
Under review as submission to TMLR

∇QDARTS: Quantization as an Elastic Dimension to Differ-
entiable NAS

Anonymous authors
Paper under double-blind review

Abstract

Differentiable Neural Architecture Search methods efficiently find high-accuracy architectures
using gradient-based optimization in a continuous domain, saving computational resources.
Mixed-precision search helps optimize precision within a fixed architecture. However, applying
it to a NAS-generated network doesn’t assure optimal performance as the optimized quantized
architecture may not emerge from a standalone NAS method. In light of these considerations,
this paper introduces ∇QDARTS, a novel approach that combines differentiable NAS with
mixed-precision search for both weight and activation. ∇QDARTS aims to identify the optimal
mixed-precision neural architecture capable of achieving remarkable accuracy while operating
with minimal computational requirements in a single shot, end-to-end differentiable framework
obviating the need for pertaining and proxy. Compared to fp32, ∇QDARTS shows impressive
performance on CIFAR10 with (2,4) bit precision, reducing bit operations by 160× with
a slight 1.57% accuracy drop. Increasing the capacity enables ∇QDARTS to match fp32
accuracy while reducing bit operations by 18×. For the ImageNet dataset, with just (2,4)
bit precision, ∇QDARTS outperforms state-of-the-art methods such as APQ, SPOS, OQA,
and MNAS by 2.3%, 2.9%, 0.3%, and 2.7% in terms of accuracy. By incorporating (2,4,8)
bit precision, ∇QDARTS further minimizes the accuracy drop to a 1% compared to fp32,
alongside a substantial reduction of 17× in required bit operations and 2.6× in memory
footprint. In terms of bit-operation (memory footprint) ∇QDARTS excels over APQ, SPOS,
OQA, and MNAS with similar accuracy by 2.3× (12×), 2.4× (3×), 13% (6.2×), 3.4× (37%),
for bit-operation (memory footprint), respectively. ∇QDARTS enhances the overall search
and training efficiency, achieving a 3.1× and 1.54× improvement over APQ and OQA,
respectively.

1 Introduction

Neural Architecture Search (NAS) has emerged as a powerful method that reduces the manual and human
effort to find optimum network architectures for the target applications. However, traditional NAS methods
require complete training of every candidate network, which is computationally prohibitive due to the
enormous search space (Kyriakides & Margaritis (2020)). To alleviate this problem, bodies of work suggest
different techniques to reduce the NAS search space (Negrinho & Gordon (2017); Liu et al. (2018a; 2017);
Kandasamy et al. (2018)). Evolutionary search, Monte-carlo tree search (MCTS) (Negrinho & Gordon
(2017)), sequential model-based optimization (SMBO) (Liu et al. (2018a; 2017)), and Bayesian optimization
(Kandasamy et al. (2018)) are examples of these approaches. However, even these approaches suffer from
inherent search inefficiency, because they treat architecture search as a black-box optimization problem over a
discrete domain, which leads to a large number of architecture evaluations. These methods are also criticized
for their high time complexity, energy consumption, and not being scalable (Elsken et al. (2019); Liu et al.
(2018b)).

To address these challenges, weight-sharing methods have been proposed (Ullrich et al. (2017); Cai et al.
(2019); Sahni et al. (2021b); Liu et al. (2018b); Xu et al. (2019)). These methods provide the advantage of
sharing weights across varied architectures, resulting in a considerable reduction in the compute and memory
resources needed to conduct the search. As a result, they have recently attracted significant attention (

1

Under review as submission to TMLR

Ullrich et al. (2017); Cai et al. (2019); Sahni et al. (2021b); Liu et al. (2018b); Xu et al. (2019); Sahni et al.
(2021a); Yu et al. (2020a;a;b); Banbury et al. (2021)).

Among the weight-sharing methods, DARTS (Liu et al. (2018b)) addresses the challenge of scalability of
the architecture search through a differentiable search formulation. It relies on continuous relaxation of the
architectural representation by employing efficient search using gradient descent compared with conventional
approaches that use evolution, reinforcement learning, sampling, and random searches over discrete and
non-differentiable search spaces.

DARTS has introduced a novel avenue of research in the NAS domain by circumventing the need to traverse
discrete and large search spaces (Xu et al. (2019); Wan et al. (2020); Zela et al. (2019); Chu et al. (2020);
Liang et al. (2019); Chen & Hsieh (2020); Wang et al. (2021); Zhang et al. (2021); Yang et al. (2021);
Zhou et al. (2020); Liu et al. (2021); Zhang et al. (2020a); Chen et al. (2019)). Among DARTS methods,
PC-DARTS (Xu et al. (2019)) further reduces the search cost by introducing partial channel sampling during
the search operation. As a result of this strategic implementation, the framework has improved memory
efficiency and accelerates processing speeds (Elsken et al. (2019)).

Although existing NAS methods can find the suitable architecture for a target device and application, they
suffer from computationally expensive floating point operations. These operations are cost-prohibitive,
especially for resource-constraint devices. Existing research work demonstrates that lower-bit quantization
policy improves the performance of the network in terms of memory footprint, latency, computational cost,
bandwidth efficiency, power, and energy consumption (Krishnamoorthi (2018); Choukroun et al. (2019); Wang
et al. (2019); Gholami et al. (2021)). However, applying quantization is not straightforward in a NAS setting.
First, due to search space explosion, it is non-trivial to incorporate quantization during architecture/weight
search (Wang et al. (2019; 2020); Bai et al. (2021)).

Few methods have been proposed to incorporate quantization into NAS. These methods usually exploit proxies
(e.g., pretrained neural networks) to estimate the performance of the sampled architecture/quantization
search (Wang et al. (2020)). Proxy-based methods usually lack accurate estimation. In addition, proxies need
to be treated carefully to ensure that quantized architectures are ranked fairly. Besides, evaluation using a
proxy is a time-consuming procedure (Bai et al. (2021)).

Second, it is difficult to predict, in advance, exactly how quantization will affect a neural network found by
a NAS method. The reason is that quantization efficiency depends on the neural architecture itself. For
instance, Shen et al. show that the accuracy of MobileNetv2 with full precision (fp32) is better than ResNet18.
However, with the 2-bit precision, the ResNet18 accuracy is higher than MobileNetv2 (Shen et al. (2021)).

Third, it is unclear how quantization should be applied within NAS architectures. As an example, we can
apply quantization to a regiment of potential SubNets within a DARTS network that results in a multitude
of quantized architectures. However, there is no guarantee that the resultant SuperNet, which is formed by
combining these SubNets, will have the optimal quantized architecture.

In this paper, we introduce ∇QDARTS, a novel framework that integrates architecture and weight
optimization along with a comprehensive mixed-precision search for both weights and activations.
The framework is achieved in a single shot, end-to-end, differentiable optimization eliminating the need
for any pretraining or proxy. Furthermore, ∇QDARTS leverage the complexity-aware training to favor the
discovery of lower computational complexity (i.e., lower-bit precision) models during the search phase. In
this manner, the model produced by the search stage is optimized for a computational budget determined by
a user-specified hyper-parameter where no grid search is required. In addition, ∇QDARTS enables to trade-off
between bit-operation (BitOps) and accuracy to make it a suitable fit for the target edge application with
relatively low GPU hours.

In summary, the contributions of the paper are as follows:

• We propose ∇QDARTS, which provides a single shot, end-to-end, differentiable framework by integrating
architecture and weight search with a mixed-precision quantization policy for both weights and
activations, without any need for pretraining and proxies.

