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Abstract 

Biologically plausible models of learning may provide a crucial insight for building autonomous intelligent agents 
capable of performing a wide range of tasks. In this work, we propose a hierarchical model of an agent operating in 
an unfamiliar environment driven by a reinforcement signal. We use temporal memory to learn sparse distributed 
representation of state–actions and the basal ganglia model to learn effective action policy on different levels of 
abstraction. The learned model of the environment is utilized to generate an intrinsic motivation signal, which drives 
the agent in the absence of the extrinsic signal, and through acting in imagination, which we call dreaming. We dem-
onstrate that the proposed architecture enables an agent to effectively reach goals in grid environments.

Keywords: Model-based reinforcement learning, Intrinsic motivation, Hierarchical temporal memory, Sparse 
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1 Introduction
A defining aspect of intelligence is the ability to accumu-
late knowledge autonomously and reuse it for a broad 
range of tasks. Fundamental questions in cognitive sci-
ences include how knowledge is represented in memory, 
what learning mechanisms exist, and how learning can be 
self-directed [48]. The studies in animals and humans aim 
to find a unified biological model of learning and con-
trol. Such model could be organized on common mech-
anisms and principles, which in turn could help us find 
more effective models of behavior control and, therefore, 
advance the progress in AI [4, 12].

Reinforcement learning is one of key mechanisms in 
human learning. In recent years, it has garnered much 
attention and made progress in the field of AI [43, 56]. 
While computational reinforcement learning (RL) ulti-
mately aims to solve the same fundamental questions 
as cognitive sciences do, it does not normally follow 

biological plausibility, which limits models’ compatibility 
between these two fields. Moreover, the rapid progress 
and huge success in practical applications that AI has 
seen in recent years has only augmented this discrepancy, 
resulting in deep Artificial Neural Networks (ANNs) with 
backpropagation-based learning almost monopolizing 
the field. However, interdisciplinary cooperation may 
turn out to be vital for more fundamental advances [28]. 
And RL could serve as the common testbed for computa-
tional models of both sides. In our research, we propose 
a neurophysiologically inspired model of an intelligent 
agent and apply it to an RL scenario to address the prob-
lems of knowledge representation, learning, and moti-
vated behavior.

Humans are proficient at aggregating and reusing their 
experience in new circumstances and unseen tasks. One 
aspect that helps us do so is having an inner model of the 
world around us that we learn and maintain during our 
lifetime [35, 54]. This internal representation of the exter-
nal world allows us, among other things, to predict future 
outcomes of different actions and, therefore, better plan 
our behavior. We can imagine situations and learn from 
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them. Sometimes, such technique reduces the number of 
trial-and-error iterations required to successfully com-
plete a new task or improve on it. In our work, we supply 
an agent with temporal memory, which helps an agent 
learn a model of the environment. To exploit the learned 
model and also to test its quality, we additionally supply 
an agent with the ability to learn in imagination.

There is evidence that behavior and knowledge in 
humans are organized hierarchically [41, 66]. Such 
organization allows us to learn and use spatial–temporal 
abstractions. Computationally, hierarchical organization 
does not need direct hierarchical structure and can self-
arise by subsequent feedforward and recurrent informa-
tion propagation. In our work, we propose a hierarchical 
memory model and study how spatial–temporal abstrac-
tions help in solving tasks in grid environments.

Another factor that differentiates living creatures from 
artificial agents is the innate ability to act in the absence 
of direct goal-related rewarding stimuli [6, 33]. The driv-
ing factors that enable such behavior are called intrinsic 
motivation. Intrinsic motivation plays a fundamental role 
in developing adaptive and autonomous behavior in ani-
mals and humans. We supply our model with the mecha-
nism of generating an intrinsic motivation signal called 
empowerment. We further supply it with the mechanism 
that modulates an agent’s behavior by weighting between 
extrinsic and intrinsic motivations to effectively adapt to 
changing goals.

Although all aforementioned characteristics are nota-
bly inherent to human mind, there is still no generally 
accepted framework synthesizing them all in an open-
ended manner (for example, see a review Parisi et  al. 
[49]). RL systems recently showed significant progress in 
learning complex behaviors, but there are still many chal-
lenges that remain unsolved such as increasing learning 
and inference time with domain dimensionality, sam-
ple efficiency and experience reusability, exploration in 
domains with high dimensional state–action spaces and 
sparse rewards, automatic skill acquisition and cata-
strophic forgetting due to task interference, transfer and 
lifelong learning [34, 50]. One of the challenges we seek 
to address by our framework is building a robust general 
HRL system capable of continuously learning and reus-
ing acquired skills. Therefore, this paper introduces a bio-
logically inspired model of the autonomous agent called 
HIMA (hierarchical intrinsically motivated agent), which 
is intended to integrate hierarchical experience organiza-
tion and intrinsically motivated exploration.

The main feature of our method is combining bottom-
up and top-down approaches. That is, on the one hand, 
we use known neurophysiological computational mod-
els of the neocortex and basal ganglia as a starting point 
and on the other—adapt them for solving RL problem: 

finding optimal policy given Markov decision process. 
It is important to follow a biologically plausible course 
when building an artificial one as stated in Hole and 
Ahmad [32]. However, we do not consider biological con-
straints as strictly mandatory. It gives us great flexibility 
in expanding neurophysiological models according to 
tasks. Following this way, we have built a decision-mak-
ing system able to efficiently aggregate and reuse expe-
rience for reaching changing goals. We also show that 
HIMA has much greater flexibility compared to similar 
DeepRL systems in solving problems that require lifelong 
continuous learning.

This work builds on preliminary findings presented in 
the conference paper [22]. This paper provides a more 
detailed description of our hierarchical memory model 
than that in the conference paper. We also switched from 
an anomaly-based to an empowerment-based intrin-
sic motivation signal. In addition, our model includes a 
motivational modulation mechanism and the ability to 
learn in the imagination. Finally, we present a compre-
hensive experimental analysis of various elements of the 
proposed model in RL scenarios with changing tasks.

The rest of the paper is organized as follows: Section 2 
provides an overview of related works. Section  3 intro-
duces necessary definitions, formalization, and concepts. 
Section  4 describes our hierarchical memory architec-
ture accompanied with the Basal Ganglia model. We also 
describe the mechanisms of the generated intrinsic moti-
vation signal, empowerment, and how both an intrinsic 
and extrinsic motivation signals are modulated to shape 
behavior. Ultimately, we explain the dreaming ability of 
an agent. The experimental setup and the results of the 
experiments performed on a classic grid world environ-
ments are described in Sect.  5. Finally, Sects.  6 and  7 
discuss the results, outline the proposed method’s limita-
tions, and provide insights for the future work.

2  Related works
Learning an inner model of the environment is a distinc-
tive feature of the model-based approach in reinforce-
ment learning [57]. Having a model of the environment 
allows for an effective combination of planning and learn-
ing. The learned model can be utilized to support the 
learning of an agent’s global policy by supplying it with 
additional trajectories generated in imagination [58].

Model-based methods can be divided into two groups 
depending on whether they learn the model and imagine 
in raw sensory data space [64] or do it in a compact latent 
space [26, 55]. The former group’s methods usually are 
simpler to implement and learn, but they require a bigger 
model. Our method relates to the latter group, partially 
inspired by the Dreamer [27]. However, in the Dreamer 
past trajectories are explicitly stored, and the iterative 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 3 of 28Dzhivelikian et al. Brain Informatics             (2022) 9:8  

learning process is divided into two separate phases—
collecting experience and learning on a sampled data, 
which includes dreaming. In contrast, our model does 
not have such separate phases, and an imaginary trajec-
tory during dreaming is allowed to start only from the 
agent’s current state.

Hierarchical reinforcement learning has extensions 
that enable operating with non-elementary actions. The 
Options Framework [5, 60] is among the most popular 
extensions. It has been hypothesized to be linked with 
the prefrontal cortex neural structures proposed by Bot-
vinick et al. [9], thereby bridging the gap between the RL 
model and neurophysiology. Another study discovered 
that dopamine-driven TD-like learning mechanisms in 
the dorsal striatum play an important role in the devel-
opment of a functional hierarchy in the prefrontal cortex 
[52].

In our work, we draw ideas from a cortical Hierarchical 
Temporal Memory model [29]. It enables unsupervised 
hierarchical learning of spatial–temporal data represen-
tation. This model, however, has limited utility, as it only 
defines the elementary building blocks of memory. It 
does not define either hierarchy, or how to learn temporal 
abstractions, or how the memory can be integrated into 
an intelligent agent model. There are works extending 
its usage in part [21, 30, 38]. However, all of these issues 
were first to be addressed using an original approach by 
Dzhivelikian et  al. [22]. Our current work is its direct 
extension, in which we contribute to the analysis of spa-
tial–temporal abstractions arisen in such hierarchy.

Many works are devoted to the problem of autonomy 
in relation to humans and artificial intelligence agents. 
One model capable of performing actions even in the 
absence of an external sensory signal is based on the 
idea that constant brain activity and self-motivation are 
innate in living organisms [13]. Another model intro-
duces a causal network and describes the process of 
maintaining motivation based on a biological repre-
sentation of the dopamine reward system, which exists 
in the brain [61]. Santucci and colleagues investigated 
a variety of intrinsic motivation (IM) models in order 
to provide autonomy for a robotic agent exploring its 
surroundings, and the best results were compiled by 
their GRAIL model [53]. Works by Bolado-Gomez and 
Gurney [8], Fiore et  al. [23] are linked with the simi-
lar concept of an agent’s behavior being determined 
by intrinsic motivation and the interaction of numer-
ous brain components (the cortex, the basal ganglia, 
the thalamus, the hippocampus, and the amygdala). 
We were inspired by the GRAIL concept when design-
ing our Basal Ganglia model. However, we constructed 
the intrinsic motivation mechanism based on the com-
putational model of the empowerment introduced by 

Klyubin et al. [37]. We also supply our model with soft-
gating modulation that enables us to balance between 
exploratory and exploitatory behavioral programs in 
order to effectively adapt to the changing goals.

