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ABSTRACT

Long-horizon decision-making with sparse rewards and continuous states and
actions remains a fundamental challenge in AI and robotics. Task and motion
planning (TAMP) is a model-based framework that addresses this challenge by
planning hierarchically with abstract actions (options). These options are manually
defined, limiting the agent to behaviors that we as human engineers know how
to program (pick, place, move). In this work, we propose Shortcut Learning for
Abstract Planning (SLAP), a method that leverages existing TAMP options to
automatically discover new ones. Our key idea is to use model-free reinforcement
learning (RL) to learn shortcuts in the abstract planning graph induced by the
existing options in TAMP. Without any additional assumptions or inputs, shortcut
learning leads to shorter solutions than pure planning, and higher task success rates
than flat and hierarchical RL. Qualitatively, SLAP discovers dynamic physical
improvisations (e.g., slap, wiggle, wipe) that differ significantly from the manually-
defined ones. In experiments in four simulated robotic environments, we show
that SLAP solves and generalizes to a wide range of tasks, reducing overall plan
lengths by over 50% and consistently outperforming planning and RL baselines.
Our code and videos are included in the supplement and will be publicly released.

1 INTRODUCTION

Long-horizon embodied tasks are fundamentally challenging for modern model-free decision-making
systems (Mao et al., 2024) due to sparse rewards, complex physical interactions, and the need for
generalization in continuous state and action spaces. Task and motion planning (TAMP) (Garrett et al.,
2021; Dantam et al., 2016; Srivastava et al., 2014; Kaelbling & Lozano-Pérez, 2011; Toussaint, 2015;
Lin et al., 2023) is a classical, model-based framework that uses state and action abstractions to meet
these challenges. However, most existing TAMP systems rely on pre-defined skills (options) such as
pick, place, and move, which make strong assumptions about the physical interactions between the
agent and the environment (Wang et al., 2021; Mandlekar et al., 2023; Liang et al., 2024). As a result,
agents are limited to behaviors that we as human engineers know how to manually program.

For example, consider the task shown in Figure 1, where a tower of obstacles must be disassembled
so that a target block can be placed on a specific region. Blocks-world tasks like this one have been
used to benchmark planning methods for decades (Slaney & Thiébaux, 2001; Ghasemipour et al.,
2022), and it is now easy to find a plan that unstacks the obstacles one-by-one before picking and
placing the target block. This solution is satisficing (Röger & Helmert, 2010), but also long and
inefficient. A clever child would find a better one: pick up the target block immediately, then “slap”
the obstacle tower aside before placing the target. Such a short and dynamic solution is beyond
the capabilities of TAMP and other classical planners, which typically assume that the agent makes
contact with objects only through its fingertips (Billard & Kragic, 2019) and that each skill influences
only a small, pre-specified set of objects (cf. the STRIPS assumption (Fikes & Nilsson, 1971)).

How can an intelligent agent autonomously improvise skills that transcend traditional assumptions
in robot programming and lead to better (shorter) overall plans? Previous work in hierarchical
reinforcement learning (RL) has considered discovering options from low-level environment cues,
often with entropy-based objectives (Kulkarni et al., 2016; Andrychowicz et al., 2017; Nachum et al.,
2018; Haarnoja et al., 2018; Eysenbach et al., 2019; Savinov et al., 2018). These tabula rasa methods
have had limited success in the long-horizon robotic manipulation tasks that motivate our work.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Shortcut Learning for Abstract Planning (SLAP) uses reinforcement learning (RL) to
find low-level shortcuts in abstract plans. SLAP finds shorter trajectories than pure planning and
achieves higher success rates than pure RL.

Rather than learning new skills from scratch, we are interested in the practical setting where a limited
set of manually defined skills is available and we wish to learn new ones. Our key insight is that the
high-level structure of existing skills can guide learning new skills that yield better (shorter) plans. We
propose Shortcut Learning for Abstract Planning (SLAP), a method that uses RL to learn new options
in the abstract planning graph induced by existing skills. Specifically, SLAP identifies promising
shortcut connections between abstract states and instantiates RL option-learning environments with
goal-based rewards. At inference time, SLAP leverages these learned options to generate shorter
plans. For example, in the blocks task, after picking up the target block with a given skill, the robot
uses the learned slap shortcut to clear the target region, then place the block on the target.

From a user’s perspective, SLAP is a plug-and-play module: whenever one seeks to improve the
execution efficiency of an abstract planner in a given domain, SLAP can autonomously learn shortcuts
without additional user input. In the extremes, if shortcuts are too difficult to learn, SLAP reduces
to pure planning; if the tasks are easy, SLAP reduces to pure RL—the plan collapses into a single
shortcut. In between, SLAP automatically navigates this spectrum between planning and learning.

We evaluate SLAP in four robotic environments featuring long horizons, sparse rewards, and complex
physical interactions. Across all environments, SLAP consistently achieves higher success rates than
flat and hierarchical RL, and shorter execution times than pure planning. In additional analyses, we
find that the number of shortcuts discovered by SLAP increases throughout training time, yielding
commensurate improvements in output plan lengths, and that SLAP can generalize to tasks with
new and different number of objects than seen during training. To our best knowledge, SLAP is
the first method that learns low-level skills for improving the execution time of an abstract planner.
This represents progress toward a unified system with the improvisational flexibility of RL and the
long-horizon reasoning and generalization capabilities of TAMP.

2 RELATED WORK

Task and Motion Planning. Task and Motion Planning (TAMP) combines high-level symbolic
reasoning with continuous geometric motion planning to solve long-horizon, complex robotic tasks.
Task planning decomposes unstructured, long-horizon problems into smaller symbolic subproblems
(Fikes & Nilsson, 1971; Bonet & Geffner, 2001), while motion planning finds collision-free paths
via sampling (Kavraki et al., 1996; LaValle & Kuffner Jr, 2001; Karaman & Frazzoli, 2011) or
trajectory optimization (Ratliff et al., 2009; Schulman et al., 2014). A significant body of work in
robotics studies the tight coupling between task planning and motion planning (Kaelbling & Lozano-
Pérez, 2011; Dantam et al., 2016; Toussaint, 2015; Srivastava et al., 2014; Garrett et al., 2020). Our
abstract planner is intentionally simple—without heuristics or continuous skill optimization—to
isolate shortcut learning, though more TAMP techniques can be integrated to get orthogonal benefits.
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Learning for Task and Motion Planning. Our work is related to recent efforts that combine ideas
from TAMP and machine learning. Previous works have considered learning state abstractions (Silver
et al., 2023; Han et al., 2024; Shah et al., 2024; Asai & Fukunaga, 2018; Ahmetoglu et al., 2022;
Li et al., 2025) and action abstractions (Silver et al., 2022; 2021b; Cheng & Xu, 2023; Agia et al.,
2023; Mandlekar et al., 2023; Kokel et al., 2021; Yang et al., 2018; Lee et al., 2022; Illanes et al.,
2020) to make TAMP possible. We instead assume that these abstractions are given and focus on
learning to improve upon them. Other works have considered using learning to accelerate TAMP,
e.g., by learning heuristics (Driess et al., 2020; Chitnis et al., 2016), object-based abstractions (Silver
et al., 2021a; Zhang et al., 2024), or compiled policies (McDonald & Hadfield-Menell, 2022; Dalal
et al., 2023; Katara et al., 2024). These approaches accelerate the planning process itself, rather than
learning new low-level behaviors for the robot, as we do here. Other works use RL to learn recovery
policies that bring the robot back to an abstract state when execution diverges from an abstract plan,
e.g., when something novel in the environment occurs (Jiang et al., 2018; Li et al., 2024; Vats et al.,
2023; Sarathy et al., 2020; Goel et al., 2022). We instead assume that our given TAMP skills are
sufficiently robust that recovery is not necessary, and focus on improving solution efficiency.

Hierarchical Reinforcement Learning. Our work is related to recent efforts in hierarchical RL
which assume that prior knowledge about the high-level policy is available and focus on learning low-
level skills (Kokel et al., 2021; Yang et al., 2018; Lee et al., 2022; Illanes et al., 2020; Jothimurugan
et al., 2021; Icarte et al., 2018). In general, hierarchical RL focuses on the problem of decomposing
long-horizon, complex tasks into a hierarchy of simpler subtasks, where a high-level policy selects
subgoals for low-level skills to reach. Previous works bridge planning and hierarchical RL (Allen et al.,
2023), e.g., by constructing goal graphs from replay buffers and using graph search to decompose
tasks into reachable waypoints (Eysenbach et al., 2019; Savinov et al., 2018). In contrast, our work
aims to use RL to improvise low-level behaviors for short execution times while leveraging prior
knowledge from the abstract planner for task decomposition and high-level decision-making.