2

Under review as submission to TMLR

• ∇QDARTS provides a framework for flexible navigation in accuracy-BitOps trade-off space where the
produced model by the search stage is optimized for a complexity budget determined by a user
without any grid-search requirement.

• ∇QDARTS enables highly efficient and accurate architecture discovery even when ultra low bit-precision
is considered (2 and 4) with negligible accuracy loss compared to the full-precision (fp32) networks.

2 Background and Challenges

2.1 Differentiable NAS Formulation

The key objective of any NAS framework is to find both the optimal architecture, α∗, and its corresponding
weights, ω∗, which is a bi-level optimization problem formulated by the following equations:

min
α

Lval(ω∗(α), α), s.t. ω∗(α) = argmin
ω

Ltrain(ω, α) (1)

where Lval(., .) and Ltrain(., .) denotes the training and validation loss, respectively. The architecture
parameters are optimized over the validation dataset to avoid overfitting (Liu et al. (2018b)). To ensure
differentiability, discrete architecture search spaces are converted to continuous ones (Wu et al. (2019); Zhang
et al. (2020b); Zela et al. (2019); Cai et al. (2018)). In continuous relation, the architecture search space
A is relaxed to A(θ), where θ is the continuous parameter that presents the distribution of architectures
(A ⊆ A(θ)). In this way, we can employ gradient-based methods to find the best weight and architecture
(Guo et al. (2020)).

To solve these equations, we can use either single-level or bi-level optimizations. In single-level optimization,
α and ω are updated simultaneously in each step. While this is computationally less expensive, they suffer
from poor generalization due to overfitting. Bi-level optimization, on the other hand, updates α and ω in an
alternative fashion.

2.2 Quantization

The quantization can be fixed-bit, meaning the entire network has a single weight and/or activation precision.
Because different layers, filters, and channels have various impacts on the accuracy, a model’s accuracy can be
significantly degraded when it is uniformly quantized to ultra-low precision. This problem can be addressed
with mixed-precision quantization schemes (Dong et al. (2019); Habi et al. (2020); Hu et al. (2021); Zhao
et al. (2021)). In mixed-precision, each layer, filter, channel, and/or activation have a separate precision. It
has been shown that converting floating-point values to low-precision fixed integer values in four bits or less
can reduce memory footprint and latency significantly (Gholami et al. (2021); Dong et al. (2019); Deng et al.
(2020)). For instance, ResNet50 inference with INT4 precision can produce a speedup of 50%-60% compared
to INT8 inference, emphasizing the importance of using lower-bit precision for optimal performance (Salvator
et al. (2019)). However, when the bit precision goes below 8-bit, reaching high accuracy, especially for large
datasets is a challenging task (Sun et al. (2022; 2020)).

2.3 Incorporating Quantization into NAS

Few studies try to incorporate quantization into NAS or employ the idea of the differentiable search for
efficient quantization of a fixed architecture.

DNAS (Wu et al. (2018)) proposes a differentiable mixed-precision solution per layer that takes a fixed
architecture, like ResNet, and searches over the possible quantization bit precision per layer. The method
assigns a probability weight to the quantization ‘path’ per layer such that the entire network is fully
differentiable. DNAS is not like a NAS architecture, rather it employs NAS formula for a fixed architecture
to find a proper mixed-precision solution.

HAQ (Wang et al. (2019)) proposes a Hessian-aware mixed-precision quantization technique that finds the
optimum bit-precision for each output channel within every layer. The importance and bit precision of each

3

Under review as submission to TMLR

Table 1: Comparing ∇QDARTS with state-of-the-art quantization methods. “Weight-sharing” means whether
the method is utilizing a weight-sharing solution. “Single-shot mixed-precision” quantization policy refers to
using QAT to train the SuperNet with arbitrary mixed-precision quantization policies. “Mixed-precision”
means that the method supports different precisions. “No training during search” means during the search
phase there is no need for re-training the sampled network candidate. As ∇QDARTS doesn’t need any sampling
mechanism, we do not need to train and evaluate the selected SubNet. The research community has set a
standard for evaluating NAS methods, using “DARTS Search Space” that has been widely used. It has larger
search space compared to the MobileNet search space (Mehta et al. (2022); Zhang & Ding (2023)). “Proxies
Avoidance” refers to the fact that the employed technique avoids employing a trained neural network to
estimate the accuracy of a sampled architecture. “Pretraining Avoidance” means the method can avoid any
required pertaining.

Property DNAS HAQ EdMIPS APQ OQA BatchQuant SPOS AutoNBA MNAS UDC ∇QDARTS

Joint DNN & Quan Search

Weight Sharing

Mixed Precision We. Quan

Mixed Precision Act. Quan

Single-shot Mixed Precision

Differentiable Quan

DARTS Search Space

No Training During Search

Proxies Avoidance

Pretraining Avoidance

Relatively Low Train Time

output channel is recognized based on the Hessian values of the channel. To make this method works, it is
necessary to have an already trained, fixed architecture network.

EdMIPS (Cai & Vasconcelos (2020)) opts for mixed-precision search strategies for the different filters in
a fixed architecture and achieves high efficiency by sharing weights for all mixed-precision operations. It
employs the idea of DARTS for finding the best precision of predefined architecture. EdMIPS employs a
block that is weighted sums of all quantized weights for a single convolution. With N different precisions,
this reduces the complexity of the forward and backward passes by nearly a factor of N. Similar to DNAS, it
does not perform an architecture search on the layer types and just optimizes mixed-precision for a fixed
architecture.

APQ (Wang et al. (2020)) applies a joint search for NAS, pruning, and quantization policies. This technique
enables mixed-precision architecture search but relies on a proxy to decide the best precision and pruning
scheme. It employs an already trained 32-bit precision predictor as a proxy. For training the accuracy
predictor, APQ performs QAT on 5000 architectures and quantization policies for 0.2 GPU hours each.
Producing this predictor is expensive in terms of time and resource consumption.

OQA (Shen et al. (2021)) develops Once Quantized for All, which achieves training efficiency by gradually
shrinking the bit-width of the supernetwork after it trains via bit-inheritance to enable efficient searching for
different quantization bit widths. However, this approach lacks the support of mixed-precision search.

BatchQuant (Bai et al. (2021)) proposes a mixed quantization for OFA-like architecture (and not differentiable
architectures). However, it needs pretraining the supernet at the beginning, otherwise, the accuracy will drop.
BatchQuant first trains SuperNet with bit width options 2, 3, 4, 32 for the first 65 epochs and then continue
training the SuperNet with 2, 3, 4 bit width options for the rest of the training to reach high accuracy.

4

Under review as submission to TMLR

Besides, due to retraining, the total GPU hours are significantly high. Unlike ∇QDARTS, it was proposed for
MobileNet search space.

SPOS (Guo et al. (2020)) employs uniform path sampling for supernet training, conducting random sampling
of block and weight bit widths. The evolutionary step determines the final values. However, under SPOS, only
channel searches are permitted, reducing the architecture search space size.SPOS targets fixed architecture
like ResNet18 and ResNet34.

UDC (Fedorov et al. (2022)) does not support activation quantization. In addition, unlike ∇QDARTS that
enables lower bit quantization, UDC utilizes higher bit precision like 8- and 32-bit for the weight quantization.

MNAS (Gong et al. (2019)) combines NAS and quantization over MobileNet search space. MNAS relies on
an 8-bit pretrained model and cannot reach high accuracy.