Learning in HER algorithm, proposed by Andrycho-
wicz et al. [2], is an approach that effectively learn how 
to reach sub-goals based on idea of retrospective learn-
ing. However, this method does not extract and learn 
reusable sub-policies and serves more like curriculum 
procedure in order to speed up the learning toward the 
main goal. An extension that combines it with an HRL 
approach, called Feudal RL [20], addresses this issue 
by introducing a hierarchy of managers and workers, 
where workers learn reusable policies [42]. Retrospec-
tive learning is not mutually exclusive to our approach 
and can be seen as a potentially powerful—and biologi-
cally plausible [24]—future supplement to the dreaming 
procedure.

Hierarchical learning inherently imposes the usage 
of intrinsic motivation for skill acquisition. IM can be 
used for the better exploration of the sub-goal space as 
in Antonio Becerra et  al. [3], facilitating high-level pol-
icy learning. This framework is similar to ours in terms 
of integrating memory, abstract actions, and intrinsic 
motivation. However, unlike our work, they use prede-
fined abstract actions and don’t investigate the effects of 
different IM algorithms. IM can also be used for the task 
decomposition as in Kulkarni et  al. [40]. Although, this 
method is poorly scalable since it does not have a mecha-
nism for an automatic sub-goal extraction. In Davoodab-
adi Farahani and Mozayani [19], authors utilize different 
IM heuristics for both goal discovery and exploration 
with the Options Framework under-hood. They divide 
the learning process into two separate stages to overcome 
intrinsic and extrinsic reward interference, consequently, 
requiring an explicit indication of a goal change. In con-
trast, our agent model is capable of identifying a goal 
change automatically and provides seamless IM and EM 
integration. Despite the fact that all these frameworks are 
aiming to integrate IM and HRL, they also differ from 
HIMA in that they do not explicitly use neurophysiologi-
cal models that may be an obstacle when interpreting the 
results in terms of human intelligence.

3  Background
This section introduces the definitions and concepts 
that we will need in our work. We provide formaliza-
tion in the first subsection that will be used to establish 
a link between our biologically inspired model and rein-
forcement learning. Other subsections explain biologi-
cal concepts and computational models that we use as a 
foundation.
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3.1  MDP, options, and TD
Consider an agent that must make sequential decisions 
while interacting with an environment. A common 
approach is to formalize such problem as a Markov 
Decision Process (MDP) problem: 〈S,A,P,R, γ 〉 , where 
S is state space, A is action space, P : S × A → S is a 
transition function, R : S × A → R is a reward function, 
and γ ∈ [0; 1] is a discount factor. Whereas experiment 
conditions force us to consider the partially observable 
MDP problem, we can consider s ∈ S to be an estimate 
of a function of history of all previous observations. As 
a result, we use this deterministic MDP formulation 
throughout the text to simplify derivations.

For actions, we also employ temporal abstractions. 
The Options Framework is a popular way to generalize 
both elementary and high-level actions [60]. It defines 
an option as a tuple 〈I ,π ,β〉 , where I ⊆ S is an ini-
tiation set, π : S × A → [0, 1] is an intra-option policy, 
and β : S → [0, 1] is a termination condition. There-
fore, a policy over options is a probability function 
µ : S × O → [0, 1] , where O is a set of options.

The agent’s goal is to find such options and policy 
over options µ that maximize expected cumulative 
return:

We use the Temporal Difference Learning [59] to learn 
the value function. This method has also proven to be 
biologically plausible [46]. The state value is defined as:

(1)G1 = max
µ

E

[

∞
∑

t=1

γ t−1rt |µ,O

]

.

where rt ,Gt are a reward and a return on t timestep. 
In this approach, the estimate of the value is updated 
according to the difference between current value v(st) 
and its estimate bootstrapped from the value of the next 
observed state: v̂(st) = rt+1 + γ vπ (st+1) . This difference 
is called 1-step TD error: δt = rt+1 + γ v(st+1)− v(st) . 
Thus, the value update rule is:

3.2  Hierarchical temporal memory
In our memory model, we use the hierarchical temporal 
memory (HTM) framework proposed by Hawkins and 
Ahmad [29]. At its core is the model of a discrete-time 
spiking pyramidal neuron (Fig. 1).

In this model, pyramidal neurons communicate via 
synapses called active. There are also a special kind of fic-
tive synapses that denote potential connections whose 
strength is under a specified threshold, so they cannot 
propagate signals. However, these inactive synapses are 
subject to learning, so they may become active (and vice 
versa) in the aftermath. The activation of the presynap-
tic cell causes a binary spike, which is propagated further 
through active synapses. Thus, all inputs and outputs of 
the model are represented as binary patterns.

Dendritic synapses are organized into groups called 
segments (Fig. 1a). Each neuron has one proximal basal 

(2)

vπ (s) = Eπ [Gt |st = s]

= Eπ [rt+1 + γGt+1|st = s]

= Eπ [rt+1 + γ vπ (St+1)|st = s],

(3)v(st) ← v(st)+ αδt .

a b c

Fig. 1 Hierarchical temporal memory framework. A HTM neuron. B A group of neurons organized into a minicolumn. Neurons within a minicolumn 
share the same receptive field. C A group of minicolumns organized into a layer. Columns within a layer share the same feedforward input, however, 
they may have different receptive fields
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segment and any number of distal basal and apical den-
dritic segments. A segment defines an activation unit—
each segment becomes active independently based on 
the activity of its receptive field.

Pyramidal neurons are organized into groups called 
minicolumns (Fig.  1b). Neurons within a minicolumn 
share the same feedforward (i.e., proximal basal) recep-
tive field, i.e., it is defined by the single proximal basal 
segment. Therefore, neurons within a minicolumn share 
the same proximal basal segment. On a higher level, min-
icolumns are organized into layers (Fig. 1c). And within 
a layer, minicolumns share the same feedforward input, 
although they can have different receptive fields.

A dendritic segment activation can cause different 
effects on the neural cell depending on the segment’s 
type. A proximal basal segment activates its neuron, 
while the other two types of dendritic segments play a 
modulatory function. A proximal basal segment is acti-
vated if a number of active proximal inputs within its 
receptive field exceeds a dynamic threshold. This thresh-
old is determined by a “k-winners take all” rule within a 
layer. That is, final activity of proximal basal segments, 
and therefore neurons in a layer, depends on their relative 
ability to match an incoming feedforward spatial pattern.

On the other hand, distal basal and apical dendritic 
segments become activated if the number of their active 
inputs exceeds a fixed threshold. Distal basal segments 
grows synapses to the cells within a layer, while apical 
dendritic segments grow synapses to the cells in other 
layers. Their cumulative modulatory function is to affect 
the cell’s activation priority within a minicolumn. When 
these segments become activated, they switch the neuron 
into the so-called predicted state.

A neuron in the predicted state means that it is 
expected to become activated with the next feedforward 
input pattern. Note that since neurons in a minicolumn 
share the same proximal basal segment, its activation 
should lead to the activation of the entire minicolumn. 
However, a neuron in the predicted state inhibits the 
activity of all non-predicted neurons within a minicol-
umn preventing their activation. A predicted neuron 
has the priority because it matches both the spatial feed-
forward input and the spatial–temporal activity context 
captured by its modulatory segments. Hence, if the pre-
diction comes true, the activated cell in a minicolumn 
is an exact representation of this captured spatial–tem-
poral context. As a result, active minicolumns within a 
layer represent current spatial state, while active neurons 
within minicolumns represent the current spatial–tem-
poral state.

In our work, we use two HTM framework algorithms: 
Spatial Pooler and Temporal Memory. Spatial Pooler 
(SP) [18] is a neural network algorithm that is able to 

encode dense binary patterns into Sparse Distributed 
Representations (SDRs) using a Hebbian-like unsuper-
vised learning method. The primary role of SP is to ena-
ble feedforward spatial pattern matching specialization 
of the proximal basal segments in minicolumns within 
a layer, while the other algorithm—Temporal Memory 
(TM)—represents a model of the pyramidal neurons 
cortical layer [17]. It is capable of sequence learning due 
to the ability of pyramidal neurons to guess future feed-
forward input by matching the spatial–temporal context 
with modulatory segments.

Another core feature of the HTM is an extensive use of 
sparse distributed representations. Such choice is sup-
ported by the empirical evidence that cortical represen-
tations are both sparse, i.e., only a small percentage of 
neurons is active at any moment, and distributed, i.e., 
the information is encoded not with a single neuron but 
across a set of active neurons [31, 36, 65]. An SDR has a 
number of useful properties [1].

First, sparse representations are more computationally 
efficient than dense representations. Also, sparsity leads 
to higher specialization of neurons as they fire much 
more selectively. The distributed aspect complements 
it with high noise robustness because in a high-dimen-
sional space, there is an extremely small chance that two 
random SDR vectors have a significant overlap; in the 
vast majority of cases, they are expected to be exactly or 
near orthogonal. From a set-theoretic viewpoint, we can 
treat SDR vectors as sets with OR as a union operation 
and AND as an intersection operation. Additionally, a dot 
product may act as a semantically meaningful measure of 
similarity between SDR vectors. As a result, SDRs have 
a dual nature. On the one hand, SDRs represent discrete 
objects or symbols because they rarely overlap in most 
cases. On the other hand, there is continuity—for exam-
ple, in the vicinity of an object’s SDR or when two objects 
share common features that contribute to their similarity.

There are several key aspects that differentiate HTM 
framework neural networks from Artificial Neural Net-
works (ANN) and make it a more biologically plausible 
model.

First of all, neurons communicate with discretized 
binary spikes rather than real-valued data. Secondly, it 
works with sparse distributed representations. Thirdly, 
besides feedforward neural connections, it defines modu-
latory connections. Lastly, it uses Hebbian-like learning 
at its core instead of backpropagation.

3.3  Cortico–basal ganglia–thalamocortical circuit
To make an agent’s behavior more biologically plau-
sible, we were inspired by natural architecture of 
the brain selection circuit. Among the many loops 
and circuits in the brain, there is the cortico–basal 
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ganglia–thalamocortical loop, which realizes selection 
between cortical suggestions. In this paper, we use the 
basal ganglia–thalamus system (BGT) such as depicted in 
Fig. 2.

The BGT system selects elementary and abstract 
actions under some sensory input context. In the BGT 
loop, the cortex operates with sensory and motor rep-
resentations. It passes signals to the basal ganglia and 
thalamus. The basal ganglia (BG) are the most active 
part of the brain that regulates movement and behavio-
ral aspects of motivation. This is the place where intrinsic 
and extrinsic motivation are processed. In terms of artifi-
cial intelligence (AI), they realize reinforcement learning. 
In our simplified model, they consist of the striatum and 
globus pallidus internal (GPi) and external (GPe). The 
striatum receives signals from the cortex and dopamine 
sources. Also, it receives delayed thalamic activity. The 
thalamus, under the basal ganglia modulation, rejects or 
accepts cortical suggestions. Accepted suggestions are 
sent back to the cortex.

