching instability to avoid propagating floating point errors.

Eigenvalues were computed using the LOBPCG sparse eigenvalue solver in JAX [5]. To com-
pute the constrained trajectory, we computed a linearized approximation for projM inspired by
Lemma 16 along with a Newton step in the ut direction to ensure that ∇L · u = 0. Each linearized
approximation step required recomputing the sharpness and top eigenvector and each projection
step then consisted of three linearized projection steps, for a total of three eigenvalue computations
per projection step.

Our experiments were conducted in JAX [5], using https://github.com/locuslab/
edge-of-stability as a reference for replicating the experimental setup used in [7]. All
experiments were conducted on two servers, each with 10 NVIDIA GPUs. Code is provided in the
supplementary material and will be made public on GitHub upon acceptance.

Appendix G. Empirical Verification of the Assumptions

For each of the experimental settings considered (MLP+MSE, CNN+MSE, CNN+Logistic, ResNet18+MSE,
Transformer+MSE, Transformer+Logistic), we plot a number of quantities along the constrained
trajectory to verify that the assumptions made in the main text hold. For each learning rate η we
have 8 plots tracking various quantities, which verify the assumptions as follows: Assumption 1 is
verified by the 1st plot, ϵ being small is verified by the 2nd plot, Assumption 4 is verified by the
3rd and 4th plots, Assumption 3 is verified by the 5th plot, and Assumption 5 is verified by the last
3 plots. As described in the experimental setup, training is stopped once the second eigenvalue is
1.9/η, so Assumption 2 always holds with c = 1.9 as well.
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MLP+MSE on CIFAR10
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CNN+MSE on CIFAR10
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CNN+Logistic on CIFAR10 (cats vs dogs)
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ResNet18+MSE on CIFAR10 (cats vs dogs)
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Transformer+Logistic on SST2
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Appendix H. The Generalized Predicted Dynamics

Our analysis relies on a cubic Taylor expansion of the gradient. However, in order for this Taylor
expansion to accurately track the gradients we need a bound on the fourth derivative of the loss
(Assumption 3). Section 4 and Appendix G show that this approximation is sufficient to capture
the dynamics of gradient descent at the edge of stability for many standard models when the loss
criterion is the mean squared error. However, for certain architectures and loss functions, including
ResNet18 and models trained with the logistic loss, this condition is often violated.

In these situations, the loss function in the top eigenvector direction is either sub-quadratic,
meaning that the quadratic Taylor expansion overestimates the loss and sharpness3, or super-quadratic,
meaning that the quadratic Taylor expansion underestimates the loss and sharpness. To capture this
phenomenon, we derive a more general form of the predicted dynamics which reduces to the stan-
dard predicted dynamics in Appendix D when the loss in the top eigenvector direction is approxi-
mately quadratic. In addition, Appendix I shows that the generalized predicted dynamics capture the
dynamics of gradient descent at the edge of stability for both mean squared error and cross-entropy
in all settings we tested.

H.1. Deriving the Generalized Predicted Dynamics

To derive the generalized predicted dynamics, we will abstract away the dynamics in the top eigen-
vector direction. Specifically, for every t we define

Ft(x) := L(θ†t + xut)− L(θ†t )−
x2

η
.

We say that L is sub-quadratic at t if Ft(x) < 0 and super-quadratic if Ft(x) > 0.
Note that knowing Ft is not sufficient to capture the dynamics in the ut direction. Specifically,

xt+1 = xt − ηut · ∇L(θ†t + vt) ̸= xt − ηut · ∇L(θ†t + xut).

It is still critically important to track the effect that the movement in the ∇S⊥
t direction has on the

dynamics of x. As in Section 3.1, the effect of the movement in the ∇S⊥
t direction on the dynamics

of x is changing the sharpness by yt. This gives us the generalized predicted dynamics update:

v∗t+1 = P⊥
ut+1

(I − η∇2Lt)P
⊥
ut
v∗t + ηP⊥

ut+1
∇S⊥

t

[
δ2t − x∗t

2

2

]
− x⋆t+1 · ut+1

where x⋆t+1 = −(1 + ηy⋆t )x
⋆
t − ηF ′(x⋆t ).

Note that when Ft(x) = 0 is exactly quadratic, this reduces to the standard predicted dynamics
update in (5). Note that the update for y is completely unchanged:

Lemma 14 Restricted to the ut,∇St directions, the generalized predicted dynamics v⋆t imply:

x⋆t+1 = −(1 + ηy⋆t )x
⋆
t − ηF ′(x⋆t ) and y⋆t+1 = η

t∑
s=0

βs→t

[
δ2s − x∗s

2

2

]
. (10)

The proof is identical to the proof of Theorem 9.

3. This sub-quadratic phenomenon was also observed in [23].
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H.2. Properties of the Generalized Predicted Dynamics

Note that due to the sign flipping argument in Appendix K, we can assume that F is an even function
as the odd part will only influence the dynamics through additional oscillations of period 2, so
throughout the remainder of this section we will assume that Ft(x) = Ft(−x). Otherwise, we can
simply redefine F by its even part.

Next, note that the fixed point of (10) is still when xt = δt, regardless of the shape of Ft, due to
the need to stabilize the ∇S⊥

t direction. This contradicts previous 1-dimensional analyses of edge
of stability in which the fixed point in the top eigenvector direction strongly depends on the shape
of Ft, the loss in the ut direction.