Except for the Batchquant, OQA, and UDC, all of the baselines rely on a proxy estimator. The proxy is
usually a trained neural network that predicts the accuracy of the selected architecture. Using proxy increases
search space exploration time.

Table 1 shows various features of different techniques. It illustrates how ∇QDARTS is unique compared to the
other existing methods. Here, different components of the proposed solutions are explained. As seen, ∇QDARTS
provides a single shot, end-to-end differentiable NAS joint with mixed-precision quantization
search for both weight and activation without any need for pretraining or proxy.

3 Proposed ∇QDARTS

3.1 ∇QDARTS Overview

×N

𝜶𝜶𝑵𝑵

𝜶𝜶𝟑𝟑

𝜶𝜶𝟐𝟐

𝜶𝜶𝟏𝟏

Cell
Search

Bit-precision
Search

. .
 . +

. .
 .

. .
 .

𝜸𝜸𝟏𝟏
𝒑𝒑

𝜸𝜸𝑵𝑵
𝒑𝒑

𝜸𝜸𝟐𝟐
𝒑𝒑

Input

Normal Cell

Reduction Cell

Normal Cell

Reduction Cell

Normal Cell

×N

×N

Output

0

1

2

3

Input

Conv 3×3

Conv 5×5

Identity

Pool 3×3

Output

1-bit

2-bit

n-bit

Input

. .
 . +

. .
 .

. .
 .

𝜸𝜸𝟏𝟏
𝒒𝒒

𝜸𝜸𝑵𝑵
𝒒𝒒

𝜸𝜸𝟐𝟐
𝒒𝒒

1-bit

2-bit

n-bit

Output

Activation

WeightOperation
Search

Figure 1: ∇QDARTS brings quantization into DARTS. Each cell consists of the operation search of DARTS
while the innermost block shows the mixed precision search candidates. Crucially, the entire SuperNet is fully
differentiable. Hence, the architecture and mixed precision search can be performed simultaneously in an
end-to-end single-shot fashion.

We propose ∇QDARTS, a differentiable NAS framework that jointly finds optimal architecture, weight, and
bit-precision of both weight and activation in a single-shot, end-to-end manner. ∇QDARTS extends the existing
DARTS (Liu et al. (2018b); Xu et al. (2019)) framework by adding differentiable precision search. Unlike
many existing multi-stage methods where architecture search and optimal quantization policy search are
explored independently, joint optimization in ∇QDARTS allows for exploring more efficient architecture while
preserving its accuracy even in a lower precision regime.

5

Under review as submission to TMLR

Given a target task, we first follow the fixed architectural macroblocks (or cell) similar to (Liu et al. (2018b))
where each cell has a set of architectural components (i.e., convolution with different kernels, pooling, etc.)
o(.) ∈ O. The output of each cell, co, is a weighted summation of all the candidate operations:

co =
∑
o∈O

α′
oo(x) (2)

where α′
o is a set of learnable weights defined as:

α′
o = exp (αo)∑

oi∈O exp (αoi
) (3)

Thus the architecture search involves learning this set of continuous variables that define the relative weights
of each operation over the same input. Next, consider a specific operation with w weight and a activation
with na and nw possible bit precisions for activation and weight, respectively. The output of this operation
can be formulated as:

y =
na∑
i=1

γp
i ai

 nw∑
j=1

γq
j wj(x)


s.t.

∑
γp

i = 1,
∑

γq
j = 1, γp, γq ∈ [0, 1]

(4)

Here γp
i and γq

j are the weighting hyperparameters for mixed-precision operations (with {p, q} as the set of
learnable parameters) for the i-th and j-th precision path of activation and weight, respectively, computed
through the following equations:

γp
i = exp (pi)∑

k exp (pk) , γq
j = exp (qj)∑

k exp (qk) (5)

Similar to the architectural search, we leverage continuous relaxation of the bit-precision search space. While
the most straightforward way is to combine search over architecture and quantization bit precision space in a
multi-stage fashion (i.e., find the optimal architecture in full precision, then search over the bit-precisions),
we have experimentally shown in Section 4 how such naive integration results in suboptimal performance.
The key challenge in incorporating such mixed-precision search into the NAS framework is that simultaneous
exploration of different quantization bit-precisions per candidate operations can make the search space
computationally intractable. To address this challenge, we extend the originally proposed bi-level optimization
in DARTS (Liu et al. (2018b)) to combine both weight and bit-precision as a unified lower variable (details
in the following Subsection). Furthermore, to constraint the search space, we leverage the channel-masking
mechanism proposed in PC-DARTS (Xu et al. (2019)) to reduce the search cost by 1/K, where K is the
number of channels for each convolution operation (K >> 1).

Another challenge to search over both architecture and precision parameters is that optimizing them over the
same objective function (i.e., the validation loss) would always favor higher precision. Therefore, to penalize
the optimization for high compute cost, we additionally add model complexity as a regularizing term to the
loss function to incentivize the discovery of model architectures with lower computational complexity during
the search phase.

Figure 1 shows the overall perspective of the ∇QDARTS. The mixed-precision quantization in ∇QDARTS considers
all normal and reduction cells in DARTS search space, where different normal cells and/or reduction cells can
have different bit precision for both weight and activation.

3.2 ∇QDARTS Optimizations

Our formulation ideally involves optimization over three levels of variables: architecture parameters (α),
weights (w), and bit-precision (γ). While it can be desired to add γ as another level of inner variable to
make it a tri-level optimization problem, this would increase the optimization steps exponentially. Instead,
we propose an extension of bi-level optimization where we consider architecture parameters as the upper
variable while weight and the associated bit-precision as a joint set of lower variables. It has been shown
that a single update to both weight and quantization parameters can preserve similar performance while

6

Under review as submission to TMLR

enjoying half the complexity of their alternating (i.e., update the weights first, then the next step involves
updating bit precision parameters while keeping the weights fixed, hence twice the update steps) updates
(Cai & Vasconcelos (2020)).

We reformulate Eq. 1 to introduce the mixed-precision search weighting parameter, γ, as follows:

min
α

Lval(ω∗(α), γ∗(α), α)

s.t. ω∗(α), γ∗(α) = argmin
ω,γ

Ltrain(ω, γ, α) (6)

The exact solution to Eq. 6 involves expensive inner optimization of {w, γ} over the whole training dataset.
This can be avoided by approximating the gradient over a single training step (instead of the whole dataset)
as follows (Liu et al. (2018b)):

∇αLval(w∗(α), γ∗(α), α)
≈ ∇αLval (w − ξω∇wLtrain(w, γ, α),

γ − ξγ∇γLtrain(w, γ, α), α)
(7)

where ξω and ξγ denote the learning rate of inner step optimization for weight and bit-precision, respectively.
Effectively, this implies that updates on α and {w, γ} occur in an alternating manner.

3.3 Complexity-aware Loss

Another challenge in joint architecture, weight, and precision search is that the existing methods predominantly
rely on validation loss as its search parameter. This would always lead the ∇QDARTS mixed-precision search
to converge to a uniform bit-precision (i.e., the highest available bit-precision in the search space) for all the
operations.