In the basal ganglia, mainly two types of neurons with 
receptors D1 and D2 receive signals from the cortex. The 
D1 neurons are active selectors because they directly 
reduce the GPi’s tonic inhibition of the thalamus and 
cause the disinhibition of the selected movement. The D2 
neurons, on the other hand, act on the GPi indirectly via 
the GPe mediator. As a result, a signal coming from the 
GPi to the thalamus is subjected to dual control.

The dopamine release system (reward and punishment) is 
responsible for learning in the basal ganglia and, as a result, 
determines the effect of the BG on the stimulus. Dopa-
mine solidifies the connections between the cortex and the 
striatum. In response to positive signals, it strengthens D1 
receptors while weakening D2 receptors, and in response 
to negative signals, it has the opposite effect. Whether the 
signal is positive or negative is determined by the TD error, 

which is based on the reward with previous and current 
striatal activity.

3.4  Empowerment
The intrinsic motivation in our agent is based on empow-
erment introduced by Klyubin et  al. [37]. Empowerment 
is a utility function that estimates the agent’s capability to 
influence the environment from a specified state. There-
fore, it can highlight key states with increased potential for 
an agent to explore. Empowerment is a dense function and 
can counter sparsity of the extrinsic rewards, which is a big 
problem in RL. Also, this function is stable, which means 
that for a fixed input state in a stationary environment, it 
gives an exact, not changing, value.

By definition, empowerment is the information channel 
capacity between a sequence of actions and an agent state:

where st+n is the agent’s state at timestep t + n , ant  is the 
sequence of actions that leads from st to st+n , An is the set 
of all possible combinations of actions with length n, and 
S is the set of all possible states.

For deterministic environments, Eq.  4 can be simpli-
fied. First, we expand the logarithm of the fraction under 
sum:

Then, given that in a deterministic environment, any 
n-step sequence of actions ant  only determines a sin-
gle corresponding trajectory st � st+n , probability 
p(st+n|a

n
t ) is either 1 or 0, hence either p(st+n|a

n
t ) or 

log p(st+n|a
n
t ) is zero. Therefore, for this case, the second 

term is zeroed out:

As a result, finding the empowerment value for the state 
st only requires knowing a probability distribution over 

(4)

ǫ(st) = max
p(ant )

∑

An,S

p(st+n|a
n
t )p(a

n
t ) log p̂(st+n|a

n
t );

p̂(st+n|a
n
t ) =

p(st+n|a
n
t )

∑

An p(st+n|a
n
t )p(a

n
t )
,

(5)

ǫ(st) = max
p(ant )



−
�

An,S

p(st+n|a
n
t )p(a

n
t ) log p(st+n)

+
�

An,S

p(st+n|a
n
t )p(a

n
t ) log p(st+n|a

n
t )





= −
�

S

p(st+n) log p(st+n)

+max
p(ant )

�

An,S

p(st+n|a
n
t )p(a

n
t ) log p(st+n|a

n
t ).

(6)ǫ(st) = −
∑

S

p(st+n) log p(st+n).

Fig. 2 The scheme of the selection circuit. Blocks represent 
corresponding biological objects: GPi—the globus pallidus internal 
segment; GPe—the globus pallidus external segment; D1, D2—the 
dopamine receptors of striatal projection neurons; triangle arrows—
excitatory connections; circle arrows—inhibitory connections; double 
triangle arrow—dopamine connections
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states st+n ∈ S that are reachable from st in exactly n 
steps.

4  Hierarchical intrinsically motivated agent (HIMA)
The hierarchical intrinsically motivated agent (HIMA) is 
an algorithm that is intended to exhibit an adaptive goal-
directed behavior using neurophysiological models of the 
neocortex, basal ganglia, and thalamus. This section pro-
vides details of the HIMA operation principles. First, we 
delineate functions of main components from a bird’s eye 
view and then describe each part in-depth in the follow-
ing subsections.

We assume that the agent has sensors and actuators 
enabling it to gain experience through interaction with 
the environment. We also assume that sensors provide 
it with enough information to determine the state of the 
environment, the state of the agent itself, and rewarding 
behavior. The neocortex model is used to form hierar-
chical internal representations of raw sensory input and 
a model of the environment. The basal ganglia model 
provides an association of internal representations pro-
jected from the neocortex with rewarding signals and 
selects appropriate actions via thalamocortical loops. 
The Dreaming component models circuits of the brain 
responsible for the initiation of planning via the model 
of the environment in the neocortex, improving the 
learning speed. The Empowerment module is in charge 
of producing intrinsic motivation signal utilizing the 

environmental model learned by the neocortex to guide 
exploration to the most promising states first.

The agent’s architecture can be described in terms 
of blocks (Fig. 3). There are six interconnected blocks. 
Block 1, 2, 3, and 4 are organized into a hierarchy that 
enables automatic abstract actions formation through 
exteroceptive (retina) and proprioceptive (muscles) 
input (see Sect. 4.1). This structure performs the agent’s 
behavior generating actions representation [sent by 
muscles to the environment], guided by information 
from the reward signal.

The reward signal has two components. The first 
one is the [external] reward corresponding to the 
vital resources that an agent gets from the environ-
ment. The second one is the intrinsic reward gener-
ated by the Empowerment block, which mainly serves 
as a motivator for an exploration of the environment 
(see Sect. 4.3).

The last—Dreaming—block is an algorithm that 
learns a forward model of the environment by receiv-
ing the same inputs as the agent and serves as a vir-
tual playground for the fine-tuning of the agent’s skills 
(see  Sect.  4.5). The Dreaming module has an ability to 
short-circuit the agent–environment interaction loop to 
mimic operating in imagination. For the duration of the 
dreaming process, the agent is kept detached from the 
environment and interacts as usual but only with the 
Dreaming module instead of the environment.

Fig. 3 HIMA with hierarchy of two levels and Block 2 as an output block
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Each block in turn consists of sub-blocks. Our model 
has five sub-blocks. The Spatial Pooler (SP) sub-block 
is an algorithm that forms an internal representation of 
the input. Temporal Memory (TM) learns sequences of 
input patterns in an online fashion (see Sect.  3.2). The 
Basal Ganglia and Thalamus (BGT) sub-block is used for 
best action selection and reward aggregation (see Sects. 
3.3 and 4.2). Pattern Memory (PM) is an algorithm that 
stores patterns generated by a Spatial Pooler, which are 
required by other sub-blocks (see  Sect.  4.4). Finally, the 
Empowerment (E) sub-block represents the main com-
putations for the intrinsic reward evaluation of a current 
state.

4.1  Abstract actions
In this subsection, we describe how abstract actions, or 
options, arise from the flow of sensory input (to match 
our approach with Options Framework see Sect.  8.1). 
We divide the sensory input of the agent into two flows: 
exteroceptive, or visual (coming from retina), and pro-
prioceptive, or motor (coming from muscles) (Fig.  3). 
Hence, there are two sub-hierarchies: the visual hierarchy 
is on the left (Block 1 and Block 3) and the motor is on the 
right (Block 2 and Block 4).

Consider the visual hierarchy first. An agent’s obser-
vation is represented by a binary pattern of retina 
cells’ activity. This pattern gets into Block 1, where it is 
encoded by SP to form a low-level elementary state pt . 
Then, the corresponding SDR comes to TM, which learns 
sequences of elementary states. As discussed earlier in 
Sect.  3.2, TM considers patterns within the context of 
the currently observed sequence of patterns—i.e., Block 1 
TM considers states within the context of the agent’s cur-
rent state trajectory.

Two signals—anomaly A and confidence C—indicate 
the TM state and gate information flow from Block 1 up 
to Block 3. An anomaly expresses the degree of surprise 
for an input pattern pt at this timestep. Confidence, on 
the other hand, corresponds to how strong the TM pre-
diction for the next pattern is, given the current pattern. 
If both—the anomaly and confidence—are simultane-
ously high enough for pt , it means that we could not 
expect pt , given the previous context, but know in 
advance what could follow it next, given the current con-
text. The former tells us that the previously observed 
familiar sequence has ended, while the latter indicates 
that another familiar sequence has started. In other 
words, we observe the switch between learned state 
sub-trajectories. In this case, pt is selected to represent 
the started pattern sequence on the next level and pt is 
passed to the SP of the Block 3. As a result, the learned 
sequence of elementary states forms a higher-level, or 

abstract, state, which is represented by its starting pat-
tern pt.

The second-level TM learns sequences of abstract 
states. The output of Block 3 is sent back to Block 1. It 
enables us to mark subsequent elementary states as ele-
ments of an abstract state (sequence). When the first-
level TM cannot predict the next low-level state, i.e., 
when C = 0 , denoting the end of the learned state sub-
trajectory, then the second-level TM may still predict 
what the high-level state goes next. Therefore, it can 
provide the first level with the sequence representative, 
which is its starting state pattern, via feedback connec-
tions. If it has successfully resolved the struggling low-
level prediction, then two consequent abstract states can 
be joined into a single abstract state.

The motor hierarchy performs in the same manner, 
although it has a special ability to generate behavior. 
Block 2 TM learns sequences of low-level muscle activity, 
or elementary actions, and the second-level TM learns 
sequences of high-level actions, or abstract actions. 
Abstract actions are formed and represented in the same 
way as abstract states. Additionally, the TM output is 
clustered with the PM sub-block on both levels of the 
motor hierarchy (see Fig. 3).

An agent’s behavior is generated by the BGT sub-blocks 
hierarchy. Each BGT sub-block selects one action pattern 
among the input clusters provided by PM and sends it 
down the hierarchy via the feedback connections. That 
is, the first-level BGT selects an elementary action pat-
tern and sends it directly to the Muscles module, which 
performs a corresponding action in the environment, 
while the Block 4 BGT selects among abstract actions. 
The Block 2 TM predicts the next elementary actions 
using the current active action pattern and the feed-
back sent by Block 4 BGT. The predicted action has an 
increased probability to be selected with Block 2 BGT. In 
other words, the selected abstract action causes the first-
level BGT policy to follow the corresponding sequence of 
elementary actions with an increased probability. How-
ever, the first-level BGT still has a chance to interrupt the 
selected abstract action in favor of the elementary action 
with a higher immediate reward. BGT sub-blocks learn 
to choose better actions (elementary or abstract) through 
the reward signal (see Sect. 4.2).