The limiting value of yt can therefore be read from the update for xt. If (δt, y) is an orbit of
period 2 of (10), then

−δt = −(1 + ηy)δt − ηF ′(δt) =⇒ y = −F ′(δt)

δt
.

In addition, note that the sharpness can no longer be approximated as S(θt) ≈ 2/η + yt as the
sharpness now changes along the ut direction. In particular, it changes by F ′′(x) so that

S(θt) ≈ 2/η + yt + F ′′(xt).

Therefore, the limiting sharpness of (10) is

S(θt) → 2/η − F ′
t(δt)

δt
+ F ′′

t (δt).

When Ft = 0 and the loss is exactly quadratic in the u direction, this update reduces to fixed point
predictions in Section 3.1.

One interesting phenomenon observed by Cohen et al. [7] is that with cross-entropy loss, the
sharpness was never exactly 2/η, but usually hovered above it. This contradicts the predictions of
the standard predicted dynamics which predict that the fixed point has sharpness 0. However, using
the generalized predicted dynamics (10), we can give a clear explanation.

When the loss is sub-quadratic, e.g. when Ft(x) = −ρ4
x4

24 , we have

S(θt) → 2/η + ρ4
δ2t
6

− ρ4
δ2t
2

= 2/η − ρ4
δ2t
3

< 2/η

so the sharpness will converge to a value below 2/η. On the other hand if the loss is super-quadratic,
the sharpness converges to a value above 2/η. More generally, whether the loss converges to a value
above or below 2/η depends on the sign of F ′′

t (δt)− δtF
′
t(δt).

In our experiments in Appendix I, we observed both sub-quadratic and super-quadratic loss
functions. In particular, the loss was usually sub-quadratic when it first reached instability but
gradually became super-quadratic as training progressed at the edge of stability.

Appendix I. Additional Experiments

I.1. The Benefit of Large Learning Rates: Training Time and Generalization

We trained ResNet18 with full batch gradient descent on the full 50k training set of CIFAR10 with
various learning rates, in addition to the commonly proposed learning rate schedule ηt := 1/S(θt).
We show that despite entering the edge of stability, large learning rates converge much faster. In
addition, due to the self-stabilization effect of gradient descent, the final sharpness is bounded by
2/η which is smaller for larger learning rates and leads to better generalization (see Figure 3).
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Figure 3: Large learning rates converge faster and generalize better (ResNet18 and CIFAR10).
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I.2. Experiments with the Generalized Predicted Dynamics

MLP+MSE on CIFAR10
Gradient Descent Predicted Dynamics Constrained Trajectory
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CNN+MSE on CIFAR10
Gradient Descent Predicted Dynamics Constrained Trajectory
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CNN+Logistic on CIFAR10 (cats vs dogs)
Gradient Descent Predicted Dynamics Constrained Trajectory
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ResNet18+MSE on CIFAR10 (cats vs dogs)
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point
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Appendix J. Additional Discussion

Multiple Unstable Eigenvalues Our work focuses on explaining edge of stability in the presence
of a single unstable eigenvalue (Assumption 2). However, Cohen et al. [7] observed that progressive
sharpening appears to apply to all eigenvalues, even after the largest eigenvalue has become unsta-
ble. As a result, all of the top eigenvalues will successively enter edge of stability (see Figure 4).
In particular, Figure 4 shows that the dynamics are fairly well behaved in the period when only a
single eigenvalue is unstable, yet appear to be significantly more chaotic when multiple eigenvalues
are unstable.
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Figure 4: Edge of stability with multiple unstable eigenvalues. Each vertical line is the time at
which the corresponding eigenvalue of the same color becomes unstable.

One technical challenge with dealing with multiple eigenvalues is that, when the top eigen-
value is not unique, the sharpness is no longer differentiable and it is unclear how to generalize
our analysis. However, one might expect that gradient descent can still be coupled to projected
gradient descent under the non-differentiable constraint S(θ†T ) ≤ 2/η. When there are k unstable
eigenvalues, with corresponding eigenvectors u1t , . . . , u

k
t , the constrained update is roughly equiv-

alent to projecting out the subspace span{∇3Lt(u
i
t, u

j
t ) : i, j ∈ [k]} from the gradient update

−η∇Lt. Demonstrating self-stabilization thus requires analyzing the dynamics in the subspace
span

(
{uit : i ∈ [k]} ∪ {∇3Lt(u

i
t, u

j
t ) : i, j ∈ [k]}

)
. We leave investigating the dynamics of mul-

tiple unstable eigenvalues for future work.

Connection to Sharpness Aware Minimization (SAM) Foret et al. [10] introduced the sharpness-
aware minimization (SAM) algorithm, which aims to control sharpness by solving the optimization
problem minθ max∥δ∥≤ϵ L(θ + δ). This is roughly equivalent to minimizing S(θ) over all global
minimizers, and thus SAM tries to explicitly minimize the sharpness. Our analysis shows that gra-
dient descent implicitly minimizes the sharpness, and for a fixed η looks to minimize L(θ) subject
to S(θ) = 2/η.