To overcome this, ∇QDARTS introduces a pivotal enhancement: the integration of a complexity-aware loss
function denoted in Eq. 8. This augmentation allows for a more nuanced and refined search, considering not
just validation loss but also the intricate complexities inherent in the network operations. As a result, the
optimization process becomes more capable of discerning varying levels of precision for different operations,
leading to a more efficient search solution:

L[F] = RE(F) + νRC(F) (8)
where RE [F] is categorical cross-entropy loss and RC [F] represents the total computational cost of the given
architecture. RC(F) is computed as follows:

RC(F) =
∑
i=1

OPs ∗ BitA ∗ BitW (9)

BitA = γp
i ai BitW = γq

i wi (10)

OPs = InChannel × OutChannel × (kerSize)2

× (InW × InH

stride2)
(11)

The hyperparameter ν determines the complexity of the final architecture. A higher ν will result in an
architecture that favors lower mixed-precision architectures.

3.4 Increasing Model Capacity

In PC-DARTS, the training stage needs an increase in employed cells compared to the search stage to increase
the capacity of the architecture to reach better accuracy. Usually, the same normal/reduction cells discovered
during the search stage are stacked together. However, the straightforward stacking approach will not work
in ∇QDARTS due to variations in bit-precision among the discovered cells. This brings a challenge in selecting
the appropriate cells to add to the stack, thereby increasing the capacity of the final architecture. Addressing

7

Under review as submission to TMLR

Quantization Search on DARTS
SubNet (Mixed Bit: 2, 4)

Quantization Aware Training (QAT) of
DARTS SubNet (Mixed Bit: 2, 4)QSubNet

Joint Precision and DARTS
SuperNet Search

Quantization Aware Training (QAT)
of DARTS SubNet (Mixed Bit: 2, 4)

ΔQDARTS

Quantization Aware Training (QAT)
(Fixed Bit)FBQAT

Full Precision DARTS
SuperNet Search

Train Full Precision
DARTS SubNet

PTQ
(Fixed Bit)PTQ

Full Precision DARTS
SuperNet Search

Full Precision DARTS
SuperNet Search

Total
Hours= 78.9

Total
Hours= 104.3

Total
Hours = 123.9

Total
Hours= 96.6

Figure 2: Comparing the total cost (both search and finetune/retrain time) of various baselines against
∇QDARTS cost to evaluate the effectiveness of ∇QDARTS. We show the total cost in terms of GPU hours for
the ImageNet dataset.

this challenge necessitates a smart approach to identify cells that ensure optimal performance in expanding
the architecture’s capacity.

Through exploring various methods, we realized a technique to enhance the architecture of ∇QDARTS during
the training phase. By duplicating the first cells and placing them at the top of the found cells, we effectively
increase the capacity of the underlying architecture. This approach is motivated by the recognition that initial
layers often possess weights and activations that are more sensitive to quantization and play a significant role
in the final accuracy. Leveraging this understanding, ∇QDARTS strategically employs the first cell and stacks
multiple copies of it on top of other discovered cells. As a result, the architecture’s capability is expanded,
leading to improved accuracy. We explored alternatives such as selecting cells from the last, the middle,
and employing random selection, but it was the replication of the first cells that yielded the most promising
results.

4 Experimental Setup and Evaluation

4.1 Setup

We have opened the source code on the GitHub 1, where one can get the code and run the whole experiments
we describe in this section. We perform ∇QDARTS experiments on CIFAR10 and ImageNet, as the two most
popular datasets for evaluating the efficiency and scalability of the NAS algorithm.

We employ HWGQ (Cai et al. (2017)) as a quantization scheme for 2- and 4-bit and channel-wise min-max
(Zmora et al. (2019); Gholami et al. (2021)) for 8-bit quantization. We used ffcv-based accelerator data
loading (Leclerc et al. (2022)) to reduce the training time of all baselines and ∇QDARTS.

Unless we explicitly mention it, we use the same setting of PC-DARTS for the DARTS-based baselines and
∇QDARTS. For APQ (Wang et al. (2020)), OQA (Shen et al. (2021)), SPOS (Guo et al. (2020)), and MNAS
(Gong et al. (2019)) baselines, we use the best setting introduced in the manuscripts.

The experiments are carried out on 8(1) A40 GPUs on our internal clusters for ImageNet (CIFAR10) datasets.
The training batch size is 2048(256) for ImageNet (CIFAR10) datasets. We consider 500 epochs for finetuning
the searched architecture for all our experiments.

During the search phase, we use different optimizers for the ω, α, and γ. For the ω, an SGD optimizer with
a learning rate of 0.5 (0.1 for CIFAR10), momentum 0.9, and weight decay of 3 × 10−4 is used. For the α,
Adam optimizer with learning rate 6 × 10−3 (6 × 10−4 for CIFAR10), beta1 0.5, beta2 0.999, and weight
decay of 10−3 is used. Finally, for γ, an SGD optimizer with a learning rate of 0.01, momentum of 0.9, and
weight decay of 10−3 is used.

4.2 Baselines

Unfortunately, there is no direct SOTA work that is comparable to our work as mentioned in Table 1.
However, we show how much ∇QDARTS can reduce the Bitops compared to the full-precision PC-DARTS

1https://anonymous.4open.science/r/QwDaRkTZ1

8

Under review as submission to TMLR

(32-bit) at the cost of negligible accuracy drop. In addition, we consider assorted baselines that can be
employed to be compared against ∇QDARTS as shown in Figure 2.

Post Training Quantization (PTQ): A simple alternative to ∇QDARTS is applying post-training quantiza-
tion (PTQ) on the final trained architecture with fp32 precision (i.e., SubNet) discovered by PC-DARTS. This
requires no additional fine-tuning and therefore is highly computationally efficient. We employ asymmetric
linear post-training quantization for this purpose (Gholami et al. (2021)).

Fixed-bit Quantized Aware Training (FBQAT): The high accuracy drop of lower-bit quantization
is usually alleviated with quantization-aware training (QAT) (Shen et al. (2021)). It is well known that
quantization-aware training outperforms post-training quantization, especially in low-bit regimes (Gholami
et al. (2021)). Therefore, we apply QAT to the PC-DARTS full precision searched architecture using the
HWGQ (Cai et al. (2017)) technique with a uniform, fixed-bit quantization policy (e.g., three experiments
with 2-, 4-, and 8-bit).

Quantization on SubNet (QSubNet): To understand if ∇QDARTS is better than a multi-staged optimization
that involves a NAS followed by a mixed precision architecture search, we apply differentiable mixed-precision
quantization technique (i.e., EdMIPS) on the output of search stage of PC-DARTS. We call this baseline
QSubNet. After 50 epochs of EdMIPS search on the architecture produced by PC-DARTS, we apply 450
epochs of fine-tuning so that it is a fair comparison against ∇QDARTS.

Existing Baselines: From the literature, we compare against APQ (Wang et al. (2020)), OQA (Shen et al.
(2021)), SPOS (Guo et al. (2020)), and MNAS (Gong et al. (2019)) as the closet work to ∇QDARTS. We also
compare ∇QDARTS with state-of-the-art non-NAS methods such as EMQ (Dong et al. (2023)), HAWQ (Yao
et al. (2021)), OMPQ (Ma et al. (2023)).
4.3 Accuracy/BitOps/Memory Footprint Results

Table 2 and Table 3 compare accuracy, required bit operations (Bitops), and memory footprint of different
baselines with ∇QDARTS. The first column shows the employed method. The number of employed cells in the
search and training stages is shown in the second and third columns. The fourth column displays bit-precision,
which pertains to both weight and activation, unless explicitly stated otherwise. The accuracy results (Top-1
for ImageNet) are shown in the fifth column. The sixth and seventh columns show the improvement in terms
of bit operations normalized to the PC-DARTS values. The last column indicates the amount of improvement
in memory footprint normalized to PC-DARTS. The absolute values of PC-DARTS are shown in parentheses
in the first row (i.e., in terms of Gigabits for the required bit operations and mega bytes(MB) for memory
footprint). The difference between the two versions of ∇QDARTS (2,4) is the complexity-aware loss values. By
changing this parameter (ν in Eqn.8) we can push for higher accuracy at the cost of higher BitOps.