Both hierarchies—visual and motor—have reciprocal 
lateral connections that help disambiguate the visual and 
motor input. It makes the system to be noise-tolerant. 
Lateral connections also correspond to the visual hier-
archy projections to the BGT sub-block. The BGT uses 
elementary and abstract states to predict the outcomes of 
actions, which helps it select the most profitable option 
given the context.
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4.2  Basal ganglia–thalamus (BGT) system
In our model of the basal ganglia–thalamus (BGT) sys-
tem described in Sect. 3.3, the input signal for the basal 
ganglia comes from the cortex as a stimulus to the stri-
atum neurons D1 and D2. In HIMA, this cortical input 
is represented by the signal from the lateral connection 
of the corresponding block with the visual hierarchy 
block of the same level (Fig.  3). It is SDR st of size kin 
with fixed sparsity rate.

The striatum is the central receiver of signals in the 
basal ganglia and the central evaluator of them. It builds 
value function for pairs: stimulus, response (Q function 
in RL terminology). This response is a representation of 
an option for corresponding stimulus. The striatum is 
the place where the reinforcement learning takes place 
via dopamine modulation (more details in Sect. 8.2).

In HIMA, there are two causes of the dopamine 
sources innervation: extrinsic reward rt and intrin-
sic motivation signal ǫ(st) . We suppose that for each 
incoming dopamine signal ρ a separate zone of the stri-
atum is working forming two parallel pathways. Pro-
cessing for both pathways is computationally identical.

The resulting striatum’s output—two vectors 
d1, d2 ∈ R

kout corresponding to two dopamine recep-
tors—is weighted sum of pathway outputs. Weights are 
pathway priorities pr, such that print + prext = 1:

Here, η ∈ [0, 1] is a factor that regulates a scale of an 
intrinsic signal. We use a simple idea to evaluate pri-
orities: if the agent receives the average extrinsic reward 
higher than the average minimum extrinsic reward, then 
it finds the resource well and does not need exploration 
(high prext ). The detailed description of priority forma-
tion see in  Sect.  8.2. Intrinsic signal priority print has a 
crucial role in altering agent’s behavior (we thoroughly 
discuss it in Sect. 5.4.2).

The striatum outputs characterize value for stimulus–
response pairs and are the GPi inputs (see  Sect.  3.3). 
We form basal ganglia output gpi ∈ SDR(kout) in the 
GPi in several sequential steps. First, we aggregate GPi 
inputs:

where gpireal ∈ R
kout ; then this vector is normalized:

Finally, we binarize it with the sampling from the Ber-
noulli distribution using gpireal to define the distribution 
parameter for every dimension:

(7)dα = ηdintα print + dextα prext, where α ∈ {1, 2}.

(8)gpireal ← −gpe− d1 = d2 − d1,

(9)gpireal ←
gpireal −min gpireal

max gpireal −min gpireal
.

The resulting vector forms an output from the basal 
ganglia.

Now consider the modulation process. The input sig-
nal for the thalamus is the set of responses and their 
weights 

{

(resi ∈ SDR(kout),wi ∈ R)
}

 from the cortex; 
these responses are ones that the cortex “thinks” could be 
the answers for input stimulus st. Weights define the sig-
nificance of the responses. In HIMA, this cortical input 
to the thalamic part of the BGT sub-block is provided by 
the corresponding block’s PM sub-block.

The modulation process aggregate an input to the 
thalamus resi and the output from the basal ganglia gpi. 
First, we calculate an intersection between the com-
plement of gpi—gpi—and resi . Then, we evaluate each 
response: vi = wi|gpi ∩ resi| . After that, these values are 
normalized with softmax: p(resi) = eβvi/

∑

i e
βvi ( β is the 

inverse temperature). We treat them as probabilities that 
define parameters of the categorical distribution. Finally, 
the response is sampled according to this distribution. It 
forms the output of the thalamus and of the whole BGT 
sub-block.

4.3  Intrinsic motivation with empowerment
We use empowerment as an intrinsic motivation signal, 
which was discussed in Sect. 3.4, reasons of such choice 
will be discussed in  Sect.  5.4.2. To calculate empower-
ment and generate corresponding intrinsic reward, there 
is a dedicated block in HIMA called the Empowerment 
block (see Fig.  3). It learns and maintains the model of 
the environment, which helps to calculate the probabil-
ity distribution over states in S that are reachable after n 
steps starting from the given state st . The model is repre-
sented by the TM sub-block.

The workflow of the module consists of learning and 
evaluating processes. During its operation in the environ-
ment, the agent receives sensory input that is preproc-
essed by the SP sub-block. The resulting SDRs form the 
sequence of states st , st+1, . . . . The TM for learning uses 
pairs st → st+1 constructed from the general sequence of 
the agent’s states. So, after this process, the module stores 
information about all transitions from state to state, 
which the agent has received.

To evaluate the empowerment value, we use several 
concepts: superposition, clusterization, and distributed 
evaluation.

One of the distinguishing features of the Tempo-
ral Memory algorithm is its superposition of predicted 
states. This means that a TM prediction is a union of 
all possible variants of the next state. On the one hand, 
a superposition is a useful thing because after n predic-
tion steps, we immediately have the superposition of all 

(10)gpi ← Bernoulli(gpireal).
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possible st+n . But on the other hand, such superposition 
makes it difficult to evaluate the number of occurrences 
of a specific state in it and to distinguish different states 
from each other. The structure of TM allows solving the 
former, while a PM sub-block is used for the latter.

As discussed in Sect.  3.2, TM consists of an array of 
columns. Each column has a fixed number of cells, each 
of which has their basal distal segments connecting with 
other cells. When TM makes a prediction, it depolar-
izes segments that have enough active presynaptic con-
nections with current active cells. Let σ0 ∈ SDR(kin) be 
an initial SDR for state st (hereinafter in this subsection, 
SDRs will be considered in sparse form, i.e., as a set of 
active bits indices) and ν0 ∈ R

kin is a vector for visit statis-
tics (see Fig. 4).

In the beginning, only a single, starting, pattern is 
active, and we write it in visit statistics: 
ν
j
0 = 1, where j ∈ σ0 . Then, TM makes a prediction based 

on σ0 ; active segments �0 represent predicted cells and 
columns. The prediction is σ j

1 = I(G0
j /∈ ∅) , where I(.) is 

an indicator function and G0
j ⊂ �0 is a subset of active 

segments for a column j. For each active segment ψ ∈ �0 , 
we calculate an average �(.) (mean, median, or mode). It 
is applied to the visit statistics of presynaptic columns 
�(ψ) for this segment ψ to obtain an estimated number 
of visits of the pattern encoding by this segment: 
�0(ψ) = �({ν

j
0|j ∈ �(ψ)}) : � → R

+ . Then, we can 
update visit statistics as follows: νj1 =

∑

ψ∈G0
j
�0(ψ) . So, 

for other steps, all actions are the same. Finally, we have 
vectors νn storing distributed visit statistics and σn , a 
superposition of visited states.

The next step is to split all patterns from the super-
position and compute visit statistics for each cluster. 
The details about clusterization will be discussed fur-
ther in Sect.  4.4. Here clusters will be used as stored 

representations f ∈ F  of all possible states that the agent 
saw. As all representations f is an SDR, we can describe 
the process of clusters masking in Fig. 4.

The first step is to keep only clusters from a super-
position: F = {f : |σn ∩ f | > �|f ∈ F} , where � is 
some similarity threshold. The second step is to cal-
culate visit statistics the same way it was done before: 
ν̂
q
n = �({ν

j
n|j ∈ f }) , where q is the index of cluster f.

After the normalization of ν̂n , it can be considered as 
probability distribution p = ν̂n/�ν̂n�1 over states after n 
steps. Using this distribution and Eq. 6, empowerment ǫst 
is calculated. It forms an intrinsic reward that is used in 
the striatum Sect. 4.2.

4.4  Pattern memory
As has been discussed earlier, we need to store states’ 
representations being seen by the agent. To take into 
account temporal variability of the SP encoding, repre-
sentations are combined into clusters. Because of some 
features of the input visual signal (Sect. 5), we normally 
can have different states with similar representations, 
but for the Pattern Memory (PM) module, distinguishing 
them does not pose a problem. Problems may appear for 
empowerment evaluation (more details in Sect. 5.2).

First, the PM module stores set F of clusters’ represen-
tations f ∈ F ⊂ SDR . Then, it updates the characteristic 
of a cluster called density χf ∈ R

kin , ( kin is the dimension 
of clusters and state representations). A component of 
the density can be considered as a probability of the cor-
responding SDR cell belonging to f.

The update workflow consists of several steps. Current 
state representation st is compared with each of the clus-
ters (Fig. 5). Here the similarity measure is a scalar prod-
uct defined as follows:

Fig. 4 The scheme of visit statistics evaluation. After n prediction TM steps the vector of column visits νn is received. This vector is masked by 
clusters representations that gives ν̂n . This vector represents the number of visits for each cluster after n steps from st
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If among all clusters, there is a cluster with the highest 
similarity higher than similarity threshold (st , fmax) > � , 
this cluster is updated. Its density is recalculated increas-
ing components corresponding to SDR cells of st 
(Fig. 5A). If the maximal similarity is less than the thresh-
old, a new cluster is created (Fig. 5B).

4.5  Learning in imagination
In HIMA, an agent’s experience is continuously aggre-
gated to build an inner model of the environment. Having 
it brings the ability to plan ahead and imagine different 
outcomes—the process that we call dreaming.

Technically, dreaming is a process where an agent’s 
usual interaction with the environment is short-circuited 
to the interaction with the inner model of the environ-
ment located in the dreaming block. This can greatly sup-
port the learning process via learning to solve smaller 
subtasks in imagination. In practice, dreaming can 
remedy one of the weakest points of classical RL—sam-
ple inefficiency—with a smart, targeted learning rate 
increase.