Connections to Warmup. Gilmer et al. [11] demonstrated that learning rate warmup, which con-
sists of gradually increasing the learning rate, empirically leads to being able to train with a larger
learning rate. The self-stabilization property of gradient descent provides a plausible explanation
for this phenomenon. If too large of an initial learning rate η0 is chosen (so that S(θ0) is much
greater than 2/η0), then the iterates may diverge before self stabilization can decrease the sharpness
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to 2/η0. On the other hand, if the learning rate is chosen that S(θ0) is only slightly greater than
2/η0, self-stabilization will decrease the sharpness to 2/η0. Repeatedly increasing the learning rate
slightly could then lead to small decreases in sharpness without the iterates diverging, thus allowing
training to proceed with a large learning rate.

Connection to Weight Decay and Sharpness Reduction. Lyu et al. [22] proved that when the
loss function is scale-invariant, gradient descent with weight decay and sufficiently small learning
rate converges leads to reduction of the normalized sharpness S(θ/∥θ∥). In fact, the mechanism
behind the sharpness reduction is exactly the self-stabilization force described in this paper restricted
to the setting in [22]. We present here a heuristic derivation of this equivalence.

Our primary result is that gradient descent solves the constrained problem minθ L(θ) such that
S(θ) ≤ 2/η. To prove equivalence to the sharpness reduction, we will need the following lemma
from [22] which follows from the scale invariance of the loss:

S(θ) =
1

∥θ∥2S(θ/∥θ∥).

Let Lλ(θ) := L(θ) + λ
2∥θ∥

2 and Sλ(θ) = S(θ) + λ denote the regularized loss and sharpness
respectively and let θ := θ

∥θ∥ . Then we have the following equality between minimization problems:

min
θ

Lλ(θ) such that Sλ(θ) ≤ 2/η

⇐⇒ min
θ

L(θ) + λ
∥θ∥2
2

such that S(θ) ≤ 2/η − λ

⇐⇒ min
θ,∥θ∥

L(θ) + λ
∥θ∥2
2

such that
1

∥θ∥2S(θ) ≤
2− ηλ

η

⇐⇒ min
θ

L(θ) +
ηλ

2− ηλ
S(θ)

where the last line follows from the scale-invariance of the loss function. In particular if ηλ is
sufficiently small and the dynamics are initialized near a global minimizer of the loss, this will
converge to the solution of the constrained problem:

min
∥θ∥=1

S(θ) such that L(θ) = 0.

Appendix K. Proofs

K.1. Properties of the Constrained Trajectory

We next prove several nice properties of the constrained trajectory. Before, we require the following
auxiliary lemma, which shows that several quantities are Lipschitz in a neighborhood around the
constrained trajectory:

Lemma 15 (Lipschitz Properties)

1. θ → ∇L(θ) is O(η−1)-Lipschitz in each set St.

2. θ → ∇2L(θ) is ρ3-Lipschitz with respect to ∥·∥2.

3. θ → λi(∇2L(θ)) is ρ3-Lipschitz.
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4. θ → u(θ) is O(ηρ3)-Lipschitz in each set St.

5. θ → ∇S(θ) is O(ηρ23)-Lipschitz in each set St.

Proof The Lipschitzness of ∇2L(θ) follows immediately from the bound
∥∥∇3L(θ)

∥∥
op

≤ ρ3.
Weil’s inequality then immediately implies the desired bound on the Lipschitz constant of the eigen-
values of ∇2L(θ). Therefore for any t, we have for all θ ∈ St:

λ1(∇2L(θ))− λ2(∇2L(θ)) ≥ λ1(∇2L(θ))− λ2(∇2L(θ))− 2ρ3
2− c

4ηρ3
≥ 2− c

2η
.

Next, from the derivative of eigenvector formula:

∥∇u(θ)∥2 =
∥∥∥(λ1(∇2L(θ))I −∇2L(θ))†∇3L(θ)(u(θ))

∥∥∥
2

≤ ρ3
λ1(∇2L(θ))− λ2(∇2L(θ))

≤ 2ηρ3
2− c

= O(ηρ3)

which implies the bound on the Lipschitz constant of u restricted to St. Finally, because ∇S(θ) =
∇3L(θ)(u(θ), u(θ)),∥∥∇2S(θ)

∥∥
2
≤
∥∥∇4L(θ)

∥∥
op

+ 2
∥∥∇3L(θ)

∥∥
op
∥∇u(θ)∥2 ≤ O(ρ4 + ηρ23) ≤ O(ηρ23)

where the second to last inequality follows from the bound on ∥∇u(θ)∥2 restricted to St and the
last inequality follows from Assumption 3.

Lemma 16 (First-order approximation of the constrained trajectory update {θ†t}) For all t ≤
T ,

θ†t+1 = θ†t − ηP⊥
ut,∇St

∇Lt +O
(
ϵ2 · η∥∇Lt∥

)
and St = 2/η.