3 PROBLEM FORMULATION

Following previous work in TAMP, (e.g., see Garrett et al. (2021) for a survey), we develop our
approach in fully-observable and deterministic environments with continuous states and actions;
however, see Appendix D.4 for additional results with weaker assumptions. Given a state x ∈ X and
action u ∈ U , the next state x′ ∈ X is determined by a known transition function f : X × U → X
(e.g., a physics simulator). We consider goal-based tasks (x0, g) where x0 ∈ X is an initial state and
g ⊆ X is a goal. A solution to a task is a trajectory τ = (x0, u1, x1, . . . , uT , xT ) where xT ∈ g and
xt = f(xt−1, ut) for all 1 ≤ t ≤ T . Our objective is to minimize |τ |, the number of time steps in τ .
If actions are executed at a fixed rate, this is equivalent to minimizing execution time. We consider a
distribution of tasks and assume access to a set of training tasks from the distribution. The agent is
allowed training time and then evaluated on held-out tasks from the same distribution.

We further suppose that the agent has access to a partitioning of the state space that we refer to as
the abstract state space. Let s ∈ S denote an abstract state and abstract(x) = s denote if x ∈ s.
For simplicity, we assume that each task goal g is equivalent to the union of one or more abstract
states: g =

⋃
sg∈Sg

sg. A key insight from both TAMP and hierarchical RL is that abstract states
can make planning easier. A typical approach (Srivastava et al., 2014; Silver et al., 2022) is to define
options (Sutton et al., 1999; Eysenbach et al., 2018) that each bring the agent from one abstract state
to another. An option a ∈ A is characterized by an initial abstract state sainit ∈ S, a terminal abstract
state saterm, and a policy πa : X → U . When the option is initiated in x such that abstract(x) = sainit,
the policy πa is executed until the terminal abstract state saterm is reached. We assume that a given
finite set of optionsA is sufficient for generating solutions for goals in our task distribution. However,
these solutions will often be highly suboptimal with respect to execution time. We are interested in
using training to learn to improve on execution time during evaluation.

4 SLAP: SHORTCUT LEARNING FOR ABSTRACT PLANNING

We now describe Shortcut Learning for Abstract Planning (SLAP), our proposed method for learning
to improve the execution time of an abstract planner. A summary of our algorithm is presented in
Figure 3 and we also illustrate SLAP via pseudocode in Algorithms 1 and 2.
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4.1 PLANNING WITH ABSTRACT STATES

Figure 2: Abstract planning
graph. Top level has abstract
states s and options a. Bottom
level has states x and actions u.

We begin by considering planning: given a task (x0, g) and op-
tions A, how can we find solutions that minimize execution time?
We propose to build and search within an abstract planning graph
(Figure 2). The graph has two levels. In the top level, nodes repre-
sent abstract states and edges represent options. In the bottom level,
nodes represent environment states and edges represent environment
actions. The levels are related in that bottom-level edges correspond
to top-level edge executions. To build the graph, we start at the root
nodes (x0 on the bottom and abstract(x0) on the top) and simulate
options given the known transition function. We build the graph
breadth-first until we reach some nodes where the goal is satisfied.
Given a built graph, we can run any shortest path algorithm (e.g.,
Dijkstra’s) in the bottom level to find an execution-time-minimizing
solution. This abstract planning graph is constructed similarly to
the bilevel graphs used in previous works (Silver et al., 2022; 2023;
Li et al., 2025). See Appendix A.1 for details.

4.2 LEARNING SHORTCUTS WITH RL

Algorithm 1: SLAP Training
Data Collection (offline)

input: {(x0, g)}, f,A, Ncollect
init: D ← {} // shortcut data
foreach (x0, g) do

for i = 1 to Ncollect do
G ← BUILDGRAPH(x0, g, f,A)
D̂ ← GETSHORTCUTDATA(G)
D̂ ← PRUNE(D̂, f) // rollouts
D.update(D̂)

return D
Training (offline)

input: f , D // from data collection
init: Â ← {} // learned shortcuts
foreach (sinit, sterm,X0) ∈ D do
M← CREATEMDP(sinit, sterm, f)
πθ ← LEARNPOLICY(M,X0)

Â.add((sinit, sterm, πθ))

return Â

Algorithm 2: SLAP Evaluation
Evaluation (online)

input: (x0, g), f , A, Â
G ← BUILDGRAPH(x0, g, f,A ∪ Â)
τ ← DIJKSTRA(G)
return τ

The trajectories found by planning with the
given options may be highly suboptimal, espe-
cially if the options were designed with strong
simplifying assumptions about robot contact and
single-object manipulation (Billard & Kragic,
2019). We propose that the agent should use
training to learn shortcuts between abstract
states to discover new low-level behaviors that
may reduce execution time. A shortcut is an
option â = ⟨sinit, πθ, sterm⟩ where sinit and sterm
are a pair of abstract states not already achieved
by any given option, and πθ is a policy with
learnable parameters θ ∈ Rn. The shortcut in
Figure 1 uses a learned “slap” policy to get from
an abstract state where the target block is held to
an abstract state where the target region is clear.

During training, we spawn multiple self-
contained environments and learn shortcut poli-
cies in parallel. The environment for a short-
cut from sinit to sterm is an indefinite-horizon
Markov decision process (MDP) with state
space X , action space U , transition function
f , reward function R(x) = −1, and terminal
states sterm. To create an initial state distribution,
we do not assume that we can sample directly
from sinit; instead, we sample from the states
encountered in the abstract planning graphs for
the training tasks. Given this setup, we can use
any continuous-state-and-action RL algorithm
to learn shortcut policies (see Appendix B.2 for ablations). We use proximal policy optimization
(PPO) (Schulman et al., 2017).

The number of potential shortcuts is O(|S|2), which can be large. We propose a simple pruning
mechanism that we found to be effective in practice. For each shortcut-learning MDP, we start by
executing Nrollout random rollouts of up to length Trollout from the initial state. If sterm is reached
in fewer than Krollout rollouts, we prune the shortcut and do not run RL. The intuition behind this
pruning is that RL needs some initial success to bootstrap policy learning. See Appendix B.1 for
ablation studies on hyperparameter choices and additional results on the effectiveness of pruning.
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Figure 3: SLAP Pipeline. (a) We build abstract planning graphs on training tasks and generate
possible shortcuts. (b) Each shortcut induces an MDP. (c) We run RL in parallel shortcut MDPs to
create shortcut policies. (d) The learned policies are used to find shortcuts in abstract planning graphs
for new evaluation tasks. (e) SLAP generalizes over tasks (initial states and goals) and objects.

4.3 PLANNING WITH LEARNED SHORTCUTS

Presented with a new task at evaluation, we run the same abstract planner as in Section 4.1, but with
the learned shortcut policies added to the original set of options. Since shortcut policies may fail,
we check if the abstract terminal state is reached within Teval steps and prune the edges in the case
of failure (see Figure 3d). Successful shortcuts are automatically selected by the planner when they
enable shorter plans. See Appendix D.2 for analysis on test-time planning and execution efficiency.

By planning with learned shortcuts, we can generalize to new tasks that have initial states and goals
not seen during training. Generalization over states is achieved by the shortcut policies. This low-level
generalization need not be perfect—if some shortcuts work in some tasks, we will already see benefits
over pure planning. Generalization over goals is achieved by the planner, which runs search for each
new goal and selects shortcuts accordingly (see Appendix D.1 for results).

Overall, our method—Shortcut Learning for Abstract Planning (SLAP)—allows us to navigate the
spectrum between pure planning and pure RL. If the given options A are already optimal, or if
shortcut learning is too hard, SLAP reduces to pure planning. If the environment is simple enough
for RL, and shortcut policies can be learned directly from the initial state to the goal, SLAP reduces
to pure RL. In other cases, SLAP automatically discovers a middle ground between planning and RL.

4.4 GENERALIZING OVER OBJECTS

TAMP methods typically assume that states are defined by objects and relations (Garrett et al., 2021).
In this section, we show how SLAP can leverage the same assumption to generalize over objects,
solving held-out tasks with new, more, and fewer objects than those seen during training.