An inner model consists of two parts: a transition 
model and a reward model. A transition model is rep-
resented by a temporal memory sub-block that learns 
state–action transitions (st , at) → st+1 . Thus, for a “vis-
ited” state–action pair (st , at) , it can predict the next 
state st+1 . A reward model is a learned function over 
encoded state space. We learn it distributedly, i.e., inde-
pendently for each state space dimension. A reward 
estimate for reaching state s is an average (median) of 

(11)similarity(st , f ) = (st , f ) =
∑

j∈st

(χf )j .
reward values corresponding to its pattern active ele-
ments: r(s) = median R(s).

Given the potentially overlapping and non-stationary 
distributed nature of the state–action encodings (due to 
SP learning in online fashion), we also have to ensure 
good quality forward predictions. To secure it, we 
keep track of the learned transition model quality with 
an additionally learned anomaly model. The anomaly 
model allows us to evaluate a state prediction miss 
rate—a prediction anomaly. Like a reward model, an 
anomaly model is a distributed function, which means 
it learns a prediction anomaly independently for all 
dimensions.

We define a state prediction anomaly as an aver-
aged (median) miss rate of its pattern active elements: 
an(s) = median An(s) . Because for a deterministic tran-
sition (st , at) → st+1 , any two parts of this triplet are 
enough to unambiguously define it, we track the anom-
aly for tuples An(at , st+1) . This way, we can estimate the 
anomaly for a transition, and we are also able to get the 
averaged anomaly for state st+1 , to which an agent has 
arrived at the current timestep. A state anomaly helps to 
decide whether an agent should switch to the dreaming 
state. To do this, we set a hard anomaly threshold that 
blocks entering dreaming if the anomaly is too high. Oth-
erwise, we use the anomaly as the probability to switch: 
p = (1− an(s))α · pmax , where pmax is the maximum 
probability to enter dreaming at zero anomaly and α is a 
hyperparam to make dependency non-linear. A transi-
tion anomaly estimate, on the other hand, is used at each 
imaginary step during dreaming. It determines whether 
an agent should stop an early current rollout if it is not 
certain enough of the next state prediction, i.e., the tran-
sition anomaly estimate is over the threshold.

a b
Fig. 5 The scheme of the Pattern Memory update process. SP, Spatial Pooler, encodes raw input data to suitable state representation st (with 
dimension kin ). Clusters are the set of c cluster representation SDRs f with their density χf  . The main idea is based on comparison of st and f to 
associate st for suitable cluster
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The dreaming block learns during the periods of the 
agent’s awake activity. At each timestep t, it updates its 
pattern memory and transition and reward models, 
accepting new information from the environment—cur-
rent reward rt and state st . The anomaly model is updated 
too, with the transition prediction anomaly A(at−1, st) 
that it gets from the transition model.

At each timestep, an agent decides whether it will 
switch to the dreaming state. If so, the dreaming block 
takes control of the agent by short-circuiting the interac-
tion with it—from now on, the agent acts only in imagi-
nation, but not in the environment.

The dreaming process is split into a sequence of inde-
pendent imaginary trajectories, which we call rollouts 
[to align with the terminology in the existing RL litera-
ture]. Every rollout starts from current real state st . Thus, 
the agent is provided with the current observation and 
reward st , rt and takes action at . Given a pair st , at , the 
transition model can make prediction simt+1 on which state 
pattern comes next. A reward is calculated directly from 
the predicted next state: rimt+1 = R(simt+1) . These two pieces 
form the necessary information to support the next 
dreamer–agent interaction step t + 1 . The rollout ends 
when the transition model cannot predict the next state, 
i.e., the predicted pattern is empty, or when the maxi-
mum number of steps is accomplished.

During the dreaming state, the predicted next pattern 
may be incomplete, or, due to online learning of corre-
sponding spatial poolers, it may even relate to the state in 
already stale encoding. Basically, we can still just proceed 
with this prediction as is by taking this pattern as the 
next state: simt+1 := s

p
t+1—if the predicted next state con-

tains garbage, there is a much higher chance the transi-
tion memory will predict nothing the step after. However, 
to help keep the sequence of states in imaginary rollout 
{simj } saner, we use the learned pattern memory for pat-
tern completion. If the predicted pattern is recognized, 
we correct it with the corresponding cluster pattern. We 
also check the imaginary transition anomaly, and if it is 
too high, the rollout is stopped early.

5  Experiments and results
A broad range of maze tasks were used in animal-based 
neurobehavioral research [63] to study spatial work-
ing and reference memory [45, 62], search strategies 
[10, 47], and spatial pattern learning [11]. Similar maze 
tasks, conducted in simulation, have been proposed 
and adopted to study corresponding behavioral proper-
ties of RL methods [7, 14, 16]. Grid world environments 
are two-dimensional discrete versions of such mazes. 
Among their advantages are lower difficulty start-
ing point and slower scaling. They are also much less 
demanding to the computational resources and do not 

require highly developed agent’s perception and motor 
systems. Nevertheless, grid worlds can provide rich and 
challenging tasks [15, 51, 60].

In our experiments, we studied the following aspects 
of the proposed model: spatial–temporal pattern repre-
sentation learning, discovery and usage of state–action 
abstractions, intrinsically motivated exploratory strategy 
and learning in imagination through planning. Despite 
their simplicity, constructed grid world tasks are able to 
highlight all aforementioned aspects. For example, each 
task has different states that are visually similar, thus, in 
order to succeed, it is necessary to learn a helpful repre-
sentation of states to distinguish and cluster them. Also, 
part of the experiments were conducted in a four-room 
environment, which is divided into several zones inter-
connected with narrow passages. This makes it hard for 
the agent to switch zones and can be partly mitigated by 
the use of state–action abstractions or smart exploratory 
strategy. Finally, the overall difficulty level of four rooms 
task was calibrated in a way that there was enough room 
for improvement to justify dreaming capability to speed 
up the course of agent’s learning. Given that, we treat our 
decision to test our model in grid world environments 
as balanced choice between simplicity and experimental 
depth.

Consider a grid world environment. Each its state can 
be defined by an agent’s position; thus, state space S con-
tains all possible agent positions. The environment’s tran-
sition function is deterministic. The action space is made 
up of four actions A that move the agent to each adja-
cent grid cell: up, down, left, and right. However, when 
the agent attempts to move into a maze wall, the posi-
tion of the agent remains unchanged. It is assumed that 
the maze is surrounded by obstacles, making it impos-
sible for an agent to move outside. At each timestep, 
an agent receives an observation—a binary image of a 
small square window encircling it. The image consists 
of several channels. Each channel is a binary mask rep-
resenting the object positions of the corresponding 
type in the observation window. There are several chan-
nels for floors of different types, one channel for obsta-
cles, and a channel for the vital resource (Fig.  6). The 
resource position corresponds to a goal state sg ∈ S . 
An agent is positively reinforced with the reward r = 1 
when it reaches the goal state. On the other hand, at each 
timestep, an agent receives a small negative reward signal 
r(s, a):= − cost(a), a ∈ A , where cost(a) is a real-valued 
function that represents an energy cost for every action. 
We divide the interaction between agent and environ-
ment into episodes. At the start of the episode, the 
agent’s position is initialized from the set of initial states 
Sini ⊂ S , and the episode finishes when an agent gets to 
the goal state or the time limit is reached.
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A single test trial lasts for several episodes. As a met-
ric of an agent’s performance during an episode, we use 
a number of steps required for an agent to reach the goal. 
An agent is allowed to accumulate experience for the 
entire duration of a test trial. However, depending on the 
experimental setup we may also divide a single test trial 
into a sequence of tasks lasting for several episodes with 
each task representing an individual set of initial states 
Sini and a goal state sg . For every agent and environment 
setting, we perform several independent trials with dif-
ferent seed values.

In the following subsections, we describe and discuss 
the experiments intended to investigate the advantages 
and caveats of different HIMA modules on their own 
through performance in relatively simple cases and then 
in multitasking environments of increasing difficulty. 
The final experiment is carried out with the full-featured 
HIMA.

5.1  Abstract vs. elementary actions
The tests represented in this section were designed to 
compare the performance of an agent using elementary 
actions only and an agent also using abstract actions in 
different environment settings. The agent that forms 
abstract actions corresponds to the HIMA model, but 
without the Dreaming and Empowerment blocks. The 
elementary actions agent is the same model but without 
the second level of the Hierarchy.

5.1.1  Four corridors experiment
Tests were conducted on a radial arm maze represent-
ing four corridors connected at the center (Fig. 8a). Every 
episode, an agent starts at the far side of a randomly cho-
sen arm. Initially, a resource is positioned at the center of 
corridor crossing. Then, after 1000 episodes, the resource 
is moved to the middle of one of the arms chosen ran-
domly and remains here until the end of the trial, for the 
next 1000 episodes.

Fig. 6 An example of observation and its binary representation. 
Observation has several channels. Each channel is represented by a 
binary mask for positions of corresponding objects

Fig. 7 Comparison of agents with abstract and elementary actions on crossing corridors maze

a b
Fig. 8 Examples of environments. Yellow—set of initial agent 
positions. Green—the initial goal position. Dark blue—obstacles. 
Shades of light blue—floor colors
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As shown in Fig.  7, an agent with abstract actions is 
much faster to overcome the goal position changing. And 
as a result, the agent with abstract actions requires fewer 
steps in total to finish the trial. We also have tried differ-
ent inverse softmax temperatures β for an agent with ele-
mentary actions. As we see from the figure, by increasing 
the temperature, we can improve the elementary actions 
agent performance but at the expense of optimality at 
the first half of the trial. The experiment has shown that 
the agent with abstract actions can explore an environ-
ment more directionally than an agent with elementary 
actions, as the hierarchical structure of the agent allows 
it to learn four abstract actions for passing each of the 
corridors. So, when the position of the goal is changed, 
HIMA has a good chance to get out of the local maxi-
mum learned by the first level of the hierarchy.

5.1.2  Four rooms experiment
The previous experiment was designed to show the type 
of cases where our current abstract action model is most 
effective. However, we also wanted to investigate more 
common cases in that domain and find out the limita-
tions of our method for the abstract actions formation. 
So, we have tested our agent in a classical four-room 
maze, which, because of its bottleneck structure, is often 
used to test abstract actions.

Trials were carried out on a map having the form of 
four connected rooms with a resource placed in the left 
doorway. We consider two variations of the test. In the 
first one, agent each episode starts randomly in one of 
the cells from the set marked in Fig. 8b. After 2000 epi-
sodes, the resource position is moved to a corner chosen 
randomly in the left-down room. Another test was per-
formed on the same map, but every episode, the agent 

starts in any unoccupied randomly chosen cell. The goal 
state is relocated in the same way after 2000 episodes.