Proof We will prove by induction that St = 2/η for all t. The base case follows from the definitions
of θ0, θ

†
0. Next, assume S(θ†t ) = 0 for some t ≥ 0. Let θ′ = θ†t − η∇Lt. Then because θ†t ∈ M we

have
∥∥∥θ†t+1 − θ′

∥∥∥ ≤
∥∥∥θ†t − θ′

∥∥∥ = η∥∇Lt∥. Then because θ†t+1 = projM(θ′), the KKT conditions
for this minimization problem imply that there exist x, y with y ≥ 0 such that

θ†t+1 = θ†t − η∇Lt − x∇θ[∇L(θ) · u(θ)]
∣∣∣∣
θ=θ†t+1

− y∇St+1

= θ†t − η∇Lt − x
[
St+1ut+1 +∇uTt+1∇Lt+1

]
− y∇St+1

= θ†t − η∇Lt − x[St+1ut+1 +O(ηρ3∥∇Lt+1∥)]− y∇St+1

= θ†t − η∇Lt − x[Stut +O(ηρ3∥∇Lt∥)]− y
[
∇St +O(η2ρ23∥∇Lt∥)

]
= θ†t − η∇Lt − xStut − y∇St +O

(
(|x|ηρ3 + |y|η2ρ23)∥∇Lt∥

)
.

Next, note that we can decompose ∇St = ut(∇St · ut) +∇S⊥
t :

θ†t+1 = θ†t − η∇Lt − [xSt + y(∇St · ut)]ut − y∇S⊥
t +O

(
(|x|ηρ3 + |y|η2ρ23)∥∇Lt∥

)
.
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Let st =
∇S⊥

t

∥∇S⊥
t ∥ . We can now perform the change of variables

(x′, y′) =
(
xSt + y(∇St · ut), y

∥∥∥∇S⊥
t

∥∥∥), (x, y) =

x′ − y′ ∇St·ut

∥∇S⊥
t ∥

St
,

y′∥∥∇S⊥
t

∥∥


to get

θ†t+1 = θ†t − η∇Lt − x′ut − y′st +O
(
η2ρ3∥∇L∥(

∣∣x′∣∣+ ∣∣y′∣∣)).
Note that

O(η2ρ3∥∇L∥(|x|+ |y|)) ≤
√

x2 + y2

2
(11)

for sufficiently small ϵ so because
∥∥∥θ†t+1 − θ′

∥∥∥ ≤ η∥∇Lt∥ we have√
x2 + y2

2
≤
∥∥∥θ†t+1 − θ′

∥∥∥ ≤ η∥∇Lt∥
so x, y = O(η∥∇Lt∥). Therefore,

θ†t+1 = θ†t − η∇Lt − x′ut − y′st +O
(
η3ρ3∥∇L∥2

)
= θ†t − η∇Lt − x′ut − y′st +O

(
ϵ2 · η∥∇Lt∥

)
Then Taylor expanding ∇Lt+1 around θ†t gives

∇Lt+1 · ut+1 = ∇Lt · ut + (∇Lt+1 −∇Lt) · ut +∇Lt+1 · (ut+1 − ut)

= uTt ∇2Lt

[
−η∇Lt − x′ut − y′st +O(ϵ2 · η∥∇Lt∥

]
+O

(
ϵ2 · ∥∇Lt∥

)
= −x′St +O

(
ϵ2 · ∥∇Lt∥

)
so x′ = O(ϵ2 · η∥∇Lt∥). We can also Taylor expand St+1 around θ†t and use that St = 2/η to get

St+1 = 2/η +∇St ·
[
−η∇Lt − x′ut − y′st +O

(
η3ρ3∥∇Lt∥2

)]
+O

(
ϵ2 · ρ3η∥∇Lt∥

)
= 2/η + ηαt − y′∥∇S⊥

t ∥+O
(
ϵ2 · ρ3η∥∇Lt∥

)
.

Now note that for ϵ sufficiently small we have

O
(
ϵ2 · ρ3η∥∇Lt∥

)
≤ O

(
ϵ2 · ηαt

)
≤ ηαt.

Therefore if y′ = 0, we would have St+1 > 2/η which contradicts θ†t+1 ∈ M. Therefore y′ > 0
and therefore y > 0, which by complementary slackness implies St+1 = 2/η. This then implies
that

−η∇Lt · ∇S⊥
t − y′∥∇S⊥

t ∥+O(ϵ2 · ρ3η∥∇Lt∥) = 0 =⇒ y′ = −η∇Lt ·
∇S⊥

t∥∥∇S⊥
t

∥∥ +O
(
ϵ2 · η∥∇Lt∥

)
.

Putting it all together gives

θ†t+1 = θ†t − ηP⊥
∇S⊥

t
∇Lt +O

(
ϵ2 · η∥∇Lt∥

)
= θ†t − ηP⊥

ut,∇St
∇Lt +O

(
ϵ2 · η∥∇Lt∥

)
where the last line follows from ut · ∇Lt = 0.
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Lemma 17 (Descent Lemma for θ†) For all t ≤ T ,

L(θ†t+1) ≤ L(θ†t )− Ω

(
η
∥∥∥P⊥

ut,∇St
∇Lt

∥∥∥2).
Proof Taylor expanding L(θ†t+1) around L(θ†t ) and using Lemma 16 gives

L(θ†t+1) = L(θ†t ) +∇Lt · (θ†t+1 − θ†t ) +
1

2
(θ†t+1 − θ†t )

T∇2Lt(θ
†
t+1 − θ†t ) +O

(
ρ3

∥∥∥θ†t+1 − θ†t

∥∥∥3)

= L(θ†t )− η
∥∥∥P⊥

ut,∇St
∇Lt

∥∥∥2 + η2λ2(∇2Lt)
∥∥∥P⊥

ut,∇St
∇Lt

∥∥∥2
2

+O
(
η3ρ3∥∇Lt∥3

)
= L(θ†t )−

η(2− c)

2

∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2 +O
(
η3ρ3∥∇Lt∥3

)
.