Following previous work (Diuk et al., 2008; Silver et al., 2022; 2023), we suppose that each state
x ∈ X is defined by a set of objects O and feature vectors α(o, x) ∈ Rm for each object o ∈ O. For
example, the features for a block in Figure 1 include x position and yaw orientation, among others.
We also suppose that each abstract state s ∈ S is defined by a finite set of atoms, which are discrete
relations between objects, e.g., {on(B,C), on(C,D), . . . ,holding(A)}.
During shortcut learning, we first use the relations in the abstract states to decide which atoms and
objects are relevant for each shortcut (Silver et al., 2022). For a shortcut â = ⟨sinit, πθ, sterm⟩, let
add(â) be the set of atoms present in sterm but absent in sinit, and let del(â) be those in sinit but
not in sterm. For example, if â corresponds to grasping object B, then holding(B) ∈ add(â) and
gripperEmpty() ∈ del(â). add(â) and del(â) compose the relevant atoms for the shortcut, and
rel(â) ⊆ O is the set of relevant objects that appear in any of the relevant atoms.
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We use the relevant objects to define a state projection projâ(x) = α(o1, x) ◦ · · · ◦ α(ok, x) where
oi ∈ rel(â) for some fixed object ordering and where ◦ denotes vector concatenation. When training
the policy for the shortcut â, we use the projected state as the observation input. As a result, adding
irrelevant objects to the environment has no impact on the policy.

During evaluation, when presented with new objects, the agent considers object substitutions for each
shortcut that would render the shortcut equivalent to some shortcut seen during training. Formally,
given a pair of shortcuts (âtrain, âeval), we check if there is a type-preserving, injective object mapping
σ : rel(âtrain)→ rel(âeval) such that

{ aσ : a ∈ add(âtrain) } ⊆ add(âeval), { aσ : a ∈ del(âtrain) } ⊆ del(âeval),
where aσ denotes the atom obtained by replacing each object in the atom a with its image under σ.
For an example of object substitution for shortcuts, see Section 5.1. If a matching object substitution
is found, the respective learned shortcut policy is deployed using the substituted objects as inputs.
See A.2 for details and pseudo-code.

5 EXPERIMENT

We next present experiments and results to address the following questions about the efficiency and
effectiveness of SLAP:

Q1. To what extent can SLAP find shorter plans compared to pure planning?
Q2. How does the sample efficiency of SLAP compare to that of pure RL and hierarchical RL?
Q3. Does SLAP continue to improve and discover new shortcuts throughout training?
Q4. To what extent can SLAP generalize to new tasks and new objects?
Q5. Which RL design decisions are important for learning shortcuts?

System, Hardware, and Compute Footprint.
Making compute footprint transparent in the
main text, with summary table on the right.

We conduct all experiments on a single H100 GPU
with 4 CPU cores. Training is conducted on the
same hardware as evaluation. We report the com-
pute footprint of shortcut learning with parallelized
training across subprocesses.

Environment # Shortcuts Env Interactions RL Time

Obstacle 2D 11 (4.1± 1.2)×106 ∼1.5 min
Obstacle Tower 92 (4.8± 0.6)×107 ∼9 h
Cluttered Drawer 74 (3.3± 0.5)×107 ∼6 h
Cleanup Table 54 (3.2± 0.6)×107 ∼8 h

Environments. We evaluate our methods in four simulated robotic environments that feature long
horizons, sparse rewards, and continuous states and actions. A brief overview of the environments is
provided below; see Appendix B for further details and visualizations of our environments.

• Obstacle 2D: Inspired by the “Cover” environment (Chitnis et al., 2022; Silver et al., 2021b;
2023), a 2D planar robot with a gripper must move a target object into a designated region that is
initially occupied by an obstacle. The initial options A implement picking and placing. Without
shortcuts, the planner would pick and place the obstacle, then pick and place the target object.1

• Obstacle Tower: As illustrated in Figure 1, a 7-DoF Franka Emika Panda robot arm, simulated
in PyBullet (Coumans & Bai, 2016), must move a target block into a target region that is initially
occupied by a tower of obstacles. The initial options implement picking and placing with BiRRT
for motion planning and IKFast for inverse kinematics. Without shortcuts, the planner would
pick and place each obstacle in the tower, then pick and place the target object.

• Cluttered Drawer: The same Franka robot simulated in PyBullet must retrieve an object from
within a cluttered drawer and place it on top of a table. The initial options implement picking
and placing, again with BiRRT and IKFast. Since the target object is tightly surrounded by other
objects, the planner (without shortcuts) would pick and place neighboring objects until a feasible
grasp exists for the target, then pick and place the target object.

1Despite being in 2D, this environment is difficult for Pure RL because precise actions are required to execute
grasping. We verified that weakening the threshold for grasping leads to 100% success for the Pure RL baselines.
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• Cleanup Table: This PyBullet environment features realistic and irregular 3D objects from
Objaverse (Deitke et al., 2023). The same Franka robot must collect three toys (duck, robot,
dinosaur toys) and a wiper from the table and organize them in the storage bin on the floor beside
the table. The initial options implement picking and dropping, again with BiRRT and IKFast.
Without shortcuts, the planner picks up each object from the table and drops it into the bin.

Methods Evaluated. We now briefly describe the methods that we compare in experiments, with
implementation details provided in Appendix C.

• Shortcut Learning for Abstract Planning (SLAP): Our main approach.

• Pure Planning: The same abstract planner used by SLAP (Section 4.1), but without shortcuts.

• Pure RL (PPO): Proximal policy optimization (Schulman et al., 2017) operating in the low-
level joint state space of the robot on the full task with a sparse reward function that penalizes
execution time (plan length). Note that SLAP shortcut learning also uses PPO.

• Pure RL (SAC+HER): Given our focus on sparse-reward environments, we also compare
against hindsight experience replay (HER) (Andrychowicz et al., 2017), which was designed
to handle sparse rewards. We use soft actor-critic (SAC) (Haarnoja et al., 2018) as the base
algorithm (which must be off-policy).

• Hierarchical RL (PPO): Hierarchical RL outputs both low-level actions and skill selection
probabilities. When skill activations exceed threshold 0.5, the top skill is executed until com-
pletion; otherwise, low-level actions are used. Similar to SLAP, Hierarchical RL has access to
predefined skills, following modular HRL methods like MAPLE (Nasiriany et al., 2022), which
dynamically select and compose behavior primitives to solve long-horizon manipulation tasks.

• SOL: Based on state-of-the-art hierarchical RL method Scalable Option Learning (Henaff et al.,
2025), we adapted the algorithm to also have access to both predefined skills and SLAP’s
shortcut data. SOL jointly learns a high-level controller that selects between predefined skills
and shortcuts, and low-level shortcut policies. Predefined skills are frozen throughout training –
same as the high-level priors SLAP and Hierarchical RL (PPO) leverage – while SLAP’s shortcut
data provide the intrinsic rewards that SOL requires.

Experimental Details. We begin by collecting training tasks and graphs as outlined in Algorithm 1.
We sample 10 tasks (x0, g) for each environment. In main experiments, for the sake of comparing
with RL methods, we use a fixed goal g, but note that SLAP and Pure Planning can generalize to new
goals (Appendix D.1). At evaluation, we sample 10 held-out tasks per environment and measure (i)
success rate and (ii) plan length, which is equivalent to execution time assuming that environment
actions are executed at a fixed rate. For RL, we use stable-baselines3 (Raffin et al., 2021) and train
each policy for 500,000 steps to obtain the results in Table 1. All PPO policies (shortcut learning,
Pure RL, and Hierarchical RL) use the same network architecture and training hyperparameters,
except for the higher entropy coefficients for RL baselines—we tune this to give RL an advantage
in exploration. All reported metrics are averaged over 5 random seeds with standard deviations.
Additional implementation details and hyperparameters are provided in Appendix B.

5.1 RESULTS AND DISCUSSIONS

Empirical Results. Table 1 summarizes our empirical results. SLAP consistently reduces plan
length by large margins compared to Pure Planning. These results highlight the effectiveness of the
shortcuts learned by SLAP (Q1). In contrast, pure RL methods struggle to solve these long-horizon
tasks, largely due to the sparsity of reward signals, which are received only upon task completion.
Even though hierarchical RL methods can mitigate this issue and have additional access to our
predefined skills, their high-level controller struggle to learn the skill selection sequence given the
large number of grounded skills in manipulation tasks (Q2). For example, SOL needs to deal with
216 grounded skills in Obstacle Tower, compared to 2-3 option policies in the NetHack Learning
Environment (Küttler et al., 2020) it was evaluated on in Henaff et al. (2025).