Table 2: Comparing the impact of different methods on Accuracy, BitOps, and Memory Footprint over
CIFAR10 dataset

Method #Cells-search #Cells-train Precision Accuracy BitOps (G) Memory Footprint (MB)
PC-DARTS 8 20 32 96.25% 1(634.712) 1(218.977)
PTQ 8 20 8 95.59% 0.0625 0.250
PTQ 8 20 4 18.19% 0.0150 0.125
PTQ 8 20 2 9.99% 0.0039 0.063
FBQAT 8 20 8 95.86% 0.0611 0.236
FBQAT 8 20 4 62.68% 0.0157 0.125
FBQAT 8 20 2 38.45% 0.0039 0.063
QSubNet 8 20 2, 4 70.05% 0.0039 0.063
∇QDARTS 8 8 2,4 93.43% 0.0056 0.047
∇QDARTS 8 8 2,4 94.68% 0.0062 0.062
∇QDARTS 8 8 2,4,8 95.95% 0.0185 0.081
∇QDARTS 8 20 2, 4, 8 96.20% 0.0556 0.198

4.4 CIFAR10 Results

As demonstrated in Table 2, the effectiveness of ∇QDARTS shines for CIFAR10 dataset. With a mere utilization
of 2- and 4-bit operations, ∇QDARTS manages to achieve remarkable reductions in required bit operations by a
staggering 160×, along with substantial savings in memory footprint of 16× while the accuracy drop is 1.57%.

9

Under review as submission to TMLR

∇QDARTS showcases its capacity to attain the same level of accuracy as PC-DARTS while simultaneously
reducing the required operations by 18× and the memory footprint by 5×.

As can be observed, ∇QDARTS achieves remarkable accuracy in CIFAR10 without having to increase training
capacity as compared to search capacity. (i.e., merely 0.3% lower accuracy than fp32 with PC-DARTS). This
exemplifies the efficiency of ∇QDARTS in determining the optimal architecture and weight configurations,
which enables us to reach high accuracy with less capacity. The last row in Table 2 shows that ∇QDARTS
reaches the same accuracy as PC-DARTS with 18× less BitOps and 5× less memory footprint.

Comparing against the best outcomes achieved by other baselines, (i.e., QSubNet), it is worth noting that
∇QDARTS excels. With 1.58× the bit operations required by QSubNet, ∇QDARTS improves the accuracy by an
impressive 24.63% while outperforming QSubNet in terms of consumed GPU hours by 28%. This further
highlights the superiority of ∇QDARTS in optimizing accuracy while maximizing efficiency in comparison to
other baselines.

4.5 ImageNet Results

For the ImageNet dataset, we observe a significant accuracy degradation (i.e., 25.1%) for the QSubNet when
utilizing 2- and 4-bit operations compared to PC-DARTS. In contrast, ∇QDARTS, with 1.5× less required
BitOps reaches 21% higher accuracy than QSubNet. Although ∇QDARTS with only 2- and 4-bit precision for
both activation and weights experience an accuracy drop of 1.7% compared to PC-DARTS, it reduces the
required bit operations by an outstanding 65.36× and the memory footprint by 5×.

Moreover, by incorporating 2-, 4-, and 8-bit operations, ∇QDARTS further mitigates the accuracy drop to a
mere 1%. Particularly, this is achieved by reducing the required bit operations to a notable 17×, underscoring
the superior performance of ∇QDARTS in optimizing accuracy and reducing computational requirements on
the ImageNet dataset.

4.5.1 Compare with SOTA

We also compare ∇QDARTS with APQ (Wang et al. (2020)), MNAS (Gong et al. (2019)), OQA (Shen et al.
(2021)), and SPOS (Guo et al. (2020)) as the closest state-of-the-art baselines to ∇QDARTS. APQ, SPOS,
OQA, and MNAS converge at the accuracy of 72.1%, 71.5%, 74.1%, and 71.77% while APQ and MNAS
methods use even 8-bit weight/activation. In contrast, by only using 2- and 4-bit, ∇QDARTS outperforms
APQ, SPOS, OQA, and MNAS by 2.3%, 2.9%, 0.3%, and 2.7% in terms of accuracy. By involving 8-bit,
∇QDARTS outclasses APQ, SPOS, OAQ, and MNAS by 3%, 3.6%, 1%, and 3.4%, respectively. In terms of
BitOps (memory footprint), by considering almost the same accuracy, ∇QDARTS outperforms APQ, SPOS,
OQA, and MNAS by 2.3×(12×), 2.4×(3×), 13%(6.2×), 3.4×(37%).

Table 3: Comparing the impact of different methods on Accuracy, BitOps, and Memory Footprint over
ImageNet dataset

Method #Cells-search #Cells-train Precision Accuracy BitOps (G) Memory Footprint (MB)
PC-DARTS 8 14 32 76.1% 1(536.552) 1(172.102)
PTQ 8 14 8 67.47% 0.0625 0.254
PTQ 8 14 4 1.0% 0.0157 0.127
FBQAT 8 14 8 74.01% 0.0622 0.244
FBQAT 8 14 4 50.27% 0.0156 0.127
FBQAT 8 14 2 33.57% 0.0039 0.063
QSubNet 8 14 2,4 50.70% 0.0156 0.127
APQ (21 blocks) (21 blocks) 4,6,8 72.1% 0.0239 1.284
MNAS (22 blocks) (22 blocks) 2,4,6,8 71.77% 0.0347 0.147
OQA (21 blocks) (21 blocks) 4 74.1% 0.0173 1.245
SPOS (20 blocks) (20 blocks) 1,2,3,4 71.5% 0.0244 0.321
∇QDARTS 8 14 2,4 71.70% 0.0101 0.107
∇QDARTS 8 14 2,4 74.41% 0.0153 0.199
∇QDARTS 8 14 2,4,8 75.10% 0.0587 0.385

10

Under review as submission to TMLR

4.6 Total Cost

Figure 2 and Table 4 offer a comprehensive depiction of the total needed time (i.e., search and training),
measured in GPU hours, for various methods on the ImageNet dataset on 8 A40 GPUs. Upon observation,
it is evident that ∇QDARTS takes 28% (8%) shorter runtime compared to QSubNet (FBQAT), and longer
runtime compared to PTQ. PTQ takes less time since it assumes that an expensive fully trained network is
available to be quantized with fixed-bit and no extra fine-tuning is required. Compared with state-of-the-art
methods ∇QDARTS improves the total cost significantly. ∇QDARTS improves the total search and training
cost by 3.1×, 1.54×, compared with APQ, OQA, respectively. SPOS has less GPU hours at the cost of low
accuracy, high BitOps, and large memory footprint.

Table 4: Comparing the total GPU hours (8,A40) of ∇QDARTS and other methods on ImageNet dataset
Method APQ Wang et al. (2020) OQA Shen et al. (2021) SPOS Guo et al. (2020) ∇QDARTS
GPU Hours 302.6 149.4 73.5 96.6

4.7 Compare with Non-NAS Quantization Methods

We compare ∇QDARTS with non-NAS state-of-the-art quantization schemes in Table 5. The numbers are
the highest accuracy that these methods can reach with their corresponding BitOps(i.e., normalized to
PC-DARTS). Among them, only HAWQ supports mixed-precision for both weight and activation.