Next, note that because γt = Θ(1) we have ∥∇Lt∥ = O(
∥∥∥P⊥

ut,∇St
∇Lt

∥∥∥).Therefore for ϵ suffi-
ciently small,

O
(
η3ρ3∥∇Lt∥3

)
= O(ϵ2 · η∥∇Lt∥2) ≤

η(2− c)

4

∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2.
Therefore,

L(θ†t+1) ≤ L(θ†t )−
η(2− c)

4

∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2 = L(θ†t )− Ω(η
∥∥∥P⊥

ut,∇St
∇Lt

∥∥∥2)
which completes the proof.

Corollary 18 Let L⋆ = minθ L(θ). Then there exists t ≤ T such that∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2 ≤ O

(
L(θ†0)− L⋆

ηT

)
.

Proof Inductively applying Lemma 17 we have that there exists an absolute constant c such that

L⋆ ≤ L(θ†T ) ≤ L(θ†0)− cη
∑
t<T

∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2
which implies that

min
t<T

∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2 ≤ ∑
t<T

∥∥∥P⊥
ut,∇St

∇Lt

∥∥∥2
T

≤ O

(
L(θ†0)− L⋆

ηT

)
.

K.2. Proof of Theorem 11

We first require the following three lemmas, whose proofs are deferred to Appendix K.3.

Lemma 19 (2-Step Lemma) Let

rt := vt+2 − stept+1(stept(vt)).
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Assume that ∥vt∥ ≤ ϵ−1δ. Then

∥rt∥ ≤ O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)
.

Lemma 20 Assume that there exists constants c1, c2 such that for all t ≤ T , ∥ ⋆
vt∥ ≤ c2δ, | ⋆xt| ≥

c1δ. Then, for all t ≤ T , we have

∥vt − ⋆
vt∥ ≤ O(ϵδ)

Lemma 21 For t ≤ T , ∥ ⋆
vt∥ ≤ O(δ).

With these lemmas in hand, we can prove Theorem 11.
Proof [Proof of Theorem 11]

First, by Lemma 21, we have ∥ ⋆
vt∥ ≤ O(δ).

Next, by Lemma 20, we have

θt − θ†t = vt =
⋆
vt +O(ϵδ).

Next, we Taylor expand to calculate S(θt):

S(θt) = S(θ†t ) +∇St · vt +O(ηρ23∥vt∥2)
= 2/η +∇S⊥

t · vt +∇St · utut · vt +O(ηρ23δ
2)

= 2/η +∇S⊥
t · ⋆

vt +∇St · utut · ⋆
vt +O(ρ3ϵδ + ηρ23δ

2)

= 2/η + yt + (∇St · ut)xt +O(η−1ϵ2).

Finally, we Taylor expand the loss:

L(θt) = L(θ†t ) +∇Lt · vt +
1

2
vTt ∇2Ltvt +O(ρ3∥vt∥3)

= L(θ†t ) +
1

η
x2t +

1

2
v⊥t

T∇2Ltv
⊥
t +O(ρ1∥vt∥+ ρ3∥vt∥3)

= L(θ†t ) +
1

η
⋆
x2t +

1

2
⋆
v⊥t

T∇2Lt
⋆
v⊥t +O(η−1δ2ϵ)

= L(θ†t ) +
1

η
⋆
x2t +O(η−1δ2ϵ),

where the last line follows from Assumption 5.

K.3. Proof of Auxiliary Lemmas

Proof [Proof of Lemma 19] Taylor expanding the update for θt+1 about θ†t , we get

θt+1 = θt − η∇L(θt)

= θt − η∇Lt − η∇2Ltvt −
1

2
η∇3Lt(vt, vt) +O

(
ηρ4∥vt∥3

)
Additionally, recall that the update for θ†t+1 is

θ†t+1 = θ†t − ηP⊥
∇S⊥

t
∇Lt +O

(
ϵ2 · η∥∇Lt∥

)
.
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Subtracting the previous 2 equations and expanding out ∇3L(vt, vt) via the non-worst-case bounds,
we obtain

vt+1 = (I − η∇2Lt)vt − η(∇Lt − P⊥
∇S⊥

t
∇Lt)−

1

2
ηx2t∇St − ηxt∇3Lt(ut, v

⊥
t )−

1

2
η∇3Lt(v

⊥
t , v

⊥
t )

+O
(
ηρ4∥vt∥3 + ϵ2 · η∥∇Lt∥

)
= (I − η∇2Lt)vt − η

[
∇L · ∇S⊥

∥∇S⊥∥2

]
∇S⊥

t − 1

2
ηx2t∇St − ηxt∇3Lt(ut, v

⊥
t )

+O
(
ηρ3ϵ∥vt∥2 + ηρ4∥vt∥3 + ϵ2 · η∥∇Lt∥

)
= (I − η∇2Lt)vt + η∇S⊥

t

[
ϵ2t − x2t

2

]
− 1

2
ηx2t∇St · utut − ηxt∇3Lt(ut, v

⊥
t )

+O

(
ϵ2 · ∥vt∥

2

δ
+ ϵ2 · ∥vt∥

3

δ2
+ ϵ3δ

)

= (I − η∇2Lt)vt + η∇S⊥
t

[
ϵ2t − x2t

2

]
− 1

2
ηx2t∇St · utut − ηxt∇3Lt(ut, v

⊥
t )

+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

We would first like to compute the magnitude of vt+1.