Training Steps Analysis. To understand how training time affects performance, we analyze the
relationship between shortcut policy training steps and resulting plan length (Q3). After random
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Environment Approach Success Rate Plan Length Relative Path Length

Obstacle 2D

SLAP (Ours) 100% ± 0% 17.6 ± 1.5 ↓ 32%± 7%
Pure Planning 100% ± 0% 25.9 ± 1.7 0%
PPO 0% ± 0% 100.0 ± 0.0 (max) N/A
SAC+HER 0% ± 0% 100.0 ± 0.0 (max) N/A
Hierarchical RL 100% ± 0% 25.3 ± 1.8 ↓ 2%± 9%
SOL 100% ± 0% 24.9± 1.2 ↓ 4%± 8%

Obstacle Tower

SLAP (Ours) 100% ± 0% 79.2 ± 3.2 ↓ 68%± 2%
Pure Planning 100% ± 0% 245.8 ± 10.4 0%
PPO 0% ± 0% 500.0 ± 0.0 (max) N/A
SAC+HER 0% ± 0% 500.0 ± 0.0 (max) N/A
Hierarchical RL 0% ± 0% 500.0 ± 0.0 (max) N/A
SOL 0% ± 0% 500.0 ± 0.0 (max) N/A

Cluttered Drawer

SLAP (Ours) 100% ± 0% 165.8 ± 43.6 ↓ 53%± 14%
Pure Planning 100% ± 0% 352.1 ± 49.5 0%
PPO 0% ± 0% 500.0 ± 0.0 (max) N/A
SAC+HER 0% ± 0% 500.0 ± 0.0 (max) N/A
Hierarchical RL 0% ± 0% 500.0 ± 0.0 (max) N/A
SOL 0% ± 0% 500.0 ± 0.0 (max) N/A

Cleanup Table

SLAP (Ours) 100% ± 0% 115.2 ± 12.3 ↓ 73%± 4%
Pure Planning 100% ± 0% 431.8 ± 33.1 0%
PPO 0% ± 0% 500.0 ± 0.0 (max) N/A
SAC+HER 0% ± 0% 500.0 ± 0.0 (max) N/A
Hierarchical RL 0% ± 0% 500.0 ± 0.0 (max) N/A
SOL 0% ± 0% 500.0 ± 0.0 (max) N/A

Table 1: Main Empirical Results. We report average performance over 510 random seeds with
standard deviations. SLAP successfully solves the long-horizon tasks and achieves substantially
shorter plans—up to a 73% reduction in plan length—compared to Pure Planning.

rollout pruning, SLAP identifies 11 shortcuts in Obstacle 2D, 92 in Obstacle Tower, 74 in Cluttered
Drawer, and 54 in Cleanup Table. As shown in Figure 4, increasing the number of training steps
leads to more shortcuts being successfully learned from the fixed set of shortcut candidates and
incorporated as graph edges during evaluation. Average plan lengths continue to decrease towards
the end of 500,000 training steps as the same shortcut policies become more stable. The marginal
benefit varies by environment complexity.

Generalization Capability Analysis. We next evaluate the extent to which SLAP can generalize
to tasks with new, more, and fewer objects as well as to changes in dynamic properties (Q4). We
focus on mass and friction, which most strongly affect multi-object interactions in our preliminary
tests. SLAP is trained in Obstacle Tower with three stacked obstacles (each with mass 0.5kg and
friction coefficient 0.9), and then evaluated on tasks with varying numbers of stacked obstacles and
distractor objects scattered on the table using doubled mass and friction at test time. As shown in
Figure 5, SLAP maintains short plan lengths even as the number of objects increases, whereas Pure
Planning scales poorly with each additional obstacle. These multi-object RL skills (“slap”, “wiggle”,
“wipe”)—unlike TAMP methods that assume single-object contact (Billard & Kragic, 2019)—both
improve execution efficiency and support generalization over the number of objects. For example, the
“slap” shortcut policy shown in Figure 5 only deem a subset of the obstacles relevant but physically
affects the entire tower.

Shortcut Policy Learning Analysis: SLAP learns separate shortcut policies for each pair of
abstract states. While this parallelization makes distributed training easier, it is also possible that
training a universal policy (Kaelbling, 1993; Schaul et al., 2015; Eysenbach et al., 2022) could lead
to better sample complexity, with learned representations shared across shortcuts (Q5). To test this
possibility, we compare three shortcut policy learning schemes:

• Independent: We train all shortcut policies separately (the default for SLAP).
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Figure 4: Training Dynamics. As the number of training steps increases, more shortcuts are added
and the length of the output SLAP plan decreases. In Cluttered Drawer, we visualize SLAP’s output
plans after different training steps to illustrate which shortcuts are learned and used over time.
Updated Figure 4 for better clarity and readability.
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Figure 5: Generalization Results. In Obstacle Tower, SLAP is trained on tasks with a stack of 3
obstacles, no distractors. At test time, we are able to generalize to tasks with different numbers of
obstacles and distractors, each with different mass and friction, by substituting relevant objects.

• Abstract Subgoals: We augment observations with a multi-hot encoding of the abstract terminal
state for the respective shortcut and train a single shared policy for all shortcuts.

• Abstract HER: We use the same multi-hot abstract terminal state encoding as in Abstract
Subgoals, but we additionally perform hindsight goal relabeling (as in HER) where goals are
now abstract terminal states. During training, if the shortcut policy reaches a different abstract
terminal state from the one it was targeting, that data is used to learn about the shortcut that was
incidentally achieved. We again use SAC for compatibility with HER.

In Figure 6, we see that Independent consistently outperforms Abstract Subgoals and Abstract
HER, particularly in PyBullet environments, despite the opportunity to share representations across
shortcuts. We speculate that the poor performance of universal policy learning is due to the fact that
shortcuts have varying levels of difficulty for RL. Universal policy learning may implicitly devote
resources to learning infeasible shortcuts, where Independent would simply fail to learn on those
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Figure 6: Shortcut Policy Learning Analysis. Independent shortcut policy learning consistently
finds shorter plans than Abstract Subgoal and Abstract HER.

shortcuts. In future work, we plan to continue exploring shortcut policy learning schemes. We further
ablate RL algorithmic choices for shortcut learning in Appendix B.2, with different reward-shaping
and exploration strategies (Q5).

6 DISCUSSION AND CONCLUSION

In this work, we proposed Shortcut Learning for Abstract Planning (SLAP). Our key insight is that
the abstract planning graph induced by predefined skills presents an opportunity to learn shortcuts
that improve on the execution time of pure planning. In experiments, we showed that the trajectories
found by SLAP are better than pure planning in terms of length, and better than pure RL in terms of
success rate. We also showed that SLAP can leverage the same relational inductive bias that TAMP
uses to solve tasks that feature new, more, fewer objects than those seen during training.

One limitation of SLAP is that it is not able to deviate from the problem decomposition induced by
the user-provided options. Future work could consider using the options to instead provide a “soft”
problem decomposition that can be further improved by hierarchical RL (Kulkarni et al., 2016; Bacon
et al., 2017; Nachum et al., 2018). Another limitation of our work here is that our planner is simple
from a TAMP perspective (Section 2). Scaling to very large abstract spaces would benefit from more
advanced planning techniques (Garrett et al., 2021). We also made the assumption in this work that
the user-provided options are sufficient for solving tasks. Without this assumption, SLAP still applies,
but we lose the guarantee of task success. However, in this case, the shortcuts learned by SLAP
could improve on the task success rate of pure planning; see Section D.3 for detailed discussion.
In addition, because SLAP learns shortcut behaviors that fall outside the set of manually defined
options, its execution can be less predictable than traditional TAMP; future work can incorporate
safety constraints into shortcut learning. Another direction for future work is combining SLAP with
other work that learns abstractions for abstract planning. For example, with demonstration data,
we could first learn state abstractions with Silver et al. (2023), action abstractions with Silver et al.
(2022), and then leverage our SLAP framework to continue improving the planning efficiency. A
final opportunity to extend SLAP is to remove our assumption of access to simulator and, instead,
leverage the recent real-to-sim-to-real techniques (Lim et al., 2022; Zhu et al., 2025) to reconstruct
approximate simulators from real-world data and learn shortcut policies within those reconstructed
environments.