In terms of accuracy, OMPQ, EMQ, and HAQW3 on ResNet50 have 1.18% (1.87%), 1.6% (2.3%), and 0.29%
(0.89%) higher accuracy compared to two versions of ∇QDARTS with (2,4) bit setting. However, their BitOps
are 495% (1900%), 460% (1800%), and 489% (1870%) higher than ∇QDARTS (2,4). Notably, PCDARTS
in FP32 demonstrates lower accuracy compared to quantized ResNet50 (76.1% vs. 76.7%). This indicates
that the higher accuracy of these methods is attributed to the inherent capacity of ResNet50 relative to
PCDARTS. However, by increasing the number of cells in PCDARTS, it can reach higher accuracy, at the
expense of increased BitOps. Within the same BitOps budget, ∇QDARTS outperforms all these methods in
terms of accuracy.

Table 5: Comparing ∇QDARTS with non-NAS quantitation schemes on ImageNet dataset
Method W/A Accuracy BitOps(G)
OMPQ-ResNet18 4-8/8 72.30 0.1808
OMPQ-ResNet18 4-8/6 72.08 0.1398
OMPQ-ResNet50 4-8/5 76.28 0.2907
HAWQv3-ResNet18 4,8/4,8 70.22 0.1342
HAWQv3-ResNet18 4,8/4,8 71.56 0.2162
HAWQv3-ResNet50 4,8/4,8 75.39 0.2870
EMQ–ResNet18 2,3,4/8 72.31 0.1715
EMQ–ResNet18 2,3,4/6 72.28 0.1323
EMQ–ResNet50 2,3,4/5 76.70 0.2758

4.8 Ablation Study

In this subsection, we study different aspects of the proposed ∇QDARTS and perform different experiments to
show the impact of various parameters on the proposed methods.

4.8.1 Alternative Update Methods

In the DARTS framework, bi-level optimization concurrently optimizes network weights and architecture
parameters using gradient descent. The upper-level optimization targets architecture parameters, whereas the
lower level focuses on network weights. Conversely, one-level optimization merges these stages, simplifying the
process at the potential expense of architecture quality. In ∇QDARTS, the complexity escalates as it involves
three optimization parameters: architecture parameters (α), weights (w), and bit-precision (γ).

11

Under review as submission to TMLR

As discussed in the main paper, incorporating γ introduces a tri-level optimization challenge, substantially
complicating the optimization process. Thus, we propose an efficient bi-level optimization variant in ∇QDARTS.

Below, we outline various update mechanisms and their effects on accuracy and BitOps.

∇QDARTS (Efficient Bi-level Optimization): In ∇QDARTS, the sequence involves forward propagation
with a validation dataset, backpropagation on α, a forward pass with the training dataset, and subsequent
backpropagation for w and γ.

min
α

Lval(ω∗(α), γ∗(α), α)

s.t. ω∗(α), γ∗(α) = argmin
ω,γ

Ltrain(ω, γ, α) (12)

Bi-level-other Optimization: This optimization method (Eq. 13) starts with a forward pass using a
validation dataset, followed by backpropagation for α and γ. Then, a forward pass with the training dataset
precedes backpropagation for w.

min
α,γ

Lval(ω∗(α, γ), γ, α)

s.t. ω∗(α, γ) = argmin
ω

Ltrain(ω, γ, α)
(13)

Tri-level Optimization: This optimization scenario (Eq. 14) begins with a forward pass using a vali-
dation dataset and backpropagation for α. Next, a forward pass with the training dataset is followed by
backpropagation for w. Finally, another forward pass with the training set leads to backpropagation for γ.

min
α

Lval(ω∗(α, γ), γ, α)

s.t. ω∗(α, γ) = argmin
ω

Ltrain(ω, γ∗(ω), α)

s.t. γ∗(ω) = argmin
γ

Ltrain(ω, γ, α)
(14)

One-level Optimization: This optimization procedure (Eq. 15) eliminates the need for a validation dataset,
conducting a forward pass with the training dataset and then backpropagating for w, α, and γ.

min
α,ω,γ

Ltrain(ω, γ, α) (15)

Figure 3 illustrates the variations in accuracy and BitOPs across different optimization methods where all
of them use the same hyperparameter. Each label manifests (optimization method, BitOps, accuracy). It
shows that while alternative methods reduce the accuracy, ∇QDARTS maintains higher accuracy with less
BitOps. Table 6 compares the search time of optimization methods. The One-level needs only one forward
pass with the training dataset per mini-batch, per epoch. Hence, it gives the lowest search time and lowest
accuracy. Compared to Tri-Level and Bi-Level-other, ∇QDARTS improve the search time by 41.8% and 6.6%,
respectively. Surely, for the larger datsets, we will see more improvement. For example, for the ImageNet
dataset, we observe a time-out issue for Tri-Level optimization (5 days).

2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
BitOps(G)

92.2

92.4

92.6

92.8

93.0

93.2

93.4

93.6

Ac
cu

ra
cy

(%
)

QDARTS
Tri-Level
Bi-Level-Other
One-Level

Figure 3: Comparing the impact of various optimization methods on accuracy and BitOps.

12

Under review as submission to TMLR

Table 6: Comparing search time (minutes) of various optimization methods over CIFAR10 dataset
∇QDARTS Bi-Level-other Tri-Level One-Level
372.28 398.83 640.02 272.08

4.8.2 Validation Accuracy

Figure 4 illustrates how the validation accuracy increases through the first 250 training epochs over the
ImageNet dataset. As it has shown, QSubNet and FBQAT (4-bit) achieves almost similar performance
and convergence rate throughout the training period and they are significantly better than FBQAT (2-bit).
∇QDARTS outperforms all the baselines extensively from the beginning of the training.

0

10

20

30

40

50

60

70

80

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

22
3

22
9

23
5

24
1

24
7

A
cc
ur
ac
y(
%
)

#Epoches
∇QDARTS(2,4) FBQAT(2bit) FBQAT(4bit) QSubNet(2,4)

Figure 4: Validation accuracy for different techniques throughout the first 250 training epochs (ImageNet).

4.8.3 Required Bit Operations Per Cell

Figure 5 compares the required bit operations of different cells of ∇QDARTS that have 2-,4-bit and also
∇QDARTS with 2-, 4-, 8-bit against PC-DARTS. The Cell#5 and Cell#8 are reduction cells and the rest are
normal cells.

The nuanced dissimilarities observed among different normal cells in PC-DARTS can be attributed to a
fundamental distinction between cells positioned directly after a normal cell and those following a reduction
cell. Notably, the cells immediately succeeding a reduction cell , leading to variations in the computational
requirements across normal cells in PC-DARTS. This complex architectural style highlights the detailed design
decisions made to improve performance. In the case of ∇QDARTS, the efficacy is exemplified by the substantial
reduction in required operations for each cell. Specifically, ∇QDARTS achieves a significant reduction in bit
operations of up to 65.5× for the (2,4) bit configuration and a 17× for the (2,4,8) bit configuration. These
reductions further emphasize the effective computational optimization achieved by ∇QDARTS.