∥vt+1∥ = O

(
∥vt∥+ ηρ3∥vt∥2 + η∥∇Lt∥+ ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)
.

Observe that by definition of ϵ and δ, and since ∥vt∥ ≤ ϵ−1δ

O(ηρ3∥vt∥2) ≤ O
(
∥vt∥ · ϵ−1ηρ3δ

)
≤ O

(
∥vt∥ · ϵ−1η

√
ρ1ρ3

)
≤ O(∥vt∥)

O(ϵ2δ ·max

(
1,

∥vt∥
δ

)3

) ≤ O
(
ϵ2δ + ∥vt∥ · ϵ2 · (ϵ−1)2

)
≤ O

(
ϵ2δ + ∥vt∥

)
.

Hence

∥vt+1∥ = O
(
∥vt∥+ η∥∇Lt∥+ ϵ2δ

)
= O(∥vt∥+ ϵδ).

Note that we can bound

∥ut+1 − ut∥ · ∥vt+1∥ = O
(
η2ρ3∥∇Lt∥ · (∥vt∥+ ϵδ)

)
= O

(
ϵ2 · (∥vt∥+ ϵδ)

)
≤ O

(
ϵ2 ·max(∥vt∥, δ)

)
.
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Therefore, the one-step update in the ut direction is:

xt+1 = vt+1 · ut+1

= vt+1 · ut +O
(
ϵ2 ·max(∥vt∥, δ)

)
= −vt · ut −

1

2
ηx2t∇St · ut − ηxt∇St · v⊥t +O

(
ϵ2 ·max(∥vt∥, δ) + ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= −xt(1 + ηyt)−
1

2
ηx2t∇St · ut +O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= −xt(1 + ηyt)−
1

2
ηx2t∇St · ut +O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= −xt(1 + ηyt)−
1

2
ηx2t∇St · ut +O(Et),

where we have defined the error term Et as

Et := ϵ2δ ·max

(
1,

∥vt∥
δ

)3

.

The update in the v⊥ direction is

v⊥t+1 = P⊥
ut+1

[
(I − η∇2Lt)vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
− 1

2
ηx2t∇St · utP⊥

ut+1
ut − ηxtP

⊥
ut+1

∇3Lt(ut, v
⊥
t )

+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
− xtP

⊥
ut+1

ut −
1

2
ηx2t∇St · utP⊥

ut+1
ut − ηxtP

⊥
ut+1

∇3Lt(ut, v
⊥
t )

+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

First, observe that∥∥∥P⊥
ut+1

ut

∥∥∥ =
∥∥ut − ut+1u

T
t+1ut

∥∥ ≤ ∥ut − ut+1∥2 ≤ O(∥ut − ut+1∥)
Therefore we can control the first of the error terms as∥∥∥∥xtP⊥

ut+1
ut +

1

2
ηx2t∇St · utP⊥

ut+1
ut

∥∥∥∥ ≤ O
(
∥ut − ut+1∥ · (∥vt∥+ ηρ3∥vt∥2)

)
≤ O(∥ut − ut+1∥ · ∥vt∥)
≤ O

(
ϵ2∥vt∥

)
,

As for the second error term, we can decompose∥∥∥ηxtP⊥
ut+1

∇3Lt(ut, v
⊥
t )
∥∥∥ ≤ η∥vt∥

(∥∥∥P⊥
ut
∇3Lt(ut, v

⊥
t )
∥∥∥+ ∥∥∥P⊥

ut
− P⊥

ut+1

∥∥∥∥∥∥∇3Lt(ut, v
⊥
t )
∥∥∥).
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By Assumption 5, we have
∥∥P⊥

ut
∇3Lt(ut, v

⊥
t )
∥∥ ≤ O(ϵρ3∥vt∥). Additionally,

∥∥∥P⊥
ut

− P⊥
ut+1

∥∥∥ ≤
O(∥ut − ut+1∥). Therefore∥∥∥ηxtP⊥

ut+1
∇3Lt(ut, v

⊥
t )
∥∥∥ ≤ O(ϵρ3∥vt∥ · η∥vt∥+ η∥vt∥∥ut+1 − ut∥ · ρ3∥vt∥)

≤ O
(
ϵηρ3∥vt∥2 + ηρ3∥vt∥2ϵ2

)
≤ O

(
ϵ2
∥vt∥2
δ

+ ϵ2∥vt∥
)

= O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

where we used ηρ3∥vt∥ = O(1). Altogether, we have

v⊥t+1 = P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
+O(Et)

We next compute the two-step update for xt:

xt+2 = −xt+1(1 + ηyt+1)−
1

2
ηx2t+1∇St+1 · ut+1 +O(Et+1)

= xt(1 + ηyt)(1 + ηyt+1) +
η

2

(
ηytx

2
t∇St · ut + x2t∇St · ut − x2t+1∇St+1 · ut+1

)
+O((1 + ηρ3∥vt∥)Et + Et+1).