7 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide the full source code and models as part of the supplementary
materials. All hyperparameters, environment details, and implementation specifics necessary to
reproduce the experiments are reported in Appendix B.
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A APPROACH DETAILS

A.1 ABSTRACT PLANNING GRAPH

Following previous works (Li et al., 2025; Kumar et al., 2024), the abstract states s ∈ S are ground
atoms induced from a set of predicates ψ ∈ Ψ. For example, the predicate On(?o1,?o2) describes
if an object is placed on top of another object. Each predicate is a classifier over the low-level states,
with a grounding function that maps continuous state representations into discrete truth values. Every
option a ∈ A in the experimented environments is equipped with a planning operator opa written
in the Planning Definition Domain Language (PDDL). Specifically, opa = ⟨Var, Pre, Eff+, Eff−⟩,
where Var is a tuple of object placeholders, and Pre, Eff+, Eff− ⊆ Ψ, respectively preconditions,
add effects, and delete effects, are each a set of lifted predicates defined with variables in Var. Given
an initial state x0 ∈ X , we first use the predicates Ψ to obtain the abstract state s0. With the set of
operators {opa, a ∈ A}, we then build the abstract planning graph in two levels:

Top Level. We build the top level of the abstract planning graph using the predefined options, with
no simulator required. Starting from abstract(x0), we conduct breadth-first search (BFS) until the
goal is reached by an abstract state. We expand from each node: (1) ground every operator in the
planning domain with all possible combinations of the typed objects, (2) check if any operator’s
preconditions are satisfied by the current abstract state, and if yes, (3) for every such operator, apply
its add and delete effects to obtain the next abstract state, and draw a directed edge to the new node.

At least one abstract state that satisfies the goal will be found after building the top level of the abstract
planning graph, since we assume access to sufficiently robust TAMP options in fully-observable and
deterministic environments. It is possible that more than one abstract state

⋃
sg∈Sg

sg in the existing
graph satisfy the goal when BFS terminates. This means that they are at the same depth in the top
level of the graph, and the number of high-level steps for the corresponding plans are the same. We
argue that SLAP has the advantage of exploring which sg will benefit from the learned shortcuts
the most. For example, in the Obstacle Tower environment, Pure Planning sometimes outputs plans
where obstacle blocks are stacked on top of each other after being moved away from the target area.
In contrast, SLAP consistently outputs plans with sg as all obstacle blocks being scattered on the
table, because it is only towards this sg that the most effective “slap” shortcut can be leveraged.

Bottom Level. Not all the nodes and edges in the top level can be reached in practice. For
example, in the Cluttered Drawer environment, just by grounding the options, the graph includes an
abstract state where the robot directly reaches a grasping position around the target object, but this is
impossible in practice due to the clutter. To consolidate the abstract planning graph, we start at the
root node x0 in the bottom level, conduct BFS to preserve only the feasible parts of the graph, and for
each node record the set of low-level states reached by different incoming paths.

The shortest path is found in the bottom level for an execution-time-minimizing solution. For this,
we use a path-dependent adaption of Dijkstra’s algorithm such that we can re-expand a node if the
accumulated edge costs of a new path is lower. This new adaptation turns out to be only slightly more
expensive than the original Dijkstra’s algorithm. At evaluation, we stop expanding the more expensive
branches when the shortest path to goal has already been expanded. We argue that, compared to the
number of low-level steps saved at execution, the computational overhead of planning with absrtract
planning graph augmented by shortcuts is minor. See Appendix D.2 for relevant results.

A.2 OBJECT SUBSTITUTION FOR SHORTCUT GENERALIZATION

To complement the description in Section 4.4, we provide pseudo-code for the object-substitution
mechanism used during SLAP evaluation for shortcut generalization. Algorithm 3 checks whether a
learned shortcut can be reused on a different number of new objects by searching for a type-preserving,
injective object mapping that preserves the shortcut’s add/delete effects.
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Algorithm 3: Object-Substitution for Shortcut Generalization
Input: âtrain, âeval // two shortcut transitions
Output: (success, σ)
// Construct relevant atom sets
Atomstrain ← add(âtrain) ∪ del(âtrain)
Atomseval ← add(âeval) ∪ del(âeval)

// Feasibility checks: predicates and object types
if INFEASIBLEPREDICATES(Atomstrain, Atomseval) then

return (False, ∅)
if INFEASIBLETYPES(Atomstrain, Atomseval) then

return (False, ∅)

// Search for a type-preserving, injective substitution
σ ← ∅
Build candidate sets C(o) for each o ∈ rel(âtrain) from objects in rel(âeval) with matching type.
for each o in a fixed ordering of rel(âtrain) do

choose o′ ∈ C(o) satisfying:
(i) o′ is not already assigned in σ;
(ii) for every atom a ∈ Atomstrain, the atom obtained by substituting each object in a

according to σ ∪ {o 7→ o′} also appears in Atomseval.
if no such o′ exists then

return (False, ∅) // early prune

σ ← σ ∪ {o 7→ o′}
return (True, σ)

B ENVIRONMENT AND EXPERIMENT DETAILS

In this section, we provide the detailed operators, options, and predicates for each environment, as
well as experiment settings. For more details, please refer to our open-sourced code.

Figure 7: Environment Visualization. From left to right are our four environments featuring long
horizons, sparse rewards, and various physical interactions: Obstacle 2D, Obstacle Tower, Cluttered
Drawer, Cleanup Table.

Obstacle 2D:

• Operators & Options: Pick, Place, PickFromTarget, and PlaceInTarget.
• Predicates: IsBlock(?o), IsSurface(?o), IsRobot(?o),
On(?o1, ?o2), Overlap(?o1, ?o2), Holding(?o1, ?o2),
GripperEmpty(?o), Clear(?o), IsTarget(?o), NotIsTarget(?o).

• Task Description: There is a 1-by-1 target area in the middle of the bottom line, the exact
size of one block. The agent controls a gripper that can interact with the blocks. The goal of
the task is to place a target block in the target area. The other scattered blocks are either
blocking the target area in their initial positions (i.e. obstacle blocks) or somewhere else
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on the bottom line (i.e. irrelevant blocks). Therefore, in order to reach the goal, the agent
would have to interact with the obstacle blocks to clear the target area. The initial positions
of the blocks are randomized while guaranteeing that at least one of the blocks will partially
block the target area to make the task harder. During generalization test for different number
of objects, we add one additional block on the bottom line given the limited space.

• Typical Shortcut from SLAP: Our algorithms learns a shortcut policy that “pushes” the
obstacle in the target region while holding the target block.

• Experiment Setup: We sample 10 tasks for this environment. For each sampled task, we
randomly roll out Nrollout = 1000 episodes, with Trollout = 100 max steps per episode. In the
random rollouts, we used a threshold of Krollout = 1 to identify promising shortcuts. From
all the tasks and episodes, SLAP found 11 shortcuts, with 40 scenarios in total. During
training, we implement PPO algorithm with a batch size of 16, a learning rate of 3e-4, and
an entropy coefficient of 0.01 for each of the shortcut policy learning. The shortcut policies
are trained for 1000 episodes with 50 maximum steps per episode to obtain the shortest
output plans we have observed.

Obstacle Tower:

• Operators & Options: Pick, Place, Stack, Unstack, PickFromTarget,
PlaceInTarget.

• Predicates: IsBlock(?o), IsSurface(?o), IsRobot(?o),
IsMovable(?o), NotIsMovable(?o), On(?o1, ?o2),
NothingOn(?o), Holding(?o1, ?o2), NotHolding(?o1, ?o2),
GripperEmpty(?o), IsTarget(?o), NotIsTarget(?o).

• Task Description: This environment is a 3D PyBullet adaptation of the Blocks2D environ-
ment with more complexities. It has a table, Franka Emika Panda 7-DOF robot, and some
lettered blocks on the table. A small area is marked as target area on the table, and one of
the blocks is marked with letter ‘T’ to be the target block. As for the other blocks, some are
stacked in the target area and blocking it almost fully, while others are scattered elsewhere
on the table. Similar to Blocks2D, the goal is to place block T in the target area, but this
would require moving the other blocks away from the target area first. During generalization
test for different number of objects, we adjust the number of stacked blocks in the target
area and randomly scatter additional blocks on the table.

• Typical Shortcut from SLAP: Our algorithm learned a shortcut policy that “slaps” the block
tower on the target region to make it clear. The policy can be instantiated after the target
block is picked up.

• Experiment Setup: We sample 10 tasks for this environment. For each sampled task, we
randomly roll out Nrollout = 100 episodes, with Trollout = 300 max steps per episode. In the
random rollouts, we used a threshold of Krollout = 5 to identify promising shortcuts. From
all the tasks and episodes, SLAP found 92 shortcuts, with 1070 scenarios in total. During
training, we implement PPO algorithm with a batch size of 16, a learning rate of 3e-4, and
an entropy coefficient of 0.01 for each of the shortcut policy learning. The shortcut policies
are trained for 3000 episodes with 100 maximum steps per episode to obtain the shortest
output plans we have observed.

Cluttered Drawer:

• Operators & Options: Reach, GraspFrontBack, GraspLeftRight,
GraspFullClear, GraspNonTarget, PlaceTarget, PlaceFrontBlock,
PlaceBackBlock, PlaceLeftBlock, PlaceRightBlock.