4.8.4 Sensitivity Analysis of Complexity Decay Parameter (ν)

In this analysis, we explore the effects of altering the complexity decay parameter (ν) within the context of
complexity-aware loss on the resulting accuracy. Previously, in Table 2 and Table 3 of the main paper, we
present diverse accuracy/BitOps metrics for the same bit precision levels within the ∇QDARTS framework,
highlighting the sole variable as the complexity decay parameter (ν). Here we extend this experiment. As
shown in Table 7, altering the complexity decay parameter by a factor of 1010 results in a 0.58% change in
accuracy on the CIFAR10 dataset. However, its impact on the ImageNet data set is significant. By changing
this hyperparameter from 10−4 to 10−9, the accuracy varies by 6.81%.

Employing Discovered Precision of the first/last Cell for Stacking Cells During Retraining Phase: As we
mentioned in Section 3.4, increasing the model capacity in ∇QDARTS is not straightforward as different cells
have different precision. Table 8 shows how stacking the cells using the discovered cells will impact the

13

Under review as submission to TMLR

1833.2 3482.6 3280.3 2312.1 2225.4 2954.3 5447.9 3352.6

1372.3 1459.5 1546.2 1546.2
606.9

1486.4 1146.2 606.9

236727.3 242309.1 247858.2 247858.2 323630.5 244029.1 247858.2 323568.0

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

1 2 3 4 5 6 7 8

B
ito

ps
(lo

g)

Cell Index
∇QDARTS (2,4,8) ∇QDARTS (2,4) PC-DARTS(32)

Figure 5: Comparing required bit operations of different cells for PC-DARTS and ∇QDARTS (ImageNet).

Table 7: Comparing the impact of different values of complexity decay (ν) on accuracy over CIFAR10 and
ImageNet datasets

Method #Cells-search #Cells-train Precision Complexity decay Accuracy Dataset
∇QDARTS 8 8 2,4 10−5 94.28 % CIFAR10
∇QDARTS 8 8 2,4 10−7 94.43% CIFAR10
∇QDARTS 8 8 2,4 10−9 94.49% CIFAR10
∇QDARTS 8 8 2,4 10−15 94.86% CIFAR10
∇QDARTS 8 14 2,4 10−4 64.45% ImageNet
∇QDARTS 8 14 2,4 10−9 71.26% ImageNet

accuracy. As seen, by replicating the first cells and positioning them at the top of existing cells, we enhance
the capacity of the underlying architecture compared to using the cells discovered at the end.

Table 8: Study the impact of employing discovered precision of first cell and last cell for stacking cells during
retraining phase on accuracy over ImageNet dataset

Method #Cells-search #Cells-train Precision Position Accuracy
∇QDARTS 8 14 2,4,8 last 74.608%
∇QDARTS 8 14 2,4,8 first 75.04 %

In the appendices, we have provided more ablation studies to show how the bit-precision parameter (γ)
evolved during the search phase. Furthermore, we study the impact of the complexity decay parameter,
having additional cells in the training phase.

5 Conclusion

The ∇QDARTS method represents a significant advancement in architecture-weight-precision joint search,
skillfully integrating weight values, architecture, and bit-precision (for both weight and activation) search
into a single-shot and differentiable framework. ∇QDARTS approach not only eliminates the need for proxy
and pretraining but also demonstrates its effectiveness through a notable enhancement in accuracy, reducing
required bit operations and memory footprint. ∇QDARTS achieves remarkable results on CIFAR10 using (2,4)
bit precision compared to fp32, cutting bit operations by 160× while only decreasing accuracy by 1.57%.
Enhancing the capacity allows ∇QDARTS to equal fp32 accuracy, decreasing bit operations by 18×. Using
(2,4,8) bit precision, ∇QDARTS reduces the accuracy drop to 1% relative to fp32, while significantly cutting bit
operations by 17× and memory footprint by 2.6×. Regarding bit operation (memory footprint), ∇QDARTS
surpasses APQ, SPOS, OQA, and MNAS with comparable accuracy by APQ, SPOS, OQA, and MNAS
with similar accuracy by 2.3× (12×), 2.4× (3×), 13% (6.2×), 3.4× (37%), respectively. ∇QDARTS improves

14

Under review as submission to TMLR

the total search and training cost by 3.1×, 1.54×, compared with APQ, OQA, respectively. These pieces
of evidence show that ∇QDARTS hold a promise for efficient and powerful network design, showcasing the
potential of joint quantization with NAS in optimizing computational resources while maintaining high
accuracy.

References
Haoping Bai, Meng Cao, Ping Huang, and Jiulong Shan. Batchquant: Quantized-for-all architecture search

with robust quantizer. Advances in Neural Information Processing Systems, 34:1074–1085, 2021.

Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay
Janapa Reddi, Matthew Mattina, and Paul Whatmough. Micronets: Neural network architectures for
deploying tinyml applications on commodity microcontrollers. In A. Smola, A. Dimakis, and I. Stoica (eds.),
Proceedings of Machine Learning and Systems, volume 3, pp. 517–532, 2021. URL https://proceedings.
mlsys.org/paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-Paper.pdf.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and
hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for mixed-precision neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2349–2358,
2020.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by half-wave
gaussian quantization. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5918–5926, 2017.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-based
regularization. In International conference on machine learning, pp. 1554–1565. PMLR, 2020.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the
depth gap between search and evaluation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1294–1303, 2019.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural networks for
efficient inference. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
pp. 3009–3018. IEEE, 2019.

Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair advantages in
differentiable architecture search. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XV, pp. 465–480. Springer, 2020.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware acceleration for
neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

Peijie Dong, Lujun Li, Zimian Wei, Xin Niu, Zhiliang Tian, and Hengyue Pan. Emq: Evolving training-free
proxies for automated mixed precision quantization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17076–17086, 2023.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 293–302, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The Journal
of Machine Learning Research, 20(1):1997–2017, 2019.

15

https://proceedings.mlsys.org/paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-Paper.pdf

Under review as submission to TMLR

Igor Fedorov, Ramon Matas, Hokchhay Tann, Chuteng Zhou, Matthew Mattina, and Paul Whatmough. Udc:
Unified dnas for compressible tinyml models for neural processing units. Advances in Neural Information
Processing Systems, 35:18456–18471, 2022.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2021.

Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z Pan. Mixed precision neural
architecture search for energy efficient deep learning. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–7. IEEE, 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pp. 544–560. Springer,
2020.

Hai Victor Habi, Roy H Jennings, and Arnon Netzer. Hmq: Hardware friendly mixed precision quantization
block for cnns. In European Conference on Computer Vision, pp. 448–463. Springer, 2020.

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M Sabry Aly, and Jie Lin. Opq: Compressing deep neural
networks with one-shot pruning-quantization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7780–7788, 2021.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing. Neural
architecture search with bayesian optimisation and optimal transport. Advances in neural information
processing systems, 31, 2018.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

George Kyriakides and Konstantinos Margaritis. An introduction to neural architecture search for convolutional
networks. arXiv preprint arXiv:2005.11074, 2020.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander Madry.
FFCV: Accelerating training by removing data bottlenecks. https://github.com/libffcv/ffcv/, 2022.
commit xxxxxxx.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, and Zhenguo Li.
Darts+: Improved differentiable architecture search with early stopping. arXiv preprint arXiv:1909.06035,
2019.

Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan Wang. Direct differentiable augmentation search. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12219–12228, 2021.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the European
conference on computer vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical
representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018b.

Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang, Huixia Li, Yongjian Wu, Guannan Jiang, Wei Zhang,
and Rongrong Ji. Ompq: Orthogonal mixed precision quantization. In Proceedings of the AAAI conference
on artificial intelligence, volume 37, pp. 9029–9037, 2023.