We previously obtained ηρ3∥vt∥ = O(1). Furthermore,

Et+1 = ϵ2δ ·max

(
1,

∥vt+1∥
δ

)3

= O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

+ ϵ

)3
)

= O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= O(Et).

Hence

xt+2 = xt(1 + ηyt)(1 + ηyt+1) +
η

2

(
ηytx

2
t∇St · ut + x2t∇St · ut − x2t+1∇St+1 · ut+1

)
+O(Et).

The first of these two error terms can be bounded as∣∣∣∣12η2ytx2t∇St · ut
∣∣∣∣ ≤ O

(
η2ρ23∥vt∥3

)
≤ O

(
ϵ2 · ∥vt∥

3

δ2

)
.
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As for the second term, we can bound

|∇St+1 · ut+1 −∇St · ut| ≤ |ut+1 · (∇St+1 −∇St)|+ |∇St · (ut+1 − ut)|
≤ ∥∇St+1 −∇St∥+O(ρ3) · ∥ut+1 − ut∥
≤ O

(
η2ρ23∥∇Lt∥

)
≤ O(ϵ2ρ3)

Additionally, we have

xt+1 = −xt +O(ηρ3∥vt∥2 + Et).

Therefore

η
∣∣x2t+1∇St+1 · ut+1 − x2t∇St · ut

∣∣ ≤ ηx2t |∇St+1 · ut+1 −∇St · ut|+ η(x2t+1 − x2t )|∇St+1 · ut+1|
≤ O

(
ηρ3∥vt∥2 · ϵ2 + ηρ3∥vt∥

(
ηρ3∥vt∥2 + Et

))
≤ O

(
ϵ2∥vt∥+ ϵ2 · ∥vt∥

3

δ2
+ Et

)
= O(Et).

Altogether, the two-step update for xt is

xt+2 = xt(1 + ηyt)(1 + ηyt+1) +O(Et).

Additionally, the two-step update for v⊥t is

v⊥t+2 = P⊥
ut+2

[
(I − η∇2Lt+1)P

⊥
ut+1

vt+1 + η∇S⊥
t+1

[
ϵ2t+1 − x2t+1

2

]]
+O(Et+1)

= P⊥
ut+2

(I − η∇2Lt+1)P
⊥
ut+1

(I − η∇2Lt)P
⊥
ut
vt + ηP⊥

ut+2
(I − η∇2Lt+1)P

⊥
ut+1

∇S⊥
t

[
ϵ2t − x2t

2

]
+ ηP⊥

ut+2
∇S⊥

t+1

[
ϵ2t+1 − x2t+1

2

]
+O(Et).

Define vt+1 = stept(vt), vt+2 = stept+1(vt), and xi = vi ·ui, yi = ∇S⊥
i ·vi for i ∈ {t+1, t+2}.

By the definition of step, one sees that∥∥∥v⊥t+1 − v⊥t+1

∥∥∥ ≤ O(Et).

and

|xt+1 − xt+1| ≤
1

2
ηx2t |∇St · ut|+O(Et) ≤ O(ηρ3∥vt∥2 + Et)

The update for x after applying step is

xt+2 = −xt+1(1 + ηyt+1)

= xt(1 + ηyt)(1 + ηyt+1).

38



SELF-STABILIZATION: THE IMPLICIT BIAS OF GRADIENT DESCENT AT THE EDGE OF STABILITY

Therefore

|xt+2 − xt+2| ≤ O
(
|xt|η

∣∣yt+1 − yt+1

∣∣)+O(Et)

≤ O
(
ηρ3∥vt∥

∥∥∥v⊥t+1 − v⊥t+1

∥∥∥)+O(Et)

≤ O(Et).

Additionally, the update for v⊥ is

v⊥t+2 = P⊥
ut+2

(I − η∇2Lt+1)P
⊥
ut+1

(I − η∇2Lt)P
⊥
ut
vt + ηP⊥

ut+2
(I − η∇2Lt+1)P

⊥
ut+1

∇S⊥
t

[
ϵ2t − x2t

2

]
+ ηP⊥

ut+2
∇S⊥

t+1

[
ϵ2t+1 − x2t+1

2

]
.

Therefore ∥∥∥v⊥t+2 − v⊥t+2

∥∥∥ ≤ O
(
η∥∇St+1∥(x2t+1 − x2t+1) + Et

)
≤ O(ηρ3∥vt∥|xt+1 − xt+1|+ Et)

≤ O
(
η2ρ23∥vt∥3 + Et

)
≤ O

(
ϵ2 · ∥vt∥

3

δ2
+ Et

)
= O(Et)

Altogether, we get that

∥rt∥ ≤ O(Et) = O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)
,

as desired.