• Predicates: IsBlock(?o), IsTable(?o), IsDrawer(?o), IsRobot(?o),
IsMovable(?o), NotIsMovable(?o), ReadyPick(?o),
NotReadyPick(?o), On(?o1, ?o2), Holding(?o1, ?o2),
NotHolding(?o1, ?o2), GripperEmpty(?o), IsTargetBlock(?o),
NotIsTargetBlock(?o), BlockingLeft(?o1, ?o2),
BlockingRight(?o1, ?o2), BlockingFront(?o1, ?o2),
BlockingBack(?o1, ?o2), LeftClear(?o), RightClear(?o),
FrontClear(?o), BackClear(?o), HandReadyPick(?o).
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• Task Description: In this environment, a Franka Emika Panda 7-DOF robot aims to grasp a
target block inside a cluttered drawer and place it on the table. Initially, there are a number
of obstacles that make the target block not graspable with given motion skills. Therefore,
the abstract planner will try to reach, grasp, and place each of these obstacles to make at
least two sides of the target block clear (graspable). During training, there are four obstacles
blocking the right, left, front, and back sides of the target block, respectively. During
generalization test for different number of objects, we randomly scatter additional obstacles
in the drawer.

• Typical Shortcut from SLAP: Our algorithm learns to “wiggle” the robot hand around the
target block with the fingers open, such that its sides become clear. This shortcut policy is
used with the given skills during planning.

• Experiment Setup: We sample 10 tasks for this environment. For each sampled task, we
randomly roll out Nrollout = 100 episodes, with Trollout = 300 max steps per episode. In the
random rollouts, we used a threshold of Krollout = 5 to identify promising short cuts. From
all the tasks and episodes, SLAP found 74 shortcuts, with 1012 scenarios in total. During
training, we implement PPO algorithm with a batch size of 16, a learning rate of 3e-4, and
an entropy coefficient of 0.01 for each of the shortcut policy learning. The shortcut policies
are trained for 1500 episodes with 100 maximum steps per episode to obtain the shortest
output plans we have observed.

Cleanup Table:

• Operators & Options: Reach, Grasp, Lift, Drop,

• Predicates: IsBlock(?o), IsTable(?o), IsDrawer(?o), IsRobot(?o),
IsMovable(?o), NotIsMovable(?o), ReadyPick(?o),
NotReadyPick(?o), On(?o1, ?o2), Holding(?o1, ?o2),
NotHolding(?o1, ?o2), GripperEmpty(?o), HandReadyPick(?o),
AboveEverything(?o), NotAboveEverything(?o).

• Task Description: In this environment, a Franka Emika Panda 7-DOF robot aims to move all
the objects on the table to a storage bin. These objects include three toys (duck toy, dinosaur
toy, and robot toy) and a small wiper. All of them have highly irregular and realistic mesh
shapes imported from Objaverse Deitke et al. (2023). The abstract planner plans to pick each
irregular object up and drops it into the bin. The toys are randomly scattered on the table in
each episode; at initial placements, we check collisions using slightly enlarged bounding
spheres to compensate for mesh inaccuracies introduced by downscaling (to have realistic
toy sizes relative to the robot). During generalization test for different number of objects,
we randomly scatter fewer or more Objaverse toy objects on the table.

• Typical Shortcut from SLAP: Our algorithm learns to picks up the small wiper tool first and
slowly “sweeps” at a certain height and an appropriate direction such that all the toy objects
are gathered into the storage bin at once without falling off the small table in the middle of
the process. This shortcut policy is instantiated after the wiper is picked up.

• Experiment Setup: We sample 10 tasks for this environment. For each sampled task, we
randomly roll out Nrollout = 100 episodes, with Trollout = 300 max steps per episode. In the
random rollouts, we used a threshold of Krollout = 5 to identify promising short cuts. From
all the tasks and episodes, SLAP found 54 shortcuts, with 770 scenarios in total. During
training, we implement PPO algorithm with a batch size of 16, a learning rate of 3e-4, and
an entropy coefficient of 0.01 for each of the shortcut policy learning. The shortcut policies
are trained for 3500 episodes with 100 maximum steps per episode to obtain the shortest
output plans we have observed.

The hyperparameters for RL shortcut learning are exactly the same for all the environments, since
shortcut policies do not require any hyperparameter tuning. The hyperparameters Nrollout, Trollout, and
Krollout for random rollouts pruning are consistent across all PyBullet environments but are adjusted
for the Obstacle 2D environment for its significantly lower complexity.
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B.1 ABLATIONS ON RANDOM ROLLOUTS PRUNING

For our experiments on the three PyBullet environments, we use a consistent set of hyperparameters
for random rollouts pruning, with a ratio of Krollout/Nrollout = 5/100 = 5% for selecting shortcuts to
learn. Ablation results of this ratio are shown in Table 2. Useful shortcuts are pruned significantly
when the threshold is around 20%. In general, this threshold provides a mechanism to trade off
training time and plan length.

Ratio Krollout/Nrollout Success Rate Plan Length

5% 100% ± 0% 178.2 ± 58.1

10% 100% ± 0% 167.0 ± 46.1

15% 100% ± 0% 185.0 ± 54.4

20% 100% ± 0% 209.0 ± 79.1

25% 100% ± 0% 202.0 ± 81.6

30% 100% ± 0% 333.0 ± 36.4

35% 100% ± 0% 349.0 ± 74.0

Table 2: Ablations on Krollout/Nrollout. We varied such ratio in the experiments on Cluttered Drawer
and report average performance over 3 random seeds.

Our random-rollout pruning mechanism is simple, but it is task-agnostic and generally applicable.
It is also surprisingly effective: for example, in the Cluttered Drawer environment, 98.70% of
all possible shortcuts are pruned. To further validate the technique, we conducted an additional
experiment in Cluttered Drawer where there are 5623 pruned shortcuts. We randomly selected 200
of the pruned shortcuts to train with RL on one seed. The overall shortcut training success rates are
3.64%± 12.15%, with 9 of them successfully added at evaluation time. The number of execution
steps are comparable to that of Pure Planning, with only one exception where a shortcut of dropping
a non-target object with a “jittering” movement of the robot arm is actually used to replace placing
and lifting skills for this object in one evaluation episode. Overall, these results confirm that these
shortcuts can be pruned with little impact to test-time performance.

B.2 ABLATIONS ON SHORTCUT LEARNING POLICIES

In Section 4.2, we argued that any continuous-state, continuous-action RL algorithm can serve as the
backbone for shortcut learning. To substantiate the claim, we present ablations on the Cleanup Table
environment using three different backbone algorithms: proximal policy learning (PPO) (Schulman
et al., 2017), soft actor-critic (SAC) (Haarnoja et al., 2018), or SAC with hindsight experience replay
(SAC+HER) (Andrychowicz et al., 2017).

Environment Approach Success Rate Plan Length Relative Path Length

Cleanup Table

SLAP (PPO) 100% ± 0% 113.7 ± 17.0 ↓ 74.5% ± 4.5%
SLAP (SAC) 100% ± 0% 160.2 ± 19.4 ↓ 64.1% ± 5.0%
SLAP (SAC+HER) 100% ± 0% 131.0 ± 19.5 ↓ 70.6% ± 5.2%
Pure Planning 100% ± 0% 446.3 ± 34.9 0%

Table 3: Results of Different Shortcut RL Algorithms on Cleanup Table. We report average
performance over 5 random seeds with standard deviations. Different RL algorithms eventually
converge to similar results on shortcuts’ execution-time efficiency and overall plan lengths. We
observe slightly better performance with PPO as the shortcut policy backbone, consistent with our
choice for the main results reported in the paper.
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Figure 8: Training Dynamics of Different Shortcut RL Algorithms on Cleanup Table.

C BASELINES DETAILS

In this section, we describe the implementation details of all the baselines we have covered in the
paper, including the baselines presented in the main results and the baselines used for shortcut policy
learning analysis.

Pure Planning. Pure Planning uses the same abstract planner as SLAP but without any learned
shortcuts or low-level policies. All actions are executed through predefined skills. The planner
operates with the same planning horizon as SLAP to ensure fair comparison. This baseline represents
the performance of planning approaches without learning components.