In the first variation of the experiment, the agent’s ini-
tial positions were chosen so that HIMA can easily form 
abstract actions: pass through the door down and right. 
As can be seen from Fig. 9, the agent with abstract actions 
performs better after the goal position changing than the 
agent of elementary actions with the same softmax tem-
perature. Although we can adjust softmax temperature 
to get similar performance during the reward change, it 
is still worse than a strategy with abstract actions in the 
long run. However, HIMA learns the suboptimal trajec-
tory to the goal as can be seen from the first half of the 
learning curve.

In the second experiment, there is much more varia-
tion between possible trajectories. For now, our HIMA 
model is not capable to generalize abstract actions by a 
goal, but it learns the most repetitive action sequences. 
As long as an agent can start in any position, it is not pos-
sible to distinguish the most repetitive action sequences 
here. So, in such cases, our method does not guaran-
tee to form useful abstract actions. Therefore, as can be 
seen from Fig. 10, the problem with suboptimality of the 
abstract actions becomes more vivid. And as long as an 
agent starts from different positions, directional explo-
ration, which usually helps to pass through bottleneck 
states, is not so crucial.

The experiments have shown that HIMA is capable of 
learning useful abstract actions that improve an agent’s 
exploration abilities in scenarios with non-stationary 
goal positions in environments with a low connectivity 
graph of state transitions. Experiments have also demon-
strated that better performance can be reached on tasks 
where any path to the goal on the transition graph can 

Fig. 9 Comparison of agents with abstract and elementary actions on the four-room maze with a restricted set of the initial agent’s positions
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be decomposed into non-trivial sequences of elemen-
tary actions, as for crossed corridors and four rooms 
with restricted spawn set experiments. Otherwise, there 
is no guarantee that the strategy with abstract actions 
will be advantageous even considering the best learning 
conditions.

5.2  Four rooms and empowerment
In this subsection, we evaluate the model of empower-
ment (Sect. 4.3) on four rooms task. The main goal is to 
compare empowerment values predicted by our model 
with the ideal theoretical prediction. In this case the most 
significant thing is the quality of the transition function, 
which helps us predict next possible states from the cur-
rent one. Let us say the ideal empowerment is a value 
calculated from Eq.  6 having full information about an 
environment—the final distribution of the reachable 
states S. This case corresponds to having the perfect tran-
sition function. On the other hand, the TM empower-
ment is a value calculated as was described in Sect.  4.3 
with the learned Temporal Memory.

To begin with, we analyze the ideal empowerment 
regarding its depth: the prediction of how many steps 
it uses. For the four rooms task, this analysis is shown 
in Fig. 11. This is a field of values for 1–4 step empow-
erment. If the depth is small, then almost all states are 
equivalent. Such signal is not very useful, as it does not 
highlight any special places that we want to find. With 
increasing the depth, the situation is changing, and for 
four-step empowerment, the special places are clearly 
visible. We call this set of points ǫ-ring. Some intuition 
for the set is that it denotes cells from which the agent 
can reach the most number of states. If the depth is 
increased, this set will become clearer, but it is very dif-
ficult to make such long predictions (the number of pos-
sible path variants increases exponentially). So we opt for 
the four-step case.

As discussed in Sects. 4.4 and 4.3, the clusters should 
evaluate empowerment with TM. For the purpose of 
comparison between the ideal and TM empowerment, 
we learn TM by a random agent walking 10,000 steps in 
the environment (after this number of steps, TM does 

Fig. 10 Comparison of agents with abstract and elementary actions on the four-room maze without restrictions on the agent’s initial state set

Fig. 11 Ideal empowerment fields. All values are in the same limits and can be compared with each other. Darker color—lower value, lighter—
higher value. The walls are not shown
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not improve its predictions). During this process, clusters 
also are created. An example of the learned set of clusters 
is presented in the left part of Fig.  12. In the similarity 
matrix (on the right in Fig. 12), we can see that almost all 
clusters are different, but for some of them, the similarity 
can near 0.5. The latter is bad for empowerment because 
similar clusters can interfere, and visit statistics ν will be 
mixed (4.3). To partially solve it, we use median or mode 
as a statistic function � . In addition, similar clusters may 
lead to the false positive TM predictions—TM can start 
predicting states that actually cannot be the next ones 
(the so-called phantoms). Generally, this problem can be 
solved just by increasing the size of an SDR and decreas-
ing its sparsity, but this requires more resources.

The final step of the empowerment analysis is the com-
parison of the ideal and TM empowerment values. We 
found that our proposed algorithm for the empowerment 
estimate cannot handle the case when from a single state 
different actions lead to itself, which is typical for corner 
positions. For example, in the top left corner, moving top 
and moving left both lead to staying in the corner. For 

this case TM correctly predicts the next state—the cor-
ner position itself—but it does not account the number 
of different transitions (s, a) → s′ , when s = s′ . One of the 
possible ways to solve this is to use additional informa-
tion about actions for TM predictions (like in the dream-
ing block), but this is a subject for the future research. 
So for more accurate consideration, we additionally cal-
culate ideal empowerment with this kind of restriction. 
We also compute empowerment with TM for mode and 
median statistics. The results are presented in Fig. 13.

We can see that the ideal variant is the least by values 
compared with others. The TM mode case is the closest 
to ideal ones, but it overestimates at the gates. The TM 
median is more overestimated. In our task, overestima-
tion means that prediction is blurred by intersections 
between states and phantoms (in this case, statistic ν is 
shared between states). In both TM cases, ǫ-ring can be 
distinguished. The main conclusion is that the TM mode 
can be used as an ideal empowerment approximator. 
However, we should consider the problem with corners. 
Heterogeneity of the estimated empowerment value, in 

Fig. 12 Clusters in four rooms. On the left part is the mapping between the number of cluster and corresponding state in the environment. On the 
right one is the similarity matrix. The rows and column are the indexes of clusters. The similarity value is shown by color

Fig. 13 Ideal and estimated empowerment fields in the same value range. Ideal case: uses true transition model. Restriction ideal: the same, but 
transitions by different actions to the same state are considered as one way. TM mode: TM with mode statistics for visit estimation. TM median: the 
same with median statistics. Walls are not shown
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our opinion, is the result of both poor semantics in an 
observation signal and a very basic visual processing sys-
tem (our model lacks proper visual cortex model, which 
is also a subject for the future research).

5.3  Dreaming analysis
In this subsection, we discuss experiments with the 
dreaming. First, we walk through a set of experiments 
that provided us with the reasoning, which resulted in 
the final version of the dreaming algorithm described in 
Sect. 4.5. Finally, we show the effects on the HIMA base-
line performance from adding the dreaming block.

During the research and development process of the 
dreaming algorithm, we were mostly puzzled with two 
questions. Is the quality of the learned model enough to 
produce diverse and helpful (correct) planning rollouts? 
What should the decision-making strategy for starting 
[or preventing] the dreaming process be?

Above all, we studied pure effects of the dream-
ing disconnected with HIMA. For that, we took a very 
basic architecture of an agent instead of HIMA. It had 
a sequence of SP sub-blocks, which provided a joint 
state–action encoding. For this encoding, the agent used 
a classic RL TD-learning method [59] to learn a distrib-
uted Q-value function, which in turn induced a softmax 
policy. For such an agent’s architecture, we implemented 
the dreaming block the same way it is implemented for 
HIMA. We tested dreaming in four rooms setting where 
both the initial agent position and resource position were 
chosen randomly and stayed fixed for the whole duration 
of the trial. To exclude easy combinations, the trials were 

selected such that the agent starting position was not in 
the same room with the resource.

Our initial version of the dreaming switching strategy 
was to make the probability proportional to the absolute 
TD error, because a high TD error indicates states where 
dreaming can contribute the most to the learning pro-
cess. However, if it is too high, it may also indicate that 
this state neighborhood has not been properly explored 
yet; hence, dreaming should not be started as we cannot 
rely on the inner model. So, we had to find a balanced TD 
error range, when the dreaming is allowed be activated. 
Experiments with such strategy showed its ineffective-
ness (see Fig.  14 on the left). It has turned out that we 
cannot rely on the TD error alone to guarantee the local 
good quality of the learned model.

To get a clue of a better dreaming switching strategy, 
we decided to investigate situations when the dreaming 
makes a positive impact on an agent’s performance. Soon 
enough, a new problem arose—each dreaming rollout can 
potentially affect further behavior and performance of an 
agent, so rollouts must be evaluated independently. On 
the other hand, most of the time, a single rollout effect is 
negligible or very stochastic. Moreover, independent roll-
out evaluation does not add to the understanding of their 
cumulative effect. All of this makes such analysis highly 
inaccurate and speculative.

In the corresponding experiment, for each trial, we 
subsequently and independently compared performance 
of an agent without dreaming with the same agent that 
dream only once during the learning. So, for each trial, 
we independently evaluated the outcome of the dreaming 

Fig. 14 Comparison of different dreaming switching strategies in four rooms with fixed positions experiments. Left: TD error-based switching 
strategy (green) does not add to performance of the baseline with no dreaming (red). Right: anomaly-based dreaming (red) shows a significant 
improvement over the baseline with no dreaming (green). It performs similarly to the baseline with the 50% increased learning rate (light blue) and 
converges twice faster than the baseline with the 25% reduced learning rate (blue, results are x2 shrunk along the X-axis)
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for each trajectory’s position of the non-dreaming 
agent—it showed us all moments where a single dream-
ing rollout makes a positive or negative impact. The only 
conclusion we could reach from this experiment was that 
dreaming more steadily improves performance when it 
is activated near the starting point. These locations also 
share lower than average transition model anomaly val-
ues. This led us to the final version with anomaly-based 
dreaming switching.

Tests for anomaly-based dreaming switching were con-
ducted with the same protocol as for TD error-based 
switching, but on harder tasks. They showed a significant 
improvement of an agent’s performance. We compared 
the baseline agent without dreaming and an agent with 
the anomaly-based dreaming switching strategy (zero-
anomaly probability to switch was pmax = 0.12 ). The 
results are presented in Fig.  14 on the right. Dreaming 
showed faster convergence to the optimal policy. Based 
on that, we hypothesized that the effect of dreaming is 
comparable to the increased learning rate. So, we evalu-
ated the baseline additionally with two different learning 
rates and included the results in Fig. 14 on the right. The 
baseline with the 50% increased learning rate (light blue) 
almost matched the dreaming agent’s performance, while 
the baseline with the 25% decreased learning rate (blue) 
was two times slower—it has the number of episodes 
scaled down two times on the plot for better comparison. 
Besides the increased speed, we also noted the increased 
learning stability caused by anomaly-based dreaming.