16

https://github.com/libffcv/ffcv/

Under review as submission to TMLR

Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian, Mahmoud
Safari, Kaicheng Yu, and Frank Hutter. Nas-bench-suite: Nas evaluation is (now) surprisingly easy.
Proceedings of the 39th International Conference on Machine Learning, 2022.

Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep architectures.
arXiv preprint arXiv:1704.08792, 2017.

Manas Sahni, Shreya Varshini, Alind Khare, and Alexey Tumanov. CompOFA: Compound once-for-all
networks for faster multi-platform deployment. In Proc. of the 9th International Conference on Learning
Representations, ICLR ’21, May 2021a. URL https://openreview.net/forum?id=IgIk8RRT-Z.

Manas Sahni, Shreya Varshini, Alind Khare, and Alexey Tumanov. Compofa: Compound once-for-all networks
for faster multi-platform deployment. arXiv preprint arXiv:2104.12642, 2021b.

Dave Salvator, Hao Wu, Milind Kulkarni, and Niall Emmart. Int4 precision for ai inference:.
https://developer.nvidia.com/blog/int4-for-aiinference, 2019.

Mingzhu Shen, Feng Liang, Ruihao Gong, Yuhang Li, Chuming Li, Chen Lin, Fengwei Yu, Junjie Yan, and
Wanli Ouyang. Once quantization-aware training: High performance extremely low-bit architecture search.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5340–5349, 2021.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath Venkataramani,
Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Kailash Gopalakrishnan. Ultra-low precision
4-bit training of deep neural networks. Advances in Neural Information Processing Systems, 33:1796–1807,
2020.

Zhenhong Sun, Ce Ge, Junyan Wang, Ming Lin, Hesen Chen, Hao Li, and Xiuyu Sun. Entropy-driven
mixed-precision quantization for deep network design. Advances in Neural Information Processing Systems,
35:21508–21520, 2022.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression. arXiv
preprint arXiv:1702.04008, 2017.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu, Matthew
Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for spatial and channel
dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12965–12974, 2020.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quantization
with mixed precision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8612–8620, 2019.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable nas. arXiv preprint arXiv:2108.04392, 2021.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han. Apq:
Joint search for network architecture, pruning and quantization policy. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2078–2087, 2020.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed precision
quantization of convnets via differentiable neural architecture search. arXiv preprint arXiv:1812.00090,
2018.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10734–10742, 2019.

17

https://openreview.net/forum?id=IgIk8RRT-Z

Under review as submission to TMLR

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-darts:
Partial channel connections for memory-efficient architecture search. arXiv preprint arXiv:1907.05737,
2019.

Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian, and Zhouchen Lin. Towards improving the
consistency, efficiency, and flexibility of differentiable neural architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6667–6676, 2021.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang,
Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization. In International
Conference on Machine Learning, pp. 11875–11886. PMLR, 2021.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas
Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architecture search with big
single-stage models. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VII 16, pp. 702–717. Springer, 2020a.

Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann. How to train your super-net: An analysis of training
heuristics in weight-sharing nas. arXiv preprint arXiv:2003.04276, 2020b.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Under-
standing and robustifying differentiable architecture search. arXiv preprint arXiv:1909.09656, 2019.

Jiuling Zhang and Zhiming Ding. Rethink darts search space and renovate a new benchmark. Proceedings of
the 40th International Conference on Machine Learning, PMLR 2023, 2023.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Zongyuan Ge, and Steven Su. Differentiable neural
architecture search in equivalent space with exploration enhancement. Advances in Neural Information
Processing Systems, 33:13341–13351, 2020a.

Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza Haffari. idarts:
Differentiable architecture search with stochastic implicit gradients. In International Conference on Machine
Learning, pp. 12557–12566. PMLR, 2021.

Xinbang Zhang, Zehao Huang, Naiyan Wang, Shiming Xiang, and Chunhong Pan. You only search once:
Single shot neural architecture search via direct sparse optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(9):2891–2904, 2020b.

Sijie Zhao, Tao Yue, and Xuemei Hu. Distribution-aware adaptive multi-bit quantization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9281–9290, 2021.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Chu Hong Hoi. Theory-inspired path-regularized
differential network architecture search. Advances in Neural Information Processing Systems, 33:8296–8307,
2020.

Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik. Neural network distiller: A python
package for dnn compression research. October 2019. URL https://arxiv.org/abs/1910.12232.

18

https://arxiv.org/abs/1910.12232

Under review as submission to TMLR

A Appendix

A.1 Visual Analysis of Bit Precision and Architecture Identified by ∇QDARTS

The plots in Fig. 6 showcase the structure of the discovered cells within ∇QDARTS when employing a (2,4,8)
bit configuration for the ImageNet dataset, juxtaposed against PC-DARTS (i.e., first row). A noteworthy
observation within the visualization is the strategic selection of bit precision for various convolution blocks.
Notably, 2-bit precision is predominantly chosen for many of the 5x5 convolution blocks, while a higher
precision of either 4 or 8 bits is judiciously employed for the 3x3 convolution blocks. This representation
demonstrates ∇QDARTS’ ability to uncover computationally efficient operations for both weight and activation
within each cell, attesting to its optimization capabilities.

A.2 γ Evolution During Search

The plots in Fig. 7 illustrate the evolution of the γ (bit precision) parameter over 50 epochs in the search
phase for activation (the first six plots) and weights (the second six plots)for randomly picked cells, running
on CIFAR-10 dataset where the bit precision is (2,4,8). The Y-axis shows the probability of a specific bit
precision being chosen. The plots show that the proposed framework is able to choose a higher precision to
add more capacity to the network and increase the accuracy.

19

Under review as submission to TMLR

PC-DARTS Normal Cell

PC-DARTS ReducƟon Cell

ΔQDARTS – Normal Cell 1

ΔQDARTS – Normal Cell 2

ΔQDARTS – Normal Cell 3

ΔQDARTS – Normal Cell 4

ΔQDARTS – Normal Cell 5

ΔQDARTS – Normal Cell 6

ΔQDARTS – ReducƟon Cell 1 ΔQDARTS – ReducƟon Cell 2

Figure 6: Comparing the discovered cell structures with bit precision of all normal and reduction cells (i.e.,
row 2-5) with PC-DARTS (i.e., row 1) for ImageNet dataset. Due to mixed-precision, unlike PC-DARTS, the
cells in ∇QDARTS are not similar.

20

Under review as submission to TMLR

Figure 7: Evolution Illustration of the γ (bit precision) parameter over 50 epochs in the search phase for activation
(the first six plots) and weights (the second six plots) for randomly picked cells, for CIFAR-10 where the bit precision
is (2,4,8).

21

	Introduction
	Background and Challenges
	Differentiable NAS Formulation
	Quantization
	Incorporating Quantization into NAS

	Proposed QDARTS
	 Overview
	 Optimizations
	Complexity-aware Loss
	Increasing Model Capacity

	Experimental Setup and Evaluation
	Setup
	Baselines
	Accuracy/BitOps/Memory Footprint Results
	CIFAR10 Results
	ImageNet Results
	Compare with SOTA

	Total Cost
	Compare with Non-NAS Quantization Methods
	Ablation Study
	Alternative Update Methods
	Validation Accuracy
	Required Bit Operations Per Cell
	Sensitivity Analysis of Complexity Decay Parameter

	Conclusion
	Appendix
	Visual Analysis of Bit Precision and Architecture Identified by
	 Evolution During Search