Pure RL (PPO). For the pure RL baseline using PPO, we train policies directly on the full task
(x0, g) with reward functions that penalize execution time through step penalties (and an optional
positive bonus reward for achieving the goal). The PPO implementation uses batch size of 16, learning
rate of 3e-4, 10 epochs, discount factor of 0.99, and entropy coefficient of 0.05. Compared to our
approach SLAP, we spent more time tuning the hyperparameters of the pure RL baselines to ensure
fairness. The reported hyperparameters is the setting where we observed a nonzero training success
rate for Obstacle 2D environment (0.14% average training success rate). Training is conducted for
1,000,000 total steps with episode lengths matching the environment-specific maximums. Network
architectures consist of 2-layer MLPs with 64 hidden units per layer and tanh activations for both
policy and value networks.

Pure RL (SAC+HER). Given the sparse reward nature of our environments, we implement a
baseline using Soft Actor-Critic with Hindsight Experience Replay. The SAC component uses
learning rates of 3e-4 for actor, critic, and temperature networks, with a replay buffer size of
1,000,000, batch size of 16, and target smoothing coefficient of 0.005. The networks are 2-layer
MLPs with 256 units per layer. HER is configured with a “future” goal selection strategy and replay
ratio of 0.8. Training runs for 1,000,000 steps with an initial exploration phase of 1000 episodes. The
reward functions still consist of step penalties; the policies observe a non-negative (or an optional
positive bonus reward) reward if they reach a state that is within a distance of 0.01 compared to the
goal. This distance-checking is possible because the observations are object-centric, so we only need
to extract partial observations that are directly relevant to the task goal.

Hierarchical RL (PPO). The hierarchical RL baseline outputs a combined action vector of low-
level controls and skill activations. It is able to complete the tasks in the Obstacle 2D environment
after we increased the entropy coefficient to 0.05 for more exploration. However, it fails to solve any
of the more complicated PyBullet tasks after we conducted systematic scans of hyperparameters. For
the reported experimental results, we use the same model architecture and hyperparameters as the
Pure RL (PPO) baseline: learning rate of 3e-4, batch size of 16, 10 epochs per update, discount factor
of 0.99, and entropy coefficient of 0.05. Training runs for 1,000,000 steps.
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SOL. The original SOL algorithm jointly learns controller and option policies via the given intrinsic
rewards. We made several modifications to the implementation and presented additional inputs to
SOL to make our long-horizon tasks easier for it to learn. First, our SOL assumes access to all the
predefined skills grounded with different combinations of typed objects. When a predefined skill
is chosen, it is executed until completion and can indicate early skill termination. If the controller
calls a predefined skill whose preconditions are not satisfied by the current atoms, the skill outputs
no-op actions to return control to the meta-controller; this is the same during evaluation – we call
the controller again instead of reporting errors on the infeasible operators selected in order to reduce
task difficulty. Our SOL baseline also assumes access to the shortcut data from the abstract planning
graphs to better leverage the hierarchical structure in the same way as SLAP. The intrinsic rewards for
shortcut policy learning in SOL are also the same as SLAP – goal-based sparse rewards upon shortcut
completion. Furthermore, within the SOL algorithm, we removed the controller penalty: it is easy to
select grounded skills with unsatisfied preconditions, and the accumulated penalties often overwhelm
the sparse task completion signal and prevent learning. Training is conducted for 50,000,000 total
steps with episode lengths twice the environment-specific maximums. We use PPO with learning rate
3e-4, discount factor 0.995, GAE 0.98, exploration coefficient 0.01 (they used 0.0001 for PointMaze
environments), with each skill option executing for up to 100 steps.

Adapted state-of-the-art hierarchical RL method SOL to our TAMP settings as a new baseline.

The two baselines below only differ from SLAP in the RL architecture for learning shortcut policies:

Abstract Subgoals. This baseline directly augments the raw environment observations with a
multi-hot encoding of the abstract terminal state of the corresponding shortcut, where each atom
is mapped to a fixed index in the context vector. A single shared PPO policy is trained across all
shortcuts using these augmented observations. We use the same RL hyperparameters for Abstract
Subgoals as SLAP (see Appendix B).

Abstract HER. This baseline shares the same SAC hyperparameters as the pure RL (SAC+HER)
baseline described above. However, instead of sampling goals from training trajectories in the goal
relabeling stage as in standard HER, we use a custom NodeBasedHER buffer that samples goals from
our planning graph’s abstract states. This is equivalent to training a goal-conditioned RL policy on
multiple shortcuts, and we limit the pool we sample from to terminal abstract states of promising
shortcuts. The goals, same as the abstract subgoals baseline, are represented as multi-hot encodings.
The hyperparameters of NodeBasedHER’s replay buffer differs from the pure RL (SAC+HER)
baseline with a smaller replay buffer size of 1000 and a larger replay ratio of 0.95. These adjustments
are made such that it learns all the promising shortcuts more equally at the same time.

D ADDITIONAL EXPERIMENTS

D.1 GENERALIZATION OVER GOALS

In Section 5.1, we have discussed SLAP’s generalization capabilities to tasks with different numbers
of objects. Here, we present additional results on SLAP’s ability to generalize to new tasks with
different goals. As mentioned in Section 4.3, generalization over goals is realized by leveraging
the abstract planning graph; different goals correspond to different sets of nodes in the graph. To
generalize to a task with a new goal unseen during training, we simply need to find the shortest path
to one of the abstract states that satisfy the new goal.

In Figure 9, we see that on average SLAP finds shorter plans than Pure Planning for new tasks with
different goals. The large standard deviations are due to the random sampling of abstract goals. An
example is shown for the Obstacle Tower environment. The “slap” shortcut is learned during training
to achieve the goal of placing the target block in the target area. But in evaluation time, with a new
goal of stacking the blocks in reverse order, SLAP is able to use the same shortcut to slap all the
blocks on table, and re-stack the blocks directly afterwards.
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Figure 9: Generalization to New Tasks. Results of average plan lengths on 15 tasks with randomly
sampled goals in evaluation for each environment. With a fixed set of trained shortcuts, SLAP finds
shorter plans on average for these new tasks.

D.2 TIME EFFICIENCY

In this section, we include results on the time efficiency of SLAP at test time: How much compu-
tational overhead does the abstract planning graph augmented with shortcuts introduce? In Table 1
we have shown the proportion of execution time we can save for the robot at deployment. Here we
present realistic estimates on the overall time efficiency considering both planning time and execution
time at real-world deployment.

Environment Approach Compute time Execution steps Per-step execution time
during planning to choose SLAP over

(seconds) Pure Planning (seconds)

Obstacle Tower SLAP (Ours) 15.2 ± 1.2 73.8 ± 4.3 AnyPure Planning 18.4 ± 0.2 238.6 ± 12.8

Cluttered Drawer SLAP (Ours) 275.2 ± 8.0 174.2 ± 62.3 1.2Pure Planning 65.5 ± 5.2 349.4 ± 68.1

Cleanup Table SLAP (Ours) 201.0 ± 3.9 113.7 ± 17.0 0.5Pure Planning 34.0 ± 5.8 446.3 ± 34.9

Table 4: Time efficiency. Comparative results of SLAP’s and Pure Planning’s planning time and
execution steps at evaluation. While SLAP incurs slightly higher planning time than Pure Planning
in Cluttered Drawer and Cleanup Table, the significant reduction in execution steps more than
compensates for this cost under realistic per-step execution times.

In Table 4, we record the clock time of SLAP’s planning phase at evaluation on the three PyBullet
environments that we have, as PyBullet (Coumans & Bai, 2016) simulates the robot-object interaction
physics of our manipulation tasks well and provides a reliable proxy for real-world deployment. Based
on the compute time during planning and the number of execution steps SLAP improves compared to
Pure Planning, we give lower bounds on the per-step execution time where the users would prefer
SLAP over Pure Planning just for time efficiency reasons. In Obstacle Tower environment, we can
see that SLAP has lower planning time and execution steps at evaluation, so SLAP is preferable for
use regardless of how long each execution step takes in reality. As for Cluttered Drawer and Cleanup
Table environments, the lower bounds are 1.20 ad 0.50 seconds respectively – values that are within
the typical range of per-step execution times for many real-world robots.
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Note that we are not using any heuristics to accelerate graph search for SLAP, whereas Pure Planning
uses the Fast-Forward heuristic (Hoffmann, 2001) with greedy best-first search to reduce planning
time. Heuristics can be integrated with graph search in SLAP to further boost its time efficiency,
which we are actively working towards.

D.3 SLAP FOR ABSTRACT PLANNERS WITH SUBOPTIMAL ABSTRACTIONS

In SLAP, we define shortcuts based on the hierarchical structure of the abstract planning graph
induced by the predefined skills. We made the assumption that these user-provided abstractions are
sufficiently robust to generate solutions for goals in our task distribution (see assumptions in Section
3) such that SLAP can be applied on top of the planners to further improve their execution time
without losing completeness guarantees. However, for complicated real-world robotics problems the
abstractions can be suboptimal. We are interested in such cases to see if SLAP’s performance will
degrade and to what extent.