5.4  Exhaustible resource experiment
Here we investigate how our agent behaves in case 
resources are exhaustible and their extraction complex-
ity increases. One test trial consists of 30 tasks with three 
levels of difficulty. There are 10 tasks per level. The maze 
and an agent’s initial state set is the same as for the four 

rooms experiment (see Fig. 8b). Tasks of different levels 
differ by relative positions of the agent and the resource. 
On the first level, the resource is spawned in one of the 
two hallways in a room of the agent’s spawn (see Fig. 15). 
For the second level, the set of the initial resource posi-
tions is restricted by two adjacent to the agent’s room. On 
the final level, the resource can be spawned in any posi-
tion except the room of the agent’s initial position. A task 
corresponds to one goal and the agent’s initial positions. 
The task is changed when the agent visits sg more than 
100 times, i.e., when the resource is exhausted. The diffi-
culty level of the tasks increases every ten tasks. The trial 
continues until the agent passes the third level.

In the following subsections, we show the maximum 
contribution of different features of HIMA to its overall 
performance on its own. Finally, we carry out the experi-
ment with all the features on and compare our full-fea-
tured agent with the baseline. For the baseline, we use the 
basic version of HIMA with one-level hierarchy and both 
empowerment and dreaming disabled. The baseline agent 
uses only one BGT block with one striatum region aggre-
gating the extrinsic reward.

5.4.1  Abstract actions
Here we investigate the effect of enabling the second level 
of the hierarchy to the baseline HIMA. As can be seen 
from Fig.  16, the agent with two levels of the hierarchy 
performs better on average during the tasks. We also 
have selected a sequence of tasks that consists of conflict 
situations only and have called it the hard set. In a con-
flict situation, a strategy learned for a previous task will 
interfere with the successful accomplishment of the cur-
rent task. There are eight tasks of the first level and four 
tasks of the second and the third levels. From Fig. 17, we 
can see that the agent with abstract actions performs sig-
nificantly better than the agent with elementary actions. 

Fig. 15 Examples of tasks for different levels. Yellow—the initial agent’s position. Green—initial goal position. Dark blue—obstacles. Shades of light 
blue—floor colors
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It can also be also noted from Fig.  17a that the differ-
ence between the agents arises at tasks of levels two and 
three, where transitions between the rooms play a crucial 
role and abstract actions have been learned by the agent 
already.

There are four examples of abstract actions used during 
the experiment in Fig. 18, where I : S �→ [0, 1] is a prob-
ability to initialize an option in a corresponding state and 
β : S �→ [0, 1] is the terminate probability. A big heat map 

for every option visualizes the number of times the tran-
sition to a state was predicted during the execution of the 
corresponding option. Two small heat maps correspond 
to I and β functions.

5.4.2  Empowerment and other signals
Here we investigate the effect of enabling variants of the 
intrinsic signal to the baseline HIMA model. We com-
pare the following signals: anomaly, empowerment, 

Fig. 16 Comparison of agents with abstract and elementary actions in the exhaustible resource experiment

Fig. 17 Comparison of agents with abstract and elementary actions in the exhaustible resource experiment on tasks from the hard set
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constant and random. Anomaly is—a TM characteris-
tic—a percent of active SDR cells that were not predicted 
( anomaly = 1− precision ) for some state st . Constant is 
some constant value for all states. Random is some value 
from uniform distribution (from 0 to 1). Constant and 
random signals are independent of the agent’s state.

HIMA has its built-in intrinsic motivation. It is caused 
by an optimistic initialization (see Sect.  8.2). The initial 
value function is zero, but at every step, the agent gets a 
small negative reward that is some kind of counter (simi-
lar to exploration bonuses), so already visited states will 
be chosen with less probability (as they will have less 
value). This feature is always working and helps the agent 
to start with simple exploration.

To understand the influence of only additional stria-
tum pathway (see Sect. 4.2) we use constant intrinsic sig-
nal with zero value (zero-const in Fig. 19). Experiments 
show a significant improvement in the total steps metric 
for adding intrinsic pathway in the Exhaustible Resource 
task. We can conclude that pathways weighting is some 
kind of “shaker” for an agent. When it reaches resources 
well it does not use intrinsic pathway (see Sect. 8.2). But 
then the task is changing (the agent performs badly) and 
the agent needs more steps to reach a resource, extrinsic 
pathway turns off—its priority becomes near zero. The 
agent starts to do random actions (for the zero-const sig-
nal) controlled by the intrinsic pathway. This “shakes” the 
agent’s behavior from stagnation.

We try other signals to make this process more intellec-
tual (Fig. 19). Negative-const is a small negative constant 
(−  0.01). We assume that this signal strengthens explo-
ration because of optimistic initialization in the intrinsic 
pathway. But this does not happen, and results become 
worse than with zero-const.

An anomaly signal can be considered a standard pre-
diction error. Normally, its value is between 0 and 1 
(this is positive-anomaly), but also we consider negative-
anomaly that is shifted by −  1. In Fig.  19, these signals 
do not improve the zero-const variant but are better than 
the baseline.

In Sect. 5.2, we figured that the most suitable depth of 
the prediction for empowerment signal is four. Our goal 
is to understand how this intrinsic signal can influence 
the agent’s performance, so we choose the ideal four-step 
empowerment signal (that uses the environment tran-
sition model) to minimize the negative effects of TM-
predicted empowerment (see Sect.   5.2). This signal is 
shifted to be in [0,  1]—positive-empowerment. And for 
[−1, 0]—negative-empowerment.

We expected that the empowerment signal would 
help the agent go between the rooms after many failed 
turns in one room, and this expectation was justified. 
We found that when the influence of the empower-
ment signal is big ( ηprint >> prext see Eq. 7), the agent 
begins to walk along the ǫ-ring. This can lead to some 
problems: if the priority of the intrinsic reward is not 

Fig. 18 Examples of four options used during the exhaustible resource experiment. The heat map visualizes a number of times the transition to a 
state was predicted during the execution of the corresponding option. Two small heat maps for each option: I is a probability to initialize an option 
in the corresponding state and β—terminate probability
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decreasing, the agent will stay in the vicious circle and 
not find the resource. Exactly to solve this, we define 
exponential decay for η (Sect. 4.2).

Variants with empowerment show the best perfor-
mance among other intrinsic signals with semantics. 
So we can suppose that empowerment is more suitable 
for our architecture.

From these experiments, we already have made some 
conclusions. But it needs to pay attention that for all 
variants of intrinsic motivation their metric one-sigma 
confident intervals are intersected (Fig.  19). To check 
that the signal semantics is matter we evaluate agent 
with positive-random (uniform from [0,  1]) and neg-
ative-random (uniform from [−1, 0] ). As can be seen 
from Fig. 19 these signals are also among other intrin-
sic motivation variants. The reason for such behavior 
can be in the fact that for Exhaustible Resource task 
priority “shaking” is enough and intellectual intrinsic 
signals are not necessary.

Also, we perform an analysis of the agent’s work 
process. In Fig.  20, averaged results of several agent 
runs are shown. We have found for the steps per each 
task (Fig.  20a), in some cases, the difference between 
baseline and others is not so big. As can be seen from 
Fig.  20, intrinsic motivation signals cannot be distin-
guished by their performance, but all are better than 
the baseline without the intrinsic modulation. So we 

can assume that in this task, the priority modulation 
(“shaking”) is more important than the exact values of 
the intrinsic reward.

5.4.3  Dreaming
In this subsection, we discuss the effects of enabling the 
dreaming block to the baseline HIMA. Previously, in 
Sect. 5.3, we have already shown that dreaming speeds up 
learning and makes it more stable. Results in the exhaust-
ible resources experimental setup show similar effects 
caused by dreaming but now applied to the HIMA model 
(see Fig.  21). In the first-level tasks, dreaming may some-
times decrease performance. However, as the difficulty 
increases, the positive effects of dreaming grow. Dream-
ing speeds up convergence during a task. It also acceler-
ates exploration by cutting off less promising pathways.

5.4.4  HIMA
So far, we have been considering each component of our 
agent architecture separately. In this section, we present 
the results of the tests for the full-featured HIMA model. 
Before the final experiment, a grid search procedure was 
performed for several parameters of the agent model 
with all components enabled. Parameter fine-tuning was 
carried out on a simplified version of the test with only 
two first levels of difficulty and five tasks in each one. 

Fig. 19 Comparison of agents with different intrinsic modulation signals at Exhaustible resource task. Baseline—the agent without any intrinsic 
modulation. Agents with prefix “positive” have intrinsic signal from [0, 1] interval. Agents with prefix “negative”—from [−1, 0] interval. The anomaly is 
simple prediction error for TM. Random is value from uniform distribution. Empowerment is the ideal four-step empowerment
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Then, the HIMA agent with the best parameters has been 
tested on the full version of the test.

First, we have compared the full-featured HIMA 
against the baseline HIMA. Figure  22 shows that the 
full-featured HIMA model performs significantly better 
than the baseline. They perform on par in the first-level 

tasks, which do not require transitions between the 
rooms, and simple softmax-based exploration is 
enough. The most conspicuous difference between the 
baseline and HIMA is on the second and third levels, 
where the abstract actions and the intrinsic reward 
facilitate more efficient exploration, while dreaming 

Fig. 20 Comparison of agents with a different intrinsic modulation setting in the exhaustible resource experiment. Baseline—the agent without 
any intrinsic modulation. Negative-empowerment—the agent with intrinsic modulation, where the ideal four-step empowerment is the intrinsic 
reward (values are shifted to [−1, 0] ). Positive-empowerment—the same, but the intrinsic reward is shifted to [0, 1]. Zero-const—the same, but the 
intrinsic reward equals zero

Fig. 21 Comparison of an agent with dreaming enabled (dreamer) against the baseline without dreaming in the exhaustible resource experiment
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speeds up the whole learning process. The dreaming 
helps to stabilize the strategy by improving the value 
function estimate in the striatum.