Proof [Proof of Lemma 20] Define

wt =

{
0 t if is even
rt−1 t if is odd

and define the auxiliary trajectory v̂ by v̂0 = v0 and v̂t+1 = step(v̂t) +wt. I first claim that v̂t = vt
for all even t ≤ T , which we will prove by induction on t. The base case is given by assumption
so assume the result for some even t ≥ 0. Then,

vt+2 = stept+1(stept(vt)) + rt

= stept+1(stept(v̂t)) + rt

= stept+1(v̂t+1) + wt+1

= v̂t+2

which completes the induction.
Next, we will prove by induction that for t ≤ T ,∥∥∥v̂⊥t − ⋆

v⊥t

∥∥∥, |x̂t − ⋆
xt| ≤ O(ϵδ) ≤ c2δ.
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By definition, v̂0 = v0 =
⋆
v0, so the claim is clearly true for t = 0. Next, assume the claim holds for

t. If t is even then ∥wt∥ = 0; otherwise ∥vt∥ ≤ 2c2δ, and thus

∥wt∥ ≤ O
(
ϵ2δ ·max (1, c2)

3
)
≤ O

(
ϵ2δ
)
.

First observe that∥∥∥v̂⊥t+1 −
⋆
v⊥t+1

∥∥∥ ≤
∥∥∥(I − η∇2Lt)(v̂

⊥
t − ⋆

v⊥t )
∥∥∥+ ηρ3

∣∣x̂2t − ⋆
x2t
∣∣

2
+ ∥wt∥

≤
(
1 + η

∣∣λmin(∇2Lt)
∣∣)∥∥∥v̂⊥t − ⋆

v⊥t

∥∥∥+O(ϵ) · |x̂t − ⋆
xt|+O

(
ϵ2δ
)

≤
(
1 + η

∣∣λmin(∇2Lt)
∣∣)∥∥∥v̂⊥t − ⋆

v⊥t

∥∥∥+O(ϵδ) ·
∣∣∣∣ x̂t − ⋆

xt
⋆
xt

∣∣∣∣+O
(
ϵ2δ
)

Next, note that
x̂t+1
⋆
xt+1

=
(1 + ηŷt)x̂t +O(ϵ2δ)

(1 + η
⋆
yt)

⋆
xt +O(ϵ2δ)

=
(1 + η

⋆
yt)x̂t +O(ϵ2δ) +O(ϵ) ·

∥∥v̂⊥t − ⋆
v⊥t
∥∥

(1 + η
⋆
yt)

⋆
xt +O(ϵ2δ)

=
x̂t
⋆
xt

+O
(
ϵ2 +

ϵ

δ

∥∥∥v̂⊥t − ⋆
v⊥t

∥∥∥).
Therefore ∣∣∣∣ x̂t+1 − ⋆

xt+1
⋆
xt+1

∣∣∣∣ ≤ ∣∣∣∣ x̂t − ⋆
xt

⋆
xt

∣∣∣∣+O(ϵ2 +
ϵ

δ

∥∥∥v̂⊥t − ⋆
v⊥t

∥∥∥).
Let dt = max

(∥∥v̂⊥t − ⋆
v⊥t
∥∥, δ∣∣∣ x̂t−

⋆
xt

⋆
xt

∣∣∣). Then∥∥∥v̂⊥t+1 −
⋆
v⊥t+1

∥∥∥ ≤ (1 + η
∣∣λmin(∇2Lt)

∣∣+O(ϵ))dt +O(ϵ2δ)

δ

∣∣∣∣ x̂t+1 − ⋆
xt+1

⋆
xt+1

∣∣∣∣ ≤ (1 +O(ϵ))dt +O(ϵ2δ).

Therefore

dt+1 ≤ (1 + η
∣∣λmin(∇2Lt)

∣∣+O(ϵ))dt +O(ϵ2δ)

≤ (1 +O(ϵ))dt +O(ϵ2δ),

so for t ≤ T we have dt+1 ≤ O(ϵδ). Therefore∥∥∥v̂⊥t+1 −
⋆
v⊥t+1

∥∥∥, |x̂t+1 − ⋆
xt+1| ≤ O(ϵδ) ≤ c2δ,

so the induction is proven. Altogether, we get ∥v̂t − ⋆
vt∥ ≤ O(ϵδ) for all such t, as desired.

Proof [Proof of Lemma 21] Recall that

x∗t+1 = −(1 + ηy∗t )x
∗
t and y∗t+1 = η

t∑
s=0

βs→t

[
δ2s − x∗s

2

2

]
,

Since t ≤ 1
ηmaxt |λmin(∇2Lt)| , we have that βs→t = O(ρ23), and thus

⋆
yt ≤ O(ρ23)tηδ

2 = O(
√
ρ1ρ3).
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Therefore

| ⋆xt+1| = (1 + η
⋆
yt)| ⋆xt| ≤ (1 +O(ϵ))| ⋆xt|.

Since t ≤ O(ϵ−1), | ⋆xt| grows by at most a constant factor, and thus | ⋆xt| ≤ O(δ). Finally, recall that

⋆
v⊥t+1 = η

t∑
s=0

P⊥
ut+1

[
s+1∏
k=t

Ak

]
∇S⊥

s

[
δ2s − x∗s

2

2

]
.

By the triangle inequality, ∥∥∥ ⋆
v⊥t+1

∥∥∥ ≤ O(ηtρ3δ
2) ≤ O(δ).

Therefore ∥ ⋆
vt∥ ≤ O(δ).
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