We modify the Cluttered Drawer environment to test SLAP’s performance when the grounding
functions of predicates are noisy and imprecise. In particular, the Cluttered Drawer domain in-
cludes several predicates – BlockingLeft(?o1, ?o2), BlockingRight(?o1, ?o2),
BlockingFront(?o1, ?o2), BlockingBack(?o1, ?o2) – that reflect whether the
robot can directly grasp the target object from the cluttered drawer without manipulating the sur-
rounding objects first. The thresholds for such grounding functions are very important, and we add
noises to the thresholds for the perceiver at every step to mirror realistic scenarios where we are
planning with perception and localization systems that have prediction errors.

In the original implementation, the “blocking” predicate is classified to be true in one direction if the
distance between the two objects in that direction is less than the width w of an object. For each set
of the experiments below, we define a range for such threshold [c1 ·w, c2 ·w] and randomly sample a
threshold for the grounding function at each step. At test time, to handle suboptimal abstractions at
the abstract level, we replan on each time step (following previous works like (Yoon et al., 2007)).
For fair comparison, we extend Pure Planning to replan as well.

Environment Approach Success Rate Plan Length Relative Path Length

Cluttered Drawer
[w, 2w]

SLAP (Ours) 0% ± 0% 500.0 ± 0.0 (max) N/A
Pure Planning 63% ± 9% 403.5 ± 77.5 0%

Cluttered Drawer
[w, 1.5w]

SLAP (Ours) 98% ± 1% 195.6 ± 56.0 ↓ 45% ± 18%
Pure Planning 100 ± 0% 358.3 ± 52.4 0%

Cluttered Drawer
(Optimal)

SLAP (Ours) 100% ± 0% 174.2 ± 62.3 ↓ 50% ± 20%
Pure Planning 100% ± 0% 349.4 ± 68.1 0%

Cluttered Drawer
[0.75w,w]

SLAP (Ours) 100% ± 0% 168.0 ± 45.2 ↓ 53% ± 16%
Pure Planning 100% ± 9% 359.4 ± 56.9 0%

Cluttered Drawer
[0.5w,w]

SLAP (Ours) 92% ± 5% 204.7 ± 72.1 ↓ 55% ± 17%
Pure Planning 54% ± 11% 449.8 ± 32.1 0%

Table 5: Results on variants of Cluttered Drawer with suboptimal abstractions. We report average
performance over 5 random seeds with standard deviations. Abstractions have to shift significantly
from the “optimal” before SLAP’s performance degrades in comparison to Pure Planning.

From Table 5, when the thresholds for grounding functions are sampled from [0.5w,w], SLAP applied
on top of suboptimal abstractions even improves upon the success rates of Pure Planning. Some
learned RL shortcuts connect from noisy abstract states with misclassified “blocking” predicates to
states that lead to the goal. In comparison, without the flexibility of RL, Pure Planning would replan
and be completely misguided by the abstractions.

However, SLAP’s performance degrades substantially when the suboptimal abstractions are too noisy.
When the thresholds are sampled from [w, 2w], whether the target object is being blocked solely
depends on the sampled threshold at the current step, since the probability that a surrounding object is
moved to a distance of 2w away from the target object is very low. In this case, the abstract planning
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Environment Approach Success Rate Plan Length Relative Path Length

Obstacle Tower
(stochastic)

SLAP (Ours) 92% ± 4% 119.7 ± 103.6 ↓ 59% ± 36%
Pure Planning 84% ± 6% 293.6 ± 58.4 0%
PPO 0% ± 0% 500.0 ± 0.0 (max) N/A
SAC+HER 0% ± 0% 500.0 ± 0.0 (max) N/A
Hierarchical RL 0% ± 0% 500.0 ± 0.0 (max) N/A

Obstacle Tower
(partially
observable)

SLAP (Ours) 78% ± 8% 178.0 ± 182.0 ↓ 64% ± 37%
Pure Planning 2% ± 2% 493.7 ± 44.4 0%
PPO 0% ± 0% 500.0 ± 0.0 (max) N/A
SAC+HER 0% ± 0% 500.0 ± 0.0 (max) N/A
Hierarchical RL 0% ± 0% 500.0 ± 0.0 (max) N/A

Table 6: Results on variants of Obstacle Tower with looser environment assumptions. We report
average performance over 5 random seeds with standard deviations. The shortcuts learned with RL
are better at handling stochasticity. And because shortcuts like “slap” involve the robot’s interactions
with multiple objects at once, the task success rates are much higher compare to Pure Planning when
a subset of the objects is fully occluded.

graph can no longer provide a good structure to define helpful shortcuts for RL to learn. Therefore,
SLAP’s success rate goes to 0.00%.

D.4 SLAP IN STOCHASTIC, PARTIALLY OBSERVABLE ENVIRONMENTS

As mentioned in Section 3, we focus on applications to fully-observable and deterministic environ-
ments, aligned with the scope of most TAMP methods (see survey Garrett et al. (2021)). However,
we are also interested in SLAP’s performance in environments with looser restrictions.

We first introduce a stochastic variant of the Obstacle Tower environment that features noisy actions
(1% std Gaussian noise), object physics (random variations in 10% size, 20% mass and friction),
stack alignment (1% position noise and 10% rotation noise of each block in the stack), and random
dropping (with 1% probability if any object is held). We train shortcut policies with the same setup as
in Section 5.1. At test time, we replan on each time step, same as Pure Planning. Results over 5 seeds
are shown in Table 6. Similar to the main results in Table 1, SLAP outperforms Pure Planning and
RL in terms of plan length. Perhaps surprisingly, in this stochastic setting, SLAP also outperforms
Pure Planning in terms of success rate. This is because the shortcuts learned with RL are better able
to handle stochasticity than the user-provided options. Qualitatively, instead of relying solely on the
held object to push the obstacle stack, the robot bends lower and uses its arm to push.

We also introduce a partially observable variant of Obstacle Tower where the top block of the obstacle
stack is occluded and therefore absent from the simulator used for planning. We use pre-trained
policies to test generalizability and robustness and again use replanning at test time. The results
in Table 6 show that Pure Planning consistently fails; qualitatively, it tries to directly grasp the
second block and gets stuck in collision. SLAP attains a 78% success rate (compared to 2% for
Pure Planning) using a “slap” shortcut that is similar to the object-based generalization results, but
importantly, the planner and shortcut policy do not have knowledge of the occluded block.

D.5 SLAP UNDER OUT-OF-DISTRIBUTION PHYSICAL CONFIGURATIONS

In many robotic settings, the physical properties of objects at test time (e.g., mass, friction, size, or
contact noise) may differ from those seen during training. To evaluate SLAP’s robustness under
such out-of-distribution physical configurations, we compare: (i) SLAP trained on the standard,
deterministic Obstacle Tower environment and evaluated under heavily perturbed physics, and (ii)
SLAP trained directly on the perturbed environment.

Our perturbed configuration introduces noisy actions (2% Gaussian), random object physics (10%
size variation, 30% mass/friction variation), stack alignment noise (1% position, 10% rotation), and
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random dropping (2% probability whenever an object is held). These perturbations significantly
affect multi-object interactions and present a challenging test of robustness.

Environment Approach Success Rate Plan Length Relative Path Length

Obstacle Tower
(perturbed)

SLAP (Ours) 78% ± 9% 151.3 ± 115.8 ↓ 58% ± 32%
Pure Planning 65% ± 10% 357.5 ± 54.2 0%

Table 7: SLAP trained on deterministic physics. SLAP can handle such physical perturbations
better than Pure Planning. Results are reported across 5 seeds.

Environment Approach Success Rate Plan Length Relative Path Length

Obstacle Tower
(perturbed)

SLAP (Ours) 86% ± 7% 133.4 ± 98.2 ↓ 63% ± 26%
Pure Planning 65% ± 10% 357.5 ± 54.2 0%

Table 8: SLAP trained and evaluated on perturbed physics. As expected, performance improves
further, but even in this challenging setting SLAP still exhibits failures due to large perturbations.

These results show that SLAP’s learned shortcuts exhibit strong robustness to out-of-distribution
physical perturbations even without retraining, and that training directly on perturbed physics further
improves performance. This provides guidance for practitioners: SLAP can generalize effectively
across moderate changes in physical properties, but for significantly altered dynamics it may be
beneficial to train a new set of shortcuts.
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