Second, we have compared the full-featured HIMA 
against DeepRL baselines: DQN [44] and Option-Critic 
[5]. The networks for both methods were constructed on 
top of two fully connected ANN layers. Actor and critic 
parts of Option-Critic shared network weights and only 
had separate corresponding network heads. DQN and 
critic part of the Option-Critic architecture were trained 
offline, using regular uniformly distributed experience 
replay. We fine-tuned baselines hyperparameters via grid 
search on a separate set of seeds within the same test-
ing protocol. Figure  23 shows that both DeepRL meth-
ods were unable to adapt to the repeatedly changing 

tasks and have extremely low performance compared to 
HIMA.

6  Discussion
HIMA has shown an ability to learn an efficient resource 
searching strategy in tasks with changing goals.

Comparison with DeepRL baselines (Fig.  23) showed 
that even on simplified grid world environments there 
are scenarios where DeepRL methods are struggling to 
effectively find a solution. One reason for this is that in 
fully connected layers neurons tend to be less specialized 
compared to neurons in sparse distributed representa-
tion. Also, ANN continuous nature do not work well with 
discrete binary inputs making it hard to converge to local 
minima with stable representations [25]. Combined, such 

Fig. 22 Comparison of full-featured HIMA with a BGT only baseline

Fig. 23 Comparison of a full-featured HIMA with a BGT only baseline and with HIMA without one of the components in the exhaustible resource 
experiment
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representation instability and the lack of specialization 
lead to catastrophic forgetting on task switch, preventing 
DeepRL methods to accumulate experience.

Additional Option-Critic detailed analysis showed that, 
for the most part, one option dominates the others or 
all of them are very short, implying that it tries to solve 
the task with a high-level policy. This type of degraded 
behavior is common in Option-Critic architecture and 
usually indicates an imbalance between the options ter-
mination regularizer and the policy over option entropy 
regularizer. We were unable to achieve such a balance 
with a hyperparameter grid search for this experiment. 
The failure of the classic hierarchical DeepRL approach 
to learn useful sub-policies in scenarios where it was 
expected to be advantageous additionally justifies our 
efforts to develop a robust general HRL system.

Additional experiments revealed that not all compo-
nents of HIMA are orchestrated well for the task, so the 
component interaction requires further research. Several 
conclusions can be derived from the results (Fig. 24). The 
first, and most obvious, is that dreaming has a positive 
influence on overall performance. Secondly, empower-
ment and hierarchy have mediocre compatibility with 
each other. Indeed, all experiments, where the empower-
ment and hierarchy blocks are enabled simultaneously, 
yield worse performance than where they are disjoint.

The conflict between empowerment and hierarchy can 
be explained as a competition of two methods of explora-
tion. Both methods give an agent more directional explo-
ration: the hierarchy with produced abstract actions and 

the empowerment with the local maxima of its function. 
However, they are not synchronized well.

First, we found that different components of HIMA 
share some hyperparameters and their best values for 
options and empowerment modules are distant. We 
think that the modulation of driving motivations can be 
improved. Another reason is that in such small and sim-
ple environments both components interfere with each 
other. Also, the empowerment function is too flat to pro-
vide clear and advantageous directions for an exploration 
in this case. We expect that in more complex experimen-
tal setups these problems should became negligible and 
allow both methods to unleash their potential. For such 
setup, we suggest robotic experiments, where an agent 
has much more possibilities to interact and alter the envi-
ronment. In this case, the empowerment value highlights 
such interaction possibilities, while abstract actions help 
an agent to directly explore them resulting in both meth-
ods playing along.

7  Conclusion
Despite the recent progress of RL in building agents 
capable of learning complex behavior associated with 
humans’ and animals’ capabilities, there is no generally 
accepted framework providing means for effective life-
long open-ended learning so far. Aiming to address this 
issue in order to build a robust general HRL system capa-
ble of continuously learning and reusing acquired skills, 
we proposed a biologically inspired framework for inte-
grating hierarchical temporal memory, reinforcement 

Fig. 24 Comparison of baseline (yellow) and full-featured (red) HIMA with DeepRL baselines: DQN (light blue) and Option-Critic (blue)
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learning, and intrinsic motivation, which resulted in a 
model of an intelligent agent that autonomously acquires 
knowledge in an environment and then uses it to make 
better decisions.

Our agent’s hierarchical structure enables it to learn 
useful spatial–temporal abstractions while also building a 
compact model of the environment. We use the Temporal 
Memory model to generate an intrinsic motivation signal 
called Empowerment, and sparse distributed encoding of 
states and actions to represent context-dependent states 
or actions on different levels of the hierarchy. The result-
ing agent’s behavior is modulated between intrinsically 
motivated exploration and extrinsically motivated goal-
directed behavior. We also enable the agent to reuse the 
acquired knowledge via dreaming imagination in order to 
speed up learning.

In our experiments on grid world environments, we 
demonstrated that the proposed architecture is capable 
of learning an effective resource-search strategy. We also 
showed its benefits in the changing tasks scenarios result-
ing in the faster adaptation. We have compared HIMA 
to DeepRL methods—DQN and Option-Critic—in such 
scenarios. Results revealed that even on simplified grid 
world environments biologically plausible architectures 
can be advantageous to DeepRL approaches by being 
more adaptive to changes and less prone to catastrophic 
forgetting.

In the future, we intend to supplement HIMA with a 
spatial hierarchy and a biologically plausible visual sys-
tem capable of semantic feature extraction from a rich 
sensory input to challenge our architecture in more 
realistic—robotic—environments. We also see possibili-
ties to improve the abstract action formation algorithm 
with the incorporation of the explicit goal representation. 
We expect it to facilitate learning of diverse behavior by 
an agent. Another promising direction is to supplement 
HIMA with the grid cells model for better sequence 
learning and memory anchoring to different environ-
ments. Besides, we will further investigate HIMA mod-
ules interaction to find better orchestration mechanisms.

Appendix
HIMA and options
In this subsection, we establish a link between our hierar-
chical model and the Options Framework.

First of all, we should notice that the resulting policy 
for an option depends not only on a state st but also on 
the previous action at−1 : π = π(at |st , at−1) . However, 
we can include the previous action as a part of a cur-
rent state. Thus, we will consider a policy over options 

π : S̃ × A → [0, 1] , where the state space is defined as 
S̃ = S × A.

The Block 4 BGT defines the high-level policy—the 
policy over options µ = µ(o|s) , while the Block 2 BGT 
represents the low-level policy—the policy over actions 
π = π(a|s) . Both policies are conditioned on the corre-
sponding level current state s ∈ S̃ , which is a concatena-
tion of the corresponding block apical and basal inputs.

The selected option o forms the Block 4 output that 
feedbacks to the Block 2 to define its policy π . Every 
option can be chosen in any state of the environment, 
i.e., I = S̃ . The termination condition for an option is 
determined by A and C signals and by corresponding 
thresholds in Block 2. At timestep t, this condition can be 
determined by state s ∈ S̃ , thus, the termination condi-
tion depends on time: β = βt(s) . However, we can get rid 
of the time component if we stop the TM’s learning.

Block 2 and Block 4 gather rewards with a discount fac-
tor γ until they are reinforced. Block 2 is reinforced for 
every action. On the other hand, Block 4 is reinforced 
only when the selected option is interrupted or termi-
nated. Therefore, the Block 4 BGT is reinforced with the 
reward Ro =

∑m
t=1 γ

t−1rt , where m is the duration of an 
option o.

Reinforcement learning in BGT
The reinforcement learning in BGT consists of two steps: 
Q function evaluation and learning.

At the first step, we evaluate stt (names of variables are 
the same as in  4.2). For this purpose, we maintain two 
matrices D1,D2 ∈ R

kout×kin for each pathway (extrinsic 
and intrinsic). These matrices are initialized to zero (such 
initialization is optimistic and realizes some additional 
exploration similar to count-based variant). Output vec-
tors for each zone of the striatum, d1, d2 , define sparse 
distributed representation of a state value, which are cal-
culated as follows:

The resulting output of the whole striatum is calculated 
using pathway priorities pr, such that print + prext = 1 , to 
get the weighted values sum:

Here, η ∈ [0, 1] is a factor that regulates a scale of an 
intrinsic signal. Intrinsic signal priority print value expo-
nentially decays when rmax ≃ 0 and is reinitialized when 
rmax becomes higher. The priority for the extrinsic signal 
prext is defined via reward rt statistics:

(12)(dα)j =
1

|st|

∑

i∈st

Dα
ji , where α ∈ {1, 2}.

(13)dα = ηdintα print + dextα prext, where α ∈ {1, 2}.
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Here, r is the reward exponential moving average. The 
maximum and minimum for reward are also tracked as 
exponential moving averages:

Here, θdecmin, θ
dec
max, θmin, θmax ∈ [0, 1] are fixed hyperparam-

eters that regulate the rate of averaging and decay.
The second step is matrices D1,D2 learning. The value 

function for a pair (st,  res) (Q function in RL termi-
nology) is represented as a distributed value vector in 
R
|res| , which is calculated as follows:

where i ∈ {1, . . . , |res|}.
At timestep t, the TD error (introduced in Sect.  17) 

is:

where i ∈ {1, . . . , |res|}, γ ∈ [0, 1] . Here we use median 
Q̃(stt , rest) and normalize input reward signal ρ

|res| , as it 
results in better convergence. Finally, matrices D1,D2 are 
updated:

Here, i ∈ {1, . . . , |res|}, j ∈ stt−1 and ζ is the learning rate. 
Note that the elements of matrices that are not consid-
ered in 18 are not updated.
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(14)
prext =

{

0, if rmax ≃ 0;

clip
(

r−rmin
rmax

)

, otherwise.

clip(x) =

{

x, if x ∈ [0, 1];
0, otherwise.

(15)
rmax ←

{

rmaxθmax + r(1− θmax), ifr > rmax;

rmaxθ
dec
max, otherwise.

rmin ←

{

rminθmin + r(1− θmin), if r < rmin;

rminθ
dec
min, otherwise.

(16)Q(st, res)i =
1

|st|

∑

j∈st

D1
res(i),j − D2

res(i),j ,

(17)δti =
ρ

|res|
+ γ Q̃(stt , rest)− Q(stt−1, rest−1)i,

(18)
D1
rest−1(i)j

← D1
rest−1(i)j

+ ζ δti

D2
rest−1(i)j

← D2
rest−1(i)j

− ζ δti .